

FCC Measurement/Technical Report on

AXIS W120 Body Worn Camera

FCC ID: PNB-AXISW120

Contains FCC ID: PNB-RC76B (Cellular) PNB-LB1ZM (WiFi/Bluetooth)

Contains IC: 3919A-RC76B (Cellular) 3919A-LB1ZM(WiFi/Bluetooth)

Simultaneous Transmissions

Test Report Reference: MDE_AXIS_2001_FCC_02_rev02

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Sebastian Doose Bernhard Retka

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

Table of Contents

1	Applied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	7
2	Revision History / Signatures	8
3	Administrative Data	9
3.1	Testing Laboratory	9
3.2	Project Data	9
3.3	Applicant Data	9
3.4	Manufacturer Data	10
4	Test object Data	11
4.1	General EUT Description	11
4.2	EUT Main components	11
4.3	Ancillary Equipment	12
4.4	Auxiliary Equipment	12
4.5	EUT Setups Operating Modes / Test Channels	12 13
4.6 4.7	Product labelling	13
5	Test Results	14
5.1	Field strength of spurious radiation	14
5.2	Field strength of spurious radiation	19
5.3	Field strength of spurious radiation	25
6	Test Equipment	31
6.1	Test Equipment Hardware	31
6.2	Test Equipment Software	32
7	Antenna Factors, Cable Loss and Sample Calculations	33
7.1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	33
7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	34
7.3	Antenna R&S HL562 (30 MHz – 1 GHz)	35
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	36
7.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	37
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	38
8	Measurement Uncertainties	39
9	Photo Report	40

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for a cellular mobile device.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 22, 24 and 27 (10-1-21 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 22, Subpart H – Cellular Radiotelephone Service

§ 22.905 – Channels for cellular service

- § 22.913 Effective radiated power limits
- § 22.917 Emission limitations for cellular equipment

Part 24, Subpart E – Broadband PCS

- § 24.232 Power and antenna height limits
- § 24.235 Frequency stability

§ 24.238 – Emission limitations for Broadband PCS equipment

Part 27; Miscellaneous Wireless Communications Services Subpart C – Technical standards

§ 27.50 – Power and duty cycle limits

§ 27.53 – Emission limits

§ 27.54 – Frequency stability

The tests were selected and performed with reference to:

- FCC Public Notice 971168 applying "Measurement guidance for certification of licensed digital transmitters" 971168 D01 v03r01, 2018-04-09
- ANSI C63.26: 2015

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for Cellular Mobile Devices from FCC and ISED Canada

FCC Part 22

Measurement	FCC reference	ISED reference
RF Output Power	§ 2.1046 § 22.913	RSS-GEN Issue 5, 6.12 RSS-132 Issue 4, 5.4
Peak-Average-Ratio	-	RSS 132 Issue 4: 5.4
Emission and Occupied bandwidth	§ 2.1049	RSS-GEN Issue 5, 6.7
Spurious Emission at Antenna Terminals	§ 2.1051 § 22.917	RSS-GEN Issue 5, 6.13 RSS-132 Issue 3, 5.5
Band Edge Compliance	§ 2.1051 § 22.917	RSS-GEN Issue 4, 6.13 RSS-132 Issue 4, 5.5
Frequency stability	§ 2.1055 § 22.355	RSS-GEN Issue 5, 6.11 RSS-132 Issue 4: 5.3
Field strength of spurious radiation	§ 2.1053 § 22.917	RSS-GEN Issue 5, 6.13 RSS-132 Issue 4: 5.5

FCC Part 24

Measurement	FCC reference	ISED reference
RF Output Power	§ 2.1046 § 27.50	RSS-GEN Issue 5, 6.12 RSS-130 Issue 2, 4.6.2/4.6.3 RSS-139 Issue 3, 6.5 RSS-199 Issue 3, 4.4
Peak to Average-Ratio	§ 27.50	RSS-130 Issue 2: 4.6.1 RSS 139 Issue 3: 6.5 RSS-199 Issue 3, 4.4
Emission and Occupied bandwidth	§ 2.1049	RSS-GEN Issue 5, 6.7
Spurious Emission at Antenna Terminals	§ 2.1051 § 27.53	RSS-GEN Issue 5, 6.13 RSS-130 Issue 2: 4.7.1/4.7.2 RSS-139 Issue 3, 6.6 RSS-199 Issue 3, 4.5
Band Edge Compliance	§ 2.1051 § 27.53	RSS-GEN Issue 5, 6.13 RSS-130 Issue 2: 4.7.1/4.7.2 RSS-139 Issue 3, 6.6 RSS-199 Issue 3, 4.5
Frequency stability	§ 2.1055 § 27.54	RSS-GEN Issue 5, 6.11 RSS-130 Issue 2: 4.5 RSS-139 Issue 3: 6.4 RSS-199 Issue 3, 4.3
Field strength of spurious radiation	§ 2.1053 § 27.53	RSS-GEN Issue 5, 6.13 RSS-130 Issue 2: 4.7.1/4.7.2 RSS-139 Issue 3: 6.6 RSS-199 Issue 3, 4.5

FCC Part 27

Measurement	FCC reference	ISED reference
RF Output Power	§ 2.1046 § 24.232	RSS-GEN Issue 5, 6.12 RSS-133 Issue 6, 6.4
Peak-Average-Ratio	§ 24.232	RSS 133 Issue 6: 6.4
Emission and Occupied bandwidth	§ 2.1049	RSS-GEN Issue 5, 6.7
Spurious Emission at Antenna Terminals	§ 2.1051 § 24.238	RSS-GEN Issue 5, 6.13 RSS-133 Issue 6, 6.5
Band Edge Compliance	§ 2.1051 § 24.238	RSS-GEN Issue 5, 6.13 RSS-133 Issue 6, 6.5
Frequency stability	§ 2.1055 § 24.235	RSS-GEN Issue 5, 6.11 RSS-133 Issue 6: 6.3
Field strength of spurious radiation	§ 2.1053 § 24.236	RSS-GEN Issue 5, 6.13 RSS-133 Issue 6: 6.5

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 22 Subpart H	§ 2.1053 § 2	2.917		
Field strength of spurious radiation The measurement was performed accordi 5.5.2.3.1	ng to ANSI C63.2	26: 2015;	Final Re	esult
OP-Mode Radio Technology, Measurement method	Setup	Date	FCC	IC
LTE Band 5 + BT Classic, radiated COMMENT: measurement range: 1 – 10 GHz	S01_AC01	2023-07-22	Passed	Passed
47 CFR CHAPTER I FCC PART 24 Subpart E	§ 2.1053 § 24	4.236		
Field strength of spurious radiation The measurement was performed accordi 5.5.2.3.1	ng to ANSI C63.2	26: 2015;	Final Re	esult
OP-Mode	Setup	Date	FCC	IC
	occup	Dute		
Radio Technology, Measurement method LTE Band 2 + WLAN 2.4 GHz, radiated COMMENT: measurement range: 1 – 20 GHz	S01_AC01	2023-07-22	Passed	Passed
Radio Technology, Measurement method LTE Band 2 + WLAN 2.4 GHz, radiated	-	2023-07-22		Passed
Radio Technology, Measurement method LTE Band 2 + WLAN 2.4 GHz, radiated COMMENT: measurement range: 1 – 20 GHz 47 CFR CHAPTER I FCC PART 27	\$ 2.1053 § 2	2023-07-22 7.53		
Radio Technology, Measurement method LTE Band 2 + WLAN 2.4 GHz, radiated COMMENT: measurement range: 1 – 20 GHz 47 CFR CHAPTER I FCC PART 27 Subpart C Field strength of spurious radiation The measurement was performed accordi	S01_AC01	2023-07-22 7.53	Passed	

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY / SIGNATURES

Report version control				
Version	Release date	Change Description	Version validity	
initial	2023-08-24		invalid	
rev01	2024-02-14	Change in ID	invalid	
rev02	2024-04-08	Additional change in ID	valid	

COMMENT:

Not all applicable tests were performed, according to "KDB996369 D04 Module Integration Guide v02'' spot checks for field strength of spurious radiation above 1 GHz were performed.

(responsible for accreditation scope) Dipl.-Ing. Robert Machulec

(responsible for testing and report) B.Eng. Jasmin Urowski

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

7layers GmbH

Address:

Borsigstr. 11 40880 Ratingen Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no:	DAkkS D-PL-12140-01-01 -02 -03
FCC Designation Number:	DE0015
FCC Test Firm Registration:	929146
ISED CAB Identifier	DE0007; ISED#: 3699A
Responsible for accreditation scope:	DiplIng. Robert Machulec
Report Template Version:	2022-05-25
3.2 PROJECT DATA	
Responsible for testing and report:	B.Eng. Jasmin Urowski
Employees who performed the tests:	documented internally at 7Layers
Date of Report:	2024-04-08
Testing Period:	2023-07-22

3.3 APPLICANT DATA

Company Name:	Axis Communications AB
Address:	Gränden 1, SE-223 69 Lund Sweden
Contact Person:	Mr. Daniel Nydemark

3.4 MANUFACTURER DATA

Company Name:

please see Applicant Data

Address:

Contact Person:

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	portable, body-worn surveillance device	
Product name	AXIS W120 Body Worn Camera	
Туре	AXIS W120	
Declared EUT data by	the supplier	
General product description	The EUT is a portable, body-worn surveillance device with an integrated Cellular (LTE), GNSS, Bluetooth and WLAN module (2.4 GHz and 5 GHz).	
Voltage Level	EUT C: DC, Li-Pol battery AUX23: AC (EUT charged during test with AUX23)	
Voltage Type	EUT C: 3.7 V, AUX23: 120 V / 60 Hz	

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
EUT C	DE1476002ac01	Radiated FCC Sample
Sample Parameter		Value
Serial No.	B8A44F8E633D	
HW Version	Rev.1	
SW Version	5.4	
Comment	-	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it.

But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
AUX23	Samsung, EP-TA20EBE, 2022-02, -, R37T1RW9BD1SEB	AC/DC Samsung Charger, Type-C

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_AC01	EUT C + AUX23	Typical set-up for stand alone with USB-Charger

4.6 OPERATING MODES / TEST CHANNELS

This chapter describes the operating modes of the EUTs used for testing.

Simultaneous Transmissions:

- LTE eFDD5, TX on 836.5 MHz + 2.4 GHz Bluetooth Classic, TX on 2402 MHz
- LTE eFDD2, TX on 1880 MHz + 2.4 GHz WLAN, 1 Mbps, b-mode, TX on 2412 MHz
- LTE eFDD4, TX on 1732.5 MHz + 5 GHz WLAN, 6 Mbps, a-mode, TX on 5180 MHz

4.7 PRODUCT LABELLING

4.7.1 FCC ID LABEL

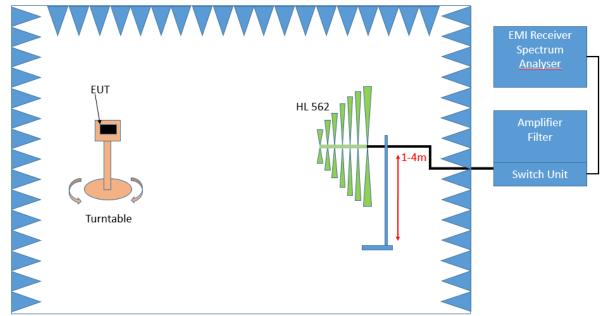
Please refer to the documentation of the applicant.

4.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

5 TEST RESULTS

5.1 FIELD STRENGTH OF SPURIOUS RADIATION

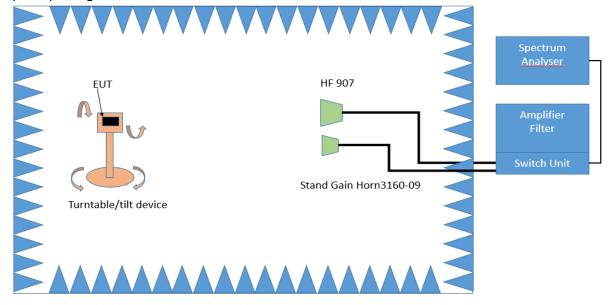

Standard FCC PART 22 Subpart H

The test was performed according to: ANSI C63.26: 2015; 5.5.2.3.1

5.1.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053 and RSS-GEN 6.13. The limit and requirements come from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:



Frequency Range: 30 MHz – 1 GHz:

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Frequency Range: 1 GHz – 26.5 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

The test set-up was made in accordance to the general provisions of ANSI C63.26 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak
- RBW: 1 MHz
- VBW: 1 MHz
- Sweep time: coupled
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission

will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak
- Measured frequencies: in step 1 determined frequencies
- RBW: 100 kHz
- VBW: 100 kHz
- Sweep time: coupled
- Turntable angle range: \pm 45 ° around the determined value
- Height variation range: \pm 100 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with RMS detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: RMQ
- Measured frequencies: in step 1 determined frequencies
- RBW: 100 kHz
- VBW: 100 kHz
- Sweep time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

- Antenna distance: 3 m

- Detector: Peak
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: coupled
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Polarisation: Horizontal + Vertical

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

EMI receiver settings (for all steps):

- Detector: Peak,
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: 100 ms

Step 3:

- Spectrum analyser settings for step 3:
- Detector: RMS
- Measured frequencies: in step 1 determined frequencies
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep Time: 1 s

5.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 2.1053; Measurement required: Field strength of spurious radiation:

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate.

Part 22, Subpart H – Cellular Radiotelephone Service

§ 22 917 – Emission limitations for cellular equipment

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

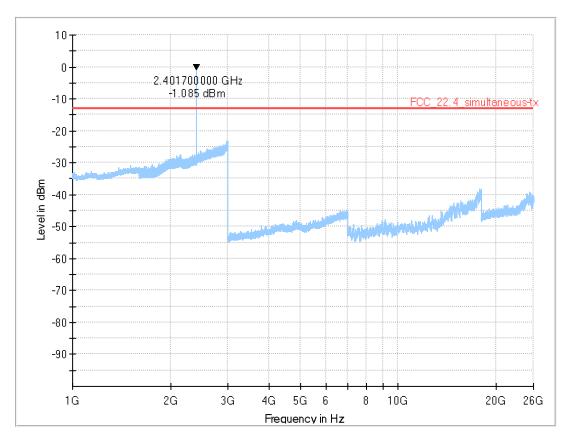
RSS-132; 5.5 Transmitter Unwanted Emissions

Mobile and base station equipment shall comply with the limits in (i) and (ii) below.

- In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log₁₀p (watts).
- 2. After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log₁₀ p (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.

5.1.3 TEST PROTOCOL

Ambient temperature:28 °CAir Pressure:1014 hPaHumidity:31 %


LTE Band 5, TX on 836.5 MHz + 2.4 GHz Bluetooth Classic, TX on 2402 MHz

Spurious Freq.	Spurious Level	Detector	RBW	Limit	Margin to Limit
[MHz]	[dBm]		[kHz]	[dBm]	[dB]
-	-	PEAK	1000	-13	>20

Remark: Please see next sub-clause for the measurement plot.

5.1.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

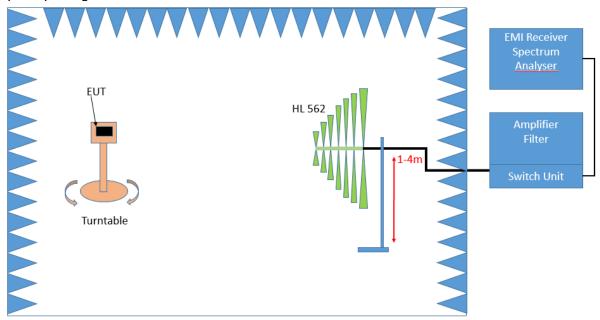
Technology = LTE, Radio Technology = LTE Band 5 QPSK, Operating Frequency = mid channel, ChBW = 5 MHz, Resource Blocks = 1 + BT Classic on low CH 0, Measurement method = radiated (S01_AC01)

Remark: Marker on intentional transmitter BT TX

5.1.5 TEST EQUIPMENT USED

- Radiated Emissions FAR

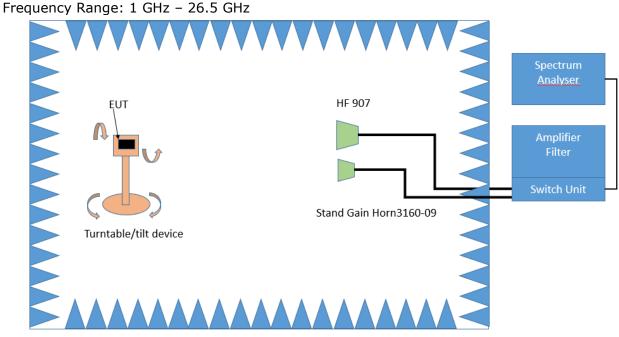
5.2 FIELD STRENGTH OF SPURIOUS RADIATION


Standard FCC PART 24 Subpart E

The test was performed according to: ANSI C63.26: 2015; 5.5.2.3.1

5.2.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053 and RSS-GEN 6.13. The limit and requirements come from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.


The EUT was connected to the test setup according to the following diagram:

Frequency Range: 30 MHz – 1 GHz:

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

The test set-up was made in accordance to the general provisions of ANSI C63.26 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: 1 s
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak
- Measured frequencies: in step 1 determined frequencies
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: 100 ms
- Turntable angle range: \pm 45 ° around the determined value
- Height variation range: ± 100 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with RMS detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: RMQ
- Measured frequencies: in step 1 determined frequencies
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

- Antenna distance: 3 m
- Detector: Peak
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: coupled
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Polarisation: Horizontal + Vertical

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

EMI receiver settings (for all steps):

- Detector: Peak,
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: 100 ms

Step 3:

- Spectrum analyser settings for step 3:
- Detector: RMS
- Measured frequencies: in step 1 determined frequencies
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep Time: 1 s

5.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 2.1053; Measurement required: Field strength of spurious radiation:

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate.

Part 24, Subpart E – Broadband PCS

§ 24 238 – Emission limitations for Broadband PCS equipment

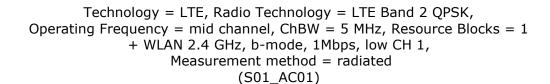
- a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
- b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

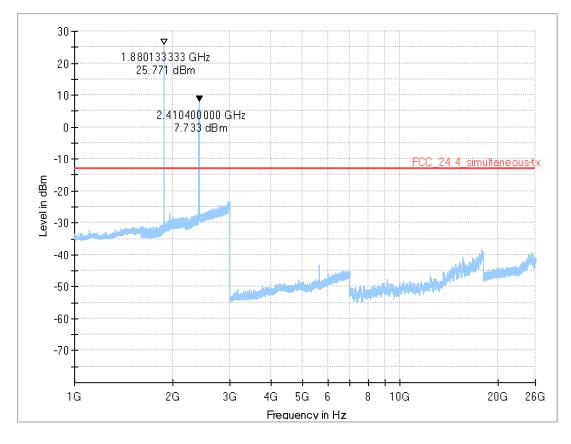
RSS-133; 6.5 Transmitter Unwanted Emissions

Mobile and base station equipment shall comply with the limits in (1) and (2) below.

- 1. In the 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the emission power per any 1% of the emission bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log₁₀p (watts).
- After the first 1.0 MHz, the emission power in any 1 MHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log₁₀p (watts). If the measurement is performed using 1% of the emission bandwidth, power integration over 1.0 MHz is required.

5.2.3 TEST PROTOCOL


Ambient temperature:	28 °C
Air Pressure:	1014 hPa
Humidity:	31 %


LTE Band 2, TX on 1880 MHz + 2.4 GHz WLAN, 1 Mbps, b-mode, TX on 2412 MHz

Spurious Freq.	Spurious Level	Detector	RBW	Limit	Margin to Limit
[MHz]	[dBm]		[kHz]	[dBm]	[dB]
-	-	PEAK	1000	-13	>20

Remark: Please see next sub-clause for the measurement plot.

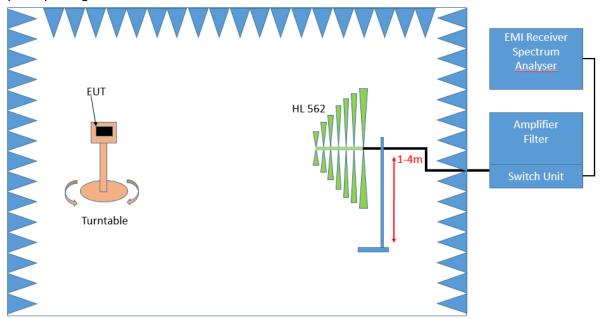
5.2.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Remark: Marker on intentional transmitter LTE Band 2 and WLAN 2.4 GHz

5.2.5 TEST EQUIPMENT USED

- Radiated Emissions FAR

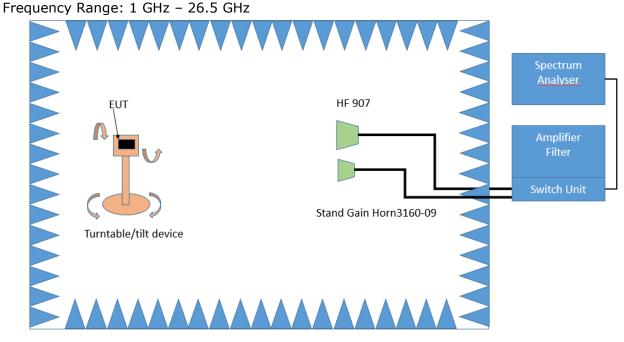
5.3 FIELD STRENGTH OF SPURIOUS RADIATION


Standard FCC PART 27 Subpart C

The test was performed according to: ANSI C63.26: 2015; 5.5.2.3.1

5.3.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053 and RSS-GEN 6.13. The limit and requirements come from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.


The EUT was connected to the test setup according to the following diagram:

Frequency Range: 30 MHz – 1 GHz:

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

The test set-up was made in accordance to the general provisions of ANSI C63.26 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: coupled
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak
- Measured frequencies: in step 1 determined frequencies
- RBW: 1 MHz
- VBW: 1 MHz
- Sweep time: 100 ms
- Turntable angle range: \pm 45 ° around the determined value
- Height variation range: ± 100 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with RMS detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: RMQ
- Measured frequencies: in step 1 determined frequencies
- RBW: 1MHz
- VBW: 1 MHz
- Sweep time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

- Antenna distance: 3 m
- Detector: Peak
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: coupled
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Polarisation: Horizontal + Vertical

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by \pm 45°

EMI receiver settings (for all steps):

- Detector: Peak,
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: 100 ms

Step 3:

- Spectrum analyser settings for step 3:
- Detector: RMS
- Measured frequencies: in step 1 determined frequencies
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep Time: 1 s

5.3.2 TEST REQUIREMENTS / LIMITS

FCC Part 2.1053; Measurement required: Field strength of spurious radiation:

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate.

FCC Part 27; Miscellaneous Wireless Communication Services

Subpart C – Technical standards

§27.53 – Emission limits

Band 4:

(h) AWS emission limits—(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10}$ (P) dB.

RSS-139; 6.6 Transmitter Unwanted Emissions

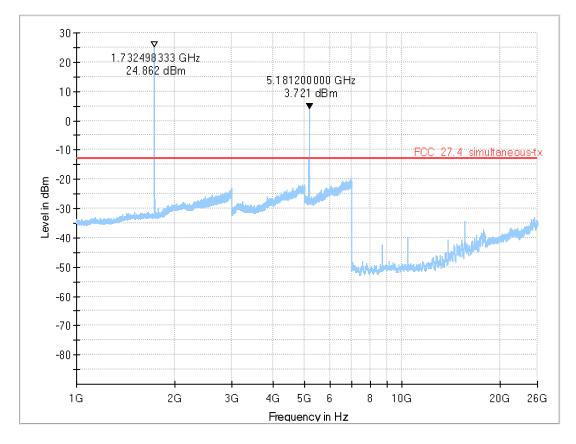
Equipment shall comply with the limits in (i) and (ii) below.

- i. In the first 1.0 MHz bands immediately outside and adjacent to the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log₁₀ p (watts) dB.
- ii. After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least $43 + 10 \log_{10} p$ (watts) dB.

5.3.3 TEST PROTOCOL

Ambient temperature:	28 °C
Air Pressure:	1014 hPa
Humidity:	31 %

LTE Band eFDD4, TX on 1732.5 MHz + 5 GHz WLAN, 6Mbps, a-mode, TX on 5180 MHz


Spurious Freq.	Spurious Level	Detector	RBW	Limit	Margin to Limit
[MHz]	[dBm]		[kHz]	[dBm]	[dB]
-	-	PEAK	1000	-13	>20

Remark: Please see next sub-clause for the measurement plot.

5.3.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Technology = LTE, Radio Technology = LTE Band 4 QPSK, Operating Frequency = mid channel, ChBW = 5 MHz, Resource Blocks = 1 + WLAN 5 GHz, a-mode, 6Mbps, low CH 36, Measurement method = radiated (S01_AC01)

Remark: Marker on intentional transmitter LTE Band 4 and WLAN 5 GHz

5.3.5 TEST EQUIPMENT USED

- Radiated Emissions FAR

6 TEST EQUIPMENT

6.1 TEST EQUIPMENT HARDWARE

1 Radiated Emissions FAR Radiated Emissions in a fully anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number		Calibration
					Calibration	
1.1	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936	2021-10	2023-10
1.2	AMF- 7D00101800-	Broadband Amplifier 100 MHz - 18 GHz	Miteq			
1.3	5HC2700/12750		Trilithic	9942012		
1.4	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
1.5	Anechoic Chamber 03	FAR, 8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001- PRB		
1.6	Fluke 177		Fluke Europe B.V.	86670383	2022-06	2024-06
1.7		Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
1.8	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright Instruments GmbH	09		
1.9	4HC1600/12750 -1.5-KK	High Pass Filter	Trilithic	9942011		
1.10	TT 1.5 WI		Maturo GmbH	-		
1.11	HL 562 ULTRALOG	Biconical-log- per Antenna (30 MHz - 3 GHz)	Rohde & Schwarz GmbH & Co. KG	100609	2022-06	2025-06
1.12	VLFX-650+	Low Pass Filter DC650 MHz	Mini-Circuits	15542		
1.13	5HC3500/18000		Trilithic	200035008		
1.14	FSW43	Analyser	Rohde & Schwarz GmbH & Co. KG	102013	2023-06	2025-06
1.15	Opus 20 THI (8120.00)	Datalogger	Lufft Mess- und Regeltechnik GmbH			
1.16	TD1.5-10kg	EUT Tilt Device (Rohacell)	Maturo GmbH	TD1.5- 10kg/024/37907 09		
1.17	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
1.18		Broadband	Miteq	2035324		
1.19	HF 907		Rohde & Schwarz	102444	2021-09	2024-09

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6.2 TEST EQUIPMENT SOFTWARE

Semi-Anechoic Chamber:	
Software	Version
EMC32 Measurement Software	10.60.10
INNCO Mast Controller	1.02.62
MATURO Mast Controller	12.19
MATURO Turn-Table Controller	30.10
Fully-Anechoic Chamber:	
Software	Version
EMC32 Measurement Software	10.60.10
MATURO Turn-Unit Controller	11.10
MATURO Mast Controller	12.10
MATURO Turntable Controller	12.11
Conducted AC Emissions:	
Software	Version
EMC32 Measurement Software	10.60.20

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

			,
	Com	LISN insertion loss ESH3-	cable loss (incl. 10 dB atten-
Frequency	Corr.	Z5	uator)
MHz	dB	dB	dB
0.15	10.1	0.1	10.0
5	10.3	0.1	10.2
7	10.5	0.2	10.3
10	10.5	0.2	10.3
12	10.7	0.3	10.4
14	10.7	0.3	10.4
16	10.8	0.4	10.4
18	10.9	0.4	10.5
20	10.9	0.4	10.5
22	11.1	0.5	10.6
24	11.1	0.5	10.6
26	11.2	0.5	10.7
28	 11.2	0.5	10.7
30	11.3	0.5	10.8

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

			``		,				
			cable	cable	cable	cable	distance	dLimit	dused
			loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
	AF		(inside	(outside	(switch	(to	(-40 dB/	distance	distance
Frequency	HFH-Z2)	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
0.009	20.50	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.01	20.45	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.015	20.37	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.02	20.36	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.025	20.38	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.03	20.32	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.05	20.35	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.08	20.30	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.1	20.20	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.49	20.12	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6	0.1	0.1	0.1	0.1	-40	30	3
1	20.09	-39.6	0.1	0.1	0.1	0.1	-40	30	3
2	20.08	-39.6	0.1	0.1	0.1	0.1	-40	30	3
3	20.06	-39.6	0.1	0.1	0.1	0.1	-40	30	3
4	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
5	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
6	20.02	-39.5	0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5	0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4	0.2	0.1	0.2	0.1	-40	30	3
12	19.71	-39.4	0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.4	0.2	0.1	0.2	0.1	-40	30	3
16	19.53	-39.3	0.3	0.1	0.2	0.1	-40	30	3
18	19.50	-39.3	0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3	0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
24	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
26	19.54	-39.3	0.3	0.1	0.2	0.1	-40	30	3
28	19.46	-39.2	0.3	0.1	0.3	0.1	-40	30	3
30	19.73	-39.1	0.4	0.1	0.3	0.1	-40	30	3

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

(<u>d_{Limit} = 3 m)</u>

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable loss 1	cable loss 2	cable loss 3	cable loss 4	distance corr.	d _{Limit} (meas.	d _{used} (meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

(<u>d_{Limit} = 10 m)</u>

	'/								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				•		,				
AF R&S ioss 1 (relay + cable (switch unit, cable (switch unit, atten- cable (switch unit, cable (switch unit, cable (switch unit, atten- cable (switch unit, cable (switch unit, cable (switch unit, cable (switch unit, atten- cable (switch unit, cable (switch unit, cable (switch unit, atten- cable (switch unit, cable (switch unit, cable (switch unit, cable (switch unit, cable (switch unit, cable (switch unit, cable (switch unit, cable (switch unit, cable (switch unit, atten- cable (swi							cable			
AF R8S (relay + cable chamber) cable (loss 2 (outside chamber) 'unit, atten- uator & pre-amp) cable loss 4 (to receiver) ////////////////////////////////////					cable		loss 3			
AF R8S (relay + cable cable (bss 2 unit, cable cable (bss 4 unit, cable cable (bss 4 unit, cable cable unit, cable unit, cable <thunit< th=""> unit, cable</thunit<> unit, c					loss 1		(switch			
Res. Frequency Res. HF907 Corr. Corr. Inside chamber) (outside pre-amp) loss 4 (to pre-amp) Inside (outside pre-amp) loss 4 (to pre-amp) 1000 24.4 -19.4 0.99 0.31 -21.51 0.79 Image) 2000 33.1 -16.1 1.87 0.53 -19.85 1.33 Image) 4000 33.1 -14.7 2.41 0.67 -19.13 1.31 Image) 5000 34.4 -12.7 2.74 0.90 -17.83 1.44 Image) 7000 35.6 -11.0 2.82 0.86 -16.19 Image)					(relay +	cable				
Frequency HF907 Corr. chamber) pre-amp) receiver) metabolic MHz dB dB </td <td></td> <td>AF</td> <td></td> <td></td> <td>· · /</td> <td>loss 2</td> <td>,</td> <td>cable</td> <td></td> <td></td>		AF			· · /	loss 2	,	cable		
Frequency HF907 Corr. chamber) pre-amp) receiver) metabolic MHz dB dB </td <td></td> <td>R&S</td> <td></td> <td></td> <td>inside</td> <td>(outside</td> <td>uator &</td> <td>loss 4 (to</td> <td></td> <td></td>		R&S			inside	(outside	uator &	loss 4 (to		
MHz dB (1/m) dB	Frequency		Corr.			``				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					/					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-			-		-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-	-							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6000		-12.7			0.90	-17.83			
AF cable cable cable cable cable cable cable loss 4 unit, used Frequency HF907 Corr. Inside (outside loss 3 atten-uator & loss 5 (to FCC MHz dB (1/m) dB dB <t< td=""><td>7000</td><td>35.6</td><td>-11.0</td><td></td><td>2.82</td><td>0.86</td><td>-16.19</td><td>1.46</td><td></td><td></td></t<>	7000	35.6	-11.0		2.82	0.86	-16.19	1.46		
AF cable cable cable cable cable cable cable loss 4 unit, used Frequency HF907 Corr. Inside (outside loss 3 atten-uator & loss 5 (to FCC MHz dB (1/m) dB dB <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								cable		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								loss 4		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					cable			(switch		
R&S Frequency Corr. HF907 Corr. Corr. inside chamber) (inside chamber) (outside chamber) uator & pre-amp) loss 5 (to receiver) FCC receiver) MHz dB (1/m) dB dB dB dB dB dB dB receiver) 15.247 MHz dB (1/m) dB dB <td></td> <td></td> <td></td> <td></td> <td>loss 1</td> <td>cable</td> <td>cable</td> <td>`unit,</td> <td></td> <td>used</td>					loss 1	cable	cable	`unit,		used
R&S Frequency Corr. HF907 Corr. Corr. inside chamber) (inside chamber) (outside chamber) uator & pre-amp) loss 5 (to receiver) FCC receiver) MHz dB (1/m) dB dB dB dB dB dB dB receiver) 15.247 MHz dB (1/m) dB dB <td></td> <td>AF</td> <td></td> <td></td> <td>(relay</td> <td>loss 2</td> <td>loss 3</td> <td></td> <td>cable</td> <td>for</td>		AF			(relay	loss 2	loss 3		cable	for
Frequency HF907 Corr. chamber) chamber) chamber) pre-amp) receiver) 15.247 MHz dB (1/m) dB					· · ·					FCC
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Frequency		Corr.			•	•		•	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										10.11.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		• • • •								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
7000 35.6 -19.8 0.66 2.82 0.86 -25.58 1.46 AF R&S Cable loss 4 loss 5 loss 6 (inside (inside </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-								
AF Cable Ca										
AF Ioss 1 cable loss 3 loss 4 loss 5 loss 6 R&S R&S R&S Inside (High (pre- (inside (outside (to MHz dB (1/m) dB dB <td>7000</td> <td>35.6</td> <td>-19.8</td> <td></td> <td>0.66</td> <td>2.82</td> <td>0.86</td> <td>-25.58</td> <td>1.46</td> <td></td>	7000	35.6	-19.8		0.66	2.82	0.86	-25.58	1.46	
AF Ioss 1 cable loss 3 loss 4 loss 5 loss 6 R&S R&S R&S Inside (High (pre- (inside (outside (to MHz dB (1/m) dB dB <td>Γ</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td>1 1</td>	Γ					1	1		1	1 1
AF R&S(relay inside (High Corr.loss 2 inside (High (Bisk) (Pass)loss 3 inside (Inside (Inside (Inside (Inside (Outside (Outside (Outside (Inside (Outside (Outside (Inside (Outside (Inside (Outside (Inside Outside (Inside (Inside (Inside Outside (Inside Inside (Inside (Inside (Inside (Inside (Inside (Inside (Inside Inside (Inside (Inside Inside (Inside (Inside Inside (Inside (Inside Inside (Inside Inside<										
R&S FrequencyHF907Corr.inside (High chamber)(pre- amp)(inside (hamber)(outside receiver)MHzdB (1/m)dBdBdBdBdBdBdBdBdB700035.6-57.30.561.28-62.722.660.941.46800036.3-56.30.690.71-61.492.841.001.53900037.1-55.30.680.65-60.803.061.091.601000037.5-56.20.700.54-61.913.281.201.671100037.5-55.30.800.61-61.403.431.271.701200037.6-53.70.840.42-59.703.531.261.731300038.2-53.50.830.44-59.813.751.321.831400039.9-56.30.910.53-63.033.911.401.771500040.9-54.10.980.54-61.054.021.441.831600041.3-54.11.230.49-61.514.171.511.851700042.8-54.41.360.76-62.364.341.532.00										
FrequencyHF907Corr.chamber)Pass)amp)chamber)chamber)receiver)MHzdB (1/m)dBdBdBdBdBdBdBdBdB700035.6-57.30.561.28-62.722.660.941.46800036.3-56.30.690.71-61.492.841.001.53900037.1-55.30.680.65-60.803.061.091.601100037.5-56.20.700.54-61.913.281.201.671100037.6-53.70.800.61-61.403.431.271.701200037.6-53.70.840.42-59.703.531.261.731300038.2-53.50.830.44-59.813.751.321.831400039.9-56.30.910.53-63.033.911.401.771500040.9-54.10.980.54-61.054.021.441.831600041.3-54.11.230.49-61.514.171.511.851700042.8-54.41.360.76-62.364.341.532.00					· · ·					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_							· ·	``	``
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	,	,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-				-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-57.3		0.56	1.28	-62.72	2.66	0.94	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8000	36.3			0.69	-	-61.49	2.84	1.00	1.53
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9000	37.1	-55.3		0.68	0.65	-60.80	3.06	1.09	1.60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10000	37.5								
12000 37.6 -53.7 0.84 0.42 -59.70 3.53 1.26 1.73 13000 38.2 -53.5 0.83 0.44 -59.81 3.75 1.32 1.83 14000 39.9 -56.3 0.91 0.53 -63.03 3.91 1.40 1.77 15000 40.9 -54.1 0.98 0.54 -61.05 4.02 1.44 1.83 16000 41.3 -54.1 1.23 0.49 -61.51 4.17 1.51 1.85 17000 42.8 -54.4 1.36 0.76 -62.36 4.34 1.53 2.00										
1300038.2-53.50.830.44-59.813.751.321.831400039.9-56.30.910.53-63.033.911.401.771500040.9-54.10.980.54-61.054.021.441.831600041.3-54.11.230.49-61.514.171.511.851700042.8-54.41.360.76-62.364.341.532.00										
14000 39.9 -56.3 0.91 0.53 -63.03 3.91 1.40 1.77 15000 40.9 -54.1 0.98 0.54 -61.05 4.02 1.44 1.83 16000 41.3 -54.1 1.23 0.49 -61.51 4.17 1.51 1.85 17000 42.8 -54.4 1.36 0.76 -62.36 4.34 1.53 2.00										
1500040.9-54.10.980.54-61.054.021.441.831600041.3-54.11.230.49-61.514.171.511.851700042.8-54.41.360.76-62.364.341.532.00						-				
1600041.3-54.11.230.49-61.514.171.511.851700042.8-54.41.360.76-62.364.341.532.00										
17000 42.8 -54.4 1.36 0.76 -62.36 4.34 1.53 2.00										
						0.49				
18000 44.2 -54.7 1.70 0.53 -62.88 4.41 1.55 1.91			-54.4		1.36	0.76	-62.36	4.34	1.53	2.00
	18000	44.2	-54.7		1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

			 · · ·		- /		
			cable	cable	cable	cable	cable
	AF		loss 1	loss 2	loss 3	loss 4	loss 5
	EMCO		(inside	(pre-	(inside	(switch	(to
requency	3160-09	Corr.	chamber)	amp)	chamber)	unit)	receiver)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB
18000	40.2	-23.5	0.72	-35.85	6.20	2.81	2.65
18500	40.2	-23.2	0.69	-35.71	6.46	2.76	2.59
19000	40.2	-22.0	0.76	-35.44	6.69	3.15	2.79
19500	40.3	-21.3	0.74	-35.07	7.04	3.11	2.91
20000	40.3	-20.3	0.72	-34.49	7.30	3.07	3.05
20500	40.3	-19.9	0.78	-34.46	7.48	3.12	3.15
21000	40.3	-19.1	0.87	-34.07	7.61	3.20	3.33
21500	40.3	-19.1	0.90	-33.96	7.47	3.28	3.19
22000	40.3	-18.7	0.89	-33.57	7.34	3.35	3.28
22500	40.4	-19.0	0.87	-33.66	7.06	3.75	2.94
23000	40.4	-19.5	0.88	-33.75	6.92	3.77	2.70
23500	40.4	-19.3	0.90	-33.35	6.99	3.52	2.66
24000	40.4	-19.8	0.88	-33.99	6.88	3.88	2.58
24500	40.4	-19.5	0.91	-33.89	7.01	3.93	2.51
25000	40.4	-19.3	0.88	-33.00	6.72	3.96	2.14
25500	40.5	-20.4	0.89	-34.07	6.90	3.66	2.22
26000	40.5	-21.3	0.86	-35.11	7.02	3.69	2.28
26500	40.5	-21.1	0.90	-35.20	7.15	3.91	2.36

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Sample calculation

Freq

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

Frequency	AF EMCO 3160-10	Corr.	cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
GHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
26.5	43.4	-11.2	4.4		-	-	-9.5	3	1.0
27.0	43.4	-11.2	4.4				-9.5	3	1.0
28.0	43.4	-11.1	4.5				-9.5	3	1.0
29.0	43.5	-11.0	4.6				-9.5	3	1.0
30.0	43.5	-10.9	4.7				-9.5	3	1.0
31.0	43.5	-10.8	4.7				-9.5	3	1.0
32.0	43.5	-10.7	4.8				-9.5	3	1.0
33.0	43.6	-10.7	4.9				-9.5	3	1.0
34.0	43.6	-10.6	5.0				-9.5	3	1.0
35.0	43.6	-10.5	5.1				-9.5	3	1.0
36.0	43.6	-10.4	5.1				-9.5	3	1.0
37.0	43.7	-10.3	5.2				-9.5	3	1.0
38.0	43.7	-10.2	5.3				-9.5	3	1.0
39.0	43.7	-10.2	5.4				-9.5	3	1.0
40.0	43.8	-10.1	5.5				-9.5	3	1.0

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG ($d_{\text{Limit}}/d_{\text{used}}$) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

8 MEASUREMENT UNCERTAINTIES

Test Case(s)	Parameter	Uncertainty
- Field strength of spurious radiation	Field Strength	± 5.5 dB
- Emission and Occupied Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
RF Output PowerPeak to Average Ratio	Power	± 2.2 dB
 Band Edge Compliance Spurious Emissions at Antenna Terminal 	Power Frequency	± 2.2 dB ± 11.2 kHz
- Frequency Stability	Frequency	± 25 Hz

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.

9 PHOTO REPORT

Please see separate photo report.