

TEST REPORT

G.TEC 1, Jinding Industrial Park, West Jinfo G 2.4GF M	H TEC eng Ro uangd Hz Wir Iodel N	Attn: Attn: Address: Fax: E-mail: A254ETHP-B-B CHNOLOGY LTD. oad, Tangjiawan Tow dong, China. reless Keyboard No.: GK381 No.: 28036 Sample No:	- - - - n, Xiangzhou District, Zhuhai, HK150504/017
1, Jinding Industrial Park, Jinfeng Road, Tangjiawan Town, gzhou District, Zhuhai, Guangdong, a 66 3393338 <u>uhlenstyle.com</u> RCN- G.TECH 1, Jinding Industrial Park, West Jinfe G 2.4GH M	H TEC eng Ro uangd Hz Wir Iodel N	Address: Fax: E-mail: A254ETHP-B-B CHNOLOGY LTD. oad, Tangjiawan Tow dong, China. reless Keyboard No.: GK381 No.: GK381 No.: 28036 Sample No:	- - n, Xiangzhou District, Zhuhai,
i6 3393338 uhlenstyle.com RCN- G.TECH 1, Jinding Industrial Park, West Jinfe G 2.4GF M	H TEC eng Ro uangd Hz Wir Iodel N	E-mail: A254ETHP-B-B CHNOLOGY LTD. oad, Tangjiawan Tow long, China. reless Keyboard No.: GK381 No.: 28036 Sample No:	
uhlenstyle.com RCN- G.TECH 1, Jinding Industrial Park, West Jinfe G 2.4GF M	H TEC eng Ro uangd Hz Wir Iodel N	E-mail: A254ETHP-B-B CHNOLOGY LTD. oad, Tangjiawan Tow long, China. reless Keyboard No.: GK381 No.: 28036 Sample No:	
RCN- G.TECH 1, Jinding Industrial Park, West Jinfe G 2.4GF M	H TEC eng Ro uangd Hz Wir Iodel N	A254ETHP-B-B CHNOLOGY LTD. oad, Tangjiawan Tow dong, China. reless Keyboard No.: GK381 No.: 28036 Sample No:	
G.TECH 1, Jinding Industrial Park, West Jinfa G 2.4GF M	H TEC eng Ro uangd Hz Wir Iodel N	HNOLOGY LTD. oad, Tangjiawan Tow dong, China. reless Keyboard No.: GK381 No.: 28036 Sample No:	
1, Jinding Industrial Park, West Jinfe G 2.4GF M	eng Ro luangd Hz Wir lodel N	oad, Tangjiawan Tow long, China. reless Keyboard No.: GK381 No.: 28036 Sample No:	
G 2.4GH M	luangd Hz Wir Ilodel N	tong, China. reless Keyboard No.: GK381 No.: 28036 Sample No:	
	/lodel N	No.: GK381 No.: 28036 Sample No:	HK150504/017
1 <u>1</u>			HK150504/017
N N			
n n	-10	Test date:	May 12, 2015
		Test Requested:	FCC Part 15 - 2012
		Test Method:	ANSI C63.4 - 2009
e and the second second		FCC ID:	OO9GK381
n this report are related to the test	ted sp	becimen of the desc	ribed electrical apparatus.
ubmitted sample was found to <u>CO</u>	MPLY	<u>vith requirement of the second secon</u>	f FCC Part 15 Subpart C.
Authorized	Signat	ture:	
auch	Approx	Ved by: Steven Tsang June 09, 2015	ais
	ubmitted sample was found to <u>CO</u> Authorized S	ubmitted sample was found to <u>COMPLY</u> Authorized Signat	n this report are related to the tested specimen of the descr ubmitted sample was found to <u>COMPLY</u> with requirement on Authorized Signature:

BUREAU VERITAS HONG KONG LIMITED Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com

TEST REPORT No: (5215)089-1486(A) Test Result Summary

EMISSION TEST							
Test requirement: FCC Part 15 - 2012							
Test Condition	Toot Mothod	Test	Result				
Test Condition	Test Method	Pass	Failed				
Radiated Emission Test,	ANSI C63.4	\square					
9kHz to 40GHz							
Frequency range of Fundamental Emission	ANSI C63.4	\boxtimes					
26dB Bandwidth of Fundamental Emission	ANSI C63.4	\square					
Duty Cycle Correction During 100msec	ANSI C63.4	\square					

Report Revision & Sample Re-submit History:

Location of the test laboratory

Radiated and Conducted emissions measurements are investigated and taken pursuant to the procedures of ANSI C63.4 – 2009. An Open Area Test Site and Full Anechoic Chamber (FCC Listed Site, Registration No. 642151) are set up for investigation and located at :

BUREAU VERITAS HONG KONG LIMITED, EMC CENTRE

No. 2106-2107, 21/F., Westin Centre, 26 Hung To Road, Kwun Tong, Kowloon, Hong Kong

List of measuring equipment

Radiated Emission							
EQUIPMENT	MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION	CALIBRATION DUE		
EMI TEST RECEIVER	R&S	ESCI	100379	21-JAN-2015	20-JAN-2016		
SPECTRUM ANALYZER	R&S	R3127	111000909	26-MAR-2015	25-MAR-2016		
LOOP ANTENNA	ETS LINDGREN	6502	00102266	28-SEP-2014	27-SEP-2015		
BILOG ANTENNA	SCHAFFNER	CBL6112D	25229	02-JAN-2015	02-JAN-2016		
HORN ANTENNA	SCHWARZBECK	BBHA9120D	9120D-692	27-DEC-2014	26-DEC-2015		
OPEN AREA TEST SITE	BVCPS	N/A	N/A	07-JUL-2014	06-JUL-2015		
ANECHOIC CHAMBER	ALBATROSS	M-CDC	80374004499B	05-FEB-2014	03-FEB-2016		
COAXIAL CABLE	HUBER + SUHNER	RG223	N/A	23-DEC-2014	22-DEC-2015		
COAXIAL CABLE	HUBER + SUHNER	RG214	N/A	23-DEC-2014	22-DEC-2015		
Signal Analyzer 40GHz	Rohde & Schwarz	FSV 40	100977	13-MAY-2015	12-MAY-2016		
Wideband Horn Antenna 18 to 40GHz	STEATITE	QWH-SL-18-40-K-SG	12688	02-SEP-2014	01-SEP-2015		
High frequency RF cable	Rohde & Schwarz	N/A	N/A	15-SEP-2014	14-SEP-2015		

Measurement Uncertainty

Measurement	Frequency	Uncertainty
	9kHz to 30MHz	4.2dB
Radiated emissions	30MHz to 1GHz	5.0dB
Radiated emissions	1GHz to 18GHz	4.9dB
	18GHz to 40GHz	4.8dB

Remarks:-N/A : Not Applicable or Not Available

Equipment Under Test [EUT] Description of Sample:

Description of Sample.	
Model Name:	2.4GHz Wireless Keyboard
Model Number:	GK381
Item Number:	28036
Item Number information:	 This assortment include the follow items: 1.) RG10: 2.4GHz Wireless Receiver (FCC ID: OO9RG10) 2.) GK381: 2.4GHz Wireless Keyboard (FCC ID: OO9GK381) 3.) MA102W-D: 2.4GHz Wireless Mouse (FCC ID: OO9MA102WD)
Rating:	1.5Vd.c. ("AAA" size battery x 1)

Description of EUT Operation:

The Equipment Under Test (EUT) is a **G.TECH TECHNOLOGY LTD.** of Remote Control Transceiver. It is a 106 buttons transceiver and operating at 2402MHz to 2479MHz. The lowest, middle and highest frequencies were tested and the results are shown in the report. The EUT transmit while buttons is being pressed, Modulation by IC, and type is GFSK.

There are total 78 channels and below is the frequency list (MHz) :

Ch.															
No.	Freq														
1	2402	2	2403	3	2404	4	2405	5	2406	6	2407	7	2408	8	2409
9	2410	10	2411	11	2412	12	2413	13	2414	14	2415	15	2416	16	2417
17	2418	18	2419	19	2420	20	2421	21	2422	22	2423	23	2424	24	2425
25	2426	26	2427	27	2428	28	2429	29	2430	30	2431	31	2432	32	2433
33	2434	34	2435	35	2436	36	2437	37	2438	38	2439	39	2440	40	2441
41	2442	42	2443	43	2444	44	2445	45	2446	46	2447	47	2448	48	2449
49	2450	50	2451	51	2452	52	2453	53	2454	54	2455	55	2456	56	2457
57	2458	58	2459	59	2460	60	2461	61	2462	62	2463	63	2464	64	2465
65	2466	66	2467	67	2468	68	2469	69	2470	70	2471	71	2472	72	2473
73	2474	74	2475	75	2476	76	2477	77	2478	78	2479				

The transmitter has different control:

1. 106 buttons - press for normal use

Antenna Requirement (Section 15.203)

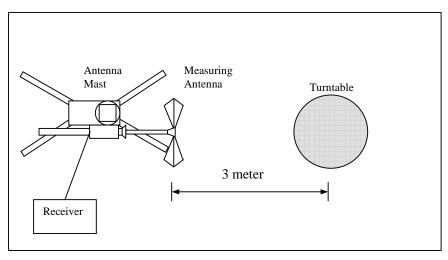
The EUT is use of a permanently antenna. It is a PCB trace antenna. The antenna is not replaceable or user serviceable. The requirements of S15.203 are met. There are no deviations or exceptions to the specifications.

Photo of Antenna

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com This report is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. Our report is limited to the test samples identified herein. The results set forth in this report are not necessarily indicative or representative of the statistical quality or characteristical quality or the statistical quality or the statistical quality or the statistical quality or the statistical quality or the characteristical quality or the statistical quality or the statistical quality or the statistical quality or the characteristical quality or the statistical quality or the report includes all of the tests requested by you and the results thereof. You shall have thirty days from receipt of this report to request additional testing of the samples or to notify us of any errors or omissions relating to our report, provided, however, such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Test Results

Radiated Emissions (Fundamental)


Test Requirement:	FCC Part 15 Section 15.249
Test Method:	ANSI C63.4
Test Date(s):	2015-05-12
Temperature:	25.0 °C
Humidity:	77.0 %
Atmospheric Pressure:	100.3 kPa
Mode of Operation:	Transmission mode
Tested Voltage:	1.5Vd.c. ("AAA" size battery x 1)

Test Procedure:

Radiated emissions measurements are investigated and taken pursuant to the procedures of ANSI C63.4 - 2009.

The equipment under test (EUT) was placed on a non-conductive turntable with dimensions of 1.5m x 1m and 0.8m high above the ground. 3m from the EUT, a broadband antenna mounting on the mast received the signal strength. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using new battery. The turntable was rotated to maximize the emission level. The antenna was then moving along the mast from 1m up to 4m until no more higher value was found. Both horizontal and vertical polarization of the antenna were placed and investigated.

Location: The Roof, Westin Centre, 26 Hung To Road, Kwun Tong, Kowloon, Hong Kong

Test Setup: Open Area Test Site

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com

Limits for Field Strength of Fundamental Emissions [FCC 47CFR 15.249]:

Frequency Range of	Field Strength of	Field Strength of
Fundamental	Fundamental Emission	Harmonics Emission
	(Average)	(Average)
[MHz]	[mV/m]	[µV/m]
2400-2483.5	50	500

Measurement Data

Test Result of (Transmission mode, Lowest frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
2402.00	н	0.0	-20.0	78.6	114.0	-35.4	**58.6	94.0	-35.4
2402.00	V	0.0	-20.0	88.6	114.0	-25.4	**68.6	94.0	-25.4

Test Result of (Transmission mode, Middle frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
2439.00	Н	0.0	-20.0	78.0	114.0	-36.0	**58.0	94.0	-36.0
2439.00	V	0.0	-20.0	88.0	114.0	-26.0	**68.0	94.0	-26.0

Test Result of (Transmission mode, Highest frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
2479.00	Н	0.0	-20.0	77.7	114.0	-36.3	**57.7	94.0	-36.3
2479.00	V	0.0	-20.0	87.0	114.0	-27.0	**67.0	94.0	-27.0

For pulse modulated devices and using measuring equipment employing a peak detection mode, properly adjusted for such factor as pulse desensitisation.

**Duty Cycle Correction = 20Log(0.036) = -28.8dB.

**Therefore, -20dB is taken.

Note: Field Strength includes Antenna Factor and Cable Loss. Receiver setting: RBW = 1MHz VBW = 1MHz

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com

Radiated Emissions (Spurious Emission)

Test Requirement:	FCC Part 15 Section 15.249
Test Method:	ANSI C63.4
Test Date(s):	2015-05-12
Temperature:	25.0 °C
Humidity:	77.0 %
Atmospheric Pressure:	100.3 kPa
Mode of Operation:	Transmission mode
Tested Voltage:	1.5Vd.c. ("AAA" size battery x 1)

Measurement Data

Test Result of (Transmission mode, Lowest frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
4804.00	Н	5.9	-20.0	45.6	74.0	-28.4	**25.6	54.0	-28.4
7206.00	Н	12.7	-20.0	47.2	74.0	-26.8	**27.2	54.0	-26.8
9608.00	Н	16.4	-20.0	51.0	74.0	-23.0	**31.0	54.0	-23.0
12010.00	Н	18.4	-20.0	53.8	74.0	-20.2	**33.8	54.0	-20.2
14412.00	Н	23.2	-20.0	59.9	74.0	-14.1	**39.9	54.0	-14.1
16814.00	Н	22.0	-20.0	60.9	74.0	-13.1	**40.9	54.0	-13.1
19216.00	Н	46.3	-20.0	61.9	74.0	-12.1	**41.9	54.0	-12.1
21618.00	Н	47.1	-20.0	62.0	74.0	-12.0	**42.0	54.0	-12.0
24020.00	Н	47.5	-20.0	61.1	74.0	-12.9	**41.1	54.0	-12.9
26422.00	Н	48.5	-20.0	63.7	74.0	-10.3	**43.7	54.0	-10.3

For pulse modulated devices and using measuring equipment employing a peak detection mode, properly adjusted for such factor as pulse desensitisation.

**Duty Cycle Correction = 20Log(0.036) = -28.8dB.

**Therefore, -20dB is taken.

Note: Field Strength includes Antenna Factor and Cable Loss. Receiver setting: RBW = 1MHz VBW = 1MHz

Measurement Data

Test Result of (Transmission mode, Lowest frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
4804.00	V	5.9	-20.0	48.4	74.0	-25.6	**28.4	54.0	-25.6
7206.00	V	12.7	-20.0	49.4	74.0	-24.6	**29.4	54.0	-24.6
9608.00	V	16.4	-20.0	50.2	74.0	-23.8	**30.2	54.0	-23.8
12010.00	V	18.4	-20.0	53.9	74.0	-20.1	**33.9	54.0	-20.1
14412.00	V	23.2	-20.0	61.0	74.0	-13.0	**41.0	54.0	-13.0
16814.00	V	22.0	-20.0	62.5	74.0	-11.5	**42.5	54.0	-11.5
19216.00	V	46.3	-20.0	62.5	74.0	-11.5	**42.5	54.0	-11.5
21618.00	V	47.1	-20.0	64.3	74.0	-9.7	**44.3	54.0	-9.7
24020.00	V	47.5	-20.0	62.6	74.0	-11.4	**42.6	54.0	-11.4
26422.00	V	48.5	-20.0	63.2	74.0	-10.8	**43.2	54.0	-10.8

For pulse modulated devices and using measuring equipment employing a peak detection mode, properly adjusted for such factor as pulse desensitisation. **Duty Cycle Correction = 20Log(0.036) = -28.8dB.

**Therefore, -20dB is taken.

Note: Field Strength includes Antenna Factor and Cable Loss. Receiver setting:

RBW = 1MHz

VBW = 1MHz

This report is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. Our report is limited to the test samples identified herein. The results set forth in this report are not necessarily indicative or representative of the statistical quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof. You shall have thirty days from receipt of this report to request additional testine of the sample or the orific us of any arrow or originizing relations to use report provided howards rule horized to additional testine of the sample or the orific us of any arrow or originizing relations to use report provided howards rule horized to report the results there of the sample or the orific us of any arrow or originizing relations to any arrow or origination and the results there of the results there of the sample or the origination of the sample or the origination of the sample or the results there of the sample or the origination of the sample or the results there of the sample or the sample or the origination of the sample or the origination of the sample or the results there of the sample or the origination of the sample or the sample or the origination of the sample or the sample or the origination of the sample or the sample or the origination of the sample or the sample or the origination of the sample or the sample or the origination of the sample or the sample or the origination of the sample or the sample or the origination of the sample or additional testing of the samples or to notify us of any errors or omissions relating to our report, provided, however, such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Measurement Data Test Result of (Transmission mode, Middle frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
4878.00	Н	5.9	-20.0	45.0	74.0	-29.0	**25.0	54.0	-29.0
7317.00	Н	12.7	-20.0	47.9	74.0	-26.1	**27.9	54.0	-26.1
9756.00	Н	16.4	-20.0	51.0	74.0	-23.0	**31.0	54.0	-23.0
12195.00	Н	18.6	-20.0	54.0	74.0	-20.0	**34.0	54.0	-20.0
14634.00	Н	25.0	-20.0	60.3	74.0	-13.7	**40.3	54.0	-13.7
17073.00	Н	27.2	-20.0	61.1	74.0	-12.9	**41.1	54.0	-12.9
19512.00	Н	46.5	-20.0	63.2	74.0	-10.8	**43.2	54.0	-10.8
21951.00	Н	46.9	-20.0	62.0	74.0	-12.0	**42.0	54.0	-12.0
24390.00	Н	48.0	-20.0	62.6	74.0	-11.4	**42.6	54.0	-11.4
26829.00	Н	48.3	-20.0	62.4	74.0	-11.6	**42.4	54.0	-11.6

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
4878.00	V	5.9	-20.0	46.4	74.0	-27.6	**26.4	54.0	-27.6
7317.00	V	12.7	-20.0	47.7	74.0	-26.3	**27.7	54.0	-26.3
9756.00	V	16.4	-20.0	51.4	74.0	-22.6	**31.4	54.0	-22.6
12195.00	V	18.6	-20.0	55.0	74.0	-19.0	**35.0	54.0	-19.0
14634.00	V	25.0	-20.0	63.1	74.0	-10.9	**43.1	54.0	-10.9
17073.00	V	27.2	-20.0	62.1	74.0	-11.9	**42.1	54.0	-11.9
19512.00	V	46.5	-20.0	62.2	74.0	-11.8	**42.2	54.0	-11.8
21951.00	V	46.9	-20.0	62.8	74.0	-11.2	**42.8	54.0	-11.2
24390.00	V	48.0	-20.0	62.8	74.0	-11.2	**42.8	54.0	-11.2
26829.00	V	48.3	-20.0	63.4	74.0	-10.6	**43.4	54.0	-10.6

For pulse modulated devices and using measuring equipment employing a peak detection mode, properly adjusted for such factor as pulse desensitisation.

**Duty Cycle Correction = 20Log(0.036) = -28.8dB.

**Therefore, -20dB is taken.

Note: Field Strength includes Antenna Factor and Cable Loss. Receiver setting: RBW = 1MHz

VBW = 1MHz

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com

Measurement Data Test Result of (Transmission mode, Highest frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
4958.00	Н	5.9	-20.0	43.8	74.0	-30.2	**23.8	54.0	-30.2
7437.00	н	13.3	-20.0	48.2	74.0	-25.8	**28.2	54.0	-25.8
9916.00	н	16.4	-20.0	52.3	74.0	-21.7	**32.3	54.0	-21.7
12395.00	н	18.6	-20.0	54.2	74.0	-19.8	**34.2	54.0	-19.8
14874.00	н	25.0	-20.0	60.7	74.0	-13.3	**40.7	54.0	-13.3
17353.00	н	27.2	-20.0	62.3	74.0	-11.7	**42.3	54.0	-11.7
19832.00	н	46.6	-20.0	63.3	74.0	-10.7	**43.3	54.0	-10.7
22311.00	н	47.0	-20.0	61.7	74.0	-12.3	**41.7	54.0	-12.3
24790.00	н	48.1	-20.0	61.8	74.0	-12.2	**41.8	54.0	-12.2
27269.00	Н	48.5	-20.0	62.3	74.0	-11.7	**42.3	54.0	-11.7

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
4958.00	V	5.9	-20.0	46.2	74.0	-27.8	**26.2	54.0	-27.8
7437.00	V	13.3	-20.0	48.6	74.0	-25.4	**28.6	54.0	-25.4
9916.00	V	16.4	-20.0	52.1	74.0	-21.9	**32.1	54.0	-21.9
12395.00	V	18.6	-20.0	53.8	74.0	-20.2	**33.8	54.0	-20.2
14874.00	V	25.0	-20.0	62.7	74.0	-11.3	**42.7	54.0	-11.3
17353.00	V	27.2	-20.0	64.3	74.0	-9.7	**44.3	54.0	-9.7
19832.00	V	46.6	-20.0	63.0	74.0	-11.0	**43.0	54.0	-11.0
22311.00	V	47.0	-20.0	61.8	74.0	-12.2	**41.8	54.0	-12.2
24790.00	V	48.1	-20.0	64.2	74.0	-9.8	**44.2	54.0	-9.8
27269.00	V	48.5	-20.0	62.6	74.0	-11.4	**42.6	54.0	-11.4

For pulse modulated devices and using measuring equipment employing a peak detection mode, properly adjusted for such factor as pulse desensitisation.

**Duty Cycle Correction = 20Log(0.036) = -28.8dB.

**Therefore, -20dB is taken.

Note: Field Strength includes Antenna Factor and Cable Loss. Receiver setting: RBW = 1MHz

VBW = 1MHz

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com

Radiated Emissions (9kHz - 40GHz)

Test Requirement:	FCC Part 15 Section 15.209
Test Method:	ANSI C63.4
Test Date(s):	2015-05-12
Temperature:	25.0 °C
Humidity:	77.0 %
Atmospheric Pressure:	100.3 kPa
Mode of Operation:	On mode
Tested Voltage:	1.5Vd.c. ("AAA" size battery x 1)

Limits for Radiated Emissions [FCC 47 CFR 15.209]:

Frequency Range	Quasi-Peak Limits	Measurement Distance					
[MHz]	[µV/m]	m					
0.009-0.490	2400/F(kHz)	300					
0.490-1.705	24000/F(kHz)	30					
1.705-30	30	30					
30-88	100	3					
88-216	150	3					
216-960	200	3					
Above960	500	3					

Measurement Data

Test Result of (On mode): PASS

Detection mode: Quasi-Peak

	Frequency	Polarity (H/V)	Field Strength	Limit	Margin (dB)		
I	Emissions	detected are n	nore than 20 d	B below the lin	nit line(s) in		
	9kHz to 30MHz						

Note: Field Strength includes Antenna Factor and Cable Loss.

Receiver setting: RBW = 200Hz VBW = 200Hz

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com

Measurement Data

Test Result of (On mode): PASS

Detection mode: Quasi-Peak

Frequency (MHz)	Polarity (H/V)	Field Strength at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)
45.24	Н	22.4	40.0	-17.6
114.68	Н	24.6	43.5	-18.9
229.92	Н	22.5	46.0	-23.5
370.42	Н	29.3	46.0	-16.7
464.72	Н	31.5	46.0	-14.5
601.16	Н	34.2	46.0	-11.8

Frequency (MHz)	Polarity (H/V)	Field Strength at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)
45.24	V	23.6	40.0	-16.4
114.68	V	24.2	43.5	-19.3
229.92	V	22.3	46.0	-23.7
370.42	V	29.1	46.0	-16.9
464.72	V	32.0	46.0	-14.0
601.16	V	34.6	46.0	-11.4

Note: Field Strength includes Antenna Factor and Cable Loss.

Receiver setting: RBW = 120KHz VBW = 120KHz

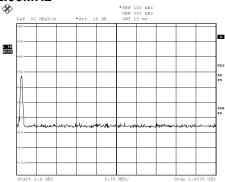
Frequency range of Fundamental Emission

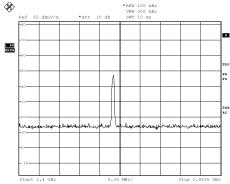
Test Requirement:	FCC 47 CFR 15.249
Test Method:	ANSI C63.4:2009 (Section 13.1.7)
Test Date(s):	2015-05-12
Temperature:	25.0 °C
Humidity:	77.0 %
Atmospheric Pressure:	100.3 kPa
Mode of Operation:	Transmission mode
Tested Voltage:	1.5Vd.c.("AAA" size battery x 1)

Test Method:

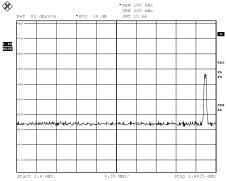
The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

Limits for Frequency range of Fundamental Emission:


Frequency	FCC Limits
[MHz]	[MHz]
2401.340 - 2479.860	2400.00 - 2483.50

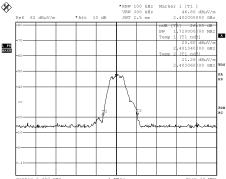

Measurement Data :

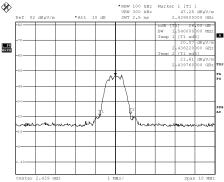
Test Result of Frequency Range of Fundamental Emission: PASS


Lowest Frequency – 2402.00MHz

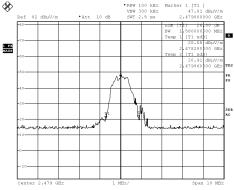
Middle Frequency – 2439.00MHz

Highest Frequency – 2479.00MHz


BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com


TEST REPORT No: (5215)089-1486(A) Measurement Data :

Test Result of 26dB Bandwidth of Fundamental Emission: PASS

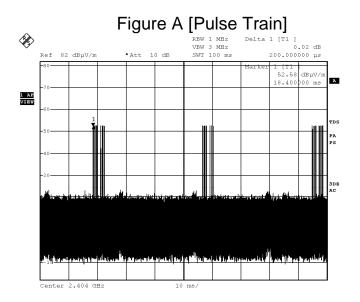

Lowest Frequency – 2402.00MHz

Middle Frequency – 2439.00MHz

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com

Duty Cycle Correction During 100msec:

Each function key sends a different series of characters, but each packet period (<u>100</u>msec) never exceeds a series of 18 pulses (<u>0.2</u> msec). Assuming any combination of short and long pulses maybe obtained due to encoding the worst case transmit duty cycle would be considered <u>0.2*18</u> per <u>100</u>msec = <u>3.6</u>% duty cycle.


Remarks:

Duty Cycle Correction = 20Log(0.036) = -28.8dBTherefore, -20dB is taken

The following figures [Figure A] show the characteristics of the pulse train for one of these functions.

Measurement Data :

Photographs of EUT

Front View of the product

Top View of the product

Side View of the product

Battery compartment

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com

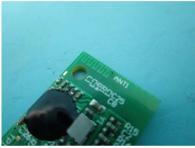
Rear View of the product

Bottom View of the product

Side View of the product

Battery Cover

Photographs of EUT


Internal View of the product

Inner Circuit Top View

Antenna

Internal View of the product

Inner Circuit Bottom View

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com

Measurement of Radiated Emission Test Set Up

***** End of Report *****

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com