

FCC TEST REPORT

Test report On Behalf of Shenzhen Huafurui Technology Co., Ltd. For Smart Phone Model No.: QUEST

FCC ID: 2AHZ5QUEST

Prepared for :Shenzhen Huafurui Technology Co., Ltd.
Unit 1401 &1402, 14/F, Jin qi zhi gu mansion (No. 4 building of Chong wen Garden),
Crossing of the Liu xian street and Tang ling road, Tao yuan street, Nan shan district,
Shenzhen,P.R. ChinaPrepared By :Shenzhen HUAK Testing Technology Co., Ltd.
1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an
District, Shenzhen City, ChinaDate of Test:Dec. 28, 2018~Feb. 18, 2019

Date of Report: Feb. 18, 2019

Report Number: HK1812211953E

Applicant's name	Shenzhen Huafurui Technology Co., Ltd.
Address:	Unit 1401 &1402, 14/F, Jin qi zhi gu mansion (No. 4 building of Chong wen Garden), Crossing of the Liu xian street and Tang ling road, Tao yuan street, Nan shan district, Shenzhen,P.R. China
Manufacture's Name	Shenzhen Huafurui Technology Co., Ltd.
Address:	Unit 1401 &1402, 14/F, Jin qi zhi gu mansion (No. 4 building of Chong wen Garden), Crossing of the Liu xian street and Tang ling road, Tao yuan street, Nan shan district, Shenzhen,P.R. China
Factory's Name	Shenzhen Huafurui Technology Co., Ltd.
Address:	Unit 1401 &1402, 14/F, Jin qi zhi gu mansion (No. 4 building of Chong wen Garden), Crossing of the Liu xian street and Tang ling road, Tao yuan street, Nan shan district, Shenzhen, P.R. China
Product description	Smart Phone
Brand Name	CUBOT
Mode Name	QUEST
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.247ANSI C63.10: 2013

TEST RESULT CERTIFICATION

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests: :	Dec. 28, 2018~Feb. 18, 2019
Date of Issue:	Feb. 18, 2019
Test Result:	Pass

Gary Dian (Gary Qian) Edan Mu (Eden Hu) **Testing Engineer** 2 Technical Manager 2 Authorized Signatory:

(Jason Zhou)

Revision	Issue Date	Revisions	Revised By
V1.0	Feb. 18, 2019	Initial Issue	Jason Zhou

TABLE OF CONTENTS

1.	VERIFICATION OF CONFORMITY	6
	1.1. PRODUCT DESCRIPTION	6
	1.2. TABLE OF CARRIER FREQUENCYS	7
	1.3. RECEIVER INPUT BANDWIDTH	8
	1.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE	8
	1.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR	8
	1.6. RELATED SUBMITTAL(S) / GRANT (S)	9
	1.7. TEST METHODOLOGY	9
	1.8. SPECIAL ACCESSORIES	9
	1.9. EQUIPMENT MODIFICATIONS	9
2.	MEASUREMENT UNCERTAINTY	10
3.	DESCRIPTION OF TEST MODES	11
4.	SYSTEM TEST CONFIGURATION	12
	4.1. CONFIGURATION OF EUT SYSTEM	12
	4.2. EQUIPMENT USED IN EUT SYSTEM	12
	4.3. SUMMARY OF TEST RESULTS	12
5.	TEST FACILITY	13
6.	PEAK OUTPUT POWER	15
	6.1. MEASUREMENT PROCEDURE	15
	6.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	15
	6.3. LIMITS AND MEASUREMENT RESULT	16
7.	20DB BANDWIDTH	19
	8.1. MEASUREMENT PROCEDURE	19
	7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	19
	7.3. LIMITS AND MEASUREMENT RESULTS	19
8.	CONDUCTED SPURIOUS EMISSION	22
	8.1. MEASUREMENT PROCEDURE	22
	8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	22
	8.3. MEASUREMENT EQUIPMENT USED	23
	8.4. LIMITS AND MEASUREMENT RESULT	23
9.	RADIATED EMISSION	29
	9.1. MEASUREMENT PROCEDURE	29
	9.2. TEST SETUP	30
	9.3. LIMITS AND MEASUREMENT RESULT	31
	9.4. TEST RESULT	32

10. BAND EDGE EMISSION	
10.1. MEASUREMENT PROCEDURE	
10.2. TEST SET-UP	
10.3. RADIATED TEST RESULT	
10.4 CONDUCTED TEST RESULT	
11. NUMBER OF HOPPING FREQUENCY	
11.1. MEASUREMENT PROCEDURE	
11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	
11.3. MEASUREMENT EQUIPMENT USED	
11.4. LIMITS AND MEASUREMENT RESULT	
12. TIME OF OCCUPANCY (DWELL TIME)	40
12.1. MEASUREMENT PROCEDURE	
12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	
12.3. MEASUREMENT EQUIPMENT USED	
12.4. LIMITS AND MEASUREMENT RESULT	41
13. FREQUENCY SEPARATION	
13.1. MEASUREMENT PROCEDURE	
13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	
13.3. MEASUREMENT EQUIPMENT USED	
13.4. LIMITS AND MEASUREMENT RESULT	
14. FCC LINE CONDUCTED EMISSION TEST	
15.1. LIMITS OF LINE CONDUCTED EMISSION TEST	
14.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	
14.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	
14.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	
14.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	

1. VERIFICATION OF CONFORMITY

1.1. PRODUCT DESCRIPTION

Equipment	Smart Phone
Model Name	QUEST
Hardware Version	A799_MAIN_PCB_V1.1
Software Version	CUBOT_CUBOT_QUEST_8123C_V01_20181122
FCC ID	2AHZ5QUEST
Antenna Type	PIFA Antenna
Antenna Gain	3.90dBi
BT Operation frequency	2.402 GHz to 2.480GHz
Number of Channels	79(For BR/EDR)
Modulation Type	GFSK, π /4-DQPSK, 8DPSK
Power Supply	DC3.85V by Battery

1.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
	0	2402MHZ
	1	2403MHZ
	:	:
2400~2483.5MHZ	38	2440 MHZ
	39	2441 MHZ
	40	2442 MHZ
	:	:
	77	2479 MHZ
	78	2480 MHZ

1.3. RECEIVER INPUT BANDWIDTH

The input bandwidth of the receiver is 1.3MHZ, In every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection(e.g. single of multislot packet) is set up at the beginning of the

connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also the slave of the connection will use these settings.

Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

1.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE

Example of a 79 hopping sequence in data mode: 40,21,44,23,42,53,46,55,48,33,52,35,50,65,54,67 56,37,60,39,58,69,62,71,64,25,68,27,66,57,70,59 72,29,76,31,74,61,78,63,01,41,05,43,03,73,07,75 09,45,13,47,11,77,15,00,64,49,66,53,68,02,70,06 01, 51, 03, 55, 05, 04

1.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR

The generation of the hopping sequence in connection mode depends essentially on two input values: 1. LAP/UAP of the master of the connection.

2. Internal master clock

The LAP(lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP(upper address part) are the 24MSB's of the 48BD_ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For ehavior zation with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us.The clock has a cycle of about one day(23h30).In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire. LAP(24 bits),4LSB's(4bits)(Input 1) and the 27MSB's of the clock(Input 2) are used. With this input values different mathematical procedures(permutations, additions, XOR-operations)are performed to generate te Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following ehavior:

The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer(and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always Differ from the first one.

1.6. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2AHZ5QUEST** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

1.7. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

1.8. SPECIAL ACCESSORIES

Refer to section 5.2.

1.9. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

2. MEASUREMENT UNCERTAINTY

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION
1	Low channel GFSK
2	Middle channel GFSK
3	High channel GFSK
4	Low channel π /4-DQPSK
5	Middle channel π /4-DQPSK
6	High channel π /4-DQPSK
7	Low channel 8DPSK
8	Middle channel 8DPSK
9	High channel 8DPSK
10	Normal Hopping
Note:	

1. All the test modes can be supply by Built-in Li-ion battery, only the result of the worst case was recorded in the report, if no other cases.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

4. SYSTEM TEST CONFIGURATION 4.1. CONFIGURATION OF EUT SYSTEM

Configuration:

4.2. EQUIPMENT USED IN EUT SYSTEM

ltem	Equipment	Model No.	ID or Specification	Remark
1	Smart Phone	QUEST	2AHZ5QUEST	EUT
2	Adapter	QUEST	DC 5.0V 2A	Accessory
3	Battery	QUEST	DC3.85V/ 4000mAh	Accessory
4	USB	N/A	N/A	Accessory

4.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247	Peak Output Power	Compliant
§15.247	20 dB Bandwidth	Compliant
§15.247	Spurious Emission	Compliant
§15.209	Radiated Emission	Compliant
§15.247	Band Edges	Compliant
§15.207	Power Line Conduction Emission	Compliant
§15.247	Number of Hopping Frequency	Compliant
§15.247	Time of Occupancy	Compliant
§15.247	Frequency Separation	Compliant

5. TEST FACILITY

Site	Shenzhen HUAK Testing Technology Co., Ltd.	
Location	1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China	
Designation Number	CN1229	
Tast Firm Pagistration Number : 616276		

Test Firm Registration Number : 616276

ALL TEST EQUIPMENT LIST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Power meter	Agilent	E4417B	HKE-107	Dec. 29, 2017	Dec. 28 2018
Power meter	Agilent	E4417B	HKE-107	Dec. 27, 2018	Dec. 26, 2019
Power Sensor	Agilent	E9327A	HKE-113	Dec. 29, 2017	Dec. 28 2018
Power Sensor	Agilent	E9327A	HKE-113	Dec. 27, 2018	Dec. 26, 2019
RF cable	Times	1-40G	HKE-034	Dec. 29, 2017	Dec. 28 2018
RF cable	Times	1-40G	HKE-034	Dec. 27, 2018	Dec. 26, 2019
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 29, 2017	Dec. 28 2018
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 27, 2018	Dec. 26, 2019
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 29, 2017	Dec. 28 2018
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 27, 2018	Dec. 26, 2019
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 29, 2017	Dec. 28 2018
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 27, 2018	Dec. 26, 2019
Signal generator	Agilent	N5183A	HKE-071	Dec. 29, 2017	Dec. 28 2018
Signal generator	Agilent	N5183A	HKE-071	Dec. 27, 2018	Dec. 26, 2019
Receiver	R&S	ESCI-7	HKE-010	Dec. 29, 2017	Dec. 28 2018
Receiver	R&S	ESCI-7	HKE-010	Dec. 27, 2018	Dec. 26, 2019
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 29, 2017	Dec. 28 2018
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 27, 2018	Dec. 26, 2019
Preamplifier	EMCI	EMC051845SE	HKE-015	Dec. 29, 2017	Dec. 28 2018
Preamplifier	EMCI	EMC051845SE	HKE-015	Dec. 27, 2018	Dec. 26, 2019
Preamplifier	Agilent	83051A	HKE-016	Dec. 29, 2017	Dec. 28 2018
Preamplifier	Agilent	83051A	HKE-016	Dec. 27, 2018	Dec. 26, 2019
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 29, 2017	Dec. 28 2018
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 27, 2018	Dec. 26, 2019
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Dec. 29, 2017	Dec. 28 2018

Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Dec. 27, 2018	Dec. 26, 2019
Horn antenna	Schwarzbeck	9120D	HKE-013	Dec. 29, 2017	Dec. 28 2018
Horn antenna	Schwarzbeck	9120D	HKE-013	Dec. 27, 2018	Dec. 26, 2019
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A
Position controller	Taiwan MF	MF7802	HKE-011	Dec. 27, 2018	Dec. 26, 2019
RF cable	Times	1-40G	HKE-034	Dec. 27, 2018	Dec. 26, 2019

6. PEAK OUTPUT POWER

6.1. MEASUREMENT PROCEDURE

For peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, middle and the bottom operation frequency individually.
- 3. Use the following spectrum analyzer settings:
 - 1) Span : Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - 2) RBW > 20 dB bandwidth of the emission being measured.
 - 3) VBW \geq RBW.
 - 4) Sweep: Auto.
 - 5) Detector function: Peak.
 - 6) Trace: Max hold.
- 4. Record the maximum power from the Spectrum Analyzer.

Note: The EUT was tested according for compliance ANSI C63.10 (2013) requirements.

6.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

PEAK POWER TEST SETUP

6.3. LIMITS AND MEASUREMENT RESULT

Mode	Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
	2.402	3.288	30	Pass
GFSK	2.441	3.651	30	Pass
	2.480	3.798	30	Pass

Mode	Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
	2.402	2.342	30	Pass
π /4-DQPSK	2.441	2.812	30	Pass
	2.480	2.981	30	Pass

Mode	Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
	2.402	2.322	30	Pass
8DPSK	2.441	2.800	30	Pass
	2.480	2.950	30	Pass

Test Graph

7. 20DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hoping channel $RBW \ge 1\%$ of the 20 dB bandwidth, VBW $\ge RBW$; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

RF Cable

7.3. LIMITS AND MEASUREMENT RESULTS

Mode	Channel.	20dB Bandwidth [KHz]	Verdict
GFSK	LCH	828.0	PASS
GFSK	MCH	827.2	PASS
GFSK	НСН	826.8	PASS
π/4DQPSK	LCH	1120	PASS
π/4DQPSK	MCH	1120	PASS
π/4DQPSK	НСН	1121	PASS
8DPSK	LCH	1108	PASS
8DPSK	MCH	1110	PASS
8DPSK	НСН	1111	PASS

Test Graph

8. CONDUCTED SPURIOUS EMISSION

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.
 RBW = 100 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according for compliance ANSI C63.10 (2013) requirements. Owing to satisfy the requirements of the number of measurement points, we set the RBW=1MHz, VBW > RBW, scan up through 10th harmonic, and consider the tested results as the worst case, if the tested results conform to the requirement, we can deem that the real tested results(set the RBW=100KHz, VBW > RBW) are conform to the requirement.

8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 8.2

8.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

8.4. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEASUREMENT RESULT			
	Measurement Result		
Applicable Limits	Test Data	Criteria	
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest	Refer Test Graph	PASS	
level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a))			

Test Graph

GFSK-LCH	GFSK-LCH
Constraint Sector Margine Sector Senset 54 Constraint Sector Se	If spips factors heading: Spips factors heading: Spins factors factor
Log 000 -000 -000 -000 -000 -000 -000 -00	Log 01 000 400 000
000	000 Next Pk Left
	and the second s
Start 30.0 MHz Stop 1.0000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 92.73 ms (1001 pfs) Imm Mode Ric Sci. X Y Fanction Wate Imm Mode Ric Sci. X Y Fanction Wate	Start 1.000 GHz Stop 10.000 GHz #Res BW 100 KHz #VBW 300 KHz Sweep 860.1 ms (1001 pts) MR MOC TRCI SUL X Y MR MOC TRCI SUL X Y MR MOC TRCI SUL X Y
A CONTRACT OF CONTRACT	z N i r 7210GHz s6511dBm 4
7 8 9 10 More 10 1 <td>More 9 10 11 11</td>	More 9 10 11 11
MSG STATUS	M6G STATUS

#VBW 300 kHz

Stop 10.000 GHz Sweep 860.1 ms (1001 pts CF Step

Freq Offse

tart 1.000 GHz Res BW 100 kHz

8DPSK	-HCH	
Image: Sectium Analyser - Swept SA Sectium Analyser - Swept SA OP RF S0 Ω AC SENSE::DIT Marker 1 23.5750000000000 GHz PNO: Fast Trig: Free Run	ALIGN AUTO 06-51:31 PM Feb 18, 2019 Avg Type: Log-Pwr TRACE 2 a set Avg[Hold:=10/10 Tree	
IFGaintLow Atten: 20 dB	Mkr1 23.575 GHz -57.832 dBm	
	Next Pk Right	
40.0	Next Pk Left	
	Marker Delta	
Start 10.000 GHz #Res BW 100 kHz #VBW 300 kHz	Stop 25.000 GHz Sweep 1.434 s (1001 pts) Mkr→CF	
MR HOCE TRC SCL X Y Fax 1 1 1 23,575 GHz -57,632 dHm 3 4 5 5 9	TON FUNCTION WOTH FUNCTION VALUE ▲	
9 9 10	More 1 of 2	
INSG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	STATUS	