

TEST REPORT

Report Number: 15556059-E1V2

- Applicant NOKIA CANADA INC. 600 MARCH RD OTTAWA, ON K2K 2T6, CANADA
 - Model : Nokia 7705 SAR-Hmc
 - FCC ID : AS57705SARHMC-3
- Contain FCC ID : N7NEM75T
- EUT Description : REMOTE RADIO BASE STATION
- Test Standard(s) : FCC 47 CFR PART 2, PART 96

Date Of Issue: 2025-04-22

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

Revision History

Rev.	lssue Date	Revisions	Revised By
V1	2025-01-13	Initial Review	
V2	2025-04-22	Updated Section 10	Kiya Kedida

Page 2 of 53

TABLE OF CONTENTS

1.	•	ATTESTATION OF TEST RESULTS	5
2.	•	SUMMARY OF TEST RESULTS	6
3.	-	TEST METHODOLOGY	7
4	-	FACILITIES AND ACCREDITATION	7
5.		DECISION RULES AND MEASUREMENT UNCERTAINTY	8
	5.	.1. METROLOGICAL TRACEABILITY	8
	5.	.2. DECISION RULES	8
	5.	.3. MEASUREMENT UNCERTAINTY	8
	5.	.4. SAMPLE CALCULATION	8
6.		EQUIPMENT UNDER TEST	9
	6.	1. DESCRIPTION OF EUT	9
	6.	1. MAXIMUM OUTPUT POWER	9
	6.:	.2. MAXIMUM ANTENNA GAIN	.11
	6.	.4. WORST-CASE CONFIGURATION AND MODE	.12
	6.	.5. DESCRIPTION OF TEST SETUP	.13
7.	-	TEST AND MEASUREMENT EQUIPMENT	.15
7. 8.	•	TEST AND MEASUREMENT EQUIPMENT	.15 .16
7. 8.	8.	TEST AND MEASUREMENT EQUIPMENT RF OUTPUT POWER MEASUREMENT 1. LTE BAND 48.	.15 .16
7. 8.	8.	TEST AND MEASUREMENT EQUIPMENT RF OUTPUT POWER MEASUREMENT .1. LTE BAND 48	.15 .16 .16
7. 8. 9.	8.	TEST AND MEASUREMENT EQUIPMENT RF OUTPUT POWER MEASUREMENT .1. LTE BAND 48 CONDUCTED TEST RESULTS 1. OCCUPIED DANIDWIDTH	.15 .16 .16 .17
7. 8. 9.	8. 9.	TEST AND MEASUREMENT EQUIPMENT RF OUTPUT POWER MEASUREMENT .1. LTE BAND 48 CONDUCTED TEST RESULTS .1. OCCUPIED BANDWIDTH	.15 .16 .16 .17 .17
7. 8. 9.	8. 9.	TEST AND MEASUREMENT EQUIPMENT RF OUTPUT POWER MEASUREMENT .1. LTE BAND 48 .1. LTE BAND 48 .1. OCCUPIED TEST RESULTS .1. OCCUPIED BANDWIDTH .1. LTE BAND 48	.15 .16 .16 .17 .17 .19
7. 8. 9.	8. 9.	TEST AND MEASUREMENT EQUIPMENT RF OUTPUT POWER MEASUREMENT 1. LTE BAND 48 CONDUCTED TEST RESULTS 1. OCCUPIED BANDWIDTH 9.1.1. LTE BAND 48 2. POWER SPECTRAL DENSITY	.15 .16 .16 .17 .17 .19 .21
7. 8. 9.	8. 9. 9.	TEST AND MEASUREMENT EQUIPMENT RF OUTPUT POWER MEASUREMENT 1. LTE BAND 48 CONDUCTED TEST RESULTS 1. OCCUPIED BANDWIDTH 9.1.1. LTE BAND 48 2. POWER SPECTRAL DENSITY 9.2.1. LTE BAND 48 2. EMISSION MASK	.15 .16 .17 .17 .19 .21 .24
7. 8. 9.	8. 9. 9.	TEST AND MEASUREMENT EQUIPMENT RF OUTPUT POWER MEASUREMENT 1. LTE BAND 48. CONDUCTED TEST RESULTS. 1. OCCUPIED BANDWIDTH. 9.1.1. LTE BAND 48. 2. POWER SPECTRAL DENSITY 9.2.1. LTE BAND 48. 3. EMISSION MASK. 9.3.1. LTE BAND 48	.15 .16 .17 .17 .17 .21 .24 .28 .28
7. 8. 9.	8. 9. 9.	TEST AND MEASUREMENT EQUIPMENT RF OUTPUT POWER MEASUREMENT 1. LTE BAND 48 CONDUCTED TEST RESULTS 1. OCCUPIED BANDWIDTH 9.1.1. LTE BAND 48 2. POWER SPECTRAL DENSITY 9.2.1. LTE BAND 48 3. EMISSION MASK 9.3.1. LTE BAND 48 4. OUT OF BAND EMISSIONIS	.15 .16 .17 .17 .19 .21 .24 .28 .29
7. 8. 9.	8. 9. 9. 9.	TEST AND MEASUREMENT EQUIPMENT RF OUTPUT POWER MEASUREMENT 1. LTE BAND 48 CONDUCTED TEST RESULTS 1. OCCUPIED BANDWIDTH 9.1.1. LTE BAND 48 2. POWER SPECTRAL DENSITY 9.2.1. LTE BAND 48 3. EMISSION MASK 9.3.1. LTE BAND 48 4. OUT OF BAND EMISSIONS 9.4.1	.15 .16 .17 .17 .21 .21 .24 .28 .29 .33
7. 8. 9.	8. 9. 9. 9.	TEST AND MEASUREMENT EQUIPMENT RF OUTPUT POWER MEASUREMENT 1. LTE BAND 48. CONDUCTED TEST RESULTS. 1. OCCUPIED BANDWIDTH. 9.1.1. LTE BAND 48. 2. POWER SPECTRAL DENSITY 9.2.1. LTE BAND 48. 3. EMISSION MASK. 9.3.1. LTE BAND 48. 4. OUT OF BAND EMISSIONS. 9.4.1. LTE BAND 48.	.15 .16 .17 .17 .17 .21 .24 .28 .29 .33 .34 .30
7. 8. 9.	9. 9. 9.	TEST AND MEASUREMENT EQUIPMENT RF OUTPUT POWER MEASUREMENT 1. LTE BAND 48 CONDUCTED TEST RESULTS 1. OCCUPIED BANDWIDTH 9.1.1. LTE BAND 48 2. POWER SPECTRAL DENSITY 9.2.1. LTE BAND 48 3. EMISSION MASK 9.3.1. LTE BAND 48 4. OUT OF BAND EMISSIONS 9.4.1. LTE BAND 48 5. FREQUENCY STABILITY	.15 .16 .17 .17 .17 .21 .24 .28 .29 .33 .34 .39 .40
7. 8. 9.	8. 9. 9. 9.	TEST AND MEASUREMENT EQUIPMENT RF OUTPUT POWER MEASUREMENT 1. LTE BAND 48 CONDUCTED TEST RESULTS 1. OCCUPIED BANDWIDTH 9.1.1. LTE BAND 48 2. POWER SPECTRAL DENSITY 9.2.1. LTE BAND 48 3. EMISSION MASK 9.3.1. LTE BAND 48 4. OUT OF BAND EMISSIONS 9.4.1. LTE BAND 48 5. FREQUENCY STABILITY 9.5.1. LTE BAND 48 6. PEAK-TO-AVERAGE POWER RATIO	.15 .16 .17 .17 .17 .21 .21 .24 .29 .33 .34 .39 .40 .41
7. 8. 9.	8. 9. 9. 9. 9.	TEST AND MEASUREMENT EQUIPMENT RF OUTPUT POWER MEASUREMENT 1. LTE BAND 48 CONDUCTED TEST RESULTS 1. OCCUPIED BANDWIDTH 9.1.1. LTE BAND 48 2. POWER SPECTRAL DENSITY 9.2.1. LTE BAND 48 3. EMISSION MASK 9.3.1. LTE BAND 48 4. OUT OF BAND EMISSIONS 9.4.1. LTE BAND 48 5. FREQUENCY STABILITY 9.5.1. LTE BAND 48 6. PEAK-TO-AVERAGE POWER RATIO 96.1	.15 .16 .17 .17 .19 .21 .21 .24 .29 .33 .34 .39 .40 .41 42

Page 3 of 53

10.	RAD	DIATED TEST RESULTS	44
10	0.1. FII	FIELD STRENGTH OF SPURIOUS RADIATION	45
	10.1.1.	1. LTE Band 48	46
11.	SET	TUP PHOTOS	52

Page 4 of 53

1. ATTESTATION OF TEST RESULTS

	NOKIA CANADA INC.
Applicant Name and Address	600 MARCH RD OTTAWA,
	ON K2K 2T6, CANADA
Model	Nokia 7705 SAR-Hmc
FCC ID	AS57705SARHMC-3
EUT Description	REMOTE RADIO BASE STATION
Serial Number	GRM1-02-028
Sample Receipt Date	2024-11-12
Date Tested	2024-11-14 to 2024-12-18
Applicable Standards	FCC 47 CFR PART 2, PART 96
Test Results	COMPLIES

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc.and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc.will constitute fraud and shall nullify the document.

Approved & Released By:	Reviewed By:	Prepared By:
Alloreni		Pater Va
Dan Coronia	Kiya Kedida	Peter Vu
Operations Leader	Lead Project Engineer	Laboratory Engineer
UL Verification Services Inc.	UL Verification Services Inc.	UL Verification Services Inc.

2. SUMMARY OF TEST RESULTS

This report contains data provided by the customer which can impact the validity of results. UL Verification Services Inc. is only responsible for correctly integrating customer-provided data with measurements performed by Verification Services Inc.

Below is a list of the data provided by the customer:

1. Antenna gain (see section 6.2)

Requirement Description	Band	Requirement Clause Number (FCC)	Result*	Remarks
Equivalent Isotropic Radiated Power and Power Spectral Density	48	96.41 (b)	Compiles	

Requirement Description	Requirement Clause Number (FCC)	Result*	Remarks
Occupied Bandwidth	2.1049	Compiles	
Band Edge and Emission Mask	96.41(e)	Compiles	
Out of Band Emissions	96.41(e)	Compiles	
Frequency Stability	2.1055	Compiles	
Peak-to-Average Ratio	96.41 (g)	Compiles	
Field Strength of Spurious Radiation	2.1053, 96.41(e)	Compiles	

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with the following:

- ANSI C63.26:2015
- FCC 47 CFR Part 2, Part 96
- FCC KDB 971168 D01: Power Meas License Digital Systems
- <u>FCC KDB 971168 D02</u>: Misc Rev Approv License Devices
- <u>FCC KDB 412172 D01</u>: Determining ERP and EIRP

4. FACILITIES AND ACCREDITATION

UL Verification Services Inc. is accredited by A2LA, certification #0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	FCC Registration
\boxtimes	Building 1: 47173 Benicia Street, Fremont, CA 94538, USA	
	Building 2: 47266 Benicia Street, Fremont, CA 94538, USA	
	Building 3: 843 Auburn Court, Fremont, CA 94538, USA	550739
\boxtimes	Building 4: 47658 Kato Rd, Fremont, CA 94538, USA	
	Building 5: 47670 Kato Rd, Fremont, CA 94538, USA	

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U _{Lab}
Conducted Antenna Port Emission Measurement	1.940 db
Power Spectral Density	2.466 db
Time Domain Measurements Using SA	3.39 %
RF Power Measurement Direct Method Using Power Meter	1.300 db Peak
	0.450 db Ave.
Radio Frequency (Spectrum Analyzer)	141.16 Hz
Occupied Bandwidth	1.22%
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.78 db
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.40 db
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.87 db
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 db
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.73 db
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.51 db
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.29 db

Uncertainty figures are valid to a confidence level of 95%.

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 8 of 53

6. EQUIPMENT UNDER TEST

6.1. DESCRIPTION OF EUT

The EUT is a remote radio base station.

6.1. MAXIMUM OUTPUT POWER

EIRP/ERP TEST PROCEDURE

ANSI C63.26:2015 KDB 971168 D01 Section 5.6

ERP/EIRP = PMeas + GT - LC

where: ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMeas, typically dBW or dBm);

PMeas = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

For devices utilizing multiple antennas, KDB 662911 provides guidance for determining the effective array transmit antenna gain term to be used in the above equation.

EUT includes different power levels for head use configuration and body use configuration and the below tables contain the highest of all configurations average conducted and ERP/EIRP output powers as follows:

Page 9 of 53

LTE BAND 48 Category A

Part 96			_					
EIRP Limit (d	dBm)/ 10MHz	30.00]					
Antenna Gai	n (dBi)	7.00						
Bandwidth (MHz)	Modulation	Low Frequency (MHz)	Upper Frequency (MHz)	Conducted Average (dBm)	EIRP Average (dBm)	EIRP Average (W)	99% BW (kHz)	Emission Designator
5.0	QPSK	2550 F	2607 F	21.90	28.90	0.776	4910	4M91G7W
5.0	16QAM	3002.0	3097.5	21.00	28.00	0.631	4466	4M47D7W
10.0	QPSK	3555.0	3605.0	22.00	29.00	0.794	8980	8M98G7W
10.0	16QAM	3555.0	3095.0	21.10	28.10	0.646	8983	8M98D7W
15.0	QPSK	2557.5	2602 5	22.00	29.00	0.794	13437	13M4G7W
15.0	16QAM	3007.0	3092.5	21.00	28.00	0.631	13481	13M5D7W
20.0	QPSK	3560.0	3600.0	22.00	29.00	0.794	17897	17M9G7W
20.0	16QAM	5500.0	5090.0	21.00	28.00	0.631	17819	17M8D7W

LTE BAND 48 Category B

Part 96								
EIRP Limit (dBm)/ 10MHz		47.00						
Antenna Gai	n (dBi)	24.00						
Bandwidth (MHz)	Modulation	Low Frequency (MHz)	Upper Frequency (MHz)	Conducted Average (dBm)	EIRP Average (dBm)	EIRP Average (W)	99% BW (kHz)	Emission Designator
5.0	QPSK	2552.5	2607.5	21.90	45.90	38.905	4910	4M91G7W
5.0	16QAM	3002.0	3097.5	21.00	45.00	31.623	4466	4M47D7W
10.0	QPSK	2555.0	2605.0	22.00	46.00	39.811	8980	8M98G7W
10.0	16QAM	3555.0	3095.0	21.10	45.10	32.359	8983	8M98D7W
15.0	QPSK	2557 5	2602 5	22.00	46.00	39.811	13437	13M4G7W
15.0	16QAM	3007.0	3092.5	21.00	45.00	31.623	13481	13M5D7W
20.0	QPSK	3560.0	3600.0	22.00	46.00	39.811	17897	17M9G7W
20.0	16QAM	5500.0	5090.0	21.00	45.00	31.623	17819	17M8D7W

6.2. MAXIMUM ANTENNA GAIN

The antenna(s) gain, as provided by the manufacturer' are as follows:

LTE Band	Frequency Range (MHz)	Category A(dBi)	Category B(dBi)	
LTE Band 48	3550 – 3700	7	24	

Page 11 of 53

6.4. WORST-CASE CONFIGURATION AND MODE

The EUT supports the following LTE Band 48.

The worst-case scenario for all measurements is based on an engineering evaluation made on different modulations. Then, QPSK were observed as the worst mode to LTE bands and set for all conducted and radiated test. Output power measurements were measured on QPSK ,16QAM and 64QAM modulations. For testing purposes emissions on sections 9 and 10 were measured while QPSK was set.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y, & Z. It was determined that X orientation was the worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation

Radiated spurious emissions were investigated from 9kHz to 30MHz, 30MHz-1GHz and above 18GHz. There were no emissions found with less than 20dB of margin from 9kHz to 30MHz, 30MHz-1GHz and above 18GHz.

Page 12 of 53

6.5. DESCRIPTION OF TEST SETUP

SUPPORT TEST EQUIPMENT							
Description Manufacturer Model Serial Number FCC ID/							
Laptop	Lenovo	T460s	PC0JMBF8	Doc			
Laptop AC/DC Adapter	Lenovo	ADLX65YLC2A	8SSA10M13548L1CZ85M00Y6	Doc			

I/O CABLES (RF CONDUCTED TEST)								
Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks			
SMA Cable	1	SMA	Un-Shielded	1.0	EUT to Spectrum Analyzer			
Ethernet	2	RJ45	Un-shielded	1.5	EUT to Laptop			
	I/O CABLES (RF RADIATED TEST)							
Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks			
RF In/Out	1	Antenna	Un-shielded	5.0	N/A			

Page 13 of 53

CONDUCTED SETUP

RADIATED SETUP

Page 14 of 53

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Due		
Antenna, Horn 1-18GHz	ETS Lindgren	3117	79834	2025-06-30		
Antenna, Broadband Hybrid, 30MHz to 3000MHz	SUNAR	JB3	222009	2025-10-31		
RF Filter Box, 1-18GHz	UL-FR1	RATS 2	226781	2025-09-30		
Amplifier, 10KHz to 1GHz, 32dB	Sonoma	310N	430250	2025-09-30		
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	169936	2025-02-28		
Directional Coupler	KRYTAR	152610 231664		2025-01-22		
Filter, BRF 3.4 – 3.8GHz	Micro-Tronics	BRM50711-02 208398		2025-10-31		
Spectrum Analyzer, PXA, 2Hz to 44GHz	Keysight	N9030B	231739	2025-01-31		
Chamber, Environmental	Thermotron Corp.	SM-16C Mini-Max	179936	2025-06-30		
Antenna, Horn 18 to 26.5GHz	A.R.A.	MWH-1826/B	199659	2024-12-31		
Amplifier 18-26.5GHz, +5Vdc, -54dBm P1dB	AMPLICAL	AMP18G26.5-60	234683	2025-06-29		
UL AUTOMATION SOFTWARE						
CLT Software	UL	UL RF	V2023.11.21.0			
Power Measurement Software	UL	UL RF	V20	023.08.14.0		
Radiated test software	UL	UL RF	Ver 9	.5 2023-05-01		

NOTES:

1. * Testing is completed before the equipment expiration date.

8. RF OUTPUT POWER MEASUREMENT

CONDUCTED OUTPUT POWER MEASUREMENT PROCEDURE

All bands conducted average power is obtained from the base station simulator.

The following tests were conducted according to the test requirements outlined in ANSI C63.26 Section 5.2.

RESULTS

EUT includes different power levels for head use configuration and body use configuration and the below tables contain the highest of all configurations average conducted output powers as follows:

8.1. LTE BAND 48

LTE BAND 48

Test Engineer ID:	27966 PV	Test Date:	2024-12-12

OUTPUT POWER FOR LTE BAND 48

Bandwidth		RB Allocation	RB Offset	Conducted Average (dBm)			
	Modulation			55265	55990	56715	
(IVIHZ)				3552.5	3625.0	3697.5	
	QPSK	25	0	21.9	21.9	21.7	
5.0	16QAM	25	0	21.0	21.0	20.8	
	64QAM	25	0	20.0	20.0	19.8	
Bandwidth				Condu	icted Average	(dBm)	
	Modulation	RB Allocation	RB Offset	55290	55990	56690	
				3555.0	3625.0	3695.0	
	QPSK	50	0	22.0	22.0	21.8	
10.0	16QAM	50	0	21.1	21.0	20.8	
	64QAM	50	0	20.0	20.0	19.8	
Bandwidth	Modulation	RB Allocation	RB Offset	Conducted Average (dBm)			
				55315	55990	56665	
(10112)				3557.5	3625.0	3692.5	
	QPSK	75	0	22.0	21.9	21.7	
15.0	16QAM	75	0	21.0	21.0	20.8	
	64QAM	75	0	20.0	19.9	19.7	
Bandwidth				Condu	icted Average	(dBm)	
	Modulation	RB Allocation	RB Offset	55340	55990	56640	
(101112)				3560.0	3625.0	3690.0	
	QPSK	100	0	22.0	22.0	21.7	
20.0	16QAM	100	0	21.0	21.0	20.8	

NOTE: Category A and B conducted output power are the same.

9. CONDUCTED TEST RESULTS

9.1. OCCUPIED BANDWIDTH

RULE PART(S)

FCC: §2.1049

LIMITS

For reporting purposes only.

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the middle channel in each band. The 99% and -26dB bandwidths was also measured and recorded.

RESULTS

LTE BAND 48

Band	Mode	RB Allocation/RB Offset	f(MHz)	99% BW (MHz)	-26dB BW (MHz)
	5MHz, QPSK	25/0	3625.0	4.4910	4.918
	5MHz, 16QAM	25/0		4.4662	4.851
	10MHz, QPSK	50/0		8.9799	9.560
	10MHz, 16QAM	50/0		8.9827	9.552
LIE DAND 40	15MHz, QPSK	75/0		13.437	13.99
	15MHz, 16QAM	75/0		13.481	14.39
	20MHz, QPSK	100/0		17.897	19.18
	20MHz, 16QAM	100/0		17.819	18.79

Page 18 of 53

9.1.1. LTE BAND 48

LTE BAND 48

Page 19 of 53

Page 20 of 53

9.2. POWER SPECTRAL DENSITY

LIMITS

FCC: §96.41

(b) Power limits. Unless otherwise specified in this section, the maximum effective isotropic radiated power (EIRP) and maximum Power Spectral Density (PSD) of any CBSD and End User Device must comply with the limits shown in the table below:

Device	Maximum EIRP (dBm/10 megahertz)	Maximum PSD (dBm/MHz)
End User Device	23	n/a
Category A CBSD	30	20
Category B CBSD ¹	47	37

TEST PROCEDURE

Maximum PSD—The rules require "maximum power spectral density" measurements, where the intent is to measure the maximum value of the time average of the power spectral density measured during a period of continuous transmission. To perform this measurement, the DUT must be configured to transmit continuously at full power. The procedure in Section 5.2 of ANSI C63.26-2015 is acceptable

RESULTS

Page 21 of 53

LTE BAND 48 Category A

Band	BW (MHz)	Mode	Frq(MHz)	PSD (dBm)	Limit(dBm)	Delta(dBm)
		0.001/	3552.5	15.553	20	-4.447
		QPSK	3625	15.532	20	-4.468
	5		3697.5	15.347	20	-4.653
		400 444	3552.5	14.522	20	-5.478
		16QAM	3625	14.279	20	-5.721
			3697.5	14.398	20	-5.602
		0.001/	3555	12.528	20	-7.472
		QPSK	3625	12.259	20	-7.741
	10		3695	12.728	20	-7.272
		16QAM	3555	11.585	20	-8.415
			3625	11.133	20	-8.867
			3695	11.583	20	-8.417
48	15	QPSK	3557.5	10.794	20	-9.206
			3625	10.501	20	-9.499
			3692.5	10.340	20	-9.66
		16QAM	3557.5	9.691	20	-10.309
			3625	10.374	20	-9.626
			3692.5	9.451	20	-10.549
		0001	3560	9.514	20	-10.486
		QPSK	3625	10.078	20	-9.922
	20		3690	10.080	20	-9.92
		100.004	3560	8.363	20	-11.637
		16QAM	3625	8.871	20	-11.129
			3690	8.874	20	-11.126

LTE BAND 48 Category B

Band	BW (MHz)	Mode	Frq(MHz)	PSD (dBm)	Limit(dBm)	Delta(dBm)
		0.001/	3552.5	15.553	37	-21.447
		QPSK	3625	15.532	37	-21.468
	5		3697.5	15.347	37	-21.653
		400 444	3552.5	14.522	37	-22.478
		16QAM	3625	14.279	37	-22.721
			3697.5	14.398	37	-22.602
			3555	12.528	37	-24.472
		QPSK	3625	12.259	37	-24.741
	10		3695	12.728	37	-24.272
		16QAM	3555	11.585	37	-25.415
			3625	11.133	37	-25.867
			3695	11.583	37	-25.417
48	15	QPSK	3557.5	10.794	37	-26.206
			3625	10.501	37	-26.499
			3692.5	10.340	37	-26.66
			3557.5	9.691	37	-27.309
		16QAM	3625	10.374	37	-26.626
			3692.5	9.451	37	-27.549
			3560	9.514	37	-27.486
		QPSK	3625	10.078	37	-26.922
	20		3690	10.080	37	-26.92
		400.004	3560	8.363	37	-28.637
		16QAM	3625	8.871	37	-28.129
			3690	8.874	37	-28.126

9.2.1. LTE BAND 48

9.3. EMISSION MASK

LIMITS

FCC: §96.41

(e) 3.5 GHz Emissions and Interference Limits—

(1) General protection levels

(i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's authorized frequency channel, a resolution bandwidth of no less than one percent of the fundamental emission bandwidth may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full reference bandwidth (i.e., 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(2) Additional protection levels. Notwithstanding paragraph (e)(1) of this section, for CBSDs and End User Devices, the conducted power of emissions below 3540 MHz or above 3710 MHz shall not exceed -25 dBm/MHz, and the conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.

TEST PROCEDURE

For Spectrum Emission Mask plots, the Keysight PXA N9030A is configured to sweep with a moving integration window, the width of which can be adjusted to different sizes across the sweep. The window width is configured to be greater than or equal to the required reference bandwidth. The center frequencies of the integration window for the different integration windows was set such that the upper and lower edges of the windows are aligned with the transition points in the reference bandwidths. This is achieved by setting the start / stop frequencies of the window with an offset equal to the reference bandwidth / 2 from the transition point.

The transmitter output was connected to a CMW500Test Set and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

For each band edge measurement:

- 1. Set the spectrum analyzer span to include the block edge frequency.
- 2. Set a marker to point the corresponding band edge frequency in each test case.
- 3. Set display line at -13 dBm
- 4. Set resolution bandwidth to at least 1% of emission bandwidth.

RESULTS

9.3.1. LTE BAND 48

LTE BAND 48 EMISSION MASK (FCC)

Page 29 of 53

