

TEST REPORT

- **PRODUCT NAME** : Android Virtual Reality Headset
- MODEL NAME : AVR1-WT
- **BRAND NAME** : Variety Products,LLC.
- FCC ID : 2ANTOR551-A-AVR1-WT
- **STANDARD(S)** : 47 CFR Part 15 Subpart C
- **TEST DATE** : 2017-09-22 to 2017-11-06
- **ISSUE DATE** : 2017-11-06

Tested by:

Li Jingzong (Test Engineer)

Approved by:

Andy Yeh (Technical Director)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

DIRECTORY

1. Technical Information 4
1.1. Manufacturer and Factory Information4
1.2. Equipment Under Test (EUT) Description4
1.3. Test Standards and Results5
1.4. Environmental Conditions5
2. 47 CFR Part 15C Requirements6
2.1. Antenna requirement
2.2. Number of Hopping Frequency6
2.3. Peak Output Power 11
2.4. 20dB Bandwidth 13
2.5. Carried Frequency Separation 20
2.6. Time of Occupancy (Dwell time) 23
2.7. Conducted Spurious Emissions 36
2.8. Restricted Frequency Bands 49
2.9. Conducted Emission 58
2.10. Radiated Emission 59
Annex A Test Uncertainty75
Annex B Testing Laboratory Information76

	Change	History
Issue	Date	Reason for change
1.0	2017-11-06	First edition

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	EmdoorVR Technology Co.,Ltd
Applicant Address:	811/F JinFuLai Building,49-1 Dabao Road, Bao An District,
	Shenzhen
Manufacturer:	EmdoorVR Technology Co.,Ltd
Manufacturer Address:	811/F JinFuLai Building,49-1 Dabao Road, Bao An District,
	Shenzhen

1.2. Equipment Under Test (EUT) Description

Product Name:	Android Virtual Reality Headset
Serial No:	(N/A, marked #1 by test site)
Hardware Version:	EM_R551_MB_V1.1A
Software Version:	VR0277/3.20.001
Modulation Type:	Bluetooth: FHSS (GFSK(1Mbps), π/4-DQPSK(EDR 2Mbps), 8-DPSK(EDR 3Mbps))
Operating Frequency Range:	The frequency range used is 2402MHz – 2480MHz (79 channels, at intervals of 1MHz); The frequency block is 2400MHz to 2483.5MHz.
Bluetooth Version:	Bluetooth 2.1+ EDR
Antenna Type:	FPCB Antenna
Antenna Gain:	1.84 dBi

Note 1: The EUT is a Android Virtual Reality Headset. It contains Bluetooth Module operating at 2.4GHz ISM band; the frequencies is F(MHz)=2402+1*n (0<=n<=78). The lowest, middle, highest channel numbers of the Bluetooth Module used and tested in this report are separately 0 (2402MHz), 39 (2441MHz) and 78 (2480MHz).

Note 2: The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT into the test mode, and then use MT8852B base station to control the EUT continuous transmission.

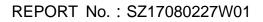
Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) for the EUT FCC ID Certification:

No	Identity	Document Title
1	47 CFR Part 15 (10-1-15 Edition)	Radio Frequency Devices
Test d	etailed items/section required by FCC ru	les and results are as below:

No.	Section in CFR 47	Description	Test Date	Test Engineer	Result
1	15.203	Antenna Requirement	N/A	N/A	PASS
2	15.247(a)	Number of Hopping Frequency	Sep 22, 2017	Li Jingzong	PASS
3	15.247(b)	Peak Output Power	Sep 22, 2017	Li Jingzong	PASS
4	15.247(a)	20dB Bandwidth	Sep 22, 2017	Li Jingzong	PASS
5	15.247(a)	Carrier Frequency Separation	Sep 22, 2017	Li Jingzong	PASS
6	15.247(a)	Time of Occupancy (Dwell time)	Sep 22, 2017	Li Jingzong	PASS
7	15.247(d)	Conducted Spurious Emission	Sep 22, 2017	Li Jingzong	PASS
8	15.247(d)	Restricted Frequency Bands	Nov 02, 2017	Zheng Fengjian	PASS
9	15.209, 15.247(d)	Radiated Emission	Nov 03, 2017	Zheng Fengjian	PASS
10	15.207	Conducted Emission	Nov 06, 2017	Zheng Fengjian	PASS


Note: The tests were performed according to the method of measurements prescribed in ANSI C63.10-2013.

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

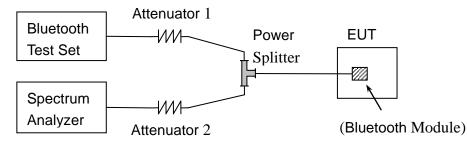
2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.


2.2. Number of Hopping Frequency

2.2.1. Requirement

According to FCC §15.247(a)(1)(iii), frequency hopping systems operating in the 2400MHz to 2483.5MHz bands shall use at least 15 hopping frequencies.

2.2.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.2.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW \geq 1% of the span VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize

2.2.4. Test Result

The Bluetooth Module operates at hopping-on test mode; the frequencies number employed is counted to verify the Module's using the number of hopping frequency.

Test Mode	Frequency Block (MHz)	Measured Channel Numbers	Min. Limit	Refer to Plot	Verdict
GFSK	2400 - 2483.5	79	15	Plot A	PASS
π/4-DQPSK	2400 - 2483.5	79	15	Plot B	PASS
8-DPSK	2400 - 2483.5	79	15	Plot C	PASS

A. Test Verdict:

B. Test Plots:

Swept SA 11:45:05 AM Sep 22, 2017 SENSE:INT TRACE 1234 Peak Search Avg Type: Log-Pwr Avg|Hold:>10/10 Marker 1 39.483000000 MHz Trig: Free Run TYPE DET PNO: Fast 😱 IFGain:Low Atten: 24 dB Next Peak ΔMkr1 39.483 MHz 2.705 dB Ref Offset 1 dB Ref 15.00 dBm 10 dB/div -^{og} r 1Δ2 Next Pk Right χ_2 Next Pk Left Marker Delta Mkr→CF Mkr→RefLvl More 1 of 2 Stop 2.44100 GHz Sweep 1.000 ms (1001 pts) Start 2.40000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz STATUS lyzer - Swept SA O 11:45:41 AM Sep 22, 2017 ALIGN Avg Type: Log-Pwr Avg|Hold:>10/10 Peak Search Marker 1 39.567500000 MHz TRACE 12345 TYPE MWWWWW DET PNNNN PNO: Fast 😱 IFGain:Low Trig: Free Run Atten: 24 dB **Next Peak** ΔMkr1 39.567 5 MHz -2.445 dB Ref Offset 1 dB Ref 15.00 dBm 0 dB/div Next Pk Right 1Δ2 Next Pk Left Marker Delta Mkr→CF Mkr→RefLvl More Stop 2.48350 GHz Sweep 1.000 ms (1001 pts) Start 2.44100 GHz #Res BW 1.0 MHz 1 of 2 #VBW 3.0 MHz STATUS

(Plot A: GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

	RF 50 9 1 39.688000	0000 MHz	PNO: Fast 🖵 Gain:Low	Tailor Free		Avg Typ Avg Hold	e: Log-Pwr	TRACE	ep 22, 2017 1 2 3 4 5 6 MWWWWWW P N N N N N	Peak Search
dB/div	Ref Offset 1 dB					ΔMkr	1 39.68 4.0	8 MHz 63 dB	NextPe	
									1 <u></u> 2,	Next Pk Rig
.00 X2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				~~~~				~~~~	HEAT KING
5.0										Next Pk L
5.0										
5.0										Marker De
5.0										
5.0										Mkr⊸
5.0										Mkr→Refl
5.0										
	0000 GHz							ton 0.444	00.011-	M c 1 c
	0000 GHZ / 1.0 MHz		#\/R\//	/ 3.0 MHz			Sweep 1.0	top 2.441	00 GHZ	
~			# 6 D 4 4	0.0 11112				00 m3 (10	or prsj	
G							STATUS	00 m3 (10	on pres	
ilent Spect	trum Analyzer - Sv RF 50 1 39 397501	Ω AC			ISE:INT		STATUS ALIGN AUTO	11:46:48 AM S	ep 22, 2017	Peak Search
ilent Spect		Ω AC DOOO MHz		SEN	ISE:INT		ALIGNAUTO e: Log-Pwr \$>10/10	11:46:48 AM S TRACE TYPE DET	ep 22, 2017 1 2 3 4 5 6 MWWWWW P N N N N N	
ilent Spect arker 1	RF 50 9	Ω AC DOOO MHz F IF	PNO: Fast 🕞	SE≯ Trig:Free	ISE:INT	Avg Typ	ALIGNAUTO e: Log-Pwr \$>10/10	11:46:48 AM S TRACE TYPE DET 39.397	ep 22, 2017 1 2 3 4 5 6 MWWWWW P N N N N N	
ilent Spect arker 1 dB/div	RF 50 9 1 39.397500 Ref Offset 1	Ω AC DOOO MHz F IF	PNO: Fast 🕞	SE≯ Trig:Free	ISE:INT	Avg Typ	ALIGNAUTO e: Log-Pwr \$>10/10	11:46:48 AM S TRACE TYPE DET 39.397	ep 22, 2017 1 2 3 4 5 6 M W N N N N 5 MHz	NextPe
ilent Spect arker 1 dB/div	RF 50 9 1 39.397500 Ref Offset 1	Ω AC DOOO MHz F IF	PNO: Fast 🕞	SE≯ Trig:Free	ISE:INT	Avg Typ	ALIGNAUTO e: Log-Pwr \$>10/10	11:46:48 AM S TRACE TYPE DET 39.397	ep22,2017 123456 MWWWWW PNNNNN 5 MHz 59 dB	NextPe
ilent Spect arker 1 dB/div g 00 2	RF 50 9 1 39.397500 Ref Offset 1	Ω AC DOOO MHz F IF	PNO: Fast 🕞	SE≯ Trig:Free	ISE:INT	Avg Typ	ALIGNAUTO e: Log-Pwr \$>10/10	11:46:48 AM S TRACE TYPE DET 39.397	ep22,2017 123456 MWWWWW PNNNNN 5 MHz 59 dB	Next Pe Next Pk Rig
ilent Spect arker 1 dB/div	RF 50 9 1 39.397500 Ref Offset 1	Ω AC DOOO MHz F IF	PNO: Fast 🕞	SE≯ Trig:Free	ISE:INT	Avg Typ	ALIGNAUTO e: Log-Pwr \$>10/10	11:46:48 AM S TRACE TYPE DET 39.397	ep22,2017 123456 MWWWWW PNNNNN 5 MHz 59 dB	Next Pe Next Pk Rig
arker 1 adB/div 00 5.0	RF 50 9 1 39.397500 Ref Offset 1	Ω AC DOOO MHz F IF	PNO: Fast 🕞	SE≯ Trig:Free	ISE:INT	Avg Typ	ALIGNAUTO e: Log-Pwr \$>10/10	11:46:48 AM S TRACE TYPE DET 39.397	ep22,2017 123456 MWWWWW PNNNNN 5 MHz 59 dB	Peak Search Next Pe Next Pk Rig Next Pk L Marker De
ilent Spect arker 1 dB/div 9 00 2 5.0	RF 50 9 1 39.397500 Ref Offset 1	Ω AC DOOO MHz F IF	PNO: Fast 🕞	SE≯ Trig:Free	ISE:INT	Avg Typ	ALIGNAUTO e: Log-Pwr \$>10/10	11:46:48 AM S TRACE TYPE DET 39.397	ep22,2017 123456 MWWWWW PNNNNN 5 MHz 59 dB	Next Pe Next Pk Rig Next Pk L Marker De
arker 1	RF 50 9 1 39.397500 Ref Offset 1	Ω AC DOOO MHz F IF	PNO: Fast 🕞	SE≯ Trig:Free	ISE:INT	Avg Typ	ALIGNAUTO e: Log-Pwr \$>10/10	11:46:48 AM S TRACE TYPE DET 39.397	ep22,2017 123456 MWWWWW PNNNNN 5 MHz 59 dB	Next Pe Next Pk Rig Next Pk L
	RF 50 9 1 39.397500 Ref Offset 1	Ω AC DOOO MHz F IF	PNO: Fast 🕞	SE≯ Trig:Free	ISE:INT	Avg Typ	ALIGNAUTO e: Log-Pwr \$>10/10	11:46:48 AM S TRACE TYPE DET 39.397	ep22,2017 123456 MWWWWW PNNNNN 5 MHz 59 dB	Next Pe Next Pk Rig Next Pk L Marker De Mkr→t
ilent Spect arker 1 9 dB/div 9 00 2 2 00 5.0 5.0 5.0	RF 50 9 1 39.397500 Ref Offset 1	Ω AC DOOO MHz F IF	PNO: Fast 🕞	SE≯ Trig:Free	ISE:INT	Avg Typ	ALIGNAUTO e: Log-Pwr \$>10/10	11:46:48 AM S TRACE TYPE DET 39.397	ep22,2017 123456 MWWWWW PNNNNN 5 MHz 59 dB	Next Pe Next Pk Rig Next Pk L Marker De Mkr→t
ilent Spect arker 1 0 dB/div 9 00 2 00 5.0 5.0 5.0 5.0 5.0	RF 50 9 1 39.397500 Ref Offset 1	Ω AC DOOO MHz F IF	PNO: Fast 🕞	SE≯ Trig:Free	ISE:INT	Avg Typ	ALIGNAUTO e: Log-Pwr i> 10/10 AMkr1 AMkr1 AMkr1 AMkr1 AMkr1 AMkr1	11:46:48 AM S TRACE TYPE DET 39.397	ep 22, 2017 12 3 4 15 6 P NNNNN 5 MHz 59 dB 1Δ2	Next Pe Next Pk Rig Next Pk L Marker De

(Plot B: $\pi/4$ -DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-7

 Http://www.morlab.cn
 E-mail: set

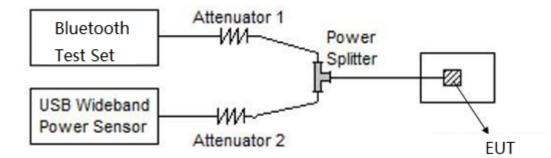
Fax: 86-755-36698525 E-mail: service@morlab.cn

gilent Spectr		Ω AC			ISE:INT		ALIGN AUTO	11:51:25 AF		
	Δ 39.6470	00000 N	HZ PNO: Fast ⊂ FGain:Low				≘: Log-Pwr :>10/10	TRAC TYI DI	CE 123456 PE MWWWWW TP NNNNN	Marker
	Ref Offset 1		FORU: COM	Auen. 24			ΔM	(r1 39.6	47 MHz	Select Marke
0 dB/div og r	Ref 15.00	dBm						3	.894 dB	
Ĭ									1 <u>Δ2</u> /	Norm
5.00	~~~~	~~~~		\sim	$\sim \sim \sim$	γ	~~~~	᠕ᡔᢩ᠕ᠰᡁᡣᢑ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NOTI
5.00										
15.0										Del
15.0										
25.0										Fixed
35.0										T IXO
45.0										
+3.0										c
55.0										
55.0										Properties
75.0										
										Мо
										1 0
	000 GHz							Stop 2.44	100 GHz	
Res BW	1.0 MHz rum Analyzer - S RF 50	Ω AC		V 3.0 MHz	ISE:INT		Sweep 1. status	.000 ms (1001 pts)	
Res BW	1.0 MHz rum Analyzer - S	Ω AC 0000 MH	z	SEN	Run		Sweep 1. status ALIGNAUTO e: Log-Pwr	.000 ms (1001 pts)	Peak Search
Res BW	1.0 MHz rum Analyzer - S RF 50 39.39750	Ω AC 0000 MH		SEN	Run	Avg Type	Sweep 1. STATUS ALIGNAUTO E: Log-Pwr >10/10	.000 ms (11:52:30 Af TRAC TYI DI	1001 pts) M Sep 22, 2017 E 1 2 3 4 5 6 E M WWWWWW ET P N N N N N	Peak Search
Res BW gilent Spectr larker 1	1.0 MHz rum Analyzer - S RF 50	Ω AC 0000 MH: I	Z PNO: Fast G	SEN	Run	Avg Type	Sweep 1. STATUS ALIGNAUTO E: Log-Pwr >10/10	.000 ms (11:52:30 AF TRAC TYI DI 39.39	1001 pts)	Peak Search
Res BW gilent Spectr larker 1	1.0 MHz	Ω AC 0000 MH: I	Z PNO: Fast G	SEN	Run	Avg Type	Sweep 1. STATUS ALIGNAUTO E: Log-Pwr >10/10	.000 ms (11:52:30 AF TRAC TYI DI 39.39	1001 pts) ^{MSep 22,2017} ^E 12 3 4 5 6 ^E MW F P NNNN 7 5 MHz .661 dB	Peak Search Next Pe
Res BW	1.0 MHz	Ω AC 0000 MH: I	Z PNO: Fast G	SEN	Run	Avg Type	Sweep 1. STATUS ALIGNAUTO E: Log-Pwr >10/10	.000 ms (11:52:30 AF TRAC TYI DI 39.39	MSep 22, 2017 E 1 2 3 4 5 6 E NNNNN 7 5 MHz	Peak Search Next Pe
Res BW sc glient Spectr larker 1 0 dB/div 0 dB/div	1.0 MHz	Ω AC 0000 MH: I	Z PNO: Fast G	SEN	Run	Avg Type	Sweep 1. STATUS ALIGNAUTO E: Log-Pwr >10/10	.000 ms (11:52:30 AF TRAC TYI DI 39.39	1001 pts) ^{MSep 22,2017} ^E 12 3 4 5 6 ^E MW F P NNNN 7 5 MHz .661 dB	Peak Search Next Pe
Res BW gilent Spectr larker 1 0 dB/div 9 5.00 2 2 5.00 2 2 5.00 2 2 5.00 2 5.00 2 5.00 2 5.00	1.0 MHz	Ω AC 0000 MH: I	Z PNO: Fast G	SEN	Run	Avg Type	Sweep 1. STATUS ALIGNAUTO E: Log-Pwr >10/10	.000 ms (11:52:30 AF TRAC TYI DI 39.39	1001 pts) ^{MSep 22,2017} ^E 12 3 4 5 6 ^E MW F P NNNN 7 5 MHz .661 dB	Peak Search Next Pe Next Pk Rig
Res BW gilent Spectr larker 1 0 dB/div 9 5.00 2 5.00 2 5.00	1.0 MHz	Ω AC 0000 MH: I	Z PNO: Fast G	SEN	Run	Avg Type	Sweep 1. STATUS ALIGNAUTO E: Log-Pwr >10/10	.000 ms (11:52:30 AF TRAC TYI DI 39.39	1001 pts) ^{MSep 22,2017} ^E 12 3 4 5 6 ^E MW F P NNNN 7 5 MHz .661 dB	
Res BW gilent Spectr larker 1 0 dB/div	1.0 MHz	Ω AC 0000 MH: I	Z PNO: Fast G	SEN	Run	Avg Type	Sweep 1. STATUS ALIGNAUTO E: Log-Pwr >10/10	.000 ms (11:52:30 AF TRAC TYI DI 39.39	1001 pts) ^{MSep 22,2017} ^E 123456 ^E MW P NNNN 7 5 MHz .661 dB	Peak Search Next Pea Next Pk Rig
Res BW gilent Spectr larker 1 0 dB/div 9 5.00 2 5.00 2 5.00 2 5.00	1.0 MHz	Ω AC 0000 MH: I	Z PNO: Fast G	SEN	Run	Avg Type	Sweep 1. STATUS ALIGNAUTO E: Log-Pwr >10/10	.000 ms (11:52:30 AF TRAC TYI DI 39.39	1001 pts) ^{MSep 22,2017} ^E 123456 ^E MW P NNNN 7 5 MHz .661 dB	Peak Search Next Pea Next Pk Rig Next Pk Ld
Res BW gilent Spectr larker 1 0 dB/div 5 00 2 5 0 0 0 0 5 0 0 0 0 5 0 0 0 0 5 0 0 0 0	1.0 MHz	Ω AC 0000 MH: I	Z PNO: Fast G	SEN	Run	Avg Type	Sweep 1. STATUS ALIGNAUTO E: Log-Pwr >10/10	.000 ms (11:52:30 AF TRAC TYI DI 39.39	1001 pts) ^{MSep 22,2017} ^E 123456 ^E MW P NNNN 7 5 MHz .661 dB	Peak Search Next Pea Next Pk Rig Next Pk Lu Marker De
Res BW gilent Spectr larker 1 0 dB/div 9 5.00 25.00 15.0 1	1.0 MHz	Ω AC 0000 MH: I	Z PNO: Fast G	SEN	Run	Avg Type	Sweep 1. STATUS ALIGNAUTO E: Log-Pwr >10/10	.000 ms (11:52:30 AF TRAC TYI DI 39.39	1001 pts) ^{MSep 22,2017} ^E 123456 ^E MW P NNNN 7 5 MHz .661 dB	Peak Search Next Pea Next Pk Rig Next Pk Ld
Res BW gilent Spectr larker 1 0 dB/div 5 00 5 000	1.0 MHz	Ω AC 0000 MH: I	Z PNO: Fast G	SEN	Run	Avg Type	Sweep 1. STATUS ALIGNAUTO E: Log-Pwr >10/10	.000 ms (11:52:30 AF TRAC TYI DI 39.39	1001 pts) ^{MSep 22,2017} ^E 123456 ^E MW P NNNN 7 5 MHz .661 dB	Peak Search Next Pea Next Pk Rig Next Pk Lu Marker De
Res BW gilent Spectr larker 1 0 dB/div 9 5.00 25.00 15.0 1	1.0 MHz	Ω AC 0000 MH: I	Z PNO: Fast G	SEN	Run	Avg Type	Sweep 1. STATUS ALIGNAUTO E: Log-Pwr >10/10	.000 ms (11:52:30 AF TRAC TYI DI 39.39	1001 pts) ^{MSep 22,2017} ^E 123456 ^E MW P NNNN 7 5 MHz .661 dB	Peak Search Next Pea Next Pk Rig Next Pk Lu Marker De
Res BW isia ilarker 1 o dB/div o dB/div c 0 dB/di	1.0 MHz	Ω AC 0000 MH: I	Z PNO: Fast G	SEN	Run	Avg Type	Sweep 1. STATUS ALIGNAUTO E: Log-Pwr >10/10	.000 ms (11:52:30 AF TRAC TYI DI 39.39	1001 pts) ^{MSep 22,2017} ^E 123456 ^E MW P NNNN 7 5 MHz .661 dB	Peak Search Next Pea Next Pk Rig Next Pk Lu Marker De Mkr-J
Res BW gilent Spectr larker 1 0 dB/div 5.00	1.0 MHz	Ω AC 0000 MH: I	Z PNO: Fast G	SEN	Run	Avg Type	Sweep 1. STATUS ALIGNAUTO E: Log-Pwr >10/10	.000 ms (11:52:30 AF TRAC TYI DI 39.39	1001 pts) ^{MSep 22,2017} ^E 123456 ^E MW P NNNN 7 5 MHz .661 dB	Peak Search Next Pea Next Pk Rig Next Pk Lu Marker De Mkr-J
Res BW glient Spectr glarker 1 0 dB/div 9 5.00 5.	1.0 MHz	Ω AC 0000 MH: I	Z PNO: Fast FGain:Low	SEN		Avg Type Avg Hold	Sweep 1. status aLIGNAUTO :: Log-Pwr >10/10 CMIKr'	000 ms (1001 pts)	Peak Search Next Pea Next Pk Rig Next Pk Lo Marker De Mkr-A

(Plot C: 8- DPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.3. Peak Output Power

2.3.1. Requirement

According to FCC §15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

2.3.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the USB Wideband Power Sensor and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.3.3. Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the module. The lowest, middle and highest channel were tested by USB Wideband Power Sensor.

2.3.3.1 GFSK Mode

A. Test Verdict:

Channel	Frequency (MHz)		ed Output Power	Li	mit	Verdict
		dBm	W	dBm	W	
0	2402	3.47	0.00222			PASS
39	2441	4.09	0.00256	30	1	PASS
78	2480	3.99	0.00251			PASS

2.3.3.2 π /4-DQPSK Mode

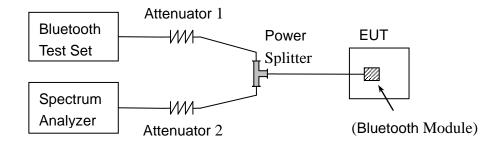
B. Test Verdict:

Channel	Frequency (MHz)	Measured Output Peak Power		Limit		Verdict
		dBm	W	dBm	W	
0	2402	4.47	0.00280			PASS
39	2441	4.92	0.00310	20.97	0.125	PASS
78	2480	4.92	0.00310			PASS

2.3.3.3 8-DPSK Mode

C. Test Verdict:

Channel	Frequency (MHz)	Measured Output Peak Power		Limit		Verdict
		dBm	W	dBm	W	
0	2402	4.81	0.00303			PASS
39	2441	5.24	0.00334	20.97	0.125	PASS
78	2480	5.20	0.00331			PASS



2.4.1. Definition

According to FCC 15.247(a)(1), the 20dB bandwidth is known as the 99% emission bandwidth, or 20dB bandwidth (10*log1% = 20dB) taking the total RF output power.

2.4.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.4.3. Test Procedure

Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

2.4.4. Test Result

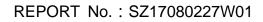
The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to record the 20dB bandwidth of the Module.

2.4.4.1 GFSK Mode

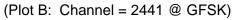
A. Test Verdict:

The maximum 20dB bandwidth measured is 0.9637 MHz according to the table below.

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
0	2402	0.9619	Plot A
39	2441	0.9624	Plot B
78	2480	0.9637	Plot C


B. Test Plots:

(Plot A: Channel = 2402 @ GFSK)

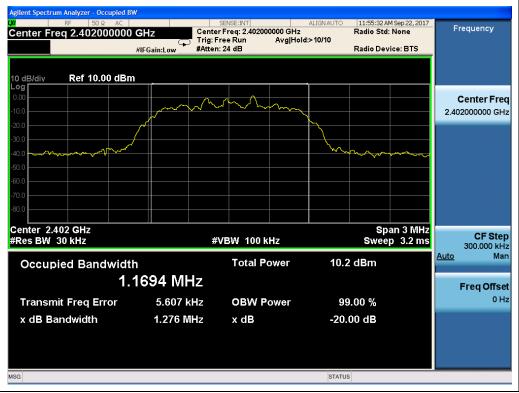


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

enter Freq 2.441000000 G	Hz Cente Trig: F	SENSE:INT r Freq: 2.441000000 GHz free Run Avg Hold h: 24 dB	ALIGNAUTO 11:57:19 AM Sep 22, 2 Radio Std: None I:> 10/10 Radio Device: BTS	Frequency
) dB/div Ref 10.00 dBm				
0.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Center Fre 2.441000000 GH
				22 <mark>~</mark>
0.0				
enter 2.441 GHz Res BW 30 kHz	#	VBW 100 kHz	Span 3 M Sweep 3.2 r	
Occupied Bandwidth		Total Power	10.9 dBm	<u>Auto</u> M
87	2.08 kHz			Freq Offs
Transmit Freq Error	7.598 kHz	OBW Power	99.00 %	0
x dB Bandwidth	962.4 kHz	x dB	-20.00 dB	

(Plot C: Channel = 2480 @ GFSK)

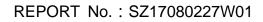
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

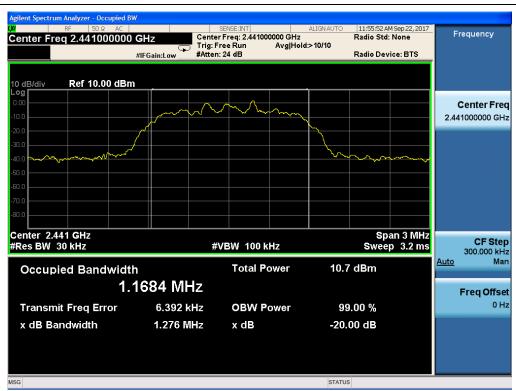

2.4.4.2 π/4-DQPSK Mode

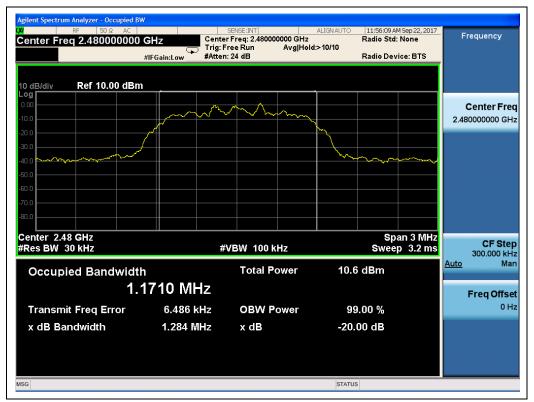
A. Test Verdict:

The maximum 20dB bandwidth measured is 1.284 MHz according to the table below.

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
0	2402	1.276	Plot D
39	2441	1.276	Plot E
78	2480	1.284	Plot F

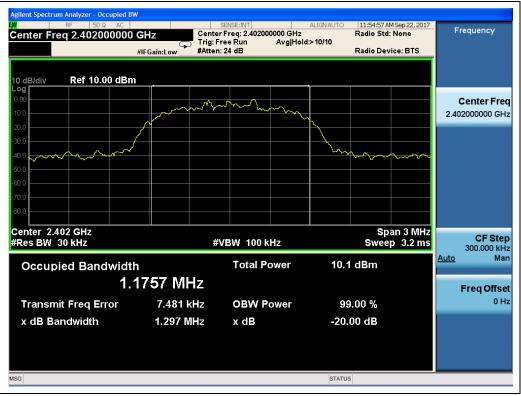

B. Test Plots:


(Plot D: Channel = 2402 @ $\pi/4$ -DQPSK)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Plot F: Channel = 2480 @ $\pi/4$ -DQPSK)

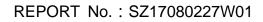
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn


2.4.4.3 8-DPSK Mode

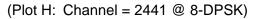
A. Test Verdict:

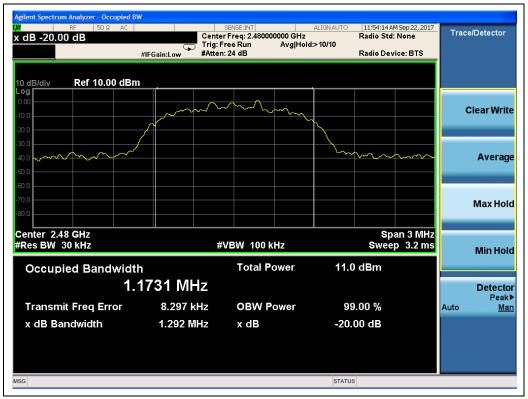
The maximum 20dB bandwidth measured is 1.297 MHz according to the table below.

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
0	2402	1.297	Plot G
39	2441	1.291	Plot H
78	2480	1.292	Plot I


B. Test Plots:

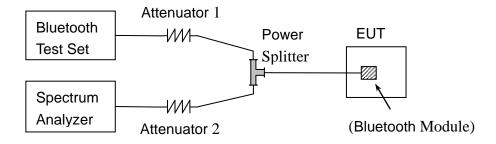
(Plot G: Channel = 2402 @ 8-DPSK)




SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Plot I: Channel = 2480 @ 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.5. Carried Frequency Separation

2.5.1. Definition

According to FCC §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

2.5.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.5.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) \geq 1% of the span

Video (or Average) Bandwidth (VBW) ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5.4. Test Result

The Bluetooth Module operates at hopping-on test mode. For any adjacent channels (e.g. the channel 39 and 40 as showed in the Plot A), the Module does have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel (refer to section 2.4.4), whichever is greater. So, the verdict is PASSING

Test Mode	Measured Channel Numbers	Carried Frequency Separation	Refer to Plot	20dB bandwidth (MHz)	Min. Limit	Verdict
GFSK	39 and 40	1.002	Plot A	0.9619	two-thirds of the - 20dB bandwidth -	PASS
π/4-DQPSK	39 and 40	1.005	Plot B	1.276		PASS
8-DPSK	39 and 40	1.005	Plot C	1.291		PASS

(Plot A: GFSK)

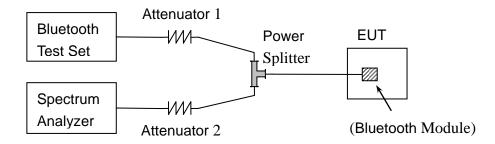
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

larker 1	Δ 1.005000	F	PNO: Fast Trig: Free Run IFGain:Low Atten: 22 dB			Avg Type Avg Hold:	:: Log-Pwr >10/10	TRAC TYF DE	E 123456 E M WWWWW T P N N N N N	Marker Select Marker
0 dB/div	Ref Offset 1 o Ref 12.00 o	dB					ΔN	1kr1 1.0 1	05 MHz .326 dB	
2.00 7 ^{wvw}			allest appression	- Marine Marine	X2	······································	Norman Mark	<u>1Δ2</u>	and and a start of the start of	Norm
8.00										Del
28.0										Fixed
48.0										c
58.0										Properties
78.0	441000 GHz							Cnond	.000 MHz	Mo 1 of

(Plot B: $\pi/4$ -DQPSK)

(Plot C: 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.6. Time of Occupancy (Dwell time)

2.6.1. Requirement

According to FCC §15.247(a) (1) (iii), frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

2.6.2. Test Description

A. Test Setup:

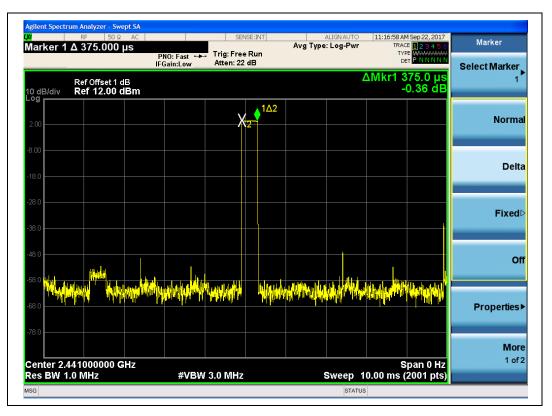
The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.6.3. Test Procedure

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence. The average time of occupancy in the specified 31.6 second period (79 channel * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

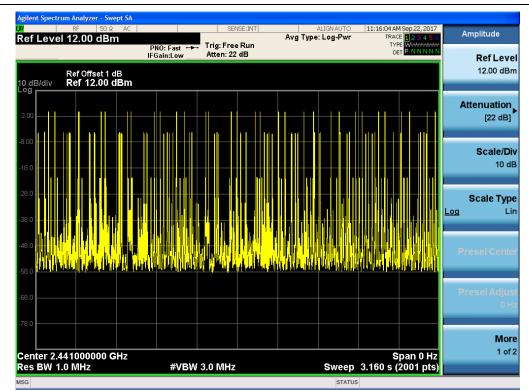

2.6.4. Test Result

2.6.4.1 GFSK Mode

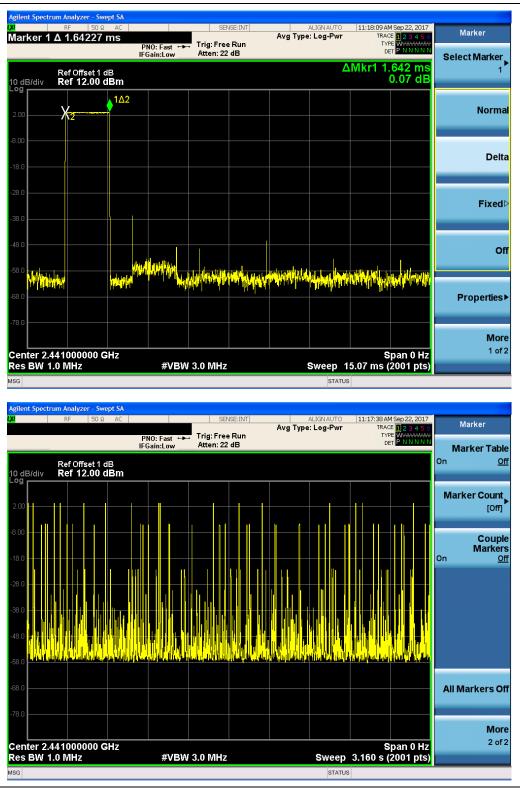
A. Test Verdict:

DH Packet	Pulse Width (msec)	Number of pulse in 3.16 seconds	Average Time of Occupancy in 3.16 seconds (sec)	Average Time of Occupancy in 31.6 seconds (sec)	Limit (sec)	Verdict
DH1	0.38	31	0.01178	0.1178		PASS
DH3	1.64	16	0.02624	0.2624	0.4	PASS
DH5	2.89	10	0.02890	0.2890		PASS

B. Test Plots:

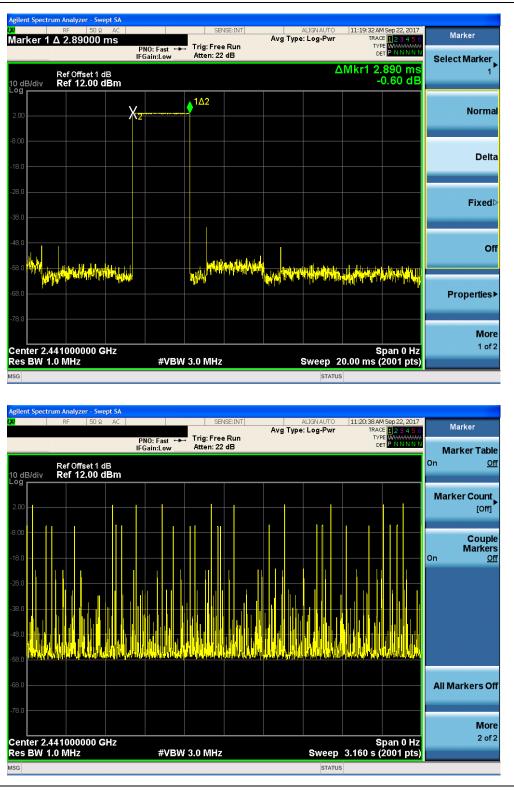


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



(Plot A: DH1 @ GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



(Plot B: DH3 @ GFSK)

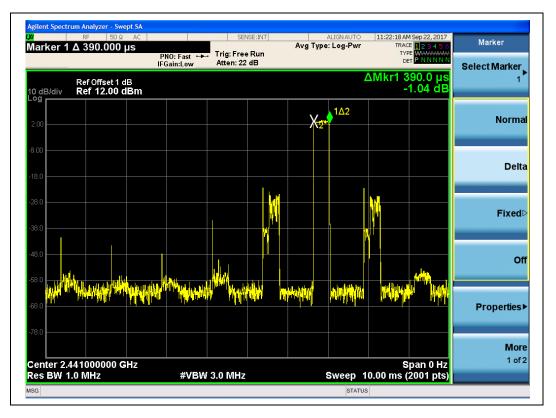
MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

(Plot C: DH5 @ GFSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

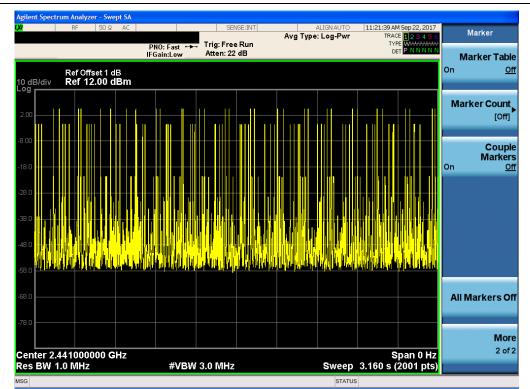


2.6.4.2 π/4-DQPSK Mode

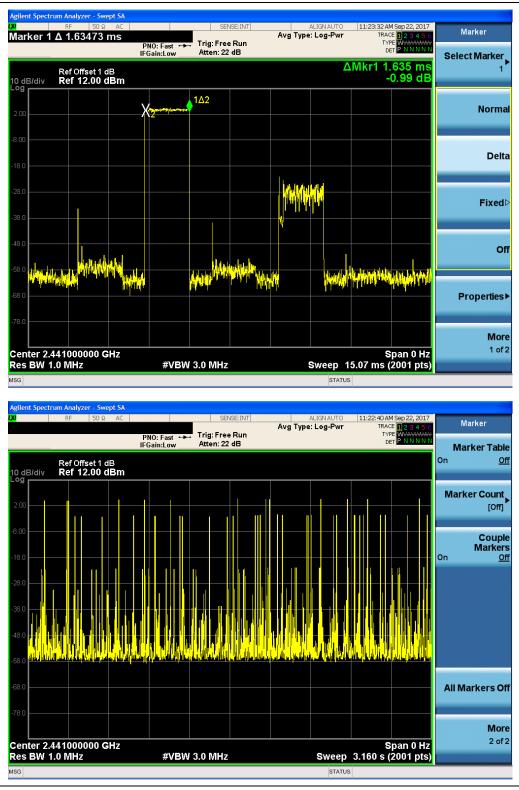
A. Test Verdict:


DH Packet	Pulse Width (msec)	Number of pulse in 3.16 seconds	Average Time of Occupancy in 3.16 seconds (sec)	Average Time of Occupancy in 31.6 seconds (sec)	Limit (sec)	Verdict
DH1	0.39	32	0.01248	0.1248		PASS
DH3	1.64	13	0.02132	0.2132	0.4	PASS
DH5	2.86	11	0.03146	0.3146		PASS

B. Test Plots:



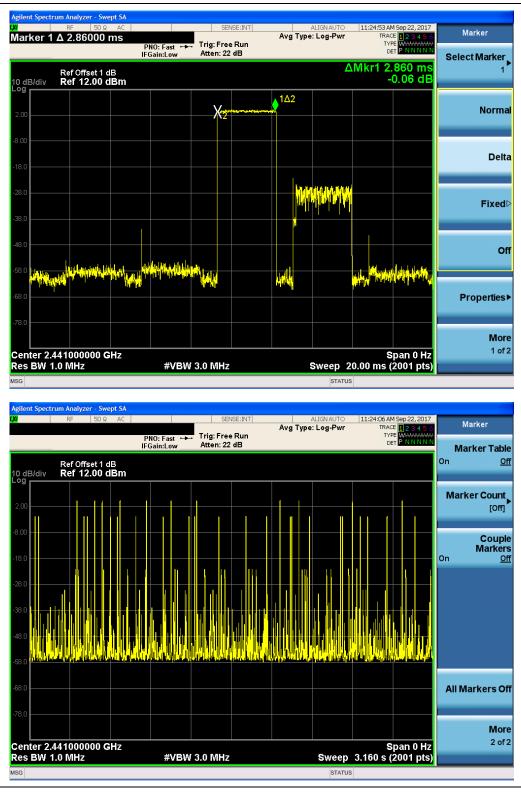
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



(Plot D: DH1 @ π/4-DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Plot E: DH3 @ π/4-DQPSK)


MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86

 Http://www.morlab.cn
 E-mail:
 s

Fax: 86-755-36698525 E-mail: service@morlab.cn

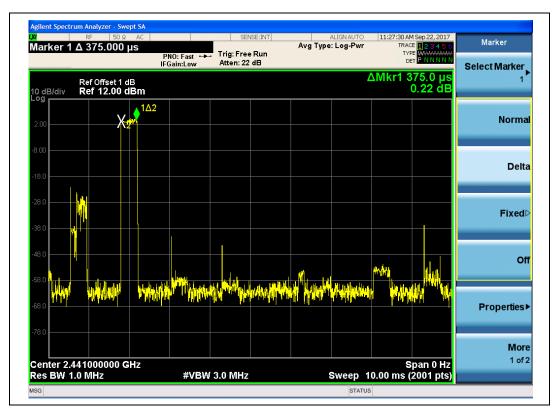
(Plot F: DH5 @ π/4-DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86-755

 Http://www.morlab.cn
 E-mail:
 serv.

Fax: 86-755-36698525 E-mail: service@morlab.cn

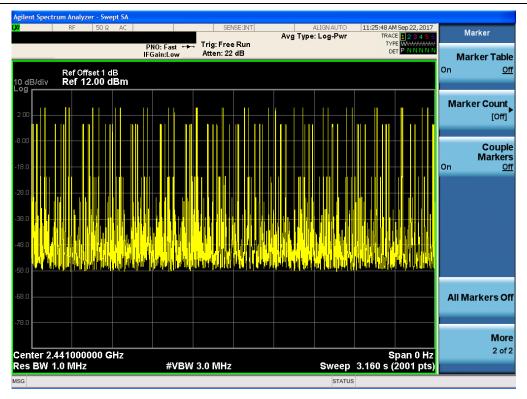


2.6.4.3 8-DPSK mode

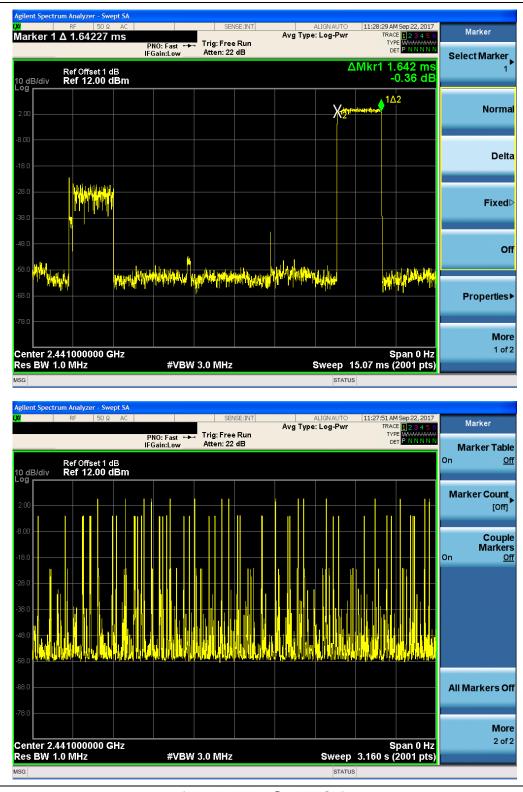
A. Test Verdict:

DH Packet	Pulse Width (msec)	Number of pulse in 3.16 seconds	Average Time of Occupancy in 3.16 seconds (sec)	Average Time of Occupancy in 31.6 seconds (sec)	Limit (sec)	Verdict
DH1	0.38	31	0.01178	0.1178		PASS
DH3	1.64	16	0.02624	0.2624	0.4	PASS
DH5	2.89	11	0.03179	0.3179		PASS

B. Test Plots:



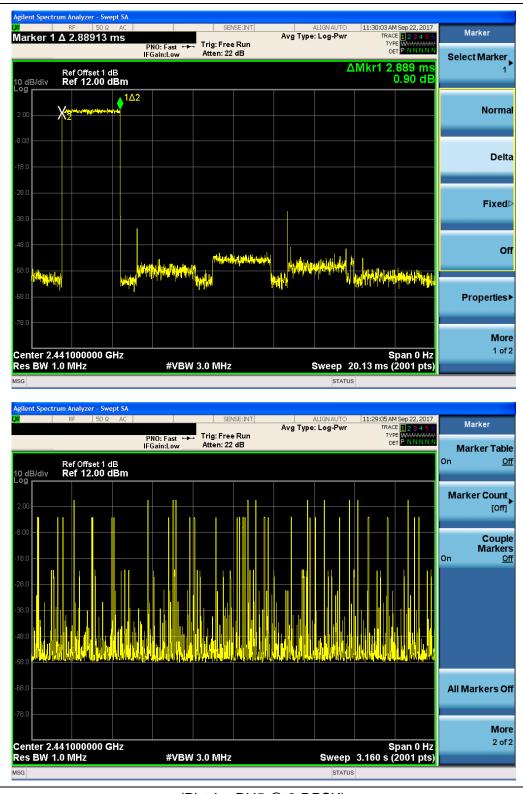
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



(Plot G: DH1 @ 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Plot H: DH3 @ 8-DPSK)


MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86

 Http://www.morlab.cn
 E-mail:
 s

Fax: 86-755-36698525 E-mail: service@morlab.cn

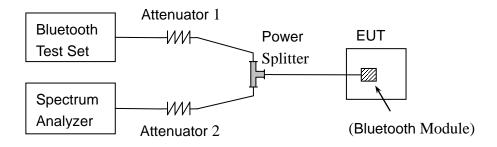
(Plot I: DH5 @ 8-DPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86-75

 Http://www.morlab.cn
 E-mail:
 se

Fax: 86-755-36698525 E-mail: service@morlab.cn


2.7. Conducted Spurious Emissions

2.7.1. Requirement

According to FCC §15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

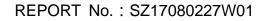
2.7.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).


2.7.3. Test Procedure

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz VBW ≥ RBW Sweep = auto Detector function = peak

Trace = max hold Allow the trace to stabilize.

2.7.4. Test Result

The Bluetooth Module operates at hopping-off test mode. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

2.7.4.1 GFSK Mode

A. Test Verdict:

Frequency	Measured Max.	Refer to	Limit	(dBm)		
Channel	Channel (MHz)	Out of Band	Plot	Carrier Level	Calculated	Verdict
		Emission (dBm)	FIUL	Camer Lever	-20dBc Limit	
0	2402	-48.85	Plot A	1.58	-18.42	PASS
39	2441	-49.60	Plot B	2.58	-17.42	PASS
78	2480	-49.32	Plot C	2.01	-17.99	PASS

B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(Plot A: Channel = 0, 30MHz to 25GHz @ GFSK Mode)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: Http://www.morlab.cn E-ma

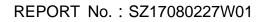
Fax: 86-755-36698525 E-mail: service@morlab.cn

(Channel = 0, Band edge @ GFSK Mode)

(Channel = 0, Band edge with hopping on @ GFSK Mode)


MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



(Plot B: Channel = 39, 30MHz to 25GHz @ GFSK Mode)

(Plot C: Channel = 78, 30MHz to 25GHz @ GFSK Mode)

(Channel = 78, Band edge @ GFSK Mode)

(Channel = 78, Band edge with hopping on @ GFSK Mode)

MORLAB

2.7.4.2 π/4-DQPSK Mode

A. Test Verdict:

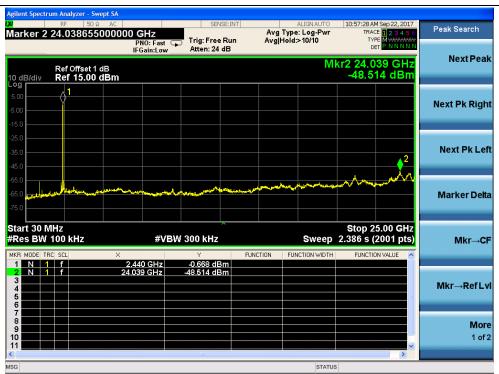
Frog	Fraguanay	Measured Max.	Defer to	Limit	(dBm)	
Channel	Channel Frequency (MHz)	Out of Band	Refer to Plot	Carrier	Calculated	Verdict
		Emission (dBm)	FIOL	Level	-20dBc Limit	
0	2402	-52.66	Plot D	2.46	-17.54	PASS
39	2441	-48.51	Plot E	-0.67	-20.67	PASS
78	2480	-49.79	Plot F	-0.07	-20.07	PASS

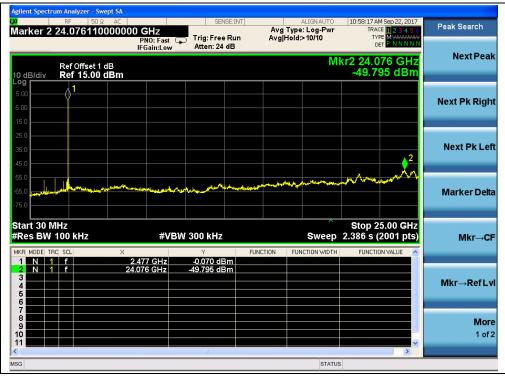
B. Test Plots:

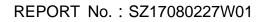
Note: the power of the Module transmitting frequency should be ignored.

(Plot D: Channel = 0, 30MHz to 25GHz $@\pi/4$ -DQPSK)

(Channel = 0, Band edge $@\pi/4$ -DQPSK)


(Channel = 0, Band edge with hopping on $@\pi/4$ -DQPSK)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 E-mail: service@morlab.cn Http://www.morlab.cn


(Plot E: Channel = 39, 30MHz to 25GHz @ $\pi/4$ -DQPSK)

(Plot F: Channel = 78, 30MHz to 25GHz $@\pi/4$ -DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 78, Band edge $@\pi/4$ -DQPSK)

(Channel = 78, Band edge with hopping on @ π /4-DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.7.4.3 8-DPSK Mode

A. Test Verdict:

	Fraguanay	Measured Max.		Lim	it (dBm)	
Channel	Channel Frequency (MHz)	Out of Band	Refer to Plot	Carrier	Calculated	Verdict
		Emission (dBm)		Level	-20dBc Limit	
0	2402	-49.44	Plot G	0.44	-19.56	PASS
39	2441	-49.50	Plot H	3.35	-16.65	PASS
78	2480	-49.50	Plot I	0.51	-19.49	PASS

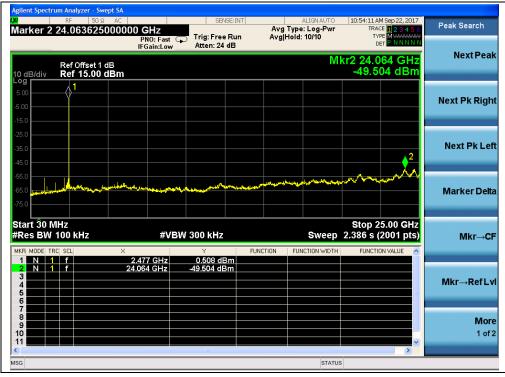
B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(Plot G: Channel = 0, 30MHz to 25GHz @ 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 0, Band edge @ 8-DPSK)


(Channel = 0, Band edge with hopping on @ 8-DPSK)

MORLAB

(Plot H: Channel = 39, 30MHz to 25GHz @ 8-DPSK)

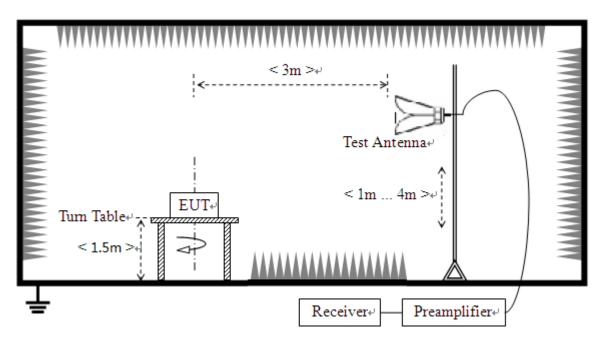
(Plot I: Channel = 78, 30MHz to 25GHz @ 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Plot I.1: Channel = 78, Band edge @ 8-DPSK)

(Plot I.1: Channel = 78, Band edge with hopping on @ 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.8. Restricted Frequency Bands

2.8.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.8.2. Test Description

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under non hopping-on test mode transmitting 339 bytes DH5, 679 bytes 2DH5 and 1021 bytes 3DH5 packages at maximum power. For the Test Antenna:

Horn Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Equipments List:

Please reference ANNEX A(1.5).

2.8.3. Test Procedure

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 KHz for f < 1GHz VBW = 3 MHz for peak and 10Hz for average Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize.

2.8.4. Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; AT = L_{Cable loss} [dB] - G_{preamp} [dB]$

AT: Total correction Factor except Antenna

UR: Receiver Reading

Gpreamp: Preamplifier Gain

AFactor: Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

2.8.4.1 GFSK Mode

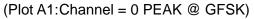
A. Test Verdict:

Channel	Frequency (MHz)	Detector	Receiver Reading U _R	A _T (dB)	A _{Factor} (dB@3m)	Max. Emission E	Limit (dBµV/m)	Verdict
		PK/ AV	(dBuV)			(dBµV/m)		
0	2387.30	PK	54.20	-47.23	32.6	39.57	74	Pass
0	2361.92	AV	35.20	-47.23	32.6	20.57	54	Pass
78	2483.87	PK	55.08	-33.18	32.50	54.40	74	Pass
78	2483.76	AV	32.41	-33.18	32.50	31.73	54	Pass

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525


Http://www.morlab.cn

E-mail: service@morlab.cn

B. Test Plots:

06:13:58 PM Nov 02, 2017 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P S N N N Trace/Detector larker 1 2.387296000000 GHz Avg Type: Log-Pwr Avg|Hold:>100/100 Trig: Free Run Atten: 10 dB PNO: Fast 😱 IFGain:Low Select Trace Mkr1 2.387 296 GHz 54.199 dBµV Ref 100.00 dBµV 10 dB/div Log Detector Peak Man Auto Preset Detectors **Clear Trace** Start 2.30000 GHz #Res BW 1.0 MHz Stop 2.40400 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz **Clear All Traces** 2.387 296 GHz 2.390 000 GHz 54.199 dBµV 54.319 dBµV N 1 f Preset All Traces More 2 of 3

(Plot A2:Channel = 0 AVERAGE @ GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

📕 Keysight Spectrum Analyzer - Swept SA						- F ×
RL RF PRESEL 50 Ω DC Marker 2 2.483874000000	GHz PNO: Fast	SENSE:II	Avg	ALIGN OFF Type: Voltage Hold:>100/100	11:23:15 PM Nov 02, 2017 TRACE 12345 TYPE MWWWW	
	IFGain:Low	Atten: 6 dB			DET P P N N N	Select Marker
10 dB/div Ref 100.00 dBµV				Mkr2	2.483 874 GHz 55.075 dBµV	2
80.0						Normal
	2 manyaphrenter	ana manangangangangangangangangangangangangan	Marthur and a weather	Markellendramitemerte		Delta
30.0 20.0 10.0						Fixed⊳
Start 2.47800 GHz Res BW (CISPR) 1 MHz	#VBW	3.0 MHz		Sweep 1	Stop 2.50000 GHz .000 ms (1001 pts)	
MKR MODE TRC SCL X	500 GHz	Y 53.924 dBµV	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f 2.463 3 4 5 5 5 5 5 5 5 5 5 5	874 GHz	55.924 αΒμν 55.075 dΒμV			=	Properties►
7 8 9 10						More 1 of 2
					· · ·	

(Plot B1: Channel = 78 PEAK @ GFSK)

(Plot B2: Channel = 78 AVERAGE @ GFSK)

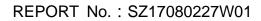
MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

2.8.4.2 π/4-DQPSK Mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict	
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)		
0	2387.92	PK	52.89	-47.23	32.6	38.26	74	Pass	
0	2361.82	AV	35.18	-47.23	32.6	20.55	54	Pass	
78	2483.68	PK	55.97	-33.18	32.5	55.29	74	Pass	
78	2483.63	AV	32.52	-33.18	32.5	31.84	54	Pass	


B. Test Plots:

(Plot C1: Channel = 0 PEAK @ $\pi/4$ -DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Keysight Spectrum Analyzer - Swept SA				- 6 -
ໝ RL RF 50Ω AC Marker 1 2.361816000000	O GHZ PNO: Fast C IEGain: Low Atten: 10 c	Avg Type: Log-Pwr Run Avg Hold:>100/100	06:28:08 PM Nov 02, 2017 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P S N N N N	Marker
10 dB/div Ref 100.00 dBµ	II GUIII.EGW	-	1 2.361 816 GHz 35.184 dBμV	Select Marker
90.0				Normal
80.0				
60.0 50.0		<u>1</u>		Delta
30.0			2	
20.0				Fixed⊳
Start 2.30000 GHz Res BW 1.0 MHz	#VBW 10 Hz	Sweep	Stop 2.40400 GHz 8.109 s (1001 pts)	Off
MKR MODE TRC SCL X	Y 1 816 GHz 35.184 dBu	FUNCTION FUNCTION WIDTH		
2 N 1 f 2.39 3 4	0 000 GHz 33.516 dBµ	ý		Properties►
5 6 7			E	
8 9 10				More 1 of 2
11	III		• • •	


(Plot C2: Channel = 0 AVERAGE @ $\pi/4$ -DQPSK)

(Plot D1: Channel = 78 PEAK @ π/4-DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

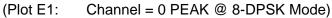
- 6										/sight Spectrum
Marker	6 PM Nov 02, 2017 RACE 1 2 3 4 5 6 TYPE M	TR/	ALIGN OFF : Voltage :>100/100	Avg Typ	E:INT	SEN	Z IO: Fast	0000 GI	ESEL 50 Ω 8363200	ker 2 2.4
Select Marker	DET PPNNNN	[, trainer		Atten: 6 d	ain:Low			
2	632 GHz 522 dBµV		Mkr2					dBµV	f 100.00	B/div R e
Norm										
									$\langle \rangle$	
										L
Del										L
								<u> </u>		/
Fixed										
	50000 GHz	Ston 2.5	~						GH7	L t 2.47800
c	s (1001 pts)	2.523 s	Sweep			10 Hz	#VBW	z		BW (CISI
	CTION VALUE	FUNCT	ICTION WIDTH	TION FI		Y		х	L	MODE TRC SC
						32.556 dB 32.522 dB		2.483 50		N 1 f
Propertie										
	=									
Mo										
1 0										

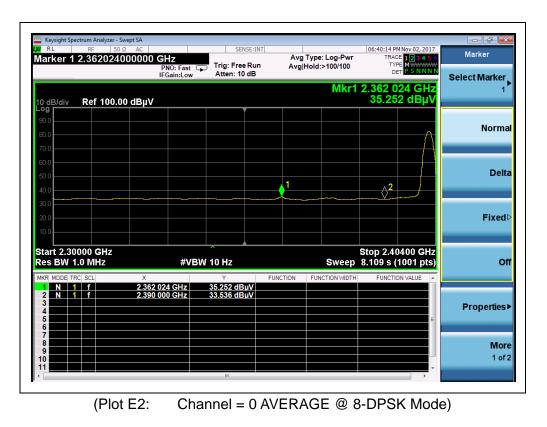
Channel = 78 AVERAGE @ $\pi/4$ -DQPSK) (Plot D2:

2.8.4.3 8-DPSK Mode

A. Test Verdict:

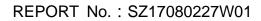
Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict	
Channel	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	. or diot	
0	2385.74	PK	54.79	-47.23	32.6	40.16	74	Pass	
0	2362.02	AV	35.25	-47.23	32.6	20.62	54	Pass	
78	2483.85	PK	56.16	-33.18	32.5	55.48	74	Pass	
78	2483.81	AV	32.53	-33.18	32.5	31.85	54	Pass	




SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Test Plots:

06:35:45 PM Nov 02, 2017 TRACE 12345 (TYPE MWWWW DET PSNNN Marker Marker 1 2.385736000000 GHz Avg Type: Log-Pwi Avg|Hold:>100/100 PNO: Fast IFGain:Low Trig: Free Run Atten: 10 dB Select Marker Mkr1 2.385 736 GHz 54.794 dBµ\ Ref 100.00 dBµV 10 dB/div Log Normal $\begin{pmatrix} 1 \\ \end{pmatrix}^2$ Delta **Fixed** Start 2.30000 GHz Res BW 1.0 MHz Stop 2.40400 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz Off 2.385 736 GHz 2.390 000 GHz 54.794 dBµV 55.408 dBµV f f **Properties**► More 1 of 2



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Fax: 86-755-36698525 Tel: 86-755-36698555 Http://www.morlab.cn

E-mail: service@morlab.cn

Keysight Spectrum Analyzer - Swept SA RL RF PRESEL 50 Ω DC Marker 2 2.4838520000000	GHz PNO: Fast IFGain:Low	Trig: Free R Atten: 6 dB	Avg	ALIGN OFF	11:10:54 PM Nov 0		
				Hold:>100/100	TYPE MH	3456 NNNN	Marker Select Marker
10 dB/div Ref 100.00 dBµV				Mkr2	2.483 852 56.163 d	GHz ΒμV	2
90.0 80.0 70.0							Norma
	2		nooriuogeen?{{yzeijeeen.ee	ntorum sullesson	handre peter de marte	wheney	Delta
30.0 20.0 10.0							Fixed
Start 2.47800 GHz Res BW (CISPR) 1 MHz	#VB	W 3.0 MHz			Stop 2.50000 .000 ms (100′	l pts)	Of
	3 500 GHz 3 852 GHz	Y 56.350 dBµ\ 56.163 dBµ\	FUNCTION	FUNCTION WIDTH	FUNCTION VAL	UE	Properties
7 8 9 10 11							Mor 1 of 2

(Plot F1:Channel = 78 PEAK @ 8-DPSK Mode)

(Plot F2:Channel = 78 AVERAGE @ 8-DPSK Mode)

MORLAB

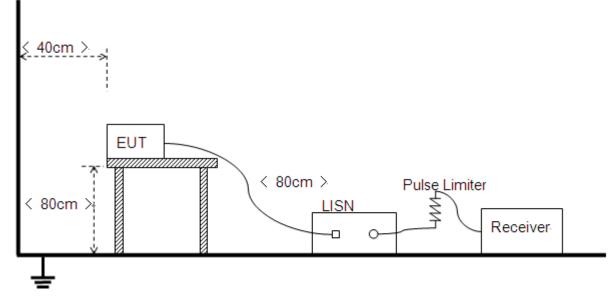
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.9. Conducted Emission

2.9.1. Requirement

According to RSS-GEN section 8.8, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)				
(MHz)	Quai-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
5- 30	60	50			


NOTE:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

2.9.2. Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

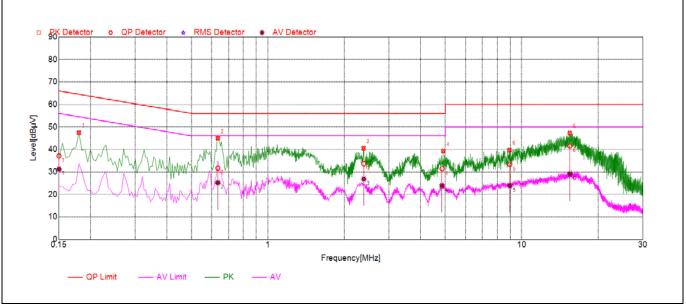
The factors of the site are calibrated to correct the reading. During the measurement, the Bluetooth EUT is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under hopping-on test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

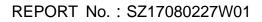
Please reference ANNEX A(1.5).

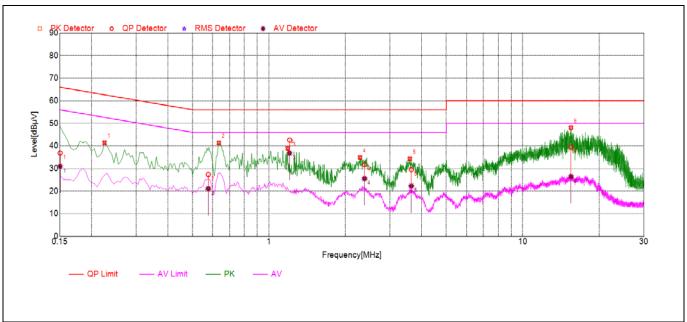
2.9.3. Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.


A. Test setup:

The EUT configuration of the emission tests is $\underline{\text{EUT} + \text{Link.}}$ **Note:** The test voltage is AC 120V/60Hz.


B. Test Plots:


(Plot A: L Phase)

NO. Fre.	Emission Level (dBµV)		Limit (dBµV)	Power-line	Verdict	
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.1502	37.10	31.26	65.99	55.99		PASS
2	0.6346	31.66	25.21	56.00	46.00		PASS
3	2.3862	33.59	26.87	56.00	46.00	Line	PASS
4	4.853	31.40	23.92	56.00	46.00	LINE	PASS
5	8.968	33.37	23.86	60.00	50.00		PASS
6	15.4792	41.53	28.98	60.00	50.00		PASS

(Plot B: N Phase)

NO.	Fre. (MHz)			Limit (dBµV)		Power-line	Verdict
		Quai-peak	Average	Quai-peak	Average		
1	0.1504	36.82	30.99	65.98	55.98		PASS
2	0.5766	27.34	21.10	56.00	46.00		PASS
3	1.206	42.60	36.79	56.00	46.00	Line	PASS
4	2.3804	31.68	25.54	56.00	46.00	LINE	PASS
5	3.6378	29.53	22.23	56.00	46.00		PASS
6	15.4832	39.57	26.46	60.00	50.00		PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.10. Radiated Emission

2.10.1. Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

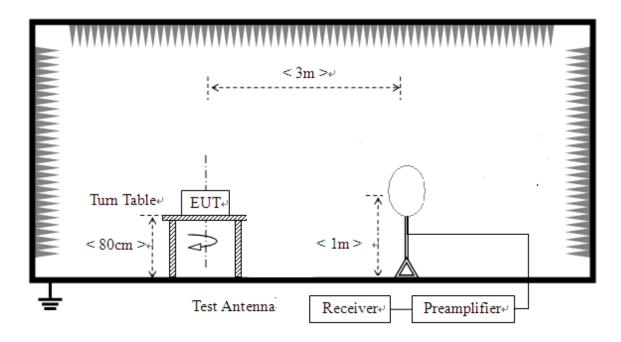
According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

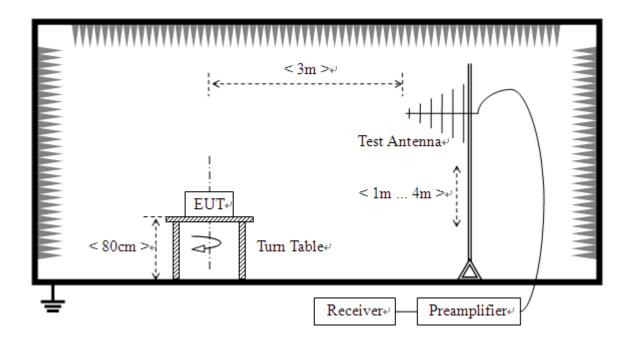
Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)	
0.009 - 0.490	2400/F(kHz)	300	
0.490 - 1.705	24000/F(kHz)	30	
1.705 - 30.0	30	30	
30 - 88	100	3	
88 - 216	150	3	
216 - 960	200	3	
Above 960	500	3	

Note:

- 1. For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

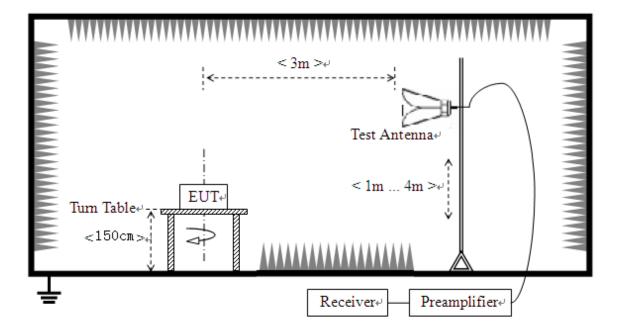



2.10.2. Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz. Test site have a minimum area of the ground plane covered with RF absorbing material as specified in Figure 6 of ANSI C63.4: 2014.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, the EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

emissions, with polarization oriented for maximum response. The test antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

Please reference ANNEX A(1.5).

2.10.3. Test Procedure

Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold

2.10.4. Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

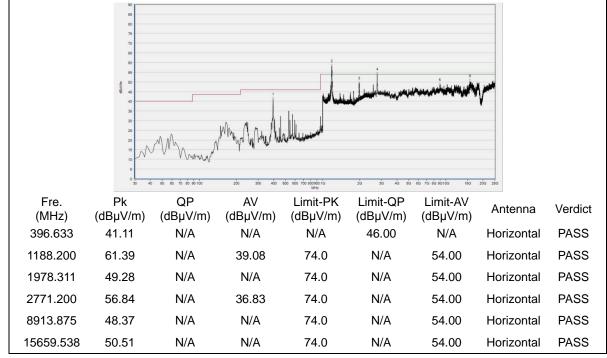
G_{preamp}: Preamplifier Gain

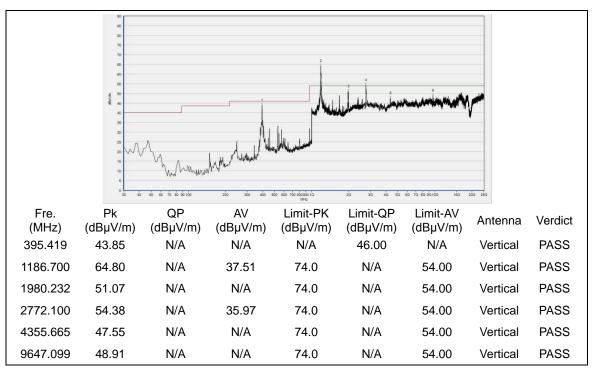
A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor AT and A_{Factor} were built in test software.

Note: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

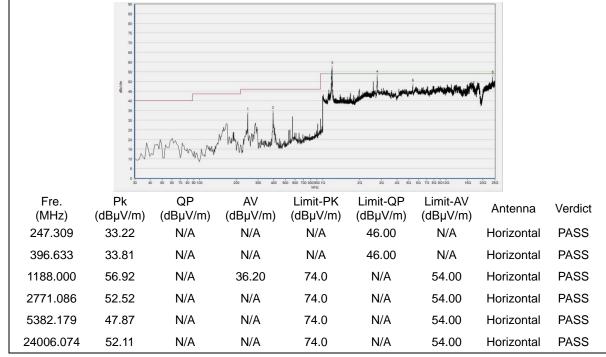



2.10.4.1 GFSK Mode:

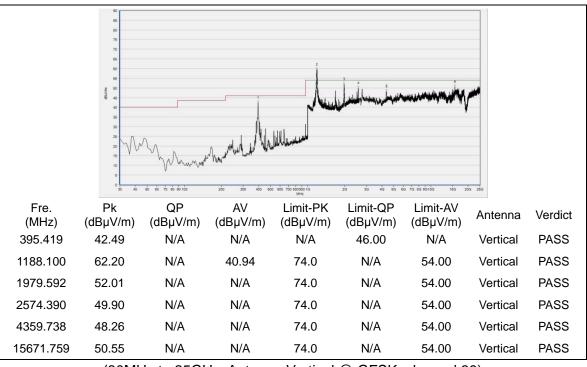
Plots for Channel = 0

(30MHz to 25GHz, Antenna Horizontal @ GFSK, channel 0)

(30MHz to 25GHz, Antenna Vertical @ GFSK, channel 0)

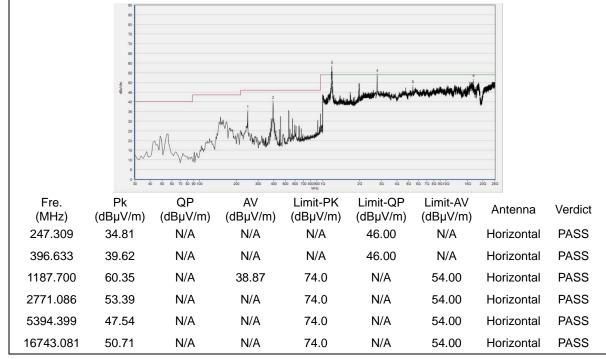

MORLAB

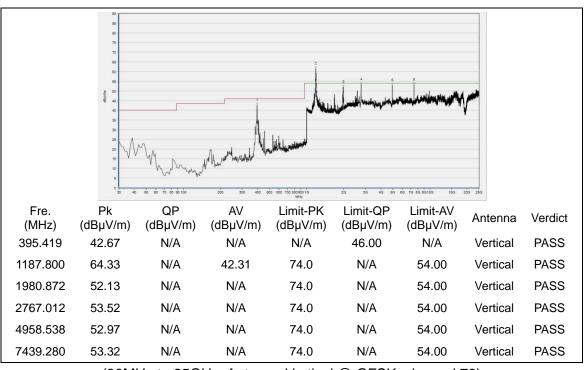
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 E-mail: service@morlab.cn

Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal @ GFSK, channel 39)

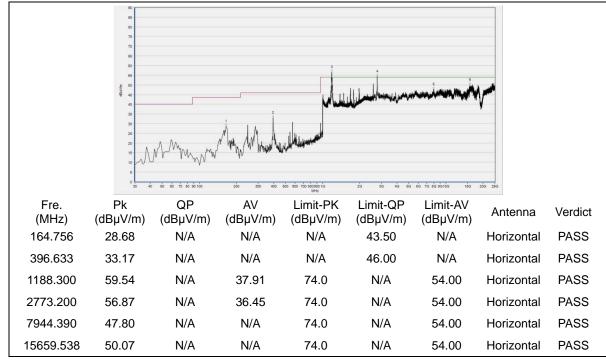

(30MHz to 25GHz, Antenna Vertical @ GFSK, channel 39)

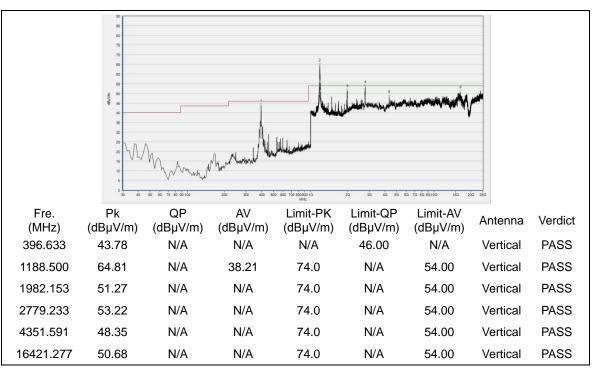

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal @ GFSK, channel 78)

(30MHz to 25GHz, Antenna Vertical @ GFSK, channel 78)



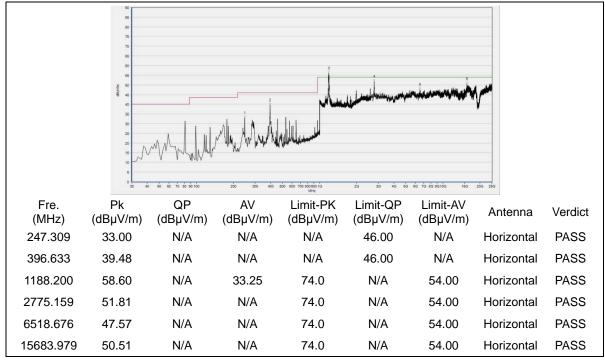

2.10.4.2 π/4-DQPSK Mode:

B. Test Plots for the Whole Measurement Frequency Range:

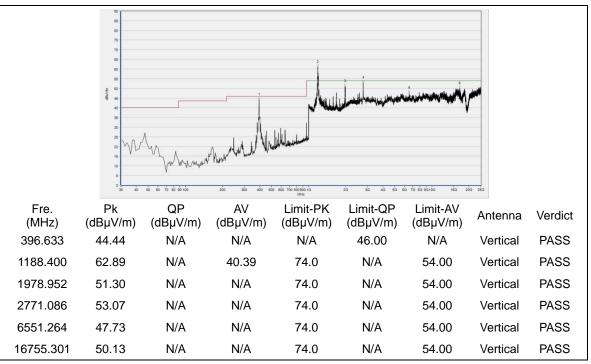
Plots for Channel = 0

(30MHz to 25GHz, Antenna Horizontal @ π/4-DQPSK, channel 0)

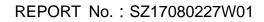
(30MHz to 25GHz, Antenna Vertical @ π/4-DQPSK, channel 0)


MORLAB

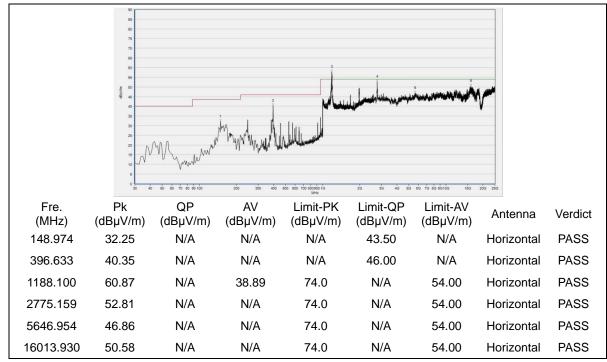
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 E-mail: service@morlab.cn

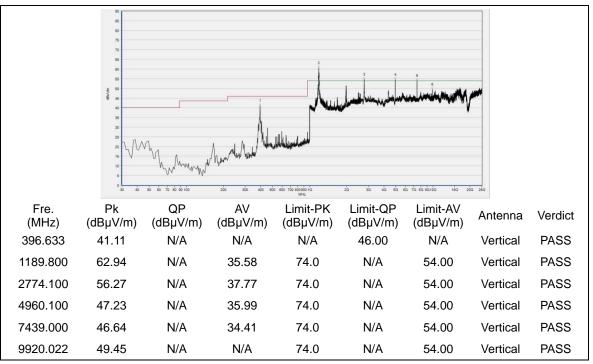
Plot for Channel = 39


(30MHz to 25GHz, Antenna Horizontal @ π /4-DQPSK, channel 39)

(30MHz to 25GHz, Antenna Vertical @ π/4-DQPSK, channel 39)


MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

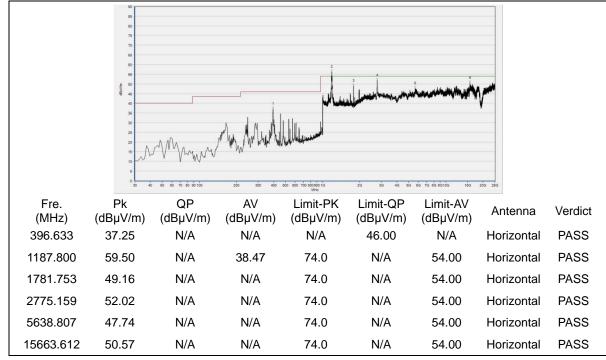


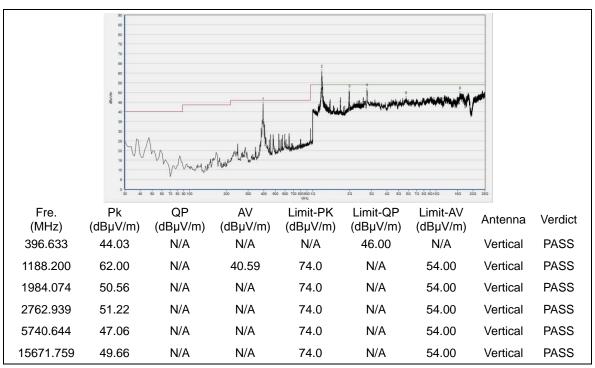
Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal @ π /4-DQPSK, channel 78)

(30MHz to 25GHz, Antenna Vertical @ π/4-DQPSK, channel 78)

MORLAB


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

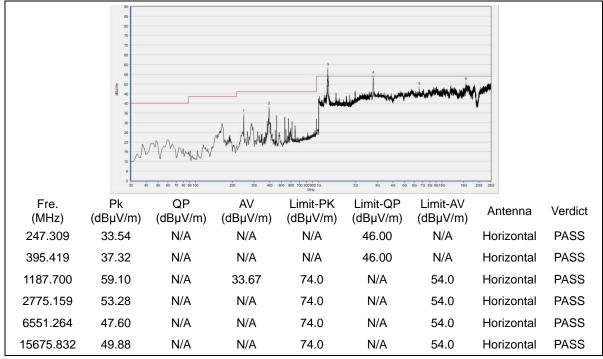

2.10.4.3 8-DPSK Mode:

C. Test Plots for the Whole Measurement Frequency Range:

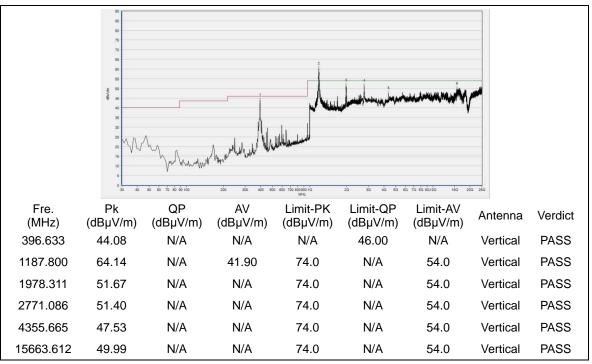
Plots for Channel = 0

(30MHz to 25GHz, Antenna Horizontal @8-DPSK, channel 0)

(30MHz to 25GHz, Antenna Vertical @8-DPSK, channel 0)

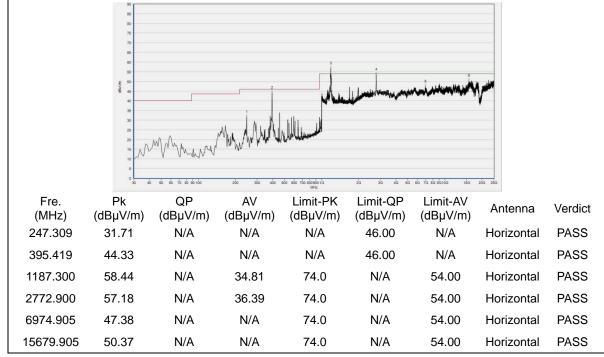

MORLAB

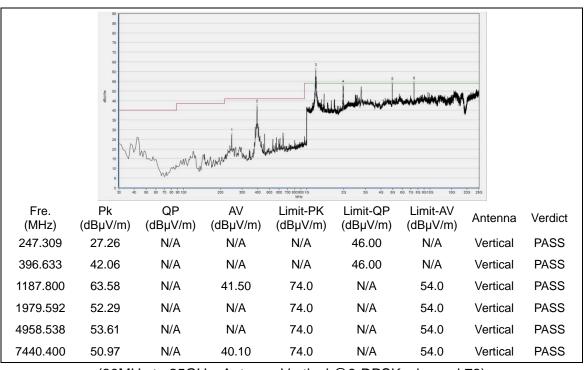
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 E-mail: service@morlab.cn

Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal @8-DPSK, channel 39)


(30MHz to 25GHz, Antenna Vertical @8-DPSK, channel 39)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal @8-DPSK, channel 78)

(30MHz to 25GHz, Antenna Vertical @8-DPSK, channel 78)

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Number of Hopping Frequency	±5%
Peak Output Power	±2.22dB
20dB Bandwidth	±5%
Carrier Frequency Separation	±5%
Time of Occupancy (Dwell time)	±5%
Conducted Spurious Emission	±2.77 dB
Restricted Frequency Bands	±5%
Radiated Emission	±2.95dB
Conducted Emission	±2.44dB

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
Department:	Morlab Laboratory		
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang		
	Road, Block 67, BaoAn District, ShenZhen, GuangDong		
	Province, P. R. China		
Responsible Test Lab	Mr. Su Fong		
Manager:	Mr. Su Feng		
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Name.	Morlab Laboratory
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Facilities and Accreditations

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Spectrum Analyzer	MY45101810	E4407B	Agilent	2017.05.24	2018.05.23
Power Splitter	NW521	1506A	Weinschel	2017.05.24	2018.05.23
Attenuator 1	(N/A.)	10dB	Resnet	2017.05.24	2018.05.23
Attenuator 2	(N/A.)	3dB	Resnet	2017.05.24	2018.05.23
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2016.12.07	2017.12.06
Bluetooth Test Set	6K00006210	MT8852B	Anritsu	2017.05.24	2018.05.23
USB Wideband Power Sensor	MY54210011	U2021XA	Agilent	2017.05.24	2018.05.23
RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	US44210471	E7405A	Agilent	2017.05.24	2018.05.23
LISN	812744	NSLK 8127	Schwarzbeck	2017.05.24	2018.05.23
Service Supplier	100448	CMU200	R&S	2017.05.24	2018.05.23
Pulse Limiter	9391	VTSD	Cohuranahook	2017 05 24	2010.05.22
(20dB)		9561-D	Schwarzbeck	2017.05.24	2018.05.23
Coaxial cable(BNC)	CB01	EMC01	Mariah	N/A	N/A
(30MHz-26GHz)			Morlab		

4.3Auxiliary Test Equipment

Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal.Due Date
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.4 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal.Due Date
System Simulator	GB45360846	8960-E5515C	Agilent	2017.05.17	2018.05.16
Receiver	MY54130016	N9038A	Agilent	2017.05.17	2018.05.16
Test Antenna - Bi-Log	N/A	VULB9163	Schwarzbeck	2016.12.09	2017.12.08
Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2017.03.30	2018.03.29
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2017.03.30	2018.03.29
Test Antenna - Horn	71688	BBHA 9120D	Schwarzbeck	2017.03.30	2018.03.29
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable(N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
Climate Chamber	2004012	HL4003T	Yinhe	2017.01.11	2018.01.10
Vibration Table	N/A	ACT2000-S01 5L	CMI-COM	2017.01.11	2018.01.10
Anechoic Chamber	N/A	9m*6m*6m	Changning	2017.01.11	2018.01.10

_____ END OF REPORT __
