

Report Reference No	
FCC ID	:: 2AYJK-AETHER
Compiled by (position+printed name+sign	ature): Engineer/ Cindy Zheng ature): Manager/Haley Wen ature): RF Manager/ Vivian Jiang
Cupanuland bu	ature): Manager/Haley Wen
Approved by (position+printed name+sign	
Date of issue	
esting Laboratory Name	MAXLAB Testing Co.,Ltd.
Address	
Applicant's name	Shenzhen Warsong Technology Co., Ltd.
Address	Room 1401, Building 4, Chongwen Garden, No. 1 Tangling Fuguang Community, Taoyuan Street, Nanshan District, S China
Test specification	:
Standard	FCC CFR Title 47 Part 15 Subpart C Section 15.249 ANSI C63.10:2013
I bio publication may be repre	duced in whole or in part for non-commercial purposes as long as
MAXLAB Testing Co.,Ltd. is a Testing Co.,Ltd. takes no res	acknowledged as copyright owner and source of the material. MAX
MAXLAB Testing Co.,Ltd. is a Testing Co.,Ltd. takes no res reader's interpretation of the	acknowledged as copyright owner and source of the material. MAX ponsibility for and will not assume liability for damages resulting fro
MAXLAB Testing Co.,Ltd. is a Testing Co.,Ltd. takes no res reader's interpretation of the	acknowledged as copyright owner and source of the material. MAX ponsibility for and will not assume liability for damages resulting fro reproduced material due to its placement and context. :wireless game controller
MAXLAB Testing Co.,Ltd. is a Testing Co.,Ltd. takes no res reader's interpretation of the Equipment description Trade Mark	acknowledged as copyright owner and source of the material. MAX ponsibility for and will not assume liability for damages resulting from reproduced material due to its placement and context. :wireless game controller
MAXLAB Testing Co.,Ltd. is a Testing Co.,Ltd. takes no res reader's interpretation of the Equipment description Trade Mark	acknowledged as copyright owner and source of the material. MAX ponsibility for and will not assume liability for damages resulting fro reproduced material due to its placement and context. : wireless game controller : MOJHON : Shenzhen Warsong Technology Co., Ltd.
MAXLAB Testing Co.,Ltd. is a Testing Co.,Ltd. takes no res reader's interpretation of the Equipment description Trade Mark	acknowledged as copyright owner and source of the material. MAX ponsibility for and will not assume liability for damages resulting fro reproduced material due to its placement and context. : wireless game controller : MOJHON : Shenzhen Warsong Technology Co., Ltd. : Aether
MAXLAB Testing Co.,Ltd. is a Testing Co.,Ltd. takes no res reader's interpretation of the r Equipment description Trade Mark Manufacturer Model/Type reference	acknowledged as copyright owner and source of the material. MAX ponsibility for and will not assume liability for damages resulting fro reproduced material due to its placement and context. : wireless game controller : MOJHON : Shenzhen Warsong Technology Co., Ltd. : Aether : N/A
MAXLAB Testing Co.,Ltd. is a Testing Co.,Ltd. takes no res reader's interpretation of the r Equipment description Trade Mark Manufacturer Model/Type reference Listed Models	acknowledged as copyright owner and source of the material. MAX ponsibility for and will not assume liability for damages resulting fro reproduced material due to its placement and context. : wireless game controller : MOJHON : Shenzhen Warsong Technology Co., Ltd. : Aether : N/A
MAXLAB Testing Co.,Ltd. is a Testing Co.,Ltd. takes no res reader's interpretation of the r Equipment description Trade Mark Manufacturer Model/Type reference Listed Models Modulation Frequency	acknowledged as copyright owner and source of the material. MAX ponsibility for and will not assume liability for damages resulting from reproduced material due to its placement and context. : wireless game controller
MAXLAB Testing Co.,Ltd. is a Testing Co.,Ltd. takes no res reader's interpretation of the r Equipment description Trade Mark Manufacturer Model/Type reference Listed Models Modulation Frequency	

		TEST REPORT
Equipment under Test	:	wireless game controller
Model /Type	A	Aether
Listed Models	No.	N/A
Model Declaration	: 	PCB board, structure and internal of these model(s) are the same,So no additional models were tested.
Applicant	No	Shenzhen Warsong Technology Co., Ltd.
Address	3213	Room 1401, Building 4, Chongwen Garden, No. 1 Tangling Road, Fuguang Community, Taoyuan Street, Nanshan District, Shenzhen, China
Manufacturer	:	Shenzhen Warsong Technology Co., Ltd.
Address	Nax	Room 1401, Building 4, Chongwen Garden, No. 1 Tangling Road, Fuguang Community, Taoyuan Street, Nanshan District, Shenzhen, China

Test Result:

PASS

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1	TEST STANDARDS	4
2	S U M M A R Y	5
2.1	General Remarks	5
2.2	Product Description	5
2.3	Equipment Under Test	5
2.4	Short description of the Equipment under Test (EUT)	5
2.5	EUT operation mode	6
2.6	Block Diagram of Test Setup	6
2.7	Related Submittal(s) / Grant (s)	6
2.8	Modifications	6
2.0		
3	TEST ENVIRONMENT	7
3.1	Address of the test laboratory	7.0
3.2	Test Facility	7
3.3	Environmental conditions	7
3.4	Summary of measurement results	8
3.5	Statement of the measurement uncertainty	8
3.6	Equipments Used during the Test	9
No.	TEST CONDITIONS AND RESULTS	1.1
4.1	AC Power Conducted Emission	11
4.2	Radiated Emissions and Band Edge	14
4.3	Bandwidth of Frequncy Band Edge	15
4.4	Channel Bandwidth	22
4.5	Antenna Requirement	25
5	TEST SETUP PHOTOS OF THE EUT	28
6	PHOTOS OF THE EUT	29

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.249</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz and 24.0-24.25 GHz <u>ANSI C63.10-2020</u>: American National Standard for Testing Unlicensed Wireless Devices

2 SUMMARY

2.1 General Remarks

:	November 20, 2024	
	0 0	
1	November 20, 2024	
3:	November 30, 2024	10
		: November 20, 2024

2.2 **Product Description**

Product Description:	wireless game controller
Model/Type reference:	Aether
Listed Models:	N/A
Power supply:	DC 3.7V from battery or DC 5.0V from USB Port
Adapter information (Auxiliary test supplied by testing Lab):	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A Firmware Version: EPTA5.14.2 Manufacture: Huizhou Dongyang Yienbi Electronics Co., Ltd
Testing sample ID:	BSL24112601-P01R01-1# (Engineer sample) BSL24112601-P01R01-2# (Normal sample)
2.4G	
Supported type:	2.4G
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	Ceramic antenna
Antenna gain:	2.67 dBi

2.3 Equipment Under Test

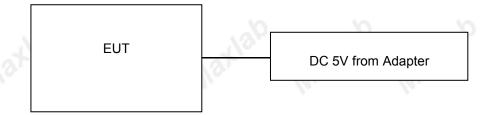
Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
0, 0,		•	Other (specified in blank bel	ow	
10. 10.	12		DC 3.7V from battery or DC	5∖	From external circuit

2.4 Short description of the Equipment under Test (EUT)

This is a wireless game controller.

For more details, refer to the user's manual of the EUT.


2.5 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequency:	$-\lambda \Delta Y - \lambda A X - \lambda A$
Channel	Frequency (MHz)
00	2402
01	2403
÷	:
38	2440
39	2441
40	2442
hi hi h	1 AL AL
77	2479
78	2480

Channel	Frequency
The lowest channel	2402 MHz
The middle channel	2441 MHz
The Highest channel	2480 MHz

2.6 Block Diagram of Test Setup

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.249 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

MAXLAB Testing Co.,Ltd.

1/F, Building B, Xinshidai GR Park, Shiyan Street, Bao'an District, Shenzhen, Guangdong, 518052, People's Republic of China

3.2 Test Facility

FCC-Registration No.: 562200 Designation Number: CN1338

BSL Testing Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 11093A CAB identifier: CN0019

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

A2LA-Lab Cert. No.: 4707.01

BSL Testing Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	23 ° C
N. N.	
Humidity:	44 %
<u>v</u> v	10 V
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

e main e emalacte a teeting.	
Temperature:	24 ° C
Humidity:	47 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

onducted testing.	
Temperature:	24 ° C
Humidity:	46 %
N IN	
Atmospheric pressure:	950-1050mbar

3.4 Summary of measurement results

	FCC Part15 (15.249) , Subpart C		
Standard Section	Test Item	Judgment	Remark
FCC part 15.203	Antenna requirement	PASS	No.
FCC part 15.207	AC Power Line Conducted Emission	PASS	h.
FCC part 15.249	Fundamental & Radiated Spurious Emission Measurement	PASS	
FCC part 15.215	20dB Channel Bandwidth	PASS	Mar
FCC part 15.205	Band Edge	PASS	2

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. We tested all test mode and recorded worst case in report
- 3. "N/A" denotes test is not applicable in this Test Report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics; Part 2" and is documented in the MAXLAB Testing Co.,Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for MAXLAB Testing Co.,Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.82 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Transmitter power conducted	1~40GHz	0.57 dB	(1)
Conducted spurious emission	1~40GHz	1.60 dB	(1)
OBW	1~40GHz	25 Hz	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

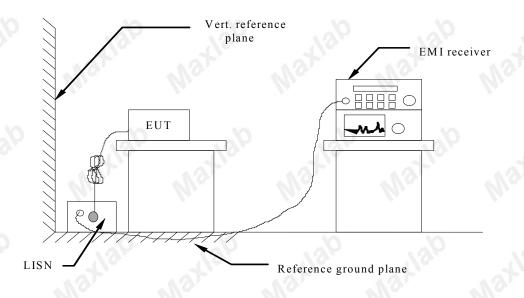
Conducted Emission	on				
Test Equipment	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	BSL252	2024-10-28	2025-10-27
EMI Test Receiver	R&S	ESCI 7	BSL552	2024-10-28	2025-10-27
Coaxial Switch	ANRITSU CORP	MP59B	BSL225	2024-10-28	2025-10-27
ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	BSL226	2024-10-28	2025-10-27
Coaxial Cable	BSL	N/A	BSL227	N/A	N/A
EMI Test Software	AUDIX	E3	N/A	N/A	N/A
Thermo meter	KTJ	TA328	BSL233	2024-10-28	2025-10-27
Absorbing clamp	Elektronik- Feinmechanik	MDS21	BSL229	2024-10-28	2025-10-27
LISN	R&S	ENV216	308	2024-10-28	2025-10-27
LISN	R&S	ENV216	314	2024-10-28	2025-10-27

Radiation Toot oquin

Test Equipment	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	BSL250	2024-10-28	2025-10-27
Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	BSL251	N/A	N/A
EMI Test Receiver	Rohde & Schwarz	ESU26	BSL203	2024-10-28	2025-10-27
BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	BSL214	2024-10-28	2025-10-27
Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	BSL208	2024-10-28	2025-10-27
Horn Antenna	ETS-LINDGREN	3160	BSL217	2024-10-28	2025-10-27
EMI Test Software	AUDIX	E3	N/A	N/A	N/A
Coaxial Cable	BSL	N/A	BSL213	2024-10-28	2025-10-27
Coaxial Cable	BSL	N/A	BSL211	2024-10-28	2025-10-27
Coaxial cable	BSL	N/A	BSL210	2024-10-28	2025-10-27
Coaxial Cable	BSL	N/A	BSL212	2024-10-28	2025-10-27
Amplifier(100kHz- 3GHz)	HP	8347A	BSL204	2024-10-28	2025-10-27
Amplifier(2GHz- 20GHz)	HP	84722A	BSL206	2024-10-28	2025-10-27
Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	BSL218	2024-10-28	2025-10-27
Band filter	Amindeon	82346	BSL219	2024-10-28	2025-10-27
Power Meter	Anritsu	ML2495A	BSL540	2024-10-28	2025-10-27
Power Sensor	Anritsu	MA2411B	BSL541	2024-10-28	2025-10-27

Wideband Radio	0.0	.\0		10	0
Communication	Rohde & Schwarz	CMW500	BSL575	2024-10-28	2025-10-27
Tester	12	12	12	160	12
Splitter	Agilent	11636B	BSL237	2024-10-28	2025-10-27
Loop Antenna	ZHINAN	ZN30900A	BSL534	2024-10-28	2025-10-27
Breitband hornantenne	SCHWARZBECK	BBHA 9170	BSL579	2024-10-28	2025-10-27
Amplifier	TDK	PA-02-02	BSL574	2024-10-28	2025-10-27
Amplifier	TDK	PA-02-03	BSL576	2024-10-28	2025-10-27
PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	BSL578	2024-10-28	2025-10-27
Antenna tower	SKET	BK-4AT	BSL589	2024-10-28	2025-10-27

Test Equipment	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
MXA Signal Analyzer	Agilent	N9020A	BSL566	2024-10-28	2025-10-27
EMI Test Receiver	R&S	ESCI 7	BSL552	2024-10-28	2025-10-27
Spectrum Analyzer	Agilent	E4440A	BSL533	2024-10-28	2025-10-27
MXG vector Signal Generator	Agilent	N5182A	BSL567	2024-10-28	2025-10-27
ESG Analog Signal Generator	Agilent	E4428C	BSL568	2024-10-28	2025-10-27
USB RF Power Sensor	DARE	RPR3006W	BSL569	2024-10-28	2025-10-27
RF Switch Box	Shongyi	RFSW3003328	BSL571	2024-10-28	2025-10-27
Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	BSL572	2024-10-28	2025-10-27



4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes. 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
* De sus ses suith the le serithus of the freques			

* Decreases with the logarithm of the frequency.

TEST RESULTS

Report No.: MAX24112601-P01R01

	Powe	r supply:			Adapter AC /60Hz	P	olarization	3	L	4
100.0	o dBuV	No.		M.C.	Mo	ello.		No.		
90										
80					-					
70									FCC (חם
60 50	74								FCC	
50 40	war	month	ha	when which we						
30	WW	Ly min	many	www.	Har Sundapper and hard	Man manufannue	Te and a state		7- 19 10.	
20				LA. THE MANAGER	white a provide the second way way	and have a series of the series	B	manhander	10 WHAT	me
10								Mr.M. Munningen and	and the second second second	~
0										- 28
-10 -20										
-30										
-40	150			F00		Hz)	E 000			3
Ú.	150		25	.500			5.000	1		T
N	VO.	Freque (MH		Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	
\vdash	1	0.18		32.97	16.73	49.70	64.04	-14.34	QP	┢
<u> </u>	2	0.25		18.58	16.72	35.30	51.50	-16.20	AVG	+
	3	0.660	1999-000 I	23.69	16.66	40.35	56.00	-15.65	QP	t
4	4 *	0.67	20	19.36	16.66	36.02	46.00	-9.98	AVG	t
<u> </u>	5	1.07	70	11.64	16.61	28.25	46.00	-17.75	AVG	t
1.1	~	1.19		15.50	16.59	32.09	56.00	-23.91	QP	
-	6		20.023		16.18	24.72	56.00	-31.28	QP	t
	6 7	4.349	96	8.54	10.10					
		4.349 4.49		8.54 3.37	16.16	19.53	46.00	-26.47	AVG	
	7		70					-26.47 -34.96	AVG QP	

Note:1).Level (dBµV)= Reading (dBµV)+ Factor (dB)

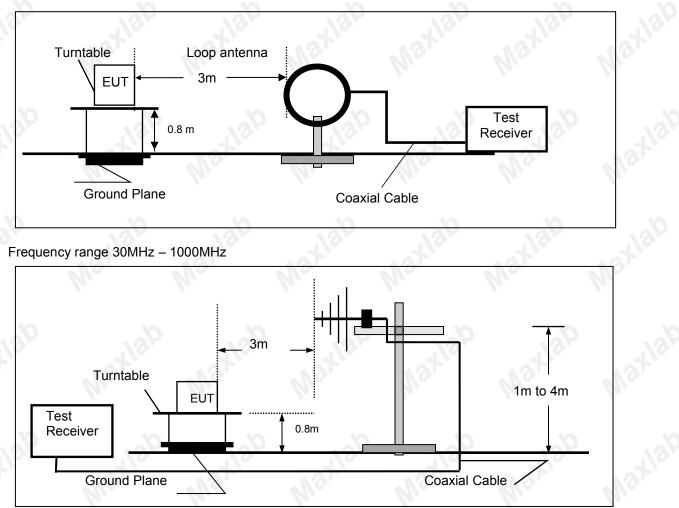
2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)

3). Margin(dB) = Limit (dBµV) - Level (dBµV)

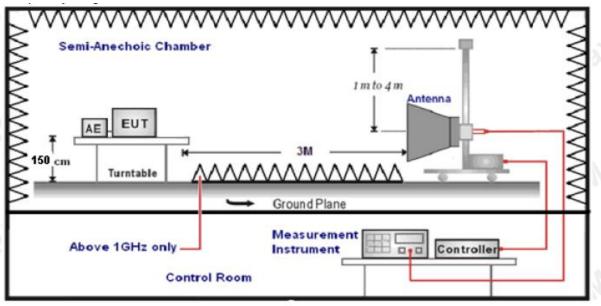
Report No.: MAX24112601-P01R01

and the	Powe	er supply:	DC 5V from A 120V/6		Pc	larization	<u>a</u>	N	18	
Me	100.0 dBu 90 80									
Max	70 60 50	Man						FCC C		
	40 30 20	2 May May Market	Man Manual And M Manual And Manual And	Carl Survey of the	munition	han munanana maanaanaana	nan myakaberra dak nan han manakerra dak	and the second second	how peal	
	0 -10 -20								AVG	
lax	-30 -40 0.150	0	.500	(M)	Hz)	5.000			30.000	
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	2
	1	0.1609	36.79	17.53	54.32	65.42	-11.10	QP	P	
	2	0.2355	20.36	17.53	37.89	52.25	-14.36	AVG	P	
	3	0.5415	16.16	17.51	33.67	46.00	-12.33	AVG	P	
	4	0.6620	23.72	17.51	41.23	<u>56.00</u>	-14.77	QP	P	
10	5 *	0.6630	18.73	17.51	36.24	46.00	-9.76	AVG	P	
	6	0.9735	13.00	17.51	30.51	46.00	-15.49	AVG	P	
	7	1.0772	16.24	17.50	33.74	56.00	-22.26	QP	P	
X	8	1.2930	11.25	17.49	28.74	46.00	-17.26	AVG	Р	P
Nat'	9	1.3708	15.11	17.49	32.60	56.00	-23.40	QP	Ρ	
	10	3.4721	11.98	17.42	29.40	56.00	-26.60	QP	P	

Note:1).Level (dB μ V)= Reading (dB μ V)+ Factor (dB)


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). Margin(dB) = Limit (dB μ V) Level (dB μ V)

4.2 Radiated Emissions and Band Edge


TEST CONFIGURATION

Frequency range 9 KHz – 30MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

	6	
Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

ootting toot rooon on op.	soli ani de felle wing table states.	
Test Frequency range Test Receiver/Spectrum Setting		Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP 🗤
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows: **FS = RA + AF + CL - AG**

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	10° 10° 10°

Transd=AF +CL-AG

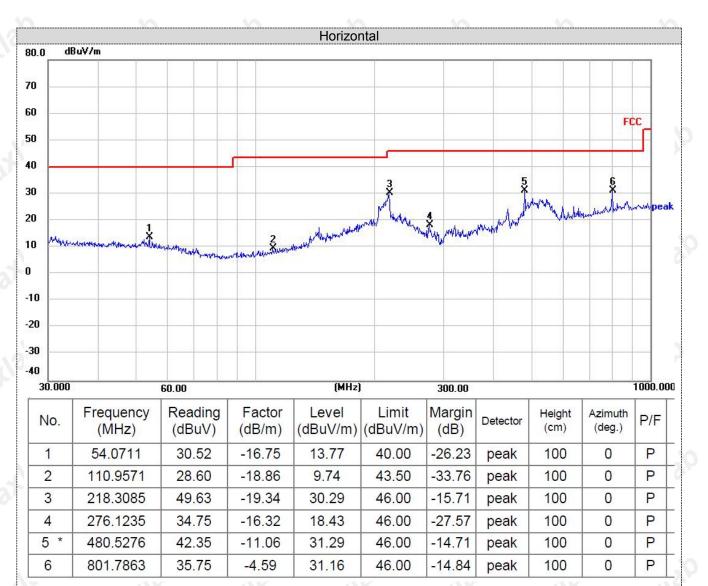
RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500
TEET DECIII TE	101		101 101

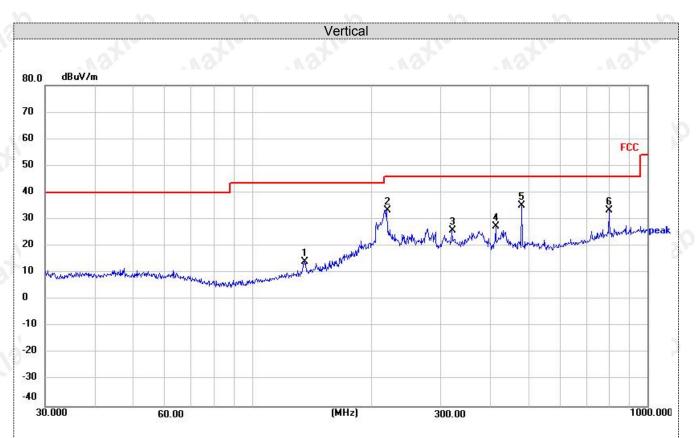
TEST RESULTS


Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. 2.4G were tested at Low, Middle, and High channel and recorded worst mode at 2.4G 1Mpbs.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 4. The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

For 30MHz-1GHz

Report No.: MAX24112601-P01R01



Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F
1	135.5062	31.02	-16.96	14.06	43.50	-29.44	peak	100	360	Ρ
2	219.0753	52.77	-19.35	33.42	46.00	-12.58	peak	100	360	Ρ
3	319.9370	40.87	-15.07	25.80	46.00	-20.20	peak	100	360	P
4	413.2706	40.07	-12.71	27.36	46.00	-18.64	peak	100	360	P
5 *	480.5276	46.32	-11.06	35.26	<u>46.00</u>	-10.74	peak	100	360	Ρ
6	798.9797	38.09	-4.61	33. <mark>4</mark> 8	46.00	-12.52	peak	100	360	P

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

For 1GHz to 25GHz

	13-	10	GFS	SK (above 1	GHZ)		3	13
Fre	quency(MF	łz):		2402		Peak value		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	55.65	21.52	3.52	33.12	47.57	74	-26.43	Horizontal
4804.00	50.34	23.65	4.56	33.08	45.47	74	-28.53	Vertical
7206.00	45.26	25.58	6.15	33.57	43.42	74	-30.58	Horizontal
7206.00	40.35	27.68	6.98	33.26	41.75	74	-32.25	Vertical
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
4804.00	45.65	21.52	3.52	33.12	37.57	54	-16.43	Horizonta
4804.00	40.85	23.65	4.56	33.08	35.98	54	-18.02	Vertical
7206.00	35.49	25.58	6.15	33.57	33.65	54	-20.35	Horizonta
7206.00	30.29	27.68	6.98	33.26	31.69	54	-22.31	Vertical
Fro	quency(MF	1 7).		2441			Peak valu	
	Read	Antenna	Cable	Preamp		A	Over	
Frequency (MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit (dB)	polarization
4882.00	55.83	21.78	3.58	33.27	47.92	74	-26.08	Horizonta
4882.00	50.72	24.15	4.57	33.87	45.57	74	-28.43	Vertical
7323.00	45.65	26.04	6.24	33.19	44.74	74	-29.26	Horizonta
7323.00	40.45	27.98	7.18	33.68	41.93	74	-32.07	Vertical
Average val	ue:	þ	0)	0	Q.	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	45.54	21.78	3.58	33.27	37.63	54	-16.37	Horizontal
4882.00	40.62	24.15	4.57	33.87	35.47	54	-18.53	Vertical
7323.00	35.46 🕥	26.04	6.24	33.19	34.55	54	-19.45	Horizonta
7323.00	30.45	27.98	7.18	33.68	31.93	54	-22.07	Vertical
				- the		· · · · · · · · · · · · · · · · · · ·		- A
Fre	quency(MF			2480	- N'A'	- 17	Peak valu	ie Vo
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
4960.00	55.63	22.56	4.17	33.75	48.61	74	-25.39	Horizontal
4960.00	50.42	24.78	5.36	33.17	47.39	74	-26.61	Vertical
7440.00	45.34	27.14	6.97	33.62	45.83	74	-28.17	Horizontal
7440.00	40.26	28.16	7.65	33.58	42.49	74	-31.51	Vertical
Average valu	1 P	Witt			W	14.		W
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	45.38	22.56	4.17	33.75	38.36	54	-15.64	Horizontal
4960.00	40.63	24.78	5.36	33.17	37.6	54	-16.4	Vertical
7440.00	35.16	27.14	6.97	33.62	35.65	54	-18.35	Horizonta
7440.00	00.05	00.40	7.05	00 50	00.40	E4		

7440.00 Remark:

30.25

28.16

Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor 1.

7.65

Maxla 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

33.58

32.48

54

-21.52

Vertical

4.3 BANDWIDTH OF FREQUENCY BAND EDGE

4.3.1 Test Requirement:

Test Requirement:	FCC Part15 C	Section 15.20	9 and 15.20)5				
Test Method:	ANSI C63.10: 2	2013	N	0	0			
Test Frequency Range:	All of the restric (2310MHz to 2			•	band's			
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
	Above	Peak	1MHz	3MHz	Peak			
	1GHz	Average	1MHz	3MHz	Average			

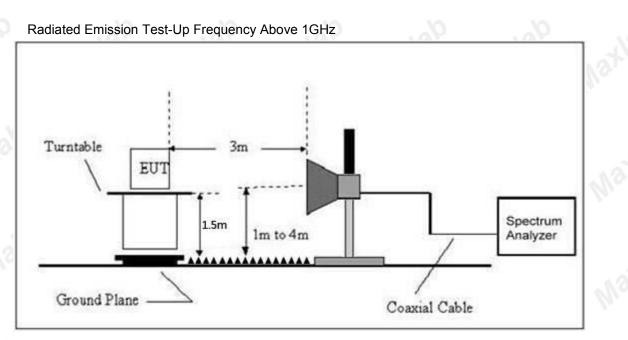
Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation

4.3.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.3.3 DEVIATION FROM TEST STANDARD

No deviation

4.3.4 TEST SETUP

4.3.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

4.3.6 TEST RESULT

				Peak value	e:			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310	55.42	21.25	3.26	33.14	46.79	74	-27.21	Horizontal
2390	53.42	21.54	3.42	33.26	45.12	74	-28.88	Horizontal
2400	51.34	21.75	3.54	33.42	43.21	74	-30.79	Horizontal
2310	50.26	21.54	3.42	33.26	41.96	74	-32.04	Vertical
2390	48.42	21.25	3.26	33.14	39.79	74	-34.21	Vertical
2400	46.34	21.75	3.54	33.42	38.21	74	-35.79	Vertical

2402MHz

				Average val	ue:			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310	53.46	21.25	3.26	33.14	44.83	54	-9.17	Horizontal
2390	51.48	21.54	3.42	33.26	43.18	54	-10.82	Horizontal
2400	48.65	21.75	3.54	33.42	40.52	54	-13.48	Horizontal
2310	46.65	21.25	3.26	33.14	38.02	54	-15.98	Vertical
2390	44.52	21.54	3.42	33.26	36.22	54	-17.78	Vertical
2400	42.63	21.75	3.54	33.42	34.5	54	-19.5	Vertical

2480MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.5	55.46	22.12	3.65	33.54	47.69	74	-26.31	Horizontal
2500	53.25	22.35	3.98	33.27	46.31	74	-27.69	Horizontal
2483.5	51.26	22.12	3.65	33.54	43.49	74	-30.51	Vertical
2500	48.63	22.35	3.98	33.27	41.69	74	-32.31	Vertical

				Average val	ue:			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.5	52.34	22.12	3.65	33.54	44.57	54	-9.43	Horizontal
2500	50.24	22.35	3.98	33.27	43.3	54	-10.7	Horizontal
2483.5	48.63	22.12	3.65	33.54	40.86	54	-13.14	Vertical
2500	45.46	22.35	3.98	33.27	38.52	54	-15.48	Vertical

Remark: Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor All of the restriction bands were tested, and only the data of worst case was exhibited.

Measurement data: Field Strength of The Fundamental Signal

Peak	value:	

i oun vuido.								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402	101.51	22.55	3.25	33.45	93.86	114	-20.14	Vertical
2402	100.86	22.55	3.25	33.45	93.21	114	-20.79	Horizontal
2441	99.45	23.05	3.36	33.15	92.71	114	-21.29	Vertical
2441	98.63	23.05	3.36	33.15	91.89	114	-22.11	Horizontal
2480	96.41	23.57	3.67	33.68	89.97	114	-24.03	Vertical
2480	94.26	23.57	3.67	33.68	87.82	114	-26.18	Horizontal
	A 12			A (2)	4.0			

Average value:

2402 2402 2441	(dBuV) 91.56	(dB/m)	(dB)	(dB)		(dBuV/m)	(dB)	
		22.55	3.25	33.45	83.91	94	-10.09	Vertical
2441	88.63	22.55	3.25	33.45	80.98	94	-13.02	Horizontal
	86.41	23.05	3.36	33.15	79.67	94	-14.33	Vertical
2441	84.63	23.05	3.36	33.15	77.89	94	-16.11	Horizontal
2480	82.64	23.57	3.67	33.68	76.2	94	-17.8	Vertical
2480	80.18	23.57	3.67	33.68	73.74	94	-20.26	Horizontal

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

4.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.215
Test Method:	ANSI C63.10: 2013

4.4.1 Applied procedures / limit

FCC Part15 (1	FCC Part15 (15.215) , Subpart C									
Section	Test Item	Frequency Range (MHz)	Result							
15.215	Bandwidth	2400-2483.5	PASS							

4.4.2 TEST PROCEDURE

1. Set resolution bandwidth (RBW) = 1-5% or DTS BW, not to exceed 100 kHz.

- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

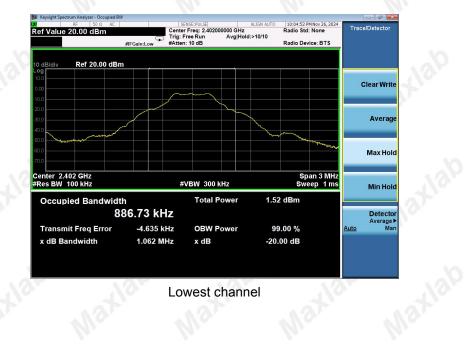
4.4.3 DEVIATION FROM STANDARD

No deviation.

4.4.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

4.4.5 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.4.6 TEST RESULTS

Temperature:	26 ℃	Relative Humidity:	54%
Test Mode :	GFSK	Test Voltage :	DC 5V

Test channel	Channel Bandwidth (MHz)	20dB bandwidth (MHz)	Result
Lowest	0.8867	1.062	Me. Me.
Middle	0.8799	1.059	Pass
Highest	1.0337	1.193	0

Lowest channel

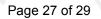
VÕ

Middle channel

Highest channel

4.5 Antenna Requirement

Standard Applicable


For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

Antenna Connected Construction

The maximum gain of antenna was 2.67 dBi.

Remark:The antenna gain is provided by the customer, if the data provided by the customer is not accurate, MAXLAB Testing Co.,Ltd. does not assume any responsibility.

5 Test Setup Photos of the EUT

Reference to the appendix I for details.

6 <u>Photos of the EUT</u>

Reference to the appendix II for details.

********************************* End of Report *********************************