FCC SAR Test Report APPLICANT : MiTAC Digital Technology Corporation **EQUIPMENT**: Tablet BRAND NAME : MITAC, Mio, NAVMAN, MAGELLAN MODEL NAME : N564B FCC ID : P4Q-N564B **STANDARD** : FCC 47 CFR Part 2 (2.1093) **ANSI/IEEE C95.1-1992** IEEE 1528-2013 We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full. Reviewed by: Eric Huang / Manager Este man? Approved by: Jones Tsai / Manager lac-MRA Report No.: FA722135-07 #### SPORTON INTERNATIONAL INC. No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Taoyuan City, Taiwan (R.O.C.) TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: P4Q-N564B Issued Date : May 24, 2018 Page 1 of 50 Form version. : 170509 # **Table of Contents** | 1. Statement of Compliance | | |---|----| | 2. Administration Data | | | 3. Guidance Applied | 5 | | 4. Equipment Under Test (EUT) Information | 5 | | 4.1 General Information | 5 | | 4.2 General LTE SAR Test and Reporting Considerations | | | 5. Proximity Sensor Triggering Test | 7 | | 6. RF Exposure Limits | | | 6.1 Uncontrolled Environment | 9 | | 6.2 Controlled Environment | | | 7. Specific Absorption Rate (SAR) | | | 7.1 Introduction | | | 7.2 SAR Definition | | | 8. System Description and Setup | | | 8.1 E-Field Probe | | | 8.2 Data Acquisition Electronics (DAE) | | | 8.3 Phantom | | | 8.4 Device Holder | | | 9. Measurement Procedures | | | 9.1 Spatial Peak SAR Evaluation | | | 9.2 Power Reference Measurement | 16 | | 9.3 Area Scan | | | 9.4 Zoom Scan | | | 9.5 Volume Scan Procedures | | | 9.6 Power Drift Monitoring | | | 10. Test Equipment List | | | 11. System Verification | | | 11.1 Tissue Simulating Liquids | | | 11.2 Tissue Verification | 20 | | 11.3 System Performance Check Results | 21 | | 12. RF Exposure Positions | | | 12.1 SAR Testing for Tablet | 21 | | 13. Conducted RF Output Power (Unit: dBm) | 22 | | 14. Bluetooth Exclusions Applied | | | 15. Antenna Location | | | 16. SAR Test Results | | | 16.1 Body SAR | | | 16.2 Repeated SAR Measurement | | | 17. Simultaneous Transmission Analysis | 48 | | 17.1 Body Exposure Conditions | 49 | | 18. Uncertainty Assessment | | | 19. References | 50 | | Appendix A. Plots of System Performance Check | | | Appendix B. Plots of High SAR Measurement | | | Appendix C. DASY Calibration Certificate | | | Appendix D. Test Setup Photos | | Page 2 of 50 TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: P4Q-N564B # **Revision History** Report No. : FA722135-07 | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | |-------------|---------|-------------------------|--------------| | FA722135-07 | Rev. 01 | Initial issue of report | May 24, 2018 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version. : 170509 FCC ID: P4Q-N564B Page 3 of 50 ## 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for MiTAC Digital Technology Corporation, Tablet, N564B, are as follows. Report No.: FA722135-07 | | | | Highest SAR Summary | Highest Simultaneous | |--------------------|--------------------------------|-------------|---------------------|----------------------| | Equipment
Class | Equipment Frequency Class Band | | Body | Transmission | | Class | | | 1g SAR (W/kg) | 1g SAR (W/kg) | | | WCDMA | WCDMA II | 1.09 | | | | WCDIVIA | WCDMA V | 1.19 | | | Licensed | LTE | LTE Band 2 | 1.16 | 1.40 | | Liceriseu | | LTE Band 4 | 1.02 | 1.40 | | | | LTE Band 5 | 1.15 | | | | | | 1.06 | | | DTS | WLAN | 2.4GHz WLAN | 0.92 | 1.37 | | NII | WLAN | 5GHz WLAN | 0.97 | 1.40 | | Date of Testing: | | | 2018/3/28 - | - 2018/4/13 | This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications ## 2. Administration Data Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test. | Testing Laboratory | | | | | | | | |--------------------------------------|--|--|--|--|--|--|--| | Test Site SPORTON INTERNATIONAL INC. | | | | | | | | | Test Site Location | No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978 | | | | | | | | Applicant | | | | | | | |---|--|--|--|--|--|--| | Company Name MiTAC Digital Technology Corporation | | | | | | | | Address No.200, Wen Hua 2nd Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) | | | | | | | | Manufacturer | | | | | | | |--|--|--|--|--|--|--| | Company Name MITAC Computer (Kunshan) Co,. Ltd. | | | | | | | | Address No. 269, 2nd Avenue, District A, Conprehensive Free Trade Zone, 300 Kunshan, China | | | | | | | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version.: 170509 FCC ID: P4Q-N564B Page 4 of 50 ## 3. Guidance Applied The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: Report No.: FA722135-07 - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - IEEE 1528-2013 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 865664 D02 SAR Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure Guidance v06 - FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02 - FCC KDB 616217 D04 SAR for laptop and tablets v01r02 - FCC KDB 941225 D01 3G SAR Procedures v03r01 - FCC KDB 941225 D05 SAR for LTE Devices v02r05 ## 4. Equipment Under Test (EUT) Information ## 4.1 General Information | | Product Feature & Specification | |--|---| | Equipment Name | Tablet | | Brand Name | MiTAC, Mio, NAVMAN, MAGELLAN | | Model Name | N564B | | FCC ID | P4Q-N564B | | IMEI Code | 357649070021392 | | Wireless Technology and
Frequency Range | WLAN 2.4GHZ Band: 2412 MHZ ~ 2462 MHZ
WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz
WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz
WLAN 5.5GHz Band: 5500 MHz ~ 5700 MHz
WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz
Bluetooth: 2402 MHz ~ 2480 MHz
NFC: 13.56 MHz | | Mode | RMC/AMR 12.2Kbps HSDPA HSUPA LTE: QPSK, 16QAM WLAN 2.4GHz: 802.11b/g/n HT20 WLAN 5GHz: 802.11a/n HT20/HT40 Bluetooth BR/EDR/LE NFC:ASK | | EUT Stage | Production Unit | SPORTON INTERNATIONAL INC. FCC ID : P4Q-N564B Page 5 of 50 Form version. : 170509 # 4.2 General LTE SAR Test and Reporting Considerations | | Summarized necessary items addressed in KDB 941225 D05 v02r05 | | | | | | | | | | | | | | | |---|---|------------------|----------------|---|---|---------------|------------|-----------------|---------|--------------|--------------|--------------|--------------|-------|-----------------| | FC | C ID | | | P4Q-N5 | 64B | | | | | | | | | | | | Equipment Name | | | | Tablet | | | | | | | | | | | | | Operating Frequency Range of each LTE transmission band | | | | | LTE Band 2: 1850.7 MHz ~ 1909.3 MHz
LTE Band 4: 1710.7 MHz ~ 1754.3 MHz
LTE Band 5: 824.7 MHz ~ 848.3 MHz | | | | | | | | | | | | Channel Bandwidth | | | | LTE Band 12: 699.7 MHz ~ 715.3 MHz LTE Band 02:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 04:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 05:1.4MHz, 3MHz, 5MHz, 10MHz LTE Band 12:1.4MHz, 3MHz, 5MHz, 10MHz | | | | | | | | | | | | | upl | ink modula | tions use | t | | QPSK / | | | <u>,</u> | | | | | | | | | | E Voice / Da | | | | Data on | V | | | | | | | | | | | | | | | | Tab | | | | | | on (MPR) fo | | | | d 3
MPR (dB) | | | | | | | Modu | ation | 1.4 | 3.0 | 5 | | 10 | 15 | 20 | | mrk (ub) | | | | | | | | | MHz | MHz | MH | łz | MHz | MHz | MHz | | | | LTI | MPR peri | manently | built-in by de | esign | QP | | > 5 | > 4 | > | _ | > 12 | > 16 | > 18 | | ≤ 1 | | | | | | | 16 C | | ≤ 5 | ≤ 4 | _ ≤ | _ | ≤ 12 | ≤ 16 | ≤ 18 | + | ≤1 | | | | | | | 16 C | | > 5
≤ 5 | > 4
≤ 4 | >
< | _ | > 12
≤ 12 | > 16
≤ 16 | > 18
≤ 18 | + | ≤ 2
≤ 2 | | | | | | | 64 C | | > 5 | > 4 | > | - | > 12 | > 16 | > 18 | | ≤ 3 | | | | | | | 256 (| MAG | | | | 2 | : 1 | | | | ≤ 5 | | LTE A-MPR Spectrum plots for RB configuration | | | | In the base station simulator configuration, Network
Setting value is set to NS_01 to disable A-MPR during SAR testing and the LTE SAR tests was transmitting on all TTI frames (Maximum TTI) A properly configured base station simulator was used for the SAR and power measurement; therefore, spectrum plots for each RB allocation and offset configuration are | | | | | | | | | | | | | _ | | ·· | | | not included in the SAR report. | | | | | | | | | | | | | wer reduct
npliance | tion appi | ed to satis | ty SAR | Yes, Proximity Sensor for LTE B2/B4. | | | | | | | | | | | | COI | прпапсе | | Transm | ission (l | 1 M I) | chann | el numbe | rs and fred | uenci | es ir | each LTE | hand | | | | | | | | Transin | ., | ·, ···, _ / | o i i a i i i | LTE Ba | | 400. | | . 000 2.2 | Darra | | | | | | Bandwidth | . 1 <i>1</i> M⊔≂ | Bandwid | th 2 M⊔- | , Bo | | | | | dwidt | h 20 MHz | | | | | | - | | Freq. | | Freq. | | | Freq. | | Fre | | | Freq. | | | Freq. | | | Ch. # | (MHz) | Ch. # | (MHz) | | ı. # | (MHz) | Ch. # | (MF | | Ch. # | (MHz) | Ch. | # | (MHz) | | L | 18607 | 1850.7 | 18615 | 1851.5 | 5 186 | 625 | 1852.5 | 18650 | 18 | 55 | 18675 | 1857.5 | 187 | 00 | 1860 | | М | 18900 | 1880 | 18900 | 1880 | 189 | 900 | 1880 | 18900 | 188 | 30 | 18900 | 1880 | 189 | 00 | 1880 | | Н | 19193 | 1909.3 | 19185 | 1908.5 | 5 19 ² | 175 | 1907.5 | 19150 | 190 | 05 | 19125 | 1902.5 | 191 | 00 | 1900 | | | | | | | | | LTE Ba | | | | | | | | | | | Bandwidth |
n 1.4 MHz | Bandwid | th 3 MHz | z Baı | ndwidt | h 5 MHz | Bandwidt | h 10 N | л
ИНz | Bandwidt | h 15 MHz | Band | dwidt | h 20 MHz | | - | | Freq. | | Freq. | | | Freq. | | Fre | | | Freq. | | | Freq. | | | Ch. # | (MHz) | Ch. # | (MHz) | | ı. # | (MHz) | Ch. # | (MF | lz) | Ch. # | (MHz) | Ch. | # | (MHz) | | L | 19957 | 1710.7 | 19965 | 1711.5 | 199 | 975 | 1712.5 | 20000 | 17 | 15 | 20025 | 1717.5 | 200 | 50 | 1720 | | М | 20175 | 1732.5 | 20175 | 1732.5 | 5 20 | 175 | 1732.5 | 20175 | 173 | 2.5 | 20175 | 1732.5 | 201 | 75 | 1732.5 | | Н | 20393 | 1754.3 | 20385 | 1753.5 | _ | 375 | 1752.5 | 20350 | 175 | | 20325 | 1747.5 | 203 | 00 | 1745 | | | | | | | | | LTE Ba | ind 5 | | | | | | | | | | Band | dwidth 1.4 | MHz | | Bandwid | th 3 M | | Bandwidth 5 MHz | | Ba | ndwidth | 101 | ИНz | | | | ŀ | Ch. # | | eq. (MHz) | | i. # | | q. (MHz) | Ch. # | | | eq. (MHz) | Ch. i | | | q. (MHz) | | L | 20407 | | 824.7 | | | | 325.5 | 20425 | | | 826.5 | 2045 | | | 829 | | M | 20525 | | 836.5 | | | | 336.5 | 20525 | | | 836.5 | 2043 | | 836.5 | | | Н | 20523 | | | | | 347.5 | 20625 | | | 846.5 | 2052 | | | 844 | | | - 1 | 20043 | | 040.3 | 200 | | | LTE Bar | | | | 040.5 | 2000 | | | 044 | | | | ما درا ما دار | L NALL— | | Donalaid | th 2.14 | | <u> </u> | مان خام | h E-1 | 41.1- | | اللمانية الم | 10. | 41.1- | | ļ | | dwidth 1.4 | | | Bandwid | | | | ndwidt | | | Bandwidt | | | | | | Ch. # | | eq. (MHz) | | . # | | q. (MHz) | Ch. # | | Fre | eq. (MHz) | Ch. # | | Fre | q. (MHz) | | L | 23017 | | 699.7 | 230 | | | 700.5 | 23035 | - | | 701.5 | 23060 | | 704 | | | M | 23095 | | 707.5 | 230 | 095 | | 707.5 | 23095 | j | | 707.5 | 2309 | 15 | | 707.5 | | Н | 23173 | 3 | 715.3 | 23′ | 165 | 7 | 714.5 | 23155 | 5 | | 713.5 | 2313 | 0 | | 711 | | _ | | 7 10.0 | | | | | | | | | | | | | | Report No.: FA722135-07 FCC ID : P4Q-N564B Page 6 of 50 Form version. : 170509 ## 5. Proximity Sensor Triggering Test #### <Proximity Sensor Triggering Distance (KDB 616217 D04 section 6.2)>: Proximity sensor triggering distance testing was performed according to the procedures outlined in KDB 616217 D04 section 6.2, and EUT moving further away from the flat phantom and EUT moving toward the flat phantom were both assessed. The details are illustrated in the exhibit "P-Sensor operational description", and the shortest triggering distances were reported and used for SAR assessment. Report No.: FA722135-07 In the preliminary triggering distance testing, the tissue-equivalent medium for different frequency bands were used for verification; no other frequency bands tissue-equivalent medium was found to result in shortest triggering distance than that for 1900MHz, and the tissue-equivalent medium for 1900MHz was used for formal proximity sensor triggering testing. | Proximity Sensor Trigger Distance (mm) | | | | | | | |--|----|--|--|--|--|--| | Position Bottom Face | | | | | | | | Minimum | 19 | | | | | | #### <Proximity Sensor Triggering Coverage (KDB 616217 D04 section 6.3)>: If a sensor is spatially offset from the antenna(s), it is necessary to verify sensor triggering for conditions where the antenna is next to the user but the sensor is laterally further away to ensure sensor coverage is sufficient for reducing the power to maintain compliance. For p-sensor coverage testing, the device is moved and "along the direction of maximum antenna and sensor offset". Illustrated in the internal photo exhibit, although the senor is spatially offset, there is no trigger condition where the antenna is next to the user but the sensor is laterally further away, therefore proximity sensor coverage testing is not required. This procedure is not required because antenna and sensor are collocated and the peak SAR location is overlapping with the sensor. #### **Proximity sensor power reduction** | Exposure Position / wireless mode | Bottom Face ⁽¹⁾ | Edge 1 | Edge 2 | Edge 3 | Edge 4 | | |-----------------------------------|----------------------------|--------|--------|--------|--------|--| | WCDMA Band II | 3.5 dB | | | | | | | LTE Band 2 | 3.5 dB | 0 dB | 0 dB | 0 dB | 0 dB | | | LTE Band 4 | 4.5 dB | | | | | | #### Remark: - 1. (1): Reduced maximum limit applied by activation of proximity sensor. - 2. Power reduction is not applicable for WLAN and Bluetooth. - 3. Tests were performed in accordance with KDB 616217 D04 section 6.1, 6.2, 6.3, 6.4 and 6.5 and compliant results are shown and described in exhibit "P-Sensor operational description - 4. For verification of compliance of power reduction scheme, additional SAR testing with EUT transmitting at full RF power at a conservative trigger distance was performed: - Bottom Face: <u>10 mm</u> #### SPORTON INTERNATIONAL INC. FCC ID : P4Q-N564B Page 7 of 50 Form version. : 170509 ## Power Measurement during Sensor Trigger distance testing Report No.: FA722135-07 | Band/Mode | Ch# | Measured power i | Reduction Levels | | |---------------|-------|--------------------|-------------------|------| | Bariu/Moue | GH# | w/o power back-off | w/ power back-off | (dB) | | WCDMA Band II | 9400 | 22.06 | 19.46 | 2.60 | | LTE Band 2 | 19100 | 22.68 | 19.66 | 3.02 | | LTE Band 4 | 20300 | 22.76 | 18.66 | 4.10 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version. : 170509 Page 8 of 50 FCC ID: P4Q-N564B ## 6. RF Exposure Limits ## 6.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: FA722135-07 ## 6.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. #### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | le-Body Partial-Body Hands, Wrists, Feet | | | | |------------|--|------|--|--| | 0.4 | 8.0 | 20.0 | | | #### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | 1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version.: 170509 FCC ID: P4Q-N564B Page 9 of 50 # 7. Specific Absorption Rate (SAR) ## 7.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. Report No.: FA722135-07 ### 7.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in)
an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version.: 170509 FCC ID: P4Q-N564B Page 10 of 50 ## 8. System Description and Setup The DASY system used for performing compliance tests consists of the following items: Report No.: FA722135-07 - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. ## 8.1 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. #### <ES3DV3 Probe> | Construction | Symmetric design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | | |---------------|---|---| | Frequency | 10 MHz – 4 GHz;
Linearity: ±0.2 dB (30 MHz – 4 GHz) | | | Directivity | ±0.2 dB in TSL (rotation around probe axis)
±0.3 dB in TSL (rotation normal to probe axis) | | | Dynamic Range | $5 \mu \text{W/g} - > 100 \text{ mW/g};$
Linearity: $\pm 0.2 \text{ dB}$ | A | | Dimensions | Overall length: 337 mm (tip: 20 mm) Tip diameter: 3.9 mm (body: 12 mm) Distance from probe tip to dipole centers: 3.0 mm | | Report No.: FA722135-07 #### <EX3DV4 Probe> | Construction | Symmetric design with triangular core | |---------------|--| | | Built-in shielding against static charges | | | PEEK enclosure material (resistant to organic | | | solvents, e.g., DGBE) | | Frequency | 10 MHz – >6 GHz | | | Linearity: ±0.2 dB (30 MHz – 6 GHz) | | Directivity | ±0.3 dB in TSL (rotation around probe axis) | | | ±0.5 dB in TSL (rotation normal to probe axis) | | Dynamic Range | 10 μW/g – >100 mW/g | | | Linearity: ±0.2 dB (noise: typically <1 µW/g) | | Dimensions | Overall length: 337 mm (tip: 20 mm) | | | Tip diameter: 2.5 mm (body: 12 mm) | | | Typical distance from probe tip to dipole centers: 1 | | | mm | ## 8.2 Data Acquisition Electronics (DAE) The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. Page 12 of 50 Fig 5.1 Photo of DAE SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: P4Q-N564B Issued Date: May 24, 2018 Form version.: 170509 ## 8.3 Phantom #### <SAM Twin Phantom> | Shell Thickness | 2 ± 0.2 mm;
Center ear point: 6 ± 0.2 mm | A | |-------------------|---|-----| | Filling Volume | Approx. 25 liters | | | Dimensions | Length: 1000 mm; Width: 500 mm; Height: adjustable feet | 7 5 | | Measurement Areas | Left Hand, Right Hand, Flat Phantom | | Report No.: FA722135-07 The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. #### <ELI Phantom> | VEET I Halltonia | | | |------------------|--|--| | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | | | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm
Minor axis: 400 mm | | The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. SPORTON INTERNATIONAL INC. #### 8.4 Device Holder #### <Mounting Device for Hand-Held Transmitter> In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm. Report No.: FA722135-07 Mounting Device for Hand-Held Transmitters Mounting Device Adaptor for Wide-Phones #### <Mounting Device for Laptops and other Body-Worn Transmitters> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms. Mounting Device for Laptops TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version.: 170509 FCC ID: P4Q-N564B Page 14 of 50 ## 9. Measurement Procedures The measurement procedures are as follows: #### <Conducted power measurement> (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Report No.: FA722135-07 - Read the WWAN RF power level from the base station simulator. - For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power #### <SAR measurement> - Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power - Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - Find out the largest SAR result on these testing positions of each band (e) - Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - Power reference measurement (a) - (b) Area scan - (c) Zoom scan - Power drift measurement SPORTON INTERNATIONAL INC. #### 9.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - Extraction of the measured data (grid and values) from the Zoom Scan - Calculation of the SAR value at every measurement
point based on all stored data (A/D values and (b) measurement parameters) - Generation of a high-resolution mesh within the measured volume (c) - Interpolation of all measured values form the measurement grid to the high-resolution grid (d) - Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface (e) - Calculation of the averaged SAR within masses of 1g and 10g TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version.: 170509 FCC ID: P4Q-N564B Page 15 of 50 ## 9.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. Report No.: FA722135-07 #### 9.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | ≤ 3 GHz | > 3 GHz | |--|--|---| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$
$4 - 6 \text{ GHz:} \le 10 \text{ mm}$ | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test of measurement point on the test | on, is smaller than the above,
must be ≤ the corresponding
levice with at least one | SPORTON INTERNATIONAL INC. #### 9.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Report No.: FA722135-07 Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | | | ≤ 3 GHz | > 3 GHz | | |--|----------------|---|--|--|--| | Maximum zoom scan s | spatial reso | lution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | | uniform | grid: $\Delta z_{Zoom}(n)$ | ≤ 5 mm | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$
$4 - 5 \text{ GHz: } \le 3 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | graded
grid | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | $3 - 4 \text{ GHz: } \le 3 \text{ mm}$
$4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | | | | Δz _{Zoom} (n>1): between subsequent points | ≤ 1.5·∆z | Z _{Zoom} (n-1) | | | Minimum zoom scan
volume | x, y, z | | $3 - 4 \text{ GHz}$: $\geq 28 \text{ m}$
$\geq 30 \text{ mm}$ $4 - 5 \text{ GHz}$: $\geq 25 \text{ m}$
$5 - 6 \text{ GHz}$: $\geq 22 \text{ m}$ | | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### 9.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. #### 9.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 FCC ID : P4Q-N564B Page 17 of 50 Form version. : 170509 When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ## 10. Test Equipment List | | Name of Environment | T. 110 0 /04 0 shall | Carial Number | Calib | ration | |---------------|---------------------------------|----------------------|----------------|---------------|---------------| | Manufacturer | Name of Equipment | Type/Model | Serial Number | Last Cal. | Due Date | | SPEAG | 750MHz System Validation Kit | D750V3 | 1012 | May. 22, 2017 | May. 21, 2018 | | SPEAG | 835MHz System Validation Kit | D835V2 | 4d167 | Feb. 27, 2018 | Feb. 26, 2019 | | SPEAG | 1750MHz System Validation Kit | D1750V2 | 1068 | Nov. 15, 2017 | Nov. 14, 2018 | | SPEAG | 1900MHz System Validation Kit | D1900V2 | 5d041 | Sep. 28, 2017 | Sep. 27, 2018 | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 736 | Sep. 18, 2017 | Sep. 17, 2018 | | SPEAG | 5GHz System Validation Kit | D5GHzV2 | 1171 | Jul. 18, 2017 | Jul. 17, 2018 | | SPEAG | Data Acquisition Electronics | DAE4 | 1424 | Jan. 18, 2018 | Jan. 17, 2019 | | SPEAG | Data Acquisition Electronics | DAE4 | 853 | Jul. 19, 2017 | Jul. 18, 2018 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3925 | May. 24, 2017 | May. 23, 2018 | | SPEAG | Dosimetric E-Field Probe | ES3DV3 | 3169 | May. 11, 2017 | May. 10, 2018 | | Gencom | Thermometer | TE1 | TM685-1 | Mar. 16, 2018 | Mar. 15, 2019 | | Gencom | Thermometer | TE1 | TM685-2 | Mar. 16, 2018 | Mar. 15, 2019 | | Anritsu | Radio Communication Analyzer | MT8821C | 6201341950 | Apr. 20, 2017 | Apr. 19, 2018 | | Agilent | Wireless Communication Test Set | E5515C | MY50266977 | May. 30, 2017 | May. 29, 2018 | | SPEAG | Device Holder | N/A | N/A | N/A | N/A | | Anritsu | Signal Generator | MG3710A | 6201502524 | Dec. 07, 2017 | Dec. 06, 2018 | | Agilent | ENA Network Analyzer | E5071C | MY46316648 | Jan. 17, 2018 | Jan. 16, 2019 | | SPEAG | Dielectric Probe Kit | DAK-3.5 | 1126 | Sep. 26, 2017 | Sep. 25, 2018 | | LINE SEIKI | Digital Thermometer | LKMelectronic | DTM3000SPEZIAL | Sep. 06, 2017 | Sep. 05, 2018 | | Anritsu | Power Meter | ML2495A | 1419002 | May. 15, 2017 | May. 14, 2018 | | Anritsu | Power Sensor | MA2411B | 1339124 | May. 15, 2017 | May. 14, 2018 | | Anritsu | Power Meter | ML2495A | 1218006 | Oct. 06, 2017 | Oct. 05, 2018 | | Anritsu | Power Sensor | MA2411B | 1207363 | Oct. 06, 2017 | Oct. 05, 2018 | | Agilent | Spectrum Analyzer | E4408B | MY44211028 | Aug. 23, 2017 | Aug. 22, 2018 | | Anritsu | Spectrum Analyzer | MS2830A | 6201396378 | Jun. 26, 2017 | Jun. 25, 2018 | | Mini-Circuits | Power Amplifier | ZVE-8G+ | D120604 | Mar. 12, 2018 | Mar. 11, 2019 | | Mini-Circuits | Power Amplifier | ZHL-42W+ | QA1344002 | Mar. 12, 2018 | Mar. 11, 2019 | | ATM | Dual Directional Coupler | C122H-10 | P610410z-02 | No | te 1 | | Woken | Attenuator 1 | WK0602-XX | N/A | No | te 1 | | PE | Attenuator 2 | PE7005-10 | N/A | Not | te 1 | | | | | | • | | Report No.: FA722135-07 #### **General Note:** 1. Prior to system verification and validation, the path loss from the signal generator
to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source. SPORTON INTERNATIONAL INC. ## 11. System Verification ## 11.1 Tissue Simulating Liquids For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.2. Report No.: FA722135-07 Fig 10.2 Photo of Liquid Height for Body SAR TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 FCC ID: P4Q-N564B Form version.: 170509 Page 19 of 50 # 11.2 Tissue Verification The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation. Report No.: FA722135-07 | Frequency
(MHz) | Water
(%) | Sugar
(%) | Cellulose
(%) | Salt
(%) | Preventol
(%) | DGBE
(%) | Conductivity
(σ) | Permittivity
(εr) | | | |--------------------|--------------|--------------|------------------|-------------|------------------|-------------|---------------------|----------------------|--|--| | For Head | | | | | | | | | | | | 750 | 41.1 | 57.0 | 0.2 | 1.4 | 0.2 | 0 | 0.89 | 41.9 | | | | 835 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.90 | 41.5 | | | | 900 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.97 | 41.5 | | | | 1800, 1900, 2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.40 | 40.0 | | | | 2450 | 55.0 | 0 | 0 | 0 | 0 | 45.0 | 1.80 | 39.2 | | | | 2600 | 54.8 | 0 | 0 | 0.1 | 0 | 45.1 | 1.96 | 39.0 | | | | | | | | For Body | | | | | | | | 750 | 51.7 | 47.2 | 0 | 0.9 | 0.1 | 0 | 0.96 | 55.5 | | | | 835 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 0.97 | 55.2 | | | | 900 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 1.05 | 55.0 | | | | 1800, 1900, 2000 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.52 | 53.3 | | | | 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | | | | 2600 | 68.1 | 0 | 0 | 0.1 | 0 | 31.8 | 2.16 | 52.5 | | | Simulating Liquid for 5GHz, Manufactured by SPEAG | Ingredients | (% by weight) | |--------------------|---------------| | Water | 64~78% | | Mineral oil | 11~18% | | Emulsifiers | 9~15% | | Additives and Salt | 2~3% | ## <Tissue Dielectric Parameter Check Results> | Frequency
(MHz) | Tissue
Type | Liquid
Temp.
(℃) | Conductivity
(σ) | Permittivity
(ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta (σ)
(%) | Delta (ε _r)
(%) | Limit (%) | Date | |--------------------|----------------|------------------------|---------------------|-----------------------------------|----------------------------|--|------------------|--------------------------------|-----------|-----------| | 750 | MSL | 22.4 | 0.972 | 54.233 | 0.96 | 55.50 | 1.25 | -2.28 | ±5 | 2018/3/28 | | 750 | MSL | 22.2 | 0.972 | 55.486 | 0.96 | 55.50 | 1.25 | -0.03 | ±5 | 2018/4/4 | | 835 | MSL | 22.4 | 0.975 | 57.194 | 0.97 | 55.20 | 0.52 | 3.61 | ±5 | 2018/3/28 | | 835 | MSL | 22.2 | 0.975 | 55.770 | 0.97 | 55.20 | 0.52 | 1.03 | ±5 | 2018/4/4 | | 1750 | MSL | 22.6 | 1.456 | 55.070 | 1.49 | 53.40 | -2.28 | 3.13 | ±5 | 2018/4/1 | | 1900 | MSL | 22.6 | 1.566 | 52.553 | 1.52 | 53.30 | 3.03 | -1.40 | ±5 | 2018/4/1 | | 2450 | MSL | 22.6 | 1.986 | 53.073 | 1.95 | 52.70 | 1.85 | 0.71 | ±5 | 2018/4/12 | | 5250 | MSL | 22.4 | 5.349 | 47.692 | 5.36 | 48.95 | -0.21 | -2.57 | ±5 | 2018/4/13 | | 5600 | MSL | 22.4 | 5.793 | 47.101 | 5.77 | 48.50 | 0.40 | -2.88 | ±5 | 2018/4/13 | | 5750 | MSL | 22.4 | 5.995 | 46.834 | 5.94 | 48.28 | 0.93 | -3.00 | ±5 | 2018/4/13 | FCC ID : P4Q-N564B Page 20 of 50 Form version. : 170509 #### 11.3 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
1g SAR
(W/kg) | Targeted
1g SAR
(W/kg) | Normalized
1g SAR
(W/kg) | Deviation
(%) | |-----------|--------------------|----------------|------------------------|-------------------|-----------------|-------------|------------------------------|------------------------------|--------------------------------|------------------| | 2018/3/28 | 750 | MSL | 250 | D750V3-1012 | ES3DV3 - SN3169 | DAE4 Sn853 | 2.27 | 8.71 | 9.08 | 4.25 | | 2018/4/4 | 750 | MSL | 250 | D750V3-1012 | ES3DV3 - SN3169 | DAE4 Sn853 | 2.32 | 8.71 | 9.28 | 6.54 | | 2018/3/28 | 835 | MSL | 250 | D835V2-4d167 | ES3DV3 - SN3169 | DAE4 Sn853 | 2.49 | 9.62 | 9.96 | 3.53 | | 2018/4/4 | 835 | MSL | 250 | D835V2-4d167 | ES3DV3 - SN3169 | DAE4 Sn853 | 2.29 | 9.62 | 9.16 | -4.78 | | 2018/4/1 | 1750 | MSL | 250 | D1750V2-1068 | ES3DV3 - SN3169 | DAE4 Sn853 | 9.31 | 37.20 | 37.24 | 0.11 | | 2018/4/1 | 1900 | MSL | 250 | D1900V2-5d041 | ES3DV3 - SN3169 | DAE4 Sn853 | 9.96 | 40.70 | 39.84 | -2.11 | | 2018/4/12 | 2450 | MSL | 250 | D2450V2-736 | ES3DV3 - SN3169 | DAE4 Sn853 | 12.40 | 50.80 | 49.60 | -2.36 | | 2018/4/13 | 5250 | MSL | 100 | D5GHzV2-1171-5250 | EX3DV4 - SN3925 | DAE4 Sn1424 | 7.97 | 78.10 | 79.70 | 2.05 | | 2018/4/13 | 5600 | MSL | 100 | D5GHzV2-1171-5600 | EX3DV4 - SN3925 | DAE4 Sn1424 | 8.36 | 81.00 | 83.60 | 3.21 | | 2018/4/13 | 5750 | MSL | 100 | D5GHzV2-1171-5750 | EX3DV4 - SN3925 | DAE4 Sn1424 | 7.98 | 78.70 | 79.80 | 1.40 | Report No.: FA722135-07 Fig 8.3.1 System Performance Check Setup Fig 8.3.2 Setup Photo ## 12. RF Exposure Positions #### 12.1 SAR Testing for Tablet This device can be used also in full sized tablet exposure conditions, due to its size. Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR exclusion threshold in KDB 447498 D01v06 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom. FCC ID : P4Q-N564B Page 21 of 50 Form version. : 170509 # 13. Conducted RF Output Power (Unit: dBm) #### <WCDMA Conducted Power> - 1. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. - 2. The procedures in KDB 941225 D01v03r01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion. Report No.: FA722135-07 A summary of these settings are illustrated below: #### **HSDPA Setup Configuration:** - The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. - b. The RF path losses were compensated into the measurements. - A call was established between EUT and Base Station with following setting: - Set Gain Factors (β_c and $\beta_d)$ and parameters were set according to each - Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121 - Set RMC 12.2Kbps + HSDPA mode. - Set Cell Power = -86 dBm iv. - Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK) V. - vi. Select HSDPA Uplink Parameters - vii. Set Delta ACK, Delta NACK and Delta CQI = 8 - viii. Set Ack-Nack Repetition Factor to 3 - ix. Set CQI Feedback Cycle (k) to 4 ms - Set CQI Repetition Factor to 2 - xi. Power Ctrl Mode = All Up bits - The transmitted maximum output power was recorded. Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH | Sub-test | βο | βd | β _d
(SF) | βс/βа | βнs
(Note1,
Note 2) | CM (dB)
(Note 3) | MPR (dB)
(Note 3) | |----------|----------|----------|------------------------|----------|---------------------------|---------------------|----------------------| | 1 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 0.0 | 0.0 | | 2 | 12/15 | 15/15 | 64 | 12/15 | 24/15 | 1.0 | 0.0 | | | (Note 4) | (Note 4) | | (Note 4) | | | | | 3 | 15/15 | 8/15 | 64 | 15/8 | 30/15 | 1.5 | 0.5 | | 4 | 15/15 | 4/15 | 64 | 15/4 | 30/15 | 1.5 | 0.5 | - Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c . - For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Note 2: Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle_{ACK} and \triangle_{NACK} = 30/15 with β_{hs} = 30/15 * β_c , and \triangle_{CQI} = 24/15 - with $\beta_{hs} = 24/15 * \beta_c$. - CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-Note 3: DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. - For subtest 2 the β_d/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is Note 4: achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d **Setup Configuration** SPORTON INTERNATIONAL INC. TEL:
886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version.: 170509 Page 22 of 50 FCC ID: P4Q-N564B ## FCC SAR Test Report #### **HSUPA Setup Configuration:** - The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. - b. The RF path losses were compensated into the measurements. - c. A call was established between EUT and Base Station with following setting *: - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121 Report No.: FA722135-07 - iii. Set Cell Power = -86 dBm - iv. Set Channel Type = 12.2k + HSPA - v. Set UE Target Power - vi. Power Ctrl Mode= Alternating bits - vii. Set and observe the E-TFCI - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI - d. The transmitted maximum output power was recorded. Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH | Sub-
test | βα | βd | β _d
(SF) | β₀/βа | βнs
(Note1) | Вес | β _{ed}
(Note 4)
(Note 5) | β _{ed}
(SF) | β _{ed}
(Codes) | CM
(dB)
(Note
2) | MPR
(dB)
(Note
2)
(Note
6) | AG
Index
(Note
5) | E-
TFCI | |--------------|-------------------|----------------------|------------------------|----------------------|----------------|-------------|--|-------------------------|----------------------------|---------------------------|---|----------------------------|------------| | 1 | 11/15
(Note 3) | 15/15
(Note
3) | 64 | 11/15
(Note
3) | 22/15 | 209/2
25 | 1309/225 | 4 | 1 | 1.0 | 0.0 | 20 | 75 | | 2 | 6/15 | 15/15 | 64 | 6/15 | 12/15 | 12/15 | 94/75 | 4 | 1 | 3.0 | 2.0 | 12 | 67 | | 3 | 15/15 | 9/15 | 64 | 15/9 | 30/15 | 30/15 | β _{ed} 1: 47/15
β _{ed} 2: 47/15 | 4 | 2 | 2.0 | 1.0 | 15 | 92 | | 4 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 2/15 | 56/75 | 4 | 1 | 3.0 | 2.0 | 17 | 71 | | 5 | 15/15 | 0 | - | - | 5/15 | 5/15 | 47/15 | 4 | 1 | 1.0 | 0.0 | 12 | 67 | - Note 1: For sub-test 1 to 4, Δ_{NACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c . For sub-test 5, Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 5/15 with β_{hs} = 5/15 * β_c . - Note 2: CM = 1 for β_c/β_d =12/15, β_{he}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference. - Note 3: For subtest 1 the β_d/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15. - Note 4: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g. - Note 5: βed can not be set directly; it is set by Absolute Grant Value. - Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values. #### **Setup Configuration** #### <WCDMA Conducted Power> #### **General Note:** Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". Report No.: FA722135-07 2. Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. The maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA is ≤ ¼ dB higher than RMC 12.2kbps or when the highest reported SAR of the RMC12.2kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA to RMC12.2kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA, and according to the following RF output power, the output power results of the secondary modes (HSUPA, HSDPA) are less than ¼ dB higher than the primary modes; therefore, SAR measurement is not required for HSDPA / HSUPA. #### **Default Power Mode** | Default Power | ivioue | | | | | | | | | |---------------|-----------------|--------|----------|--------|------------------|-------|---------|-------|------------------| | | Band | | WCDMA II | | | | WCDMA V | | | | TX | Channel | 9262 | 9400 | 9538 | Tune-up
Limit | 4132 | 4182 | 4233 | Tune-up
Limit | | Rx | Channel | 9662 | 9800 | 9938 | (dBm) | 4357 | 4407 | 4458 | (dBm) | | Frequ | iency (MHz) | 1852.4 | 1880 | 1907.6 | | 826.4 | 836.4 | 846.6 | | | 3GPP Rel 99 | AMR 12.2Kbps | 21.85 | 22.02 | 21.92 | 23.00 | 21.80 | 21.66 | 21.74 | 23.00 | | 3GPP Rel 99 | RMC 12.2Kbps | 21.88 | 22.06 | 21.98 | 23.00 | 21.83 | 21.69 | 21.77 | 23.00 | | 3GPP Rel 6 | HSDPA Subtest-1 | 21.77 | 21.90 | 21.69 | 22.50 | 21.61 | 21.48 | 21.55 | 22.50 | | 3GPP Rel 6 | HSDPA Subtest-2 | 21.73 | 21.89 | 21.59 | 22.50 | 21.64 | 21.43 | 21.53 | 22.50 | | 3GPP Rel 6 | HSDPA Subtest-3 | 21.26 | 21.36 | 21.11 | 22.00 | 21.13 | 20.96 | 21.08 | 22.00 | | 3GPP Rel 6 | HSDPA Subtest-4 | 21.78 | 21.76 | 21.64 | 22.00 | 21.56 | 21.42 | 21.61 | 22.00 | | 3GPP Rel 6 | HSUPA Subtest-1 | 21.26 | 21.59 | 21.42 | 22.50 | 21.22 | 21.35 | 21.32 | 22.50 | | 3GPP Rel 6 | HSUPA Subtest-2 | 19.67 | 19.77 | 19.55 | 20.50 | 19.58 | 19.49 | 19.56 | 20.50 | | 3GPP Rel 6 | HSUPA Subtest-3 | 20.76 | 20.76 | 20.67 | 21.50 | 20.54 | 20.57 | 20.49 | 21.50 | | 3GPP Rel 6 | HSUPA Subtest-4 | 19.91 | 20.03 | 19.90 | 20.50 | 19.85 | 19.72 | 19.81 | 20.50 | | 3GPP Rel 6 | HSUPA Subtest-5 | 21.77 | 21.95 | 21.86 | 22.50 | 21.71 | 21.70 | 21.72 | 22.50 | #### **Reduced Power Mode** | | Band | | WCDMA II | | | |-------------|-----------------|--------|------------|--------|------------------| | | banu | | WCDIVIA II | | | | TX C | Channel | 9262 | 9400 | 9538 | Tune-up
Limit | | Rx C | Channel | 9662 | 9800 | 9938 | (dBm) | | Freque | ncy (MHz) | 1852.4 | 1880 | 1907.6 | | | 3GPP Rel 99 | AMR 12.2Kbps | 19.28 | 19.42 | 19.35 | 19.50 | | 3GPP Rel 99 | RMC 12.2Kbps | 19.33 | 19.46 | 19.37 | 19.50 | | 3GPP Rel 6 | HSDPA Subtest-1 | 19.29 | 19.40 | 19.32 | 19.50 | | 3GPP Rel 6 | HSDPA Subtest-2 | 19.32 | 19.42 | 19.36 | 19.50 | | 3GPP Rel 6 | HSDPA Subtest-3 | 19.27 | 19.41 | 19.32 | 19.50 | | 3GPP Rel 6 | HSDPA Subtest-4 | 19.20 | 19.38 | 19.26 | 19.50 | | 3GPP Rel 6 | HSUPA Subtest-1 | 19.01 | 19.09 | 18.99 | 19.50 | | 3GPP Rel 6 | HSUPA Subtest-2 | 18.89 | 19.35 | 19.28 | 19.50 | | 3GPP Rel 6 | HSUPA Subtest-3 | 19.06 | 19.28 | 19.18 | 19.50 | | 3GPP Rel 6 | HSUPA Subtest-4 | 19.12 | 19.28 | 19.32 | 19.50 | | 3GPP Rel 6 | HSUPA Subtest-5 | 19.30 | 19.40 | 19.30 | 19.50 | FCC ID : P4Q-N564B Page 24 of 50 Form version. : 170509 #### <LTE Conducted Power> #### **General Note:** Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing. Report No.: FA722135-07 - 2. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required. - 3. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 4. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 5. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - 6. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required. - 7. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required. - 8. For LTE B4 / B5 / B12 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. SPORTON INTERNATIONAL INC. ## **Default Power Mode** Report No.: FA722135-07 ## <LTE Band 2> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low | Power
Middle | Power
High | | | |----------|------------|----------|-----------|--------------|-----------------|---------------|------------------------|-------------| | | | <u> </u> | | Ch. / Freq. | Ch. / Freq. | Ch. / Freq. | Tune-up limit
(dBm) | MPR
(dB) | | | Cha
- | | | 18700 | 18900 | 19100 | (dDIII) | (GD) | | | Frequenc | | _ | 1860 | 1880 | 1900 | | | | 20 | QPSK | 1 | 0 | 22.34 | 22.48 | 22.68 | | | | 20 | QPSK | 1 | 49 | 21.65 | 21.65 | 21.89 | 23.5 | 0 | | 20 | QPSK | 1 | 99 | 22.03 | 22.17 | 22.00 | | | | 20 | QPSK | 50 | 0 | 21.48 | 21.33 |
21.79 | | | | 20 | QPSK | 50 | 24 | 21.07 | 21.03 | 21.38 | 22.5 | 1 | | 20 | QPSK | 50 | 50 | 21.30 | 21.32 | 21.28 | | | | 20 | QPSK | 100 | 0 | 21.43 | 21.33 | 21.49 | | | | 20 | 16QAM | 1 | 0 | 21.86 | 21.96 | 22.30 | | | | 20 | 16QAM | 1 | 49 | 21.10 | 21.13 | 21.36 | 22.5 | 1 | | 20 | 16QAM | 1 | 99 | 21.56 | 21.70 | 21.38 | | | | 20 | 16QAM | 50 | 0 | 20.43 | 20.40 | 20.78 | <u> </u> | | | 20 | 16QAM | 50 | 24 | 20.08 | 20.04 | 20.34 | 21.5 | 2 | | 20 | 16QAM | 50 | 50 | 20.29 | 20.29 | 20.22 | 21.5 | 2 | | 20 | 16QAM | 100 | 0 | 20.34 | 20.26 | 20.51 | | | | | Cha | nnel | | 18675 | 18900 | 19125 | Tune-up limit | MPR | | | Frequenc | cy (MHz) | | 1857.5 | 1880 | 1902.5 | (dBm) | (dB) | | 15 | QPSK | 1 | 0 | 22.48 | 22.60 | 22.58 | | | | 15 | QPSK | 1 | 37 | 22.13 | 22.00 | 22.09 | 23.5 | 0 | | 15 | QPSK | 1 | 74 | 22.21 | 22.58 | 22.09 | | | | 15 | QPSK | 36 | 0 | 21.35 | 21.38 | 21.50 | | | | 15 | QPSK | 36 | 20 | 21.06 | 21.20 | 21.24 | 1 | | | 15 | QPSK | 36 | 39 | 21.10 | 21.31 | 21.13 | 22.5 | 1 | | 15 | QPSK | 75 | 0 | 21.24 | 21.44 | 21.32 | 1 | | | 15 | 16QAM | 1 | 0 | 21.74 | 22.04 | 21.97 | | | | 15 | 16QAM | 1 | 37 | 21.34 | 21.30 | 21.46 | 22.5 | 1 | | 15 | 16QAM | 1 | 74 | 21.43 | 21.83 | 21.43 | | | | 15 | 16QAM | 36 | 0 | 20.44 | 20.43 | 20.59 | | | | 15 | 16QAM | 36 | 20 | 20.14 | 20.15 | 20.24 | 1 | | | 15 | 16QAM | 36 | 39 | 20.23 | 20.36 | 20.21 | 21.5 | 2 | | 15 | 16QAM | 75 | 0 | 20.30 | 20.37 | 20.27 | 1 | | | | Cha | | | 18650 | 18900 | 19150 | Tune-up limit | MPR | | | Frequence | | | 1855 | 1880 | 1905 | (dBm) | (dB) | | 10 | QPSK | 1 | 0 | 22.34 | 22.19 | 22.60 | | | | 10 | QPSK | 1 | 25 | 22.15 | 21.93 | 22.05 | 23.5 | 0 | | 10 | QPSK | 1 | 49 | 22.15 | 22.17 | 22.13 | | | | 10 | QPSK | 25 | 0 | 21.21 | 21.20 | 21.36 | | | | 10 | QPSK | 25 | 12 | 21.13 | 21.11 | 21.17 | - | | | 10 | QPSK | 25 | 25 | 21.13 | 21.08 | 21.20 | 22.5 | 1 | | 10 | QPSK | 50 | 0 | 21.25 | 21.17 | 21.31 | | | | 10 | 16QAM | 1 | 0 | 21.61 | 21.17 | 21.82 | | | | 10 | 16QAM | 1 | 25 | 21.39 | 21.34 | 21.31 | 22.5 | 1 | | 10 | 16QAM | 1 | 49 | 21.39 | | 21.49 | 22.3 | | | | | | 1 | | 21.47 | | | | | 10 | 16QAM | 25 | 0 | 20.34 | 20.25 | 20.34 | | | | 10 | 16QAM | 25 | 12 | 20.17 | 20.07 | 20.12 | 21.5 | 2 | | 10 | 16QAM | 25 | 25 | 20.08 | 20.13 | 20.22 | | | | 10 | 16QAM | 50 | 0 | 20.28 | 20.19 | 20.25 | | | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version. : 170509 FCC ID: P4Q-N564B Page 26 of 50 | | Char | nnel | | 18625 | 18900 | 19175 | Tune-up limit | MPR | |-----|----------|----------|----|--------|-------|--------|---------------|------| | | Frequenc | cy (MHz) | | 1852.5 | 1880 | 1907.5 | (dBm) | (dB) | | 5 | QPSK | 1 | 0 | 22.11 | 22.13 | 22.16 | | | | 5 | QPSK | 1 | 12 | 22.07 | 22.08 | 22.08 | 23.5 | 0 | | 5 | QPSK | 1 | 24 | 22.06 | 22.02 | 21.94 | | | | 5 | QPSK | 12 | 0 | 21.23 | 21.16 | 21.26 | | | | 5 | QPSK | 12 | 7 | 21.17 | 21.10 | 21.10 | | _ | | 5 | QPSK | 12 | 13 | 21.09 | 21.14 | 21.12 | 22.5 | 1 | | 5 | QPSK | 25 | 0 | 21.14 | 21.14 | 21.12 | | | | 5 | 16QAM | 1 | 0 | 21.49 | 21.40 | 21.58 | | | | 5 | 16QAM | 1 | 12 | 21.46 | 21.45 | 21.51 | 22.5 | 1 | | 5 | 16QAM | 1 | 24 | 21.34 | 21.24 | 21.44 | | | | 5 | 16QAM | 12 | 0 | 20.30 | 20.18 | 20.26 | | | | 5 | 16QAM | 12 | 7 | 20.17 | 20.23 | 20.23 | | • | | 5 | 16QAM | 12 | 13 | 20.18 | 20.11 | 20.24 | 21.5 | 2 | | 5 | 16QAM | 25 | 0 | 20.14 | 20.15 | 20.15 | | | | | Char | nnel | | 18615 | 18900 | 19185 | Tune-up limit | MPR | | | Frequenc | cy (MHz) | | 1851.5 | 1880 | 1908.5 | (dBm) | (dB) | | 3 | QPSK | 1 | 0 | 21.95 | 22.12 | 22.17 | | | | 3 | QPSK | 1 | 8 | 22.02 | 22.08 | 22.10 | 23.5 | 0 | | 3 | QPSK | 1 | 14 | 21.99 | 22.13 | 22.00 | | | | 3 | QPSK | 8 | 0 | 21.07 | 21.05 | 21.24 | | | | 3 | QPSK | 8 | 4 | 21.10 | 21.08 | 21.22 | 00.5 | | | 3 | QPSK | 8 | 7 | 21.17 | 21.11 | 21.23 | 22.5 | 1 | | 3 | QPSK | 15 | 0 | 21.14 | 21.09 | 21.18 | | | | 3 | 16QAM | 1 | 0 | 21.29 | 21.28 | 21.53 | | | | 3 | 16QAM | 1 | 8 | 21.38 | 21.34 | 21.36 | 22.5 | 1 | | 3 | 16QAM | 1 | 14 | 21.26 | 21.21 | 21.28 | | | | 3 | 16QAM | 8 | 0 | 20.19 | 20.24 | 20.29 | | | | 3 | 16QAM | 8 | 4 | 20.16 | 20.16 | 20.27 | 04.5 | 0 | | 3 | 16QAM | 8 | 7 | 20.21 | 20.18 | 20.28 | 21.5 | 2 | | 3 | 16QAM | 15 | 0 | 20.21 | 20.14 | 20.23 | | | | | Char | nnel | | 18607 | 18900 | 19193 | Tune-up limit | MPR | | | Frequenc | cy (MHz) | | 1850.7 | 1880 | 1909.3 | (dBm) | (dB) | | 1.4 | QPSK | 1 | 0 | 22.04 | 22.10 | 22.12 | | | | 1.4 | QPSK | 1 | 3 | 22.03 | 21.97 | 22.05 | | | | 1.4 | QPSK | 1 | 5 | 21.95 | 22.10 | 21.99 | 22.5 | 0 | | 1.4 | QPSK | 3 | 0 | 22.09 | 22.06 | 22.06 | 23.5 | 0 | | 1.4 | QPSK | 3 | 1 | 22.08 | 21.98 | 22.05 | | | | 1.4 | QPSK | 3 | 3 | 22.09 | 22.08 | 22.05 | | | | 1.4 | QPSK | 6 | 0 | 21.15 | 21.15 | 21.14 | 22.5 | 1 | | 1.4 | 16QAM | 1 | 0 | 21.50 | 21.42 | 21.48 | | | | 1.4 | 16QAM | 1 | 3 | 21.44 | 21.37 | 21.53 | | | | 1.4 | 16QAM | 1 | 5 | 21.44 | 21.44 | 21.41 | 20.5 | | | 1.4 | 16QAM | 3 | 0 | 21.22 | 21.14 | 21.17 | 22.5 | 1 | | 1.4 | 16QAM | 3 | 1 | 21.18 | 21.11 | 21.24 | | | | 1.4 | 16QAM | 3 | 3 | 21.16 | 21.15 | 21.18 | | | | 1.4 | 16QAM | 6 | 0 | 20.18 | 20.20 | 20.23 | 21.5 | 2 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version. : 170509 FCC ID: P4Q-N564B Page 27 of 50 ## <LTE Band 4> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low | Power
Middle | Power
High | | | |---------------|------------|----------|-----------|--------------|-----------------|---------------|---------------|------| | ביי וויוו ובי | Modulation | ND 0120 | ND Ollset | Ch. / Freq. | Ch. / Freq. | Ch. / Freq. | Tune-up limit | MPR | | | Cha | nnel | | 20050 | 20175 | 20300 | (dBm) | (dB) | | | Frequenc | cy (MHz) | | 1720 | 1732.5 | 1745 | | | | 20 | QPSK | 1 | 0 | 22.75 | 22.51 | 22.76 | | | | 20 | QPSK | 1 | 49 | 21.78 | 21.85 | 21.53 | 23.5 | 0 | | 20 | QPSK | 1 | 99 | 21.97 | 22.07 | 22.36 | | | | 20 | QPSK | 50 | 0 | 21.55 | 21.50 | 21.37 | | | | 20 | QPSK | 50 | 24 | 21.11 | 21.10 | 20.67 | | | | 20 | QPSK | 50 | 50 | 21.01 | 21.19 | 20.62 | 22.5 | 1 | | 20 | QPSK | 100 | 0 | 21.33 | 21.38 | 20.69 | | | | 20 | 16QAM | 1 | 0 | 22.03 | 21.89 | 20.93 | | | | 20 | 16QAM | 1 | 49 | 21.27 | 21.29 | 20.91 | 22.5 | 1 | | 20 | 16QAM | 1 | 99 | 21.41 | 21.54 | 20.93 | | | | 20 | 16QAM | 50 | 0 | 20.45 | 20.40 | 20.19 | | | | 20 | 16QAM | 50 | 24 | 20.19 | 20.18 | 20.12 | | | | 20 | 16QAM | 50 | 50 | 20.14 | 20.12 | 20.20 | 21.5 | 2 | | 20 | 16QAM | 100 | 0 | 20.22 | 20.23 | 20.15 | | | | | Cha | nnel | | 20025 | 20175 | 20325 | Tune-up limit | MPR | | | Frequenc | cy (MHz) | | 1717.5 | 1732.5 | 1747.5 | (dBm) | (dB) | | 15 | QPSK | 1 | 0 | 22.76 | 22.39 | 22.57 | | | | 15 | QPSK | 1 | 37 | 22.16 | 22.02 | 21.88 | 23.5 | 0 | | 15 | QPSK | 1 | 74 | 22.10 | 22.29 | 22.18 | 1 | | | 15 | QPSK | 36 | 0 | 21.52 | 21.39 | 21.33 | | | | 15 | QPSK | 36 | 20 | 21.32 | 21.09 | 21.18 | | | | 15 | QPSK | 36 | 39 | 21.24 | 21.18 | 21.16 | 22.5 | 1 | | 15 | QPSK | 75 | 0 | 21.48 | 21.28 | 21.37 | | | | 15 | 16QAM | 1 | 0 | 22.19 | 21.85 | 21.85 | | | | 15 | 16QAM | 1 | 37 | 21.56 | 21.31 | 21.51 | 22.5 | 1 | | 15 | 16QAM | 1 | 74 | 21.46 | 21.57 | 21.40 | | | | 15 | 16QAM | 36 | 0 | 20.45 | 20.36 | 20.38 | | | | 15 | 16QAM | 36 | 20 | 20.30 | 20.21 | 20.27 | | | | 15 | 16QAM | 36 | 39 | 20.14 | 20.20 | 20.18 | 21.5 | 2 | | 15 | 16QAM | 75 | 0 | 20.37 | 20.23 | 20.27 | | | | | Cha | nnel | | 20000 | 20175 | 20350 | Tune-up limit | MPR | | | Frequenc | cy (MHz) | | 1715 | 1732.5 | 1750 | (dBm) | (dB) | | 10 | QPSK | 1 | 0 | 22.65 | 22.38 | 22.42 | | | | 10 | QPSK | 1 | 25 | 22.11 | 22.04 | 22.07 | 23.5 | 0 | | 10 | QPSK | 1 | 49 | 22.32 | 22.17 | 22.19 | | | | 10 | QPSK | 25 | 0 | 21.40 | 21.35 | 21.29 | | | | 10 | QPSK | 25 | 12 | 21.17 | 21.23 | 21.21 | 00.5 | | | 10 | QPSK | 25 | 25 | 21.24 | 21.13 | 21.24 | 22.5 | 1 | | 10 | QPSK | 50 | 0 | 21.25 | 21.25 | 21.27 | | | | 10 | 16QAM | 1 | 0 | 21.93 | 21.71 | 21.80 | | | | 10 | 16QAM | 1 | 25 | 21.48 | 21.42 | 21.39 | 22.5 | 1 | | 10 | 16QAM | 1 | 49 | 21.60 | 21.42 | 21.54 | | | | 10 | 16QAM | 25 | 0 | 20.40 | 20.26 | 20.28 | | | | 10 | 16QAM | 25 | 12 | 20.18 | 20.16 | 20.24 | 04.5 | _ | | 10 | 16QAM | 25 | 25 | 20.24 | 20.15 | 20.13 | 21.5 | 2 | | 10 | 16QAM | 50 | 0 | 20.22 | 20.16 | 20.22 | | | Report No. : FA722135-07 TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version. : 170509 FCC ID: P4Q-N564B Page 28 of 50 | | Chai | nnel | | 19975 | 20175 | 20375 | Tune-up limit | MPR | |---|----------|----------|----|--------|--------|--------|---------------|------| | | Frequenc | cy (MHz) | | 1712.5 | 1732.5 | 1752.5 | (dBm) | (dB) | | | QPSK | 1 | 0 | 22.36 | 22.27 | 22.14 | | | | | QPSK | 1 | 12 | 22.32 | 22.08 | 22.09 | 23.5 | 0 | | | QPSK | 1 | 24 | 22.21 | 22.09 | 22.10 | | | | | QPSK | 12 | 0 | 21.35 | 21.25 | 21.25 | | | | | QPSK | 12 | 7 | 21.23 | 21.17 | 21.21 | 22.5 | 1 | | | QPSK | 12 | 13 | 21.15 | 21.13 | 21.17 | 22.5 | ' | | | QPSK | 25 | 0 | 21.30 | 21.16 | 21.26 | | | | | 16QAM | 1 | 0 | 21.70 | 21.61 | 21.55 | | | | | 16QAM | 1 | 12 | 21.47 | 21.59 | 21.53 | 22.5 | 1 | | | 16QAM | 1 | 24 | 21.43 | 21.30 | 21.29 | | | | | 16QAM | 12 | 0 | 20.33 | 20.21 | 20.25 | | | | | 16QAM | 12 | 7 | 20.23 | 20.17 | 20.23 | 24.5 | 2 | | | 16QAM | 12 | 13 | 20.13 | 20.12 | 20.17 | 21.5 | 2 | | | 16QAM | 25 | 0 | 20.31 | 20.23 | 20.21 | | | | | Chai | nnel | | 19965 | 20175 | 20385 | Tune-up limit | MPR | | | Frequenc | cy (MHz) | | 1711.5 | 1732.5 | 1753.5 | (dBm) | (dB) | | | QPSK | 1 | 0 | 22.27 | 22.05 | 22.12 | | | | | QPSK | 1 | 8 | 22.22 | 22.09 | 22.06 | 23.5 | 0 | | | QPSK | 1 | 14 | 22.19 | 21.95 | 21.99 | | | | | QPSK | 8 | 0 | 21.24 | 21.14 | 21.14 | | | | | QPSK | 8 | 4 | 21.24 | 21.15 | 21.10 | 00.5 | , | | | QPSK | 8 | 7 | 21.27 | 21.00 | 21.15 | 22.5 | 1 | | | QPSK | 15 | 0 | 21.29 | 21.10 | 21.15 | | | | | 16QAM | 1 | 0 | 21.67 | 21.38 | 21.46 | | | | | 16QAM | 1 | 8 | 21.55 | 21.27 |
21.38 | 22.5 | 1 | | | 16QAM | 1 | 14 | 21.44 | 21.22 | 21.41 | | | | | 16QAM | 8 | 0 | 20.32 | 20.13 | 20.27 | | | | | 16QAM | 8 | 4 | 20.36 | 20.14 | 20.24 | 04.5 | 0 | | | 16QAM | 8 | 7 | 20.36 | 20.01 | 20.26 | 21.5 | 2 | | | 16QAM | 15 | 0 | 20.37 | 20.12 | 20.21 | | | | | Chai | nnel | | 19957 | 20175 | 20393 | Tune-up limit | MPR | | | Frequenc | cy (MHz) | | 1710.7 | 1732.5 | 1754.3 | (dBm) | (dB) | | 4 | QPSK | 1 | 0 | 22.30 | 22.16 | 21.94 | | | | 4 | QPSK | 1 | 3 | 22.12 | 22.11 | 22.11 | | | | 4 | QPSK | 1 | 5 | 22.21 | 22.04 | 22.21 | 23.5 | 0 | | 4 | QPSK | 3 | 0 | 22.26 | 22.12 | 22.13 | 23.5 | U | | 4 | QPSK | 3 | 1 | 22.25 | 22.10 | 22.19 | | | | 4 | QPSK | 3 | 3 | 22.22 | 22.06 | 22.05 | | | | 4 | QPSK | 6 | 0 | 21.26 | 21.11 | 21.13 | 22.5 | 1 | | 4 | 16QAM | 1 | 0 | 21.56 | 21.44 | 21.53 | | | | 4 | 16QAM | 1 | 3 | 21.61 | 21.47 | 21.44 | | | | 4 | 16QAM | 1 | 5 | 21.62 | 21.43 | 21.53 | 00.5 | | | 4 | 16QAM | 3 | 0 | 21.43 | 21.23 | 21.23 | 22.5 | 1 | | 4 | 16QAM | 3 | 1 | 21.31 | 21.22 | 21.34 | | | | 4 | 16QAM | 3 | 3 | 21.36 | 21.11 | 21.19 | | | | 4 | 16QAM | 6 | 0 | 20.42 | 20.15 | 20.29 | 21.5 | 2 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version. : 170509 FCC ID: P4Q-N564B Page 29 of 50 ## <LTE Band 5> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low | Power
Middle | Power
High | | | |---------------|------------|----------|-----------|--------------|-----------------|---------------|---------------|------| | DVV [IVII IZ] | Modulation | ND Size | ND Ollset | Ch. / Freq. | Ch. / Freq. | Ch. / Freq. | Tune-up limit | MPR | | | Cha | nnel | | 20450 | 20525 | 20600 | (dBm) | (dB) | | | Frequenc | cy (MHz) | | 829 | 836.5 | 844 | 1 | | | 10 | QPSK | 1 | 0 | 21.50 | 21.64 | 21.53 | | | | 10 | QPSK | 1 | 25 | 21.49 | 21.43 | 21.30 | 23 | 0 | | 10 | QPSK | 1 | 49 | 21.35 | 21.28 | 21.28 | | | | 10 | QPSK | 25 | 0 | 20.45 | 20.52 | 20.42 | | | | 10 | QPSK | 25 | 12 | 20.55 | 20.44 | 20.32 | 1 | | | 10 | QPSK | 25 | 25 | 20.45 | 20.37 | 20.36 | 22 | 1 | | 10 | QPSK | 50 | 0 | 20.42 | 20.42 | 20.33 | | | | 10 | 16QAM | 1 | 0 | 20.72 | 20.77 | 20.76 | | | | 10 | 16QAM | 1 | 25 | 20.81 | 20.77 | 20.74 | 22 | 1 | | 10 | 16QAM | 1 | 49 | 20.73 | 20.61 | 20.55 | | | | 10 | 16QAM | 25 | 0 | 19.47 | 19.51 | 19.45 | | | | 10 | 16QAM | 25 | 12 | 19.50 | 19.45 | 19.30 | 1 | | | 10 | 16QAM | 25 | 25 | 19.47 | 19.33 | 19.29 | 21 | 2 | | 10 | 16QAM | 50 | 0 | 19.52 | 19.46 | 19.38 | | | | | Cha | nnel | | 20425 | 20525 | 20625 | Tune-up limit | MPR | | | Frequenc | cy (MHz) | | 826.5 | 836.5 | 846.5 | (dBm) | (dB) | | 5 | QPSK | 1 | 0 | 21.40 | 21.48 | 21.36 | | | | 5 | QPSK | 1 | 12 | 21.51 | 21.43 | 21.45 | 23 | 0 | | 5 | QPSK | 1 | 24 | 21.41 | 21.36 | 21.35 | | | | 5 | QPSK | 12 | 0 | 20.48 | 20.51 | 20.39 | | | | 5 | QPSK | 12 | 7 | 20.53 | 20.44 | 20.37 | 20 | 4 | | 5 | QPSK | 12 | 13 | 20.62 | 20.35 | 20.37 | 22 | 1 | | 5 | QPSK | 25 | 0 | 20.44 | 20.37 | 20.41 | | | | 5 | 16QAM | 1 | 0 | 20.75 | 20.76 | 20.73 | | | | 5 | 16QAM | 1 | 12 | 20.70 | 20.73 | 20.77 | 22 | 1 | | 5 | 16QAM | 1 | 24 | 20.65 | 20.66 | 20.73 | | | | 5 | 16QAM | 12 | 0 | 19.40 | 19.58 | 19.45 | | | | 5 | 16QAM | 12 | 7 | 19.51 | 19.48 | 19.39 | 21 | 2 | | 5 | 16QAM | 12 | 13 | 19.53 | 19.42 | 19.48 | 21 | 2 | | 5 | 16QAM | 25 | 0 | 19.46 | 19.42 | 19.43 | | | | | Cha | nnel | | 20415 | 20525 | 20635 | Tune-up limit | MPR | | | Frequenc | cy (MHz) | | 825.5 | 836.5 | 847.5 | (dBm) | (dB) | | 3 | QPSK | 1 | 0 | 21.42 | 21.53 | 21.43 | | | | 3 | QPSK | 1 | 8 | 21.49 | 21.52 | 21.48 | 23 | 0 | | 3 | QPSK | 1 | 14 | 21.44 | 21.39 | 21.43 | | | | 3 | QPSK | 8 | 0 | 20.45 | 20.57 | 20.40 | | | | 3 | QPSK | 8 | 4 | 20.42 | 20.41 | 20.49 | 22 | 1 | | 3 | QPSK | 8 | 7 | 20.36 | 20.38 | 20.48 | | | | 3 | QPSK | 15 | 0 | 20.39 | 20.51 | 20.50 | | | | 3 | 16QAM | 1 | 0 | 20.71 | 20.80 | 20.63 | | | | 3 | 16QAM | 1 | 8 | 20.79 | 20.78 | 20.80 | 22 | 1 | | 3 | 16QAM | 1 | 14 | 20.66 | 20.61 | 20.70 | | | | 3 | 16QAM | 8 | 0 | 19.47 | 19.61 | 19.51 | | | | 3 | 16QAM | 8 | 4 | 19.48 | 19.56 | 19.53 | 21 | 2 | | 3 | 16QAM | 8 | 7 | 19.48 | 19.48 | 19.53 | | - | | 3 | 16QAM | 15 | 0 | 19.46 | 19.53 | 19.49 | | | Report No. : FA722135-07 TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version. : 170509 FCC ID: P4Q-N564B Page 30 of 50 | ORTON LA | . FC | CC SAR Te | st Report | <u>.</u> | | | | Report No. | : FA722135-07 | |----------|------|-----------|-----------|----------|-------|-------|-------|---------------|---------------| | | | Char | nnel | | 20407 | 20525 | 20643 | Tune-up limit | MPR | | | | Frequenc | cy (MHz) | | 824.7 | 836.5 | 848.3 | (dBm) | (dB) | | 1. | 4 | QPSK | 1 | 0 | 21.49 | 21.50 | 21.50 | | | | 1. | 4 | QPSK | 1 | 3 | 21.45 | 21.50 | 21.50 | | | | 1. | 4 | QPSK 1 | | 5 | 21.45 | 21.52 | 21.56 | 23 | 0 | | 1. | 4 | QPSK 3 | | 0 | 21.48 | 21.46 | 21.48 | 23 | 0 | | 1. | 4 | QPSK | 3 | 1 | 21.41 | 21.45 | 21.52 | | | | 1. | 4 | QPSK | 3 | 3 | 21.50 | 21.49 | 21.52 | | | | 1. | 4 | QPSK | 6 | 0 | 20.44 | 20.42 | 20.53 | 22 | 1 | | 1. | 4 | 16QAM | 1 | 0 | 20.83 | 20.93 | 20.84 | | | | 1. | 4 | 16QAM | 1 | 3 | 20.90 | 20.93 | 20.85 | | | | 1. | 4 | 16QAM | 1 | 5 | 20.72 | 20.83 | 20.91 | 22 | 1 | | 1. | 4 | 16QAM | 3 | 0 | 20.53 | 20.62 | 20.49 | 22 | ' | | 1. | 4 | 16QAM | 3 | 1 | 20.44 | 20.56 | 20.52 | | | | 1. | 4 | 16QAM | 3 | 3 | 20.52 | 20.57 | 20.56 | | | | 1. | 4 | 16QAM | 6 | 0 | 19.47 | 19.59 | 19.55 | 21 | 2 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version. : 170509 FCC ID: P4Q-N564B Page 31 of 50 ## <LTE Band 12> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low | Power
Middle | Power
High | | | |-------------|------------|----------|-----------|--------------|-----------------|---------------|---------------|------| | D * * [* | Modulation | 110 0120 | NB Olloct | Ch. / Freq. | Ch. / Freq. | Ch. / Freq. | Tune-up limit | MPR | | | Chai | nnel | | 23060 | 23095 | 23130 | (dBm) | (dB) | | | Frequenc | cy (MHz) | | 704 | 707.5 | 711 | | | | 10 | QPSK | 1 | 0 | 21.64 | 21.75 | 21.65 | | | | 10 | QPSK | 1 | 25 | 21.38 | 21.57 | 21.48 | 23 | 0 | | 10 | QPSK | 1 | 49 | 21.46 | 21.33 | 21.56 | | | | 10 | QPSK | 25 | 0 | 20.53 | 20.66 | 20.57 | | | | 10 | QPSK | 25 | 12 | 20.44 | 20.52 | 20.46 | | | | 10 | QPSK | 25 | 25 | 20.43 | 20.42 | 20.56 | 22 | 1 | | 10 | QPSK | 50 | 0 | 20.43 | 20.62 | 20.45 | | | | 10 | 16QAM | 1 | 0 | 20.84 | 20.88 | 20.98 | | | | 10 | 16QAM | 1 | 25 | 20.70 | 20.82 | 20.68 | 22 | 1 | | 10 | 16QAM | 1 | 49 | 20.76 | 20.64 | 20.88 | | | | 10 | 16QAM | 25 | 0 | 19.70 | 19.57 | 19.65 | | | | 10 | 16QAM | 25 | 12 | 19.56 | 19.58 | 19.52 | | | | 10 | 16QAM | 25 | 25 | 19.48 | 19.52 | 19.50 | 21 | 2 | | 10 | 16QAM | 50 | 0 | 19.59 | 19.55 | 19.44 | | | | | Chai | nnel | | 23035 | 23095 | 23155 | Tune-up limit | MPR | | | Frequenc | cy (MHz) | | 701.5 | 707.5 | 713.5 | (dBm) | (dB) | | 5 | QPSK | 1 | 0 | 21.52 | 21.44 | 21.53 | | | | 5 | QPSK | 1 | 12 | 21.59 | 21.59 | 21.53 | 23 | 0 | | 5 | QPSK | 1 | 24 | 21.44 | 21.37 | 21.57 | | | | 5 | QPSK | 12 | 0 | 20.61 | 20.50 | 20.38 | | | | 5 | QPSK | 12 | 7 | 20.52 | 20.48 | 20.51 | | | | 5 | QPSK | 12 | 13 | 20.50 | 20.47 | 20.49 | 22 | 1 | | 5 | QPSK | 25 | 0 | 20.52 | 20.55 | 20.51 | | | | 5 | 16QAM | 1 | 0 | 20.74 | 20.62 | 20.69 | | | | 5 | 16QAM | 1 | 12 | 20.71 | 20.76 | 20.75 | 22 | 1 | | 5 | 16QAM | 1 | 24 | 20.68 | 20.65 | 20.85 | | · | | 5 | 16QAM | 12 | 0 | 19.56 | 19.56 | 19.48 | | | | 5 | 16QAM | 12 | 7 | 19.60 | 19.60 | 19.54 | | | | 5 | 16QAM | 12 | 13 | 19.53 | 19.60 | 19.55 | 21 | 2 | | 5 | 16QAM | 25 | 0 | 19.57 | 19.54 | 19.59 | | | | | Chai | | | 23025 | 23095 | 23165 | Tune-up limit | MPR | | | Frequenc | | | 700.5 | 707.5 | 714.5 | (dBm) | (dB) | | 3 | QPSK | 1 | 0 | 21.56 | 21.58 | 21.51 | | | | 3 | QPSK | 1 | 8 | 21.59 | 21.63 | 21.60 | 23 | 0 | | 3 | QPSK | 1 | 14 | 21.51 | 21.46 | 21.63 | | · | | 3 | QPSK | 8 | 0 | 20.53 | 20.52 | 20.52 | | | | 3 | QPSK | 8 | 4 | 20.61 | 20.50 | 20.59 | | | | 3 | QPSK | 8 | 7 | 20.59 | 20.45 | 20.51 | 22 | 1 | | 3 | QPSK | 15 | 0 | 20.53 | 20.53 | 20.51 | | | | 3 | 16QAM | 1 | 0 | 20.78 | 20.69 | 20.71 | | | | 3 | 16QAM | 1 | 8 | 20.78 | 20.79 | 20.74 | 22 | 1 | | 3 | 16QAM | 1 | 14 | 20.69 | 20.72 | 20.75 | | | | 3 | 16QAM | 8 | 0 | 19.59 | 19.57 | 19.54 | | | | 3 | 16QAM | 8 | 4 | 19.59 | 19.55 | 19.47 | | | | 3 | 16QAM | 8 | 7 | 19.50 | 19.61 | 19.47 | 21 | 2 | | 3 | 16QAM | 15 | 0 | 19.63 | 19.61 | 19.54 | | | Report No. : FA722135-07 TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version. : 170509 FCC ID: P4Q-N564B Page 32 of 50 | | | | | | | | • | | |-----|----------|----------|---|-------|-------|-------|---------------|------| | | Cha | nnel | | 23017 | 23095 | 23173 | Tune-up limit | MPR | | | Frequenc | cy (MHz) | | 699.7 | 707.5 | 715.3 | (dBm) | (dB) | | 1.4 | QPSK | 1 | 0 | 21.57 | 21.64 | 21.66 | | | | 1.4 | QPSK | 1 | 3 | 21.63 | 21.57 | 21.68 | | | | 1.4 | QPSK | 1 | 5 | 21.68 | 21.57 | 21.66 | 23 | 0 | | 1.4 | QPSK | 3 | 0 | 21.53 | 21.62 | 21.58 | 23 | 0 | | 1.4 | QPSK | 3 | 1 | 21.57 | 21.62 | 21.65 | | | | 1.4 | QPSK | 3 | 3 | 21.62 | 21.65 | 21.65 | | | | 1.4 | QPSK | 6 | 0 | 20.56 | 20.55 | 20.59 | 22 | 1 | | 1.4 | 16QAM | 1 | 0 | 20.86 | 20.89 | 20.88 | | | | 1.4 | 16QAM | 1 | 3 | 20.80 | 20.85 | 20.96 | | | | 1.4 | 16QAM | 1 | 5 | 20.90 | 20.89 | 20.93 | 22 | 4 | | 1.4 | 16QAM | 3 | 0 | 20.61 | 20.63 | 20.63 | 22 | 1 | | 1.4 | 16QAM | 3 | 1 | 20.57 | 20.67 | 20.64 | | | | 1.4 | 16QAM | 3 | 3 | 20.59 | 20.60 | 20.72 | | | | 1.4 | 16QAM | 6 | 0 | 19.62 | 19.66 | 19.57 | 21 | 2 | Report No. : FA722135-07 TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version. : 170509 FCC ID: P4Q-N564B Page 33 of 50 ## **Reduced Power Mode** Report No.: FA722135-07 ## <LTE Band 2> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freg. | Power
High
Ch. /
Freq. | Tune-up limit | MPR | |-----------------|------------|---------|-----------|-----------------------------|--------------------------------|------------------------------|---------------|------| | Channel | | | 18700 | 18900 | 19100 | (dBm) | (dB) | | | Frequency (MHz) | | | | 1860 | 1880 | 1900 | | | | 20 | QPSK | 1 | 0 | 19.15 | 19.36 | 19.66 | | | | 20 | QPSK | 1 | 49 | 18.56 | 18.56 | 18.79 | 20 | 0 | | 20 | QPSK | 1 | 99 | 18.50 | 18.97 | 18.88 | | | | 20 | QPSK | 50 | 0 | 18.10 | 18.17 | 18.52 | 19 | | | 20 | QPSK | 50 | 24 | 17.86 | 17.88 | 18.13 | | 1 | | 20 | QPSK | 50 | 50 | 17.92 | 18.04 | 17.98 | | l | | 20 | QPSK | 100 | 0 | 18.00 | 18.10 | 18.26 | | | | 20 | 16QAM | 1 | 0 | 18.42 | 18.71 | 18.99 | | | | 20 | 16QAM | 1 | 49 | 17.94 | 17.90 | 18.13 | 19 | 1 | | 20 | 16QAM | 1 | 99 | 17.87 | 18.29 | 18.23 | | | | 20 | 16QAM | 50 | 0 | 17.15 | 17.25 | 17.54 | | | | 20 | 16QAM | 50 | 24 | 16.90 | 16.97 | 17.15 | 10 | 2 | | 20 | 16QAM | 50 | 50 | 16.98 | 17.12 | 17.01 | 18 | 2 | | 20 | 16QAM | 100 | 0 | 17.05 | 17.13 | 17.27 | | | | | Cha | nnel | | 18675 | 18900 | 19125 | Tune-up limit | MPR | | Frequency (MHz) | | | | 1857.5 | 1880 | 1902.5 | (dBm) | (dB) | | 15 | QPSK | 1 | 0 | 19.14 | 19.14 | 19.64 | | | | 15 | QPSK | 1 | 37 | 18.77 | 18.73 | 18.84 | 20 | 0 | | 15 | QPSK | 1 | 74 | 18.79 | 18.88 | 19.09 | | | | 15 | QPSK | 36 | 0 | 18.14 | 18.06 | 18.43 | | | | 15 | QPSK | 36 | 20 | 17.88 | 17.87 | 18.02 | 19 | 1 | | 15 | QPSK | 36 | 39 | 17.86 | 17.89 | 18.07 | | | | 15 | QPSK | 75 | 0 | 17.96 | 17.96 | 18.19 | | | | 15 | 16QAM | 1 | 0 | 18.48 | 18.48 | 19.00 | 19 | 1 | | 15 | 16QAM | 1 | 37 | 18.07 | 18.06 | 18.19 | | | | 15 | 16QAM | 1 | 74 | 18.10 | 18.21 | 18.46 | | | | 15 | 16QAM | 36 | 0 | 17.22 | 17.16 | 17.53 | | | | 15 | 16QAM | 36 | 20 | 16.92 | 16.96 | 17.15 | 10 | 2 | | 15 | 16QAM | 36 | 39 | 16.96 | 16.97 | 17.15 | 18 | 2 | | 15 | 16QAM | 75 | 0 | 17.06 | 17.02 | 17.25 | | | | | Cha | nnel | | 18650 | 18900 | 19150 | Tune-up limit | MPR | | Frequency (MHz) | | | | 1855 | 1880 | 1905 | (dBm) | (dB) | | 10 | QPSK | 1 | 0 | 18.99 | 18.98 | 19.28 | | | | 10 | QPSK | 1 | 25 | 18.77 | 18.73 | 18.80 | 20 | 0 | | 10 | QPSK | 1 | 49 | 18.73 | 18.83 | 18.89 | | | | 10 | QPSK | 25 | 0 | 17.97 | 17.96 | 18.11 | 19 | 1 | | 10 | QPSK | 25 | 12 | 17.88 | 17.85 | 17.95 | | | | 10 | QPSK | 25 | 25 | 17.83 | 17.87 | 17.98 | | | | 10 | QPSK | 50 | 0 | 17.94 | 17.93 | 18.04 | | | | 10 | 16QAM | 1 | 0 | 18.33 | 18.34 | 18.62 | 19 | 1 | | 10 | 16QAM | 1 | 25 | 18.13 | 18.10 | 18.18 | | | | 10 | 16QAM | 1 | 49 | 18.09 | 18.21 | 18.25 | | | | 10 | 16QAM | 25 | 0 | 17.06 | 17.08 | 17.22 | 18 | 2 | | 10 | 16QAM | 25 | 12 | 16.96 | 16.97 | 17.04 | | | | 10 | 16QAM | 25 | 25 | 16.90 | 16.99 | 17.08 | | | | 10 | 16QAM | 50 | 0 | 17.01 | 17.04 | 17.13 | | | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version. : 170509 FCC ID: P4Q-N564B Page 34 of 50 | MPR | Tune-up limit | 19175 | 18900 | 18625 | | nel | Chan | | | |------|---------------|--------|-------|--------|-----------------|---------------|----------|-----|--| | (dB) | (dBm) | 1907.5 | 1880 | 1852.5 | Frequency (MHz) | | | | | | | | 18.96 | 18.79 | 18.80 | 0 | 1 | QPSK | 5 | | | 0 | 20 | 18.84 | 18.74 | 18.68 | 12 | 1 | QPSK | 5 | | | | | 18.81 | 18.69 | 18.74 | 24 | 1 | QPSK | 5 | | | 1 | | 18.03 | 17.93 | 17.97 | 0 | 12 | QPSK | 5 | | | | 19 | 17.97 | 17.87 | 17.86 | 7 | 12 | QPSK | 5 | | | | | 18.01 | 17.87 | 17.84 | 13 | 12 | QPSK | 5 | | | | | 17.96 | 17.87 | 17.88 | 0 | 25 | QPSK | 5 | | | 1 | | 18.28 | 18.18 | 18.21 | 0 | 1 | 16QAM | 5 | | | | 19 | 18.21 | 18.12 | 18.15 | 12 | 1 | 16QAM | 5 | | | | | 18.12 | 18.06 | 18.10 | 24 | 1 | 16QAM | 5 | | | 2 | | 17.10 | 17.03 | 17.06 | 0 | 12 | 16QAM | 5 | | | | | 17.07 | 16.99 | 16.95 | 7 | 12 | 16QAM | 5 | | | | 18 | 17.04 | 16.96 | 16.91 | 13 | 12 | 16QAM | 5 | | | | | 17.05 | 16.98 | 16.94 | 0 | 25 | 16QAM | 5 | | | MPR | Tune-up limit | 19185 | 18900 | 18615 | Channel | | | | | | (dB) | (dBm) | 1908.5 | 1880 | 1851.5 | Frequency (MHz) | | | | | | 0 | | 18.87 | 18.79 | 18.75 | 0 | 1 | QPSK | 3 | | | | 20 | 18.85 | 18.74 | 18.73 | 8 | 1 | QPSK | 3 | | | | | 18.77 | 18.73 | 18.64 | 14 | 1 | QPSK | 3 | | | 1 | | 18.01 | 17.89 | 17.86 | 0 | 8 | QPSK | 3 | | | | 19 | 18.04 | 17.86 | 17.89 | 4 | 8 | QPSK | 3 | | | | | 17.98 | 17.86 | 17.85 | 7 | 8 | QPSK | 3 | | | | | 17.96 | 17.87 | 17.88 | 0 | 15 | QPSK | 3 | | | 1 | | 18.24 | 18.09 | 18.06 | 0 | 1 | 16QAM | 3 | | | | 19 | 18.20 | 18.07 | 18.05 | 8 | 1 | 16QAM | 3 | | | | | 18.09 | 18.03 | 17.98 | 14 | 1 | 16QAM | 3 | | | 2 | | 17.09 | 16.99 | 16.94 | 0 | 8 | 16QAM | 3 | | | | | 17.07 | 16.94 | 16.93 | 4 | 8 | 16QAM | 3 | | | | 18 | 17.06 | 16.97 | 16.93 | 7 | 8 | 16QAM | 3 | | | | | 17.05 | 17.00 | 16.97 | 0 | 15 | 16QAM | 3 | | | MPR | Tune-up limit | 19193 | 18900 | 18607 | Channel | | | | | | (dB) | (dBm) | 1909.3 | 1880 | 1850.7 | | | Frequenc | | | | 0 | | 18.87 | 18.77 | 18.79 | 0 | 1 | QPSK | 1.4 | | | | | 18.81 | 18.75 | 18.73 | 3 | 1 | QPSK | 1.4 | | | | | 18.80 | 18.78 | 18.73 | 5 | 1 | QPSK | 1.4 | | | | 20 | 18.91 | 18.84 | 18.80 | 0 | 3 | QPSK | 1.4 | | | | | 18.88 | 18.82 | 18.75 | 1 | 3 | QPSK | 1.4 | | | | | 18.88 | 18.84 | 18.76 | 3 | 3 | QPSK | 1.4 | | | 1 | 19 | 17.93 | 17.90 | 17.80 | 0 | 6 | QPSK | 1.4 | | | 1 | | 18.24 | 18.15 | 18.08 | 0 | 1 | 16QAM | 1.4 | | | | | 18.24 | 18.17 | 18.10 | 3 | <u>·</u>
1 | 16QAM | 1.4 | | | | 19 | 18.17 | 18.11 | 18.05 | 5 | <u>·</u>
1 | 16QAM | 1.4 | | | | | 18.08 | 17.97 | 17.94 | 0 | 3 | 16QAM | 1.4 | | | | | 18.08 | 17.93 | 17.93 | 1 | 3 | 16QAM | 1.4 | | | | | 18.03 | 17.95 | 17.89 | 3 | 3 | 16QAM | 1.4 | | | 2 | 18 | 17.09 | 16.99 | 16.95 | 0 | 6 | 16QAM | 1.4 | | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version. : 170509 FCC ID: P4Q-N564B Page 35 of 50 #### <LTE Band 4> | BW [MHz] | Hz] Modulation RB | DD Ciro | DD Offeet | Power
Low | Power
Middle | Power | | MPR | |-------------|-------------------|---------|-----------|--------------|-----------------|---------------------|------------------------|----------| | DVV [IVITZ] | Modulation | RB Size | RB Offset | Ch. / Freq. | Ch. / Freq. | High
Ch. / Freq. | Tune-up limit | | | Channel | | | | 20050 | 20175 | 20300 | (dBm) | (dB) | | | Frequenc | | | 1720 | 1732.5 | 1745 | 1 | | | 20 | QPSK | 1 | 0 | 18.52 | 18.56 | 18.66 | | | | 20 | QPSK | 1 | 49 | 18.00 | 17.97 | 17.93 | 19 | 0 | | 20 | QPSK | 1 | 99 | 17.78 | 18.07 | 17.96 | | | | 20 | QPSK | 50 | 0 | 17.41 | 17.49 | 17.51 | 18 | 1 | | 20 | QPSK | 50 | 24 | 17.10 | 17.21 | 17.13 | | | | 20 | QPSK | 50 | 50 | 16.88 | 17.21 | 17.20 | | | | 20 | QPSK | 100 | 0 | 17.23 | 17.40 | 17.35 | 1 | | | 20 | 16QAM | 1 | 0 | 17.92 | 17.94 | 18.00 | | | | 20 | 16QAM | 1 | 49 | 17.35 | 17.38 | 17.34 | 18 | 1 | | 20 | 16QAM | 1 | 99 | 17.23 | 17.44 | 17.40 | - " | • | | 20 | 16QAM | 50 | 0 | 16.47 | 16.52 | 16.57 | | | | 20 | 16QAM | 50 | 24 | 16.17 | 16.22 | 16.16 | - | 2 | | 20 | 16QAM | 50 | 50 | 15.94 | 16.24 | 16.22 | 17 | | | 20 | 16QAM | 100 | 0 | 16.25 | 16.39 | 16.34 | 1 | | | | Chai | | | 20025 | 20175 | 20325 | Tune-up limit | MPR | | | Frequenc | | | 1717.5 | 1732.5 | 1747.5 | (dBm) | (dB) | | 15 | QPSK | 1 | 0 | 18.50 | 18.31 | 18.54 | (dDIII) | 0 | | 15 | QPSK | 1 | 37 | 18.16 | 18.08 | 18.04 | 19 | | | 15 | QPSK | 1 | 74 | 18.15 | 18.00 | 18.01 | - " | | | 15 | QPSK | 36 | 0 | 17.52 | 17.40 | 17.39 | | 1 | | 15 | QPSK | 36 | 20 | 17.32 | 17.40 | 17.14 | 18 | | | 15 | QPSK | 36 | 39 | 17.23 | 17.16 | 17.15 | | | | 15 | QPSK | 75 | 0 | 17.50 | 17.00 | 17.13 | - | | | 15 | 16QAM | 1 | 0 | 18.00 | 17.68 | 17.24 | | | | 15 | 16QAM | 1 | 37 | 17.61 | 17.50 | 17.43 | 18 | | | 15 | 16QAM | 1 | 74 | 17.55 | 17.43 | 17.45 | - 10 | | | 15 | 16QAM | 36 | 0 | 16.60 | 16.45 | 16.45 | | | | 15 | 16QAM | 36 | 20 | 16.39 | 16.21 | 16.19 | 17 | 2
MPR | | 15 | 16QAM | 36 | 39 | 16.24 | 16.10 | 16.18 | | | | 15 | 16QAM | 75 | 0 | 16.49 | 16.30 | 16.26 | | | | 10 | Chai | | 0 | 20000 | 20175 | 20350 | | | | | Frequenc | | | 1715 | 1732.5 | 1750 | Tune-up limit
(dBm) | (dB) | | 10 | QPSK | 1 | 0 | 18.54 | 18.23 | 18.38 | | (3.2) | | 10 | QPSK | 1 | 25 | 18.06 | 18.06 | 18.05 | 19 | 0 | | 10 | QPSK | 1 | 49 | 18.17 | 17.98 | 18.05 | | | | 10 | QPSK | 25 | 0 | 17.35 | 17.33 | 17.22 | - 18 | 1 | | 10 | QPSK | 25 | 12 | 17.17 | 17.14 | 17.12 | | | | 10 | QPSK | 25 | 25 | 17.17 | 17.14 | 17.12 | | | | 10 | QPSK | 50 | 0 | 17.26 | 17.03 | 17.17 | | | | 10 | 16QAM | 1 | 0 | 17.20 | 17.13 | 17.68 | 18 | 1 | | 10 | 16QAM | 1 | 25 | 17.57 | 17.52 | 17.46 | | | | 10 | 16QAM | 1 | 49 | 17.61 | 17.32 | 17.35 | | | | 10 | 16QAM | 25 | 0 | 16.44 | 16.40 | 16.28 | | | | 10 | 16QAM | 25 | 12 | 16.25 | 16.16 | 16.22 | 17 | | | 10 | 16QAM | 25 | 25 | 16.31 | 16.05 | 16.19 | | 2 | | 10 | 16QAM | 50 | 0 | 16.30 | 16.03 | 16.19 | | | Report No. : FA722135-07 TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version. : 170509 FCC ID: P4Q-N564B | MPR | Tune-up limit | 20375 | 20175 | 19975 | Channel | | | | | | | | |------|---------------|--------|--------|--------|---------|---------|----------|-----|--|--|--|--| | (dB) | (dBm) | 1752.5 | 1732.5 | 1712.5 | | y (MHz) | Frequenc | | | | | | | | | 18.15 | 18.28 | 18.25 | 0 | 1 | QPSK | 5 | | | | | | 0 | 19 | 18.05 | 18.04 | 18.12 | 12 | 1 | QPSK | 5 | | | | | | | | 17.98 | 17.93 | 18.01 | 24 | 1 | QPSK | 5 | | | | | | | | 17.21 | 17.19 | 17.26 | 0 | 12 | QPSK | 5 | | | | | | | 40 | 17.11 | 17.09 | 17.21 | 7 | 12 | QPSK | 5 | | | | | | 1 | 18 | 17.09 | 17.03 | 17.15 | 13 | 12 | QPSK | 5 | | | | | | | | 17.13 | 17.14 | 17.23 | 0 | 25 | QPSK | 5 | | | | | | | | 17.58 | 17.60 | 17.67 | 0 | 1 | 16QAM | 5 | | | | | | 1 | 18 | 17.44 | 17.50 | 17.55 | 12 | 1 | 16QAM | 5 | | | | | | | | 17.40 | 17.33 | 17.42 | 24 | 1 | 16QAM | 5 | | | | | | | | 16.30 | 16.26 | 16.38 | 0 | 12 | 16QAM | 5 | | | | | | 0 | 47 | 16.19 | 16.17 | 16.30 | 7 | 12 | 16QAM | 5 | | | | | | 2 | 17 | 16.16 | 16.11 |
16.23 | 13 | 12 | 16QAM | 5 | | | | | | | | 16.21 | 16.19 | 16.33 | 0 | 25 | 16QAM | 5 | | | | | | MPR | Tune-up limit | 20385 | 20175 | 19965 | | nnel | Char | | | | | | | (dB) | (dBm) | 1753.5 | 1732.5 | 1711.5 | | y (MHz) | Frequenc | | | | | | | | | 17.99 | 18.13 | 18.24 | 0 | 1 | QPSK | 3 | | | | | | 0 | 19 | 18.15 | 18.09 | 18.16 | 8 | 1 | QPSK | 3 | | | | | | | | 18.35 | 17.97 | 18.14 | 14 | 1 | QPSK | 3 | | | | | | | | 17.16 | 17.20 | 17.24 | 0 | 8 | QPSK | 3 | | | | | | 4 | 40 | 17.39 | 17.18 | 17.20 | 4 | 8 | QPSK | 3 | | | | | | 1 | 18 | 17.05 | 17.05 | 17.19 | 7 | 8 | QPSK | 3 | | | | | | | | 16.71 | 17.13 | 17.20 | 0 | 15 | QPSK | 3 | | | | | | | | 17.55 | 17.42 | 17.60 | 0 | 1 | 16QAM | 3 | | | | | | 1 | 18 | 17.42 | 17.41 | 17.51 | 8 | 1 | 16QAM | 3 | | | | | | | | 17.36 | 17.27 | 17.46 | 14 | 1 | 16QAM | 3 | | | | | | | | 16.23 | 16.21 | 16.33 | 0 | 8 | 16QAM | 3 | | | | | | 2 | 17 | 16.11 | 16.17 | 16.30 | 4 | 8 | 16QAM | 3 | | | | | | 2 | 17 | 16.14 | 16.11 | 16.31 | 7 | 8 | 16QAM | 3 | | | | | | | | 16.15 | 16.21 | 16.37 | 0 | 15 | 16QAM | 3 | | | | | | MPR | Tune-up limit | 20393 | 20175 | 19957 | | nnel | Char | | | | | | | (dB) | (dBm) | 1754.3 | 1732.5 | 1710.7 | | y (MHz) | Frequenc | | | | | | | | | 18.14 | 18.13 | 18.24 | 0 | 1 | QPSK | 1.4 | | | | | | | | 18.07 | 18.09 | 18.13 | 3 | 1 | QPSK | 1.4 | | | | | | 0 | 19 | 18.13 | 18.06 | 18.18 | 5 | 1 | QPSK | 1.4 | | | | | | U | 19 | 18.20 | 18.08 | 18.25 | 0 | 3 | QPSK | 1.4 | | | | | | | | 18.16 | 18.07 | 18.28 | 1 | 3 | QPSK | 1.4 | | | | | | | | 18.49 | 18.08 | 18.12 | 3 | 3 | QPSK | 1.4 | | | | | | 1 | 18 | 17.43 | 17.12 | 17.20 | 0 | 6 | QPSK | 1.4 | | | | | | | | 17.42 | 17.50 | 17.62 | 0 | 1 | 16QAM | 1.4 | | | | | | | | 17.38 | 17.52 | 17.63 | 3 | 1 | 16QAM | 1.4 | | | | | | 4 | 19 | 17.39 | 17.45 | 17.56 | 5 | 1 | 16QAM | 1.4 | | | | | | 1 | 18 | 17.33 | 17.26 | 17.40 | 0 | 3 | 16QAM | 1.4 | | | | | | | | 17.25 | 17.28 | 17.39 | 1 | 3 | 16QAM | 1.4 | | | | | | | | 17.19 | 17.25 | 17.33 | 3 | 3 | 16QAM | 1.4 | | | | | | 2 | 17 | 16.22 | 16.26 | 16.33 | 0 | 6 | 16QAM | 1.4 | | | | | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version. : 170509 FCC ID: P4Q-N564B Page 37 of 50 ### <WLAN Conducted Power> #### **General Note:** 1. Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions. Report No.: FA722135-07 - 2. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s). - 3. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band. - 4. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following: - a. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested. - c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. FCC ID : P4Q-N564B Page 38 of 50 Form version. : 170509 ## <2.4GHz WLAN> | | Mode | Channel | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | | | |---------------|----------------------|---------|---------------------|------------------------|------------------|--------------|--|--| | | | 1 | 2412 | 15.30 | 16.50 | | | | | | 802.11b 1Mbps | 6 | 2437 | 15.32 | 16.50 | 97.14 | | | | 2.4GHz WLAN | | 11 | 11 2462 15.45 16.50 | | | | | | | 2.40112 WLAIN | 802.11g 6Mbps | 1 | 2412 | 15.30 | 16.50 | | | | | | | 6 | 2437 | 15.74 | 16.50 | 86.08 | | | | | | 11 | 2462 | 14.03 | 14.50 | | | | | | 000 44 11700 | 1 | 2412 | 14.29 | 14.50 | | | | | | 802.11n-HT20
MCS0 | 6 | 2437 | 16.17 | 16.50 | 86.49 | | | | | 560 | 11 | 2462 | 13.48 | 14.00 | | | | Report No.: FA722135-07 ## <5GHz WLAN> | | Mode | Channel | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | |-------------|----------------------|---------|--------------------|------------------------|------------------|--------------| | | | 36 | 5180 | 13.85 | 15.50 | | | | 200 11a 6Mbna | 40 | 5200 | 13.71 | 15.50 | 87.26 | | | 802.11a 6Mbps | 44 | 5220 | 13.76 | 15.50 | 07.20 | | 5.2GHz WLAN | | 48 | 5240 | 13.96 | 15.50 | | | | 802.11n-HT20
MCS0 | 36 | 5180 | 13.68 | 15.50 | | | | | 40 | 5200 | 13.65 | 15.50 | 86.49 | | | | 44 | 5220 | 13.56 | 15.50 | 00.49 | | | | 48 | 5240 | 13.71 | 15.50 | | | | 802.11n-HT40 | 38 | 5190 | 13.55 | 15.50 | 85.14 | | | MCS0 | 46 | 5230 | 13.98 | 15.50 | op.14 | | | Mode | Channel | Frequency
(MHz) | Average power (dBm) | Tune-Up
Limit | Duty Cycle % | |-------------|---------------------------------------|-----------------|--------------------|---------------------|------------------|--------------| | | | 52 | 5260 | 14.71 | 15.50 | | | | 902 11a 6Mbpa | 56 | 5280 | 14.85 | 15.50 | 87.26 | | | 802.11a 6Mbps
802.11n-HT20
MCS0 | 60 | 5300 | 14.88 | 15.50 | 07.20 | | 5.3GHz WLAN | | 64 | 5320 | 14.97 | 15.50 | | | | | 52 5260 14.78 1 | | 15.50 | | | | | | 56 | 5280 | 14.80 | 15.50 | 86.49 | | | | 60 | 5300 | 14.74 | 15.50 | 00.49 | | | | 64 | 5320 | 15.12 | 15.50 | | | | 802.11n-HT40 | 54 | 5270 | 15.17 | 15.50 | 85.14 | | | MCS0 | 62 | 5310 | 14.52 | 15.50 | op.14 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version. : 170509 FCC ID: P4Q-N564B | | Mode | Channel | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | |-------------|----------------------|------------|--------------------|------------------------|------------------|--------------| | | | 100 | 5500 | 14.05 | 14.50 | | | | | 116 | 5580 | 14.14 | 14.50 | | | | 802.11a 6Mbps | 124 | 5620 | 13.92 | 14.50 | 87.26 | | | | 132 | 5660 | 13.97 | 14.50 | | | | | 140 | 5700 | 13.85 | 14.50 | | | 5.5GHz WLAN | | 100 | 5500 | 14.18 | 14.50 | | | | | 116 | 5580 | 13.94 | 14.50 | | | | 802.11n-HT20
MCS0 | 124 | 5620 | 13.98 | 14.50 | 86.49 | | | Wieco | 132 5660 1 | | 13.91 | 14.50 | | | | | 140 | 5700 | 13.17 | 14.50 | | | | | 102 | 5510 | 14.24 | 14.50 | | | | 802.11n-HT40 | 110 | 5550 | 14.26 | 14.50 | 9E 14 | | | MCS0 | 126 | 5630 | 14.22 | 14.50 | 85.14 | | | | 134 | 5670 | 14.28 | 14.50 | | Report No. : FA722135-07 | | Mode | Channel | Frequency
(MHz) | Average power (dBm) | Tune-Up
Limit | Duty Cycle % | | | | | | | | | | |-------------|----------------------|---------|--------------------|---------------------|------------------|--------------|--|--|--|--|-----|------|-------|-------|-------| | | | 149 | 5745 | 11.11 | 12.00 | | | | | | | | | | | | | 802.11a 6Mbps | 157 | 5785 | 11.20 | 12.00 | 87.26 | | | | | | | | | | | 5.8GHz WLAN | | 165 | 5825 | 11.44 | 12.00 | | | | | | | | | | | | | | 149 | 5745 | 11.22 | 12.00 | | | | | | | | | | | | | 802.11n-HT20
MCS0 | | MCS0 | | | | | | | | 157 | 5785 | 11.05 | 12.00 | 86.49 | | | cc | 165 | 5825 | 11.49 | 12.00 | | | | | | | | | | | | | 802.11n-HT40 | 151 | 5755 | 11.43 | 12.00 | 85.14 | | | | | | | | | |
 | MCS0 | 159 | 5795 | 11.53 | 12.00 | 05.14 | | | | | | | | | | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version. : 170509 FCC ID: P4Q-N564B Page 40 of 50 # 14. Bluetooth Exclusions Applied | Mode Band | Max Average | power(dBm) | |------------------|-------------|------------| | IVIOUE DAITU | BR/EDR | LE | | 2.4GHz Bluetooth | 7 | -1 | #### Note: 1. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR Report No.: FA722135-07 - f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison | Bluetooth Max Power (dBm) | Separation Distance (mm) | Frequency (GHz) | exclusion thresholds | |---------------------------|--------------------------|-----------------|----------------------| | 7 | < 5 | 2.48 | 1.58 | ### Note: Per KDB 447498 D01v06, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 1.58 which is <= 3, SAR testing is not required. ## 15. Antenna Location The separation distance for antenna to edge: | Antenna | To Edge1
(mm) | To Edge2
(mm) | To Edge3
(mm) | To Edge4
(mm) | |---------------------|------------------|------------------|------------------|------------------| | WWAN Antenna | 42.3 | 191.0 | 18.8 | 5.0 | | 2.4GHz WLAN Antenna | 5.0 | 21.0 | 117.6 | 162.3 | | 5GHz WLAN Antenna | 5.0 | 135.7 | 117.6 | 59.4 | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 FCC ID : P4Q-N564B Page 41 of 50 Form version. : 170509 ### <SAR test exclusion table> #### **General Note:** 1. The below table, when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW" Report No.: FA722135-07 - 2. Maximum power is the source-based time-average power and represents the maximum RF output power among production units - 3. Per KDB 447498 D01v06, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user. - 4. Per KDB 447498 D01v06, standalone SAR test exclusion threshold is applied; If the test separation distance is < 5mm, 5mm is used to determine SAR exclusion threshold. - 5. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR - f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison - 6. Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for *test separation distances* > 50 mm, the SAR test exclusion threshold is determined according to the following - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)-(f(MHz)/150)] mW, at 100 MHz to 1500 MHz - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm) 10] mW at > 1500 MHz and ≤ 6 GHz | | Wireless Interface | WCDMA
Band V | WCDMA
Band II | LTE
Band 12 | LTE
Band 5 | LTE
Band 4 | LTE
Band 2 | 2.4GHz
WLAN | 5GHz
WLAN | |-------------|-------------------------|-----------------|------------------|----------------|---------------|---------------|---------------|----------------|--------------| | Exposure | Calculated Frequency | 846MHz | 1907MHz | 715MHz | 848MHz | 1754MHz | 1909MHz | 2462MHz | 5825MHz | | Position | Maximum power (dBm) | 23 | 23 | 23 | 23 | 23.5 | 23.5 | 16.5 | 15.5 | | | Maximum rated power(mW) | 200.0 | 200.0 | 200.0 | 200.0 | 224.0 | 224.0 | 45.0 | 35.0 | | | Separation distance(mm) | | | 5.0 | 5.0 | | | | | | Bottom Face | exclusion threshold | 36.8 | 55.2 | 33.8 | 36.8 | 59.3 | 61.9 | 14.1 | 16.9 | | | Testing required? | Yes | | Separation distance(mm) | 42.3 | | | | 5.0 | 5.0 | | | | Edge 1 | exclusion threshold | 4.4 | 6.5 | 4.0 | 4.4 | 7.0 | 7.3 | 14.1 | 16.9 | | | Testing required? | Yes | | Separation distance(mm) | 191.0 | | | | | | | 135.7 | | Edge 2 | exclusion threshold | 958.0 | 1519.0 | 849.0 | 960.0 | 1523.0 | 1519.0 | 3.4 | 919.0 | | | Testing required? | No | No | No | No | No | No | Yes | No | | | Separation distance(mm) | | | 18 | 3.8 | | | 117.6 | 117.6 | | Edge 3 | exclusion threshold | 9.8 | 14.7 | 9.0 | 9.8 | 15.8 | 16.5 | 772.0 | 738.0 | | | Testing required? | Yes | Yes | Yes | Yes | Yes | Yes | No | No | | | Separation distance(mm) | | | 5 | 5.0 | | | 162.3 | 59.4 | | Edge 4 | exclusion threshold | 36.8 | 55.2 | 33.8 | 36.8 | 59.3 | 61.9 | 1219.0 | 156.0 | | | Testing required? | Yes | Yes | Yes | Yes | Yes | Yes | No | No | ## 16. SAR Test Results #### **General Note:** - 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. Report No.: FA722135-07 - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)" - c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor - d. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor - 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. - 4. For the exposure positions that proximity sensor power reduction is applied for SAR compliance, additional SAR testing with EUT transmitting full power in normal mode was performed; 10mm for bottom face. #### **UMTS Note:** - 1. Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". - 2. Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. The maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA, and according to the following RF output power, the output power results of the secondary modes (HSUPA, HSDPA,)are less than ¼ dB higher than the primary modes; therefore, SAR measurement is not required for HSDPA / HSUPA. #### LTE Note: - 1. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 2. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 3. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - 4. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required. - 5. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required. - 6. For LTE B12 / B5 / B4 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. **SPORTON INTERNATIONAL INC.**TEL: 886-3-327-3456 / FAX: 886-3-328-4978 ## FCC SAR Test Report ### **WLAN Note:** 1. Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. Report No.: FA722135-07 - 2. Per KDB 248227 D01v02r02, U-NII-1 SAR testing is not required when the U-NII-2A band highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band. - 3. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11
transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested. - 4. For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. - 5. During SAR testing the WLAN transmission was verified using a spectrum analyzer. ## 16.1 <u>Body SAR</u> ### <WCDMA SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Power
Reduction | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|----------|--------------|------------------|--|--------------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | WCDMA II | RMC 12.2Kbps | Bottom Face | 0mm | ON | 9400 | 1880 | 19.46 | 19.50 | 1.009 | 0 | 1.010 | 1.019 | | 01 | WCDMA II | RMC 12.2Kbps | Bottom Face | 0mm | ON | 9262 | 1852.4 | 19.33 | 19.50 | 1.040 | -0.06 | 1.050 | 1.092 | | | WCDMA II | RMC 12.2Kbps | Bottom Face | 0mm | ON | 9538 | 1907.6 | 19.37 | 19.50 | 1.030 | -0.07 | 0.928 | 0.956 | | | WCDMA II | RMC 12.2Kbps | Bottom Face | 10mm | OFF | 9400 | 1880 | 22.06 | 23.00 | 1.242 | -0.16 | 0.478 | 0.594 | | | WCDMA II | RMC 12.2Kbps | Edge 1 | 0mm | OFF | 9400 | 1880 | 22.06 | 23.00 | 1.242 | -0.06 | 0.163 | 0.202 | | | WCDMA II | RMC 12.2Kbps | Edge 3 | 0mm | OFF | 9400 | 1880 | 22.06 | 23.00 | 1.242 | 0.06 | 0.801 | 0.995 | | | WCDMA II | RMC 12.2Kbps | Edge 3 | 0mm | OFF | 9262 | 1852.4 | 21.88 | 23.00 | 1.294 | -0.13 | 0.734 | 0.950 | | | WCDMA II | RMC 12.2Kbps | Edge 3 | 0mm | OFF | 9538 | 1907.6 | 21.98 | 23.00 | 1.265 | -0.01 | 0.781 | 0.988 | | | WCDMA II | RMC 12.2Kbps | Edge 4 | 0mm | OFF | 9400 | 1880 | 22.06 | 23.00 | 1.242 | -0.15 | 0.746 | 0.926 | | | WCDMA II | RMC 12.2Kbps | Edge 4 | 0mm | OFF | 9262 | 1852.4 | 21.88 | 23.00 | 1.294 | -0.01 | 0.685 | 0.887 | | | WCDMA II | RMC 12.2Kbps | Edge 4 | 0mm | OFF | 9538 | 1907.6 | 21.98 | 23.00 | 1.265 | -0.14 | 0.745 | 0.942 | | | WCDMA V | RMC 12.2Kbps | Bottom Face | 0mm | OFF | 4132 | 826.4 | 21.83 | 23.00 | 1.309 | -0.01 | 0.742 | 0.971 | | | WCDMA V | RMC 12.2Kbps | Bottom Face | 0mm | OFF | 4182 | 836.4 | 21.69 | 23.00 | 1.352 | -0.08 | 0.770 | 1.041 | | | WCDMA V | RMC 12.2Kbps | Bottom Face | 0mm | OFF | 4233 | 846.6 | 21.77 | 23.00 | 1.327 | -0.05 | 0.863 | 1.146 | | | WCDMA V | RMC 12.2Kbps | Edge 1 | 0mm | OFF | 4132 | 826.4 | 21.83 | 23.00 | 1.309 | 0.05 | 0.227 | 0.297 | | | WCDMA V | RMC 12.2Kbps | Edge 3 | 0mm OFF 4132 826.4 21.83 23.00 1.309 (| | 0.15 | 0.142 | 0.186 | | | | | | | | WCDMA V | RMC 12.2Kbps | Edge 4 | 0mm | OFF | 4132 | 826.4 | 21.83 | 23.00 | 1.309 | -0.02 | 0.854 | 1.118 | | | WCDMA V | RMC 12.2Kbps | Edge 4 | 0mm | OFF | 4182 | 836.4 | 21.69 | 23.00 | 1.352 | 0.04 | 0.837 | 1.132 | | 02 | WCDMA V | RMC 12.2Kbps | Edge 4 | 0mm | OFF | 4233 | 846.6 | 21.77 | 23.00 | 1.327 | -0.09 | 0.895 | 1.188 | FCC ID : P4Q-N564B Page 44 of 50 Form version. : 170509 ## <LTE SAR> | Plot | | BW | | RB | RB | Test | Gap | Power | | Freq. | Average | Tune-Up | Tune-up | Power | Measured | Reported | |------|------------|-------|------------|------|--------|-------------|------|-----------|-------|--------|----------------|----------------|----------------|---------------|------------------|------------------| | No. | Band | (MHz) | Modulation | Size | offset | Position | (mm) | Reduction | Ch. | (MHz) | Power
(dBm) | Limit
(dBm) | Scaling Factor | Drift
(dB) | 1g SAR
(W/kg) | 1g SAR
(W/kg) | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Bottom Face | 0mm | ON | 19100 | 1900 | 19.66 | 20.00 | 1.081 | -0.01 | 1.060 | 1.146 | | 03 | LTE Band 2 | 20M | QPSK | 1 | 0 | Bottom Face | 0mm | ON | 18700 | 1860 | 19.15 | 20.00 | 1.216 | 0.15 | 0.957 | 1.164 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Bottom Face | 0mm | ON | 18900 | 1880 | 19.36 | 20.00 | 1.159 | 0 | 0.943 | 1.093 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Bottom Face | 0mm | ON | 19100 | 1900 | 18.52 | 19.00 | 1.117 | -0.1 | 0.717 | 0.801 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Bottom Face | 0mm | ON | 18700 | 1860 | 18.10 | 19.00 | 1.230 | -0.02 | 0.749 | 0.921 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Bottom Face | 0mm | ON | 18900 | 1880 | 18.17 | 19.00 | 1.211 | 0.03 | 0.736 | 0.891 | | | LTE Band 2 | 20M | QPSK | 100 | 0 | Bottom Face | 0mm | ON | 19100 | 1900 | 18.26 | 19.00 | 1.186 | 0 | 0.726 | 0.861 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Bottom Face | 10mm | OFF | 19100 | 1900 | 22.68 | 23.50 | 1.208 | -0.03 | 0.520 | 0.628 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Bottom Face | 10mm | OFF | 19100 | 1900 | 21.79 | 22.50 | 1.178 | -0.02 | 0.400 | 0.471 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Edge 1 | 0mm | OFF | 19100 | 1900 | 22.68 | 23.50 | 1.208 | -0.06 | 0.156 | 0.188 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Edge 1 | 0mm | OFF | 19100 | 1900 | 21.79 | 22.50 | 1.178 | 0 | 0.116 | 0.137 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Edge 3 | 0mm | OFF | 19100 | 1900 | 22.68 | 23.50 | 1.208 | -0.16 | 0.954 | 1.152 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Edge 3 | 0mm | OFF | 18700 | 1860 | 22.34 | 23.50 | 1.306 | -0.15 | 0.728 | 0.951 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Edge 3 | 0mm | OFF | 18900 | 1880 | 22.48 | 23.50 | 1.265 | -0.08 | 0.807 | 1.021 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Edge 3 | 0mm | OFF | 19100 | 1900 | 21.79 | 22.50 | 1.178 | -0.13 | 0.764 | 0.900 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Edge 3 | 0mm | OFF | 18700 | 1860 | 21.48 | 22.50 | 1.265 | -0.1 | 0.565 | 0.715 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Edge 3 | 0mm | OFF | 18900 | 1880 | 21.33 | 22.50 | 1.309 | -0.12 | 0.635 | 0.831 | | | LTE Band 2 | 20M | QPSK | 100 | 0 | Edge 3 | 0mm | OFF | 19100 | 1900 | 21.49 | 22.50 | 1.262 | -0.09 | 0.760 | 0.959 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Edge 4 | 0mm | OFF | 19100 | 1900 | 22.68 | 23.50 | 1.208 | -0.11 | 0.835 | 1.009 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Edge 4 | 0mm | OFF | 18700 | 1860 | 22.34 | 23.50 | 1.306 | -0.01 | 0.692 | 0.904 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Edge 4 | 0mm | OFF | 18900 | 1880 | 22.48 | 23.50 | 1.265 | -0.17 | 0.717 | 0.907 | | | LTE Band 2 | 20M | QPSK | 50 | 0 | Edge 4 | 0mm | OFF | 19100 | 1900 | 21.79 | 22.50 | 1.178 | 0 | 0.672 | 0.791 | | | LTE Band 2 | 20M | QPSK | 100 | 0 | Edge 4 | 0mm | OFF | 19100 | 1900 | 21.49 | 22.50 | 1.262 | -0.05 | 0.640 | 0.808 | | 04 | LTE Band 4 | 20M | QPSK | 1 | 0 | Bottom Face | 0mm | ON | 20175 | 1732.5 | 18.56 | 19.00 | 1.107 | -0.07 | 0.923 | 1.021 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Bottom Face | 0mm | ON | 20175 | 1732.5 | 17.49 | 18.00 | 1.125 | 0 | 0.778 | 0.875 | | | LTE Band 4 | 20M | QPSK | 100 | 0 | Bottom Face | 0mm | ON | 20175 | 1732.5 | 17.40 | 18.00 | 1.148 | -0.03 | 0.769 | 0.883 | | | LTE Band 4 | 20M | QPSK | 1 | 0 | Bottom Face | 10mm | OFF | 20175 | 1732.5 | 22.51 | 23.50 | 1.256 | -0.01 | 0.615 | 0.772 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Bottom Face | 10mm | OFF | 20175 | 1732.5 | 21.50 | 22.50 | 1.259 | -0.04 | 0.484 | 0.609 | | | LTE Band 4 | 20M | QPSK | 1 | 0 | Edge 1 | 0mm | OFF | 20175 | 1732.5 | 22.51 | 23.50 | 1.256 | -0.08 | 0.150 | 0.188 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Edge 1 | 0mm | OFF | 20175 | 1732.5 | 21.50 | 22.50 | 1.259 | 0.18 | 0.130 | 0.164 | | | LTE Band 4 | 20M | QPSK | 1 | 0 | Edge 3 | 0mm | OFF | 20175 | 1732.5 | 22.51 | 23.50 | 1.256 | 0.12 | 0.614 | 0.771 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Edge 3 | 0mm | OFF | 20175 | 1732.5 | 21.50 | 22.50 | 1.259 | 0.01 | 0.504 | 0.634 | | | LTE Band 4 | 20M | QPSK | 1 | 0 | Edge 4 | 0mm | OFF | 20175 | 1732.5 | 22.51 | 23.50 | 1.256 | -0.01 | 0.786 | 0.987 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Edge 4 | 0mm | OFF | 20175 | 1732.5 | 21.50 | 22.50 | 1.259 | -0.04 | 0.616 | 0.775 | | | LTE Band 4 | 20M | QPSK | 100 | 0 | Edge 4 | 0mm | OFF | 20175 | 1732.5 | 21.38 | 22.50 | 1.294 | -0.03 | 0.599 | 0.775 | Report No. : FA722135-07 TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version. : 170509 FCC ID: P4Q-N564B Page 45 of 50 | Plot
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
offset | Test
Position | Gap
(mm) | Power
Reduction | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-------------|-------------|------------|------------|--------------|------------------|-------------|--------------------|-------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | LTE Band 5 | 10M | QPSK | 1 | 0 | Bottom Face | 0mm | OFF | 20525 | 836.5 | 21.64 | 23.00 | 1.368 | -0.06 | 0.708 | 0.968 | | | LTE Band 5 | 10M | QPSK | 25 | 0 | Bottom Face | 0mm | OFF | 20525 | 836.5 | 20.52 | 22.00 | 1.406 | 0.01 | 0.555 | 0.780 | | | LTE Band 5 | 10M | QPSK | 50 | 0 | Bottom Face | 0mm | OFF | 20525 | 836.5 | 20.42 | 22.00 | 1.439 | -0.04 | 0.529 | 0.761 | | | LTE Band 5 | 10M | QPSK | 1 | 0 | Edge 1 | 0mm | OFF | 20525 | 836.5 | 21.64 | 23.00 | 1.368 | 0.03 | 0.092 | 0.126 | | | LTE Band 5 | 10M | QPSK | 25 | 0 | Edge 1 | 0mm | OFF | 20525 | 836.5 | 20.52 | 22.00 | 1.406 | -0.04 | 0.074 | 0.104 | | | LTE Band 5 | 10M | QPSK | 1 | 0 | Edge 3 | 0mm | OFF | 20525 | 836.5 | 21.64 | 23.00 | 1.368 |
0.1 | 0.116 | 0.159 | | | LTE Band 5 | 10M | QPSK | 25 | 0 | Edge 3 | 0mm | OFF | 20525 | 836.5 | 20.52 | 22.00 | 1.406 | 0.07 | 0.090 | 0.127 | | 05 | LTE Band 5 | 10M | QPSK | 1 | 0 | Edge 4 | 0mm | OFF | 20525 | 836.5 | 21.64 | 23.00 | 1.368 | -0.07 | 0.838 | 1.146 | | | LTE Band 5 | 10M | QPSK | 25 | 0 | Edge 4 | 0mm | OFF | 20525 | 836.5 | 20.52 | 22.00 | 1.406 | -0.01 | 0.614 | 0.863 | | | LTE Band 5 | 10M | QPSK | 50 | 0 | Edge 4 | 0mm | OFF | 20525 | 836.5 | 20.42 | 22.00 | 1.439 | -0.04 | 0.611 | 0.879 | | | LTE Band 12 | 10M | QPSK | 1 | 0 | Bottom Face | 0mm | OFF | 23095 | 707.5 | 21.75 | 23.00 | 1.334 | 0.04 | 0.505 | 0.673 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Bottom Face | 0mm | OFF | 23095 | 707.5 | 20.66 | 22.00 | 1.361 | 0.04 | 0.398 | 0.542 | | | LTE Band 12 | 10M | QPSK | 1 | 0 | Edge 1 | 0mm | OFF | 23095 | 707.5 | 21.75 | 23.00 | 1.334 | 0.08 | 0.094 | 0.125 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Edge 1 | 0mm | OFF | 23095 | 707.5 | 20.66 | 22.00 | 1.361 | -0.09 | 0.072 | 0.098 | | | LTE Band 12 | 10M | QPSK | 1 | 0 | Edge 3 | 0mm | OFF | 23095 | 707.5 | 21.75 | 23.00 | 1.334 | -0.15 | 0.091 | 0.121 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Edge 3 | 0mm | OFF | 23095 | 707.5 | 20.66 | 22.00 | 1.361 | 0.09 | 0.072 | 0.098 | | 06 | LTE Band 12 | 10M | QPSK | 1 | 0 | Edge 4 | 0mm | OFF | 23095 | 707.5 | 21.75 | 23.00 | 1.334 | -0.05 | 0.794 | 1.059 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Edge 4 | 0mm | OFF | 23095 | 707.5 | 20.66 | 22.00 | 1.361 | 0.07 | 0.618 | 0.841 | | | LTE Band 12 | 10M | QPSK | 50 | 0 | Edge 4 | 0mm | OFF | 23095 | 707.5 | 20.62 | 22.00 | 1.374 | 0 | 0.631 | 0.867 | Report No. : FA722135-07 ## <WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|-------------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|-------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0mm | 11 | 2462 | 15.45 | 16.50 | 1.274 | 97.14 | 1.029 | 0.06 | 0.155 | 0.203 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 1 | 0mm | 11 | 2462 | 15.45 | 16.50 | 1.274 | 97.14 | 1.029 | 0.15 | 0.544 | 0.713 | | 07 | WLAN2.4GHz | 802.11b 1Mbps | Edge 1 | 0mm | 1 | 2412 | 15.30 | 16.50 | 1.318 | 97.14 | 1.029 | 0.08 | 0.681 | 0.924 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 1 | 0mm | 6 | 2437 | 15.32 | 16.50 | 1.312 | 97.14 | 1.029 | -0.17 | 0.548 | 0.740 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 2 | 0mm | 11 | 2462 | 15.45 | 16.50 | 1.274 | 97.14 | 1.029 | 0.03 | 0.118 | 0.155 | | | WLAN5GHz | 802.11n-HT40 MCS0 | Bottom Face | 0mm | 54 | 5270 | 15.17 | 15.50 | 1.079 | 85.14 | 1.175 | -0.04 | 0.178 | 0.226 | | | WLAN5GHz | 802.11n-HT40 MCS0 | Edge 1 | 0mm | 54 | 5270 | 15.17 | 15.50 | 1.079 | 85.14 | 1.175 | 0.1 | 0.761 | 0.965 | | 08 | WLAN5GHz | 802.11n-HT40 MCS0 | Edge 1 | 0mm | 62 | 5310 | 14.52 | 15.50 | 1.254 | 85.14 | 1.175 | -0.04 | 0.661 | 0.974 | | | WLAN5GHz | 802.11n-HT40 MCS0 | Bottom Face | 0mm | 134 | 5670 | 14.28 | 14.50 | 1.052 | 85.14 | 1.175 | 0.06 | 0.190 | 0.235 | | 09 | WLAN5GHz | 802.11n-HT40 MCS0 | Edge 1 | 0mm | 134 | 5670 | 14.28 | 14.50 | 1.052 | 85.14 | 1.175 | -0.06 | 0.678 | 0.838 | | | WLAN5GHz | 802.11n-HT40 MCS0 | Edge 1 | 0mm | 102 | 5510 | 14.24 | 14.50 | 1.062 | 85.14 | 1.175 | -0.06 | 0.547 | 0.683 | | | WLAN5GHz | 802.11n-HT40 MCS0 | Edge 1 | 0mm | 110 | 5550 | 14.26 | 14.50 | 1.057 | 85.14 | 1.175 | -0.08 | 0.589 | 0.732 | | | WLAN5GHz | 802.11n-HT40 MCS0 | Edge 1 | 0mm | 126 | 5630 | 14.22 | 14.50 | 1.067 | 85.14 | 1.175 | -0.08 | 0.589 | 0.738 | | | WLAN5GHz | 802.11n-HT40 MCS0 | Bottom Face | 0mm | 159 | 5795 | 11.53 | 12.00 | 1.115 | 85.14 | 1.175 | -0.06 | 0.166 | 0.217 | | | WLAN5GHz | 802.11n-HT40 MCS0 | Edge 1 | 0mm | 151 | 5755 | 11.43 | 12.00 | 1.141 | 85.14 | 1.175 | -0.02 | 0.572 | 0.767 | | 10 | WLAN5GHz | 802.11n-HT40 MCS0 | Edge 1 | 0mm | 159 | 5795 | 11.53 | 12.00 | 1.115 | 85.14 | 1.175 | 0.02 | 0.698 | 0.914 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 Form version. : 170509 FCC ID: P4Q-N564B Page 46 of 50 # 16.2 Repeated SAR Measurement | No. | Band | Mode | Test
Position | Gap
(mm) | Power
Reduction | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | | Ratio | Reported
1g SAR
(W/kg) | |-----|------------|--------------|------------------|-------------|--------------------|-------|----------------|---------------------------|---------------------------|------------------------------|------------------------|-------|-------|------------------------------| | 1st | WCDMA V | RMC 12.2Kbps | Edge 4 | 0mm | OFF | 4233 | 846.6 | 21.77 | 23.00 | 1.327 | -0.09 | 0.895 | 1 | 1.188 | | 2nd | WCDMA V | RMC 12.2Kbps | Edge 4 | 0mm | OFF | 4233 | 846.6 | 21.77 | 23.00 | 1.327 | -0.01 | 0.878 | 1.02 | 1.165 | | 1st | LTE Band 2 | 20M_QPSK_1_0 | Bottom Face | 0mm | ON | 19100 | 1900 | 19.66 | 20.00 | 1.081 | -0.01 | 1.060 | - | 1.146 | | 2nd | LTE Band 2 | 20M_QPSK_1_0 | Bottom Face | 0mm | ON | 19100 | 1900 | 19.66 | 20.00 | 1.081 | 0 | 1.030 | 1.03 | 1.114 | | 1st | LTE Band 4 | 20M_QPSK_1_0 | Bottom Face | 0mm | ON | 20175 | 1732.5 | 18.56 | 19.00 | 1.107 | -0.07 | 0.923 | - | 1.021 | | 2nd | LTE Band 4 | 20M_QPSK_1_0 | Bottom Face | 0mm | ON | 20175 | 1732.5 | 18.56 | 19.00 | 1.107 | -0.02 | 0.922 | 1.00 | 1.020 | Report No.: FA722135-07 ### **General Note:** - 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. - 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is \leq 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required. - 3. The ratio is the difference in percentage between original and repeated measured SAR. - All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: May 24, 2018 FCC ID: P4Q-N564B Page 47 of 50 Form version. : 170509 ## 17. Simultaneous Transmission Analysis | NO. | Simultaneous Transmission | Tablet | |-----|---------------------------|--------| | NO. | Configurations | Body | | 1. | WCDMA + WLAN2.4GHz | Yes | | 2. | LTE + WLAN2.4GHz | Yes | | 3. | WCDMA+ Bluetooth | Yes | | 4. | LTE + Bluetooth | Yes | | 5. | WCDMA + WLAN5GHz | Yes | | 6. | LTE + WLAN5GHz | Yes | ### **General Note:** - 1. For simultaneous transmission analysis for exposure position of bottom face 10mm, WLAN SAR tested at 0mm separation is worse and the test data is used for conservative SAR summation. - 2. 2.4GHz WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously. - 3. EUT will choose either WLAN 2.4GHz or WLAN 5GHz according to the network signal condition; therefore, 2.4GHz WLAN and 5GHz WLAN will not operate simultaneously at any moment. Report No.: FA722135-07 - 4. The Scaled SAR summation is calculated based on the same configuration and test position. - 5. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if, - i) Scalar SAR summation < 1.6W/kg. - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary. - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg. - For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v06 based on the formula below. - i) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR. - ii) When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion. - iii) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm. - iv) Bluetooth estimated SAR is conservatively determined by 5mm separation, for all applicable exposure positions. | Bluetooth
Max Power | Exposure
Position | All Positions | |------------------------|-------------------------|---------------| | 7 dBm | Estimated
SAR (W/kg) | 0.210 W/kg | # 17.1 Body Exposure Conditions | | | | 1 | 2 | 3 | 4 | | | 1+4
Summed | |-------|---------------|---------------------|------------------|------------------|------------------|-------------------------------|------------------|------------------|------------------| | NWW | N Band | Exposure Position | WWAN | 2.4GHz
WLAN | 5GHz
WLAN | Bluetooth | 1+2
Summed | 1+3
Summed | | | WWW. | | <u> </u> | 1g SAR
(W/kg) | 1g SAR
(W/kg) | 1g SAR
(W/kg) | Estimated
1g SAR
(W/kg) | 1g SAR
(W/kg) | 1g SAR
(W/kg) | 1g SAR
(W/kg) | | | | Bottom Face at 10mm | 0.594 | 0.203 | 0.235 | 0.210 | 0.797 | 0.829 | 0.804 | | | | Bottom Face at 0mm | 1.092 | 0.203 | 0.235 | 0.210 | 1.295 | 1.327 | 1.302 | | | WCDMA II | Edge 1 at 0mm | 0.202 | 0.924 | 0.974 | 0.210 | 1.126 | 1.176 | 0.412 | | | | Edge 3 at 0mm | 0.995 | | | | 0.995 | 0.995 | 0.995 | | WCDMA | | Edge 4 at 0mm | 0.942 | | | | 0.942 | 0.942 | 0.942 | | | | Bottom Face at 0mm | 1.146 | 0.203 | 0.235 | 0.210 | 1.349 | 1.381 | 1.356 | | | WCDMA V | Edge 1 at 0mm | 0.297 | 0.924 | 0.974 | 0.210 | 1.221 | 1.271 | 0.507 | | | WCDMA V | Edge 3 at 0mm | 0.186 | | | | 0.186 | 0.186 | 0.186 | | | | Edge 4 at
0mm | 1.188 | | | | 1.188 | 1.188 | 1.188 | | | | Bottom Face at 10mm | 0.628 | 0.203 | 0.235 | 0.210 | 0.831 | 0.863 | 0.838 | | | | Bottom Face at 0mm | 1.164 | 0.203 | 0.235 | 0.210 | 1.367 | 1.399 | 1.374 | | | LTE Band 2 | Edge 1 at 0mm | 0.188 | 0.924 | 0.974 | 0.210 | 1.112 | 1.162 | 0.398 | | | | Edge 3 at 0mm | 1.152 | | | | 1.152 | 1.152 | 1.152 | | | | Edge 4 at 0mm | 1.009 | | | | 1.009 | 1.009 | 1.009 | | | LTE Band 4 | Bottom Face at 10mm | 0.772 | 0.203 | 0.235 | 0.210 | 0.975 | 1.007 | 0.982 | | | | Bottom Face at 0mm | 1.021 | 0.203 | 0.235 | 0.210 | 1.224 | 1.256 | 1.231 | | | | Edge 1 at 0mm | 0.188 | 0.924 | 0.974 | 0.210 | 1.112 | 1.162 | 0.398 | | | | Edge 3 at 0mm | 0.771 | | | | 0.771 | 0.771 | 0.771 | | LTE | | Edge 4 at 0mm | 0.987 | | | | 0.987 | 0.987 | 0.987 | | | | Bottom Face at 0mm | 0.968 | 0.203 | 0.235 | 0.210 | 1.171 | 1.203 | 1.178 | | | LTE David 5 | Edge 1 at 0mm | 0.126 | 0.924 | 0.974 | 0.210 | 1.050 | 1.100 | 0.336 | | | LTE Band 5 | Edge 3 at 0mm | 0.159 | | | | 0.159 | 0.159 | 0.159 | | | | Edge 4 at 0mm | 1.146 | | | | 1.146 | 1.146 | 1.146 | | | | Bottom Face at 0mm | 0.673 | 0.203 | 0.235 | 0.210 | 0.876 | 0.908 | 0.883 | | | LTE Daniel 10 | Edge 1 at 0mm | 0.125 | 0.924 | 0.974 | 0.210 | 1.049 | 1.099 | 0.335 | | | LTE Band 12 | Edge 3 at 0mm | 0.121 | | | | 0.121 | 0.121 | 0.121 | | | | Edge 4 at 0mm | 1.059 | | | | 1.059 | 1.059 | 1.059 | Report No.: FA722135-07 Test Engineer: Poa Pan Mood Huang White Huang and San Lin ## 18. Uncertainty Assessment Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be $\leq 30\%$, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg. Therefore, the measurement uncertainty table is not required in this report. Report No.: FA722135-07 ## 19. References - [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013 - [4] SPEAG DASY System Handbook - [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015. - [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015 - [7] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015 - [8] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015 - [9] FCC KDB 616217 D04 v01r02, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", Oct 2015 - [10] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015. - [11] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.