

TEST REPORT

FCC Test for N20-HRDU_2500_FB_TDD

APPLICANT SOLiD, Inc.

REPORT NO.
HCT-RF-2107-FC015

DATE OF ISSUE July 9, 2021

Tested byKyung Soo Kang

Technical Manager Jong Seok Lee

HCT CO., LTD.

Bongjai Huh / CEO

HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

TEST REPORT

FCC Test for N20-HRDU_2500 _FB_TDD

REPORT NO. HCT-RF-2107-FC015

DATE OF ISSUE July 09, 2021

Additional Model

Applicant	SOLID, Inc. 10, 9th Floor, SOLID Space, Pangyoyeok-ro 220, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, South Korea
Eut Type Model Name	DAS N20-HRDU_2500_FB_TDD
FCC ID	W6UNH25FBTDD
Output Power	43 dBm
Date of Test	June 25, 2021~ July 07, 2021
FCC Rule Parts:	CFR 47 Part 2, Part 27
	The result shown in this test report refer only to the sample(s) tested unless

otherwise stated.

This test results were applied only to the test methods required by the standard.

F-TP22-03 (Rev. 04) Page 2 of 73

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	July 09, 2021	Initial Release

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

If this report is required to confirmation of authenticity, please contact to www.hct.co.kr

F-TP22-03 (Rev. 04) Page 3 of 73

Report No. HCT-RF-2107-FC015

CONTENTS

1. GENERAL INFORMATION	5
1.1. APPLICANT INFORMATION	5
1.2. PRODUCT INFORMATION	5
1.3. TEST INFORMATION	5
2. FACILITIES AND ACCREDITATIONS	6
2.1. FACILITIES	6
2.2. EQUIPMENT	6
3. TEST SPECIFICATIONS	7
3.1. STANDARDS	7
3.2. ADDITIONAL DESCRIPTIONS ABOUT TEST	8
3.3. MEASUREMENTUNCERTAINTY	10
3.4. STANDARDS ENVIRONMENTAL TEST CONDITIONS	10
3.5. TEST DIAGRAMS	11
4. TEST EQUIPMENTS	12
5. TEST RESULT	13
5.1. AGC THRESHOLD	13
5.2. OUT-OF-BAND REJECTION	15
5.3. INPUT-VERSUS-OUTPUT SIGNAL COMPARISON	17
5.4. INPUT/OUTPUT POWER AND AMPLIFIER/BOOSTER GAIN	33
5.5. OUT-OF-BAND/OUT-OF-BLOCK EMISSIONS AND SPURIOUS EMISS	IONS 40
5.6. RADIATED SPURIOUS EMISSIONS	70
6. Annex A_EUT AND TEST SETUP PHOTO	73

F-TP22-03 (Rev. 04) Page 4 of 73

비

고

1. GENERAL INFORMATION

1.1. APPLICANT INFORMATION

Company Name	SOLiD, Inc.
Company Address	10, 9th Floor, SOLiD Space, Pangyoyeok-ro 220, Bundang-gu,
Company Address	Seongnam-si, Gyeonggi-do, 463-400, South Korea

1.2. PRODUCT INFORMATION

EUT Type	DAS		
EUT Serial Number	R25H0000001		
Dower Comple	AC 110-220V, 50/60Hz	AC 110-220V, 50/60Hz	
Power Supply	DC -48V		
-	Band Name	Downlink (MHz)	
Frequency Range	BRS/EBS	2 496 ~ 2 690	
Tx Output Power	43 dBm		
Antenna Peak Gain	17 dBi	17 dBi	

1.3. TEST INFORMATION

FCC Rule Parts	CFR 47 Part 2, Part 27
Measurement Standards	KDB 935210 D05 v01r04, KDB 971168 D01 v03r01, ANSI C63.26-2015
Test Location	HCT CO., LTD.
	74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do,
	17383, Rep. of KOREA

F-TP22-03 (Rev. 04) Page 5 of 73

고

Report No. HCT-RF-2107-FC015

2. FACILITIES AND ACCREDITATIONS

2.1. FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4 (Version: 2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

2.2. EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

F-TP22-03 (Rev. 04) Page 6 of 73

비

고

3. TEST SPECIFICATIONS

3.1. STANDARDS

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 2 and Par 27.

Description	Reference	Results
AGC threshold	KDB 935210 D05 v01r04 3.2	Compliant
Out-of-band rejection	KDB 935210 D05 v01r04 3.3	Compliant
Input-versus-output signal comparison	§ 2.1049	Compliant
Input/output power and amplifier/booster gain	§ 2.1046, § 27.50(h)	Compliant
Out-of-band/out-of-block emissions and spurious emissions	§ 2.1051, § 27.53(m)	Compliant
Spurious emissions radiated	§ 2.1053	Compliant

Page 7 of 73 F-TP22-03 (Rev. 04)

고

3.2. ADDITIONAL DESCRIPTIONS ABOUT TEST

Except for the following cases, EUT was tested under normal operating conditions.

: Out-of-band rejection test requires maximum gain condition without AGC.

This EUT is supported power supply both of AC and DC. Test results are only attached worst cases.

The test was generally based on the method of KDB 935210 D05 v01r04 and only followed ANSI C63.26-2015 if there was no test method in KDB standard.

EUT was tested with following modulated signals provide by applicant.

Band Name Tested signals LTE 20 MHz 5G NR 20 MHz 5G NR 40 MHz 5G NR 60 MHz 5G NR 80 MHz 5G NR 100 MHz		8 1 7 11
5G NR 20 MHz 5G NR 40 MHz 5G NR 60 MHz 5G NR 80 MHz	Band Name	Tested signals
BRS/EBS United 5G NR 40 MHz 5G NR 60 MHz 5G NR 80 MHz		LTE 20 MHz
BRS/EBS United 5G NR 60 MHz 5G NR 80 MHz		5G NR 20 MHz
5G NR 60 MHz 5G NR 80 MHz	PDC/EDC United	5G NR 40 MHz
	bk3/Eb3 Officed	5G NR 60 MHz
5G NR 100 MHz		5G NR 80 MHz
		5G NR 100 MHz

^{*}Simultaneous filter supporting LTE + 5G NR.

The frequency stability measurement has been omitted in accordance with section 3.7 of KDB 935210 D05 v01r04.

: It can be confirmed through input-versus-output signal comparison test that EUT does not alter the input signal.

The tests results included actual loss value for attenuator and cable combination as shown in the table below.

: Input Path

Correction factor table			
Frequency (MHz)	Factor (dB)	Frequency (MHz)	Factor (dB)
1 900	1.125	2 350	1.453
1 950	1.502	2 400	1.500
2 000	1.359	2 450	1.343
2 050	1.265	2 500	1.296
2 100	1.204	2 550	1.394
2 150	1.318	2 600	1.537
2 200	1.208	2 650	1.320
2 250	1.561	2 700	1.588
2 300	1.293	-	-

F-TP22-03 (Rev. 04) Page 8 of 73

Report No. HCT-RF-2107-FC015

: Output Path

requency (MHz)	Factor (dB)	Frequency (MHz)	Factor (dB)
2	29.285	30 00	33.138
10	29.383	4 000	34.055
30	29.358	5 000	35.488
50	29.423	6 000	35.825
100	29.644	7 000	36.974
200	29.970	8 000	37.731
300	30.193	9 000	38.292
400	30.391	10 000	39.318
500	30.546	11 000	38.223
600	30.693	12 000	38.604
700	30.850	13 000	38.088
800	30.961	14 000	39.527
900	31.104	15 000	39.790
1 000	31.234	16 000	40.284
1 100	31.376	17 000	39.296
1 200	31.533	18 000	39.680
1 300	31.615	19 000	40.452
1 400	31.731	20 000	41.104
1 500	31.793	21 000	43.448
1 600	31.918	22 000	42.703
1 700	31.977	23 000	43.767
1 800	32.059	24 000	43.265
1 900	32.158	25 000	44.990
2 000	32.252	26 000	45.921
2 100	32.357	26 500	41.956
2 200	32.417	-	-
2 300	32.519	-	-
2 400	32.643	-	-
2 500	32.743	-	-
2 600	32.853	-	
2 700	32.984	-	-

F-TP22-03 (Rev. 04) Page 9 of 73

3.3. MEASUREMENTUNCERTAINTY

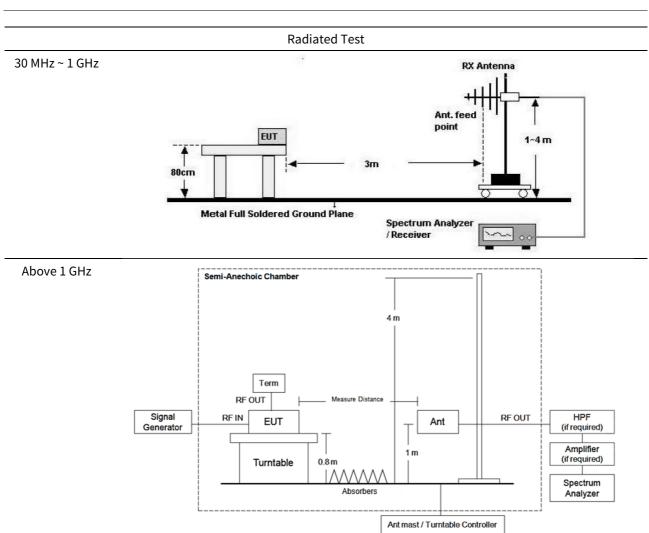
Description	Reference	Results
AGC threshold	-	±0.87 dB
Out-of-band rejection	-	±0.58 MHz
Input-versus-output signal comparison	OBW > 5 MHz	±0.58 MHz
Input/output power and amplifier/booster gain	-	±0.87 dB
Out-of-band/out-of-block emissions and spurious emissions	-	±1.08 dB
Spurious emissions radiated	f ≤ 1 GHz	±4.80 dB
	f>1 GHz	±6.07 dB

^{*} Coverage factor k = 2, Confidence levels of 95 %

3.4. STANDARDS ENVIRONMENTAL TEST CONDITIONS

Temperature	+15 °C to +35 °C
Relative humidity	30 % to 60 %
Air pressure	860 mbar to 1 060 mbar

F-TP22-03 (Rev. 04) Page 10 of 73


고

Report No. HCT-RF-2107-FC015

비

3.5. TEST DIAGRAMS

Conducted Test RF IN Signal Generator (1) HE / ODU Signal Generator (2) OPTICAL Switch Box EUT MUX ATT OUT Spectrum Analyzer ROU AC/DC Power Supply

F-TP22-03 (Rev. 04) Page 11 of 73

4. TEST EQUIPMENTS

Manufacturer	Model / Equipment	Calibration	Calibration	Serial No.
Kovciaht	NOO20B / DVA Signal Analyzov	Date 06/02/2021	Interval Annual	MY55480167
Keysight	N9030B / PXA Signal Analyzer			
Agilent	N5182A / MXG Vector Signal Generator	01/08/2021	Annual	MY47070406
Agilent	N5182A / MXG Vector Signal Generator	12/02/2020	Annual	MY46240807
Weinschel Associates	WA93-30-33 / 30 dB Attenuator	03/30/2021	Annual	0202
KEITHLEY	S46 / Switch	N/A	N/A	1088024
Innco systems	CO3000 / Controller(Antenna mast & Turn Table) N/A N/A		N/A	CO3000/1251/ 48920320/P
Innco systems	MA4640/800-XP-ET / Antenna Position Tower	N/A	N/A	N/A
Innco systems	DS2000-S / Turn Table	N/A	N/A	N/A
Ets	Turn Table	N/A	N/A	N/A
TNM system	FBSM-01B / Amp & Filter Bank Switch Controller	N/A	N/A	TM20090002
Schwarzbeck	FMZB 1513 / Loop Antenna	03/19/2020	Biennial	1513-333
Schwarzbeck	VULB 9168 / Hybrid Antenna	08/02/2019	Biennial	01039
Schwarzbeck	BBHA 9120D / Horn Antenna	05/19/2020	Biennial	02296
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	10/13/2020	Biennial	BBHA9170342
Rohde & Schwarz	FSP40 / Spectrum Analyzer	05/27/2021	Annual	100843
CERNEX	CBL18265035 / Power Amplifier	12/04/2020	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	03/23/2021	Annual	25956
TNM system	FBSR-04C / HPF(3~18GHz) + LNA1(1~18GHz)	09/23/2020	Annual	N/A
LTC Microwave	LLAU1183540Q / Low Noise Amplifier	09/23/2020	Annual	100
Wainwright Instruments	WHKX12-2805-3000-18000-40SS / High Pass Filter	09/23/2020	Annual	45

Note:

- 1. Equipment listed above that calibrated during the testing period was set for test after the calibration.
- 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

F-TP22-03 (Rev. 04) Page 12 of 73

고

5. TEST RESULT

5.1. AGC THRESHOLD

Test Requirement:

KDB 935210 D05 v01r04

Testing at and above the AGC threshold is required.

Test Procedures:

Measurements were in accordance with the test methods section 3.2 of KDB 935210 D05 v01r04.

In the case of fiber-optic distribution systems, the RF input port of the equipment under test (EUT) refers to the RF input of the supporting equipment RF to optical convertor; see also descriptions and diagrams for typical DAS booster systems in KDB Publication 935210 D02

Devices intended to be directly connected to an RF source (donor port) only need to be evaluated for any over-the-air transmit paths.

- a) Connect a signal generator to the input of the EUT.
- b) Connect a spectrum analyzer or power meter to the output of the EUT using appropriate attenuation as necessary.
- c) The signal generator should initially be configured to produce either of the required test signals.
- d) Set the signal generator frequency to the center frequency of the EUT operating band.
- e) While monitoring the output power of the EUT, measured using the methods of ANSI C63.26-2015 subclause 5.2.4.4.1, increase the input level until a 1 dB increase in the input signal power no longer causes a 1 dB increase in the output signal power.
- f) Record this level as the AGC threshold level.
- g) Repeat the procedure with the remaining test signal.

Output power measurement in subclause 5.2.4.4.1 of ANSI C63.26

- a) Set span to $2 \times$ to $3 \times$ the OBW.
- b) Set RBW = 1% to 5% of the OBW.
- c) Set VBW \geq 3 × RBW.
- d) Set number of measurement points in sweep $\geq 2 \times \text{span} / \text{RBW}$.
- e) Sweep time: auto-couple
- f) Detector = power averaging (rms).
- g) If the EUT can be configured to transmit continuously, then set the trigger to free run.
- h) Omit
- i) Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over multiple symbols, it can be necessary to increase the number of traces to be

F-TP22-03 (Rev. 04) Page 13 of 73

Report No. HCT-RF-2107-FC015

averaged above 100 or, if using a manually configured sweep time, increase the sweep time.

j) Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function, with the band/channel limits set equal to the OBW band edges. If the instrument does not have a band or channel power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

Test Results:

Test Band	Link	Signal	Center Frequency (MHz)	AGC Threshold Level (dBm)	Output Level (dBm)
		LTE 20MHz	2593.00	-20	43.26
		5G NR 20 MHz	2593.00	-20	43.24
BRS/EBS	Downlink	5G NR 40 MHz	2593.00	-20	43.23
United		5G NR 60 MHz	2593.00	-20	43.20
		5G NR 80 MHz	2593.00	-20	43.29
		5G NR 100 MHz	2593.00	-20	43.38

F-TP22-03 (Rev. 04) Page 14 of 73

고

5.2. OUT-OF-BAND REJECTION

Test Requirement:

KDB 935210 D05 v01r04

Out-of-band rejection required.

Test Procedures:

Measurements were in accordance with the test methods section 3.3 of KDB 935210 D05 v01r04.

A signal booster shall reject amplification of other signals outside of its passband. Adjust the internal gain control of the EUT (if so equipped) to the maximum gain for which equipment certification is sought.

- Connect a signal generator to the input of the EUT.
- b) Configure a swept CW signal with the following parameters:
 - Frequency range = ± 250 % of the passband, for each applicable CMRS band.
 - 2) Level = a sufficient level to affirm that the out-of-band rejection is > 20 dB above the noise floor and will not engage the AGC during the entire sweep.
 - Dwell time = approximately 10 ms.
 - Number of points = SPAN/(RBW/2).
- c) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation.
- Set the span of the spectrum analyzer to the same as the frequency range of the signal generator. d)
- Set the resolution bandwidth (RBW) of the spectrum analyzer to be 1 % to 5 % of the EUT passband, and the video bandwidth (VBW) shall be set to $\geq 3 \times RBW$.
- f) Set the detector to Peak Max-Hold and wait for the spectrum analyzer's spectral display to fill.
- Place a marker to the peak of the frequency response and record this frequency as fo. g)
- Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the -20 dB down amplitude, to determine the 20 dB bandwidth.
- Capture the frequency response of the EUT. i)
- Repeat for all frequency bands applicable for use by the EUT.

F-TP22-03 (Rev. 04) Page 15 of 73

비

고

Test Results:

BRS/EBS United (2 496 MHz ~ 2 690 MHz) / Downlink

F-TP22-03 (Rev. 04) Page 16 of 73

고

5.3. INPUT-VERSUS-OUTPUT SIGNAL COMPARISON

Test Requirement:

§ 2.1049 Measurements required: Occupied bandwidth.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the specified conditions of § 2.1049 (a) through (i) as applicable.

Test Procedures:

Measurements were in accordance with the test methods section 3.4 of KDB 935210 D05 v01r04.

A 26 dB bandwidth measurement shall be performed on the input signal and the output signal; alternatively, the 99% OBW can be measured and used. See KDB Publication 971168 [R8] for more information on measuring OBW.

- Connect a signal generator to the input of the EUT. a)
- b) Configure the signal generator to transmit the AWGN signal.
- Configure the signal amplitude to be just below the AGC threshold level (see 3.2), but not more than 0.5 dB
- d) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation.
- Set the spectrum analyzer center frequency to the center frequency of the operational band under test. The span range of the spectrum analyzer shall be between 2 times to 5 times the emission bandwidth (EBW) or alternatively, the OBW.
- f) The nominal RBW shall be in the range of 1 % to 5 % of the anticipated OBW, and the VBW shall be \geq 3 × RBW.
- Set the reference level of the instrument as required to preclude the signal from exceeding the maximum spectrum analyzer input mixer level for linear operation. In general, the peak of the spectral envelope must be more than [10 log (OBW / RBW)] below the reference level. Steps f) and g) may require iteration to enable adjustments within the specified tolerances.
- The noise floor of the spectrum analyzer at the selected RBW shall be at least 36 dB below the reference level. h)
- Set spectrum analyzer detection function to positive peak. i)
- Set the trace mode to max hold. j)
- Determine the reference value: Allow the trace to stabilize. Set the spectrum analyzer marker to the highest k) amplitude level of the displayed trace (this is the reference value) and record the associated frequency.
- Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral l) display, such that each marker is at or slightly below the −26 dB down amplitude. The 26 dB EBW (alternatively OBW) is the positive frequency difference between the two markers. If the spectral envelope crosses the -26dB down amplitude at multiple points, the lowest or highest frequency shall be selected as the frequencies that are the furthest removed from the center frequency at which the spectral envelope crosses the −26 dB down amplitude point.
- m) Repeat steps e) to l) with the input signal connected directly to the spectrum analyzer (i.e., input signal

F-TP22-03 (Rev. 04) Page 17 of 73

Report No. HCT-RF-2107-FC015

measurement).

- n) Compare the spectral plot of the input signal (determined from step m) to the output signal (determined from step l) to affirm that they are similar (in passband and rolloff characteristic features and relative spectral locations), and include plot(s) and descriptions in test report.
- o) Repeat the procedure [steps e) to n)] with the input signal amplitude set to 3 dB above the AGC threshold.
- p) Repeat steps e) to o) with the signal generator set to the narrowband signal.
- q) Repeat steps e) to p) for all frequency bands authorized for use by the EUT.

F-TP22-03 (Rev. 04) Page 18 of 73

고

Report No. HCT-RF-2107-FC015

Test Results:

Tabular data of Output Occupied Bandwidth

Test Band	Link	Signal	Center Frequency	99 % OBW	26 dB OBW
	LIIIK	Signat	(MHz)	(MHz)	(MHz)
	LTE 20MHz		2593.00	17.920	19.646
	Downlink	5G NR 20 MHz 2593.0		18.267	19.442
BRS/EBS		5G NR 40 MHz	2593.00	37.955	39.962
United		5G NR 60 MHz	2593.00	58.126	60.993
		5G NR 80 MHz	2593.00	77.908	81.547
		5G NR 100 MHz	2593.00	97.633	102.396

Tabular data of Input Occupied Bandwidth

Test Band	Link	Signal	Center Frequency	99 % OBW	26 dB OBW
			(MHz)	(MHz)	(MHz)
		LTE 20MHz	2593.00	17.922	19.433
	Downlink	5G NR 20 MHz	0 MHz 2593.00 18.262		19.470
BRS/EBS		5G NR 40 MHz	2593.00	37.938	39.920
United		5G NR 60 MHz	2593.00	57.985	60.959
		5G NR 80 MHz	2593.00	77.563	81.363
		5G NR 100 MHz	2593.00	97.395	102.339

F-TP22-03 (Rev. 04) Page 19 of 73

Report No. HCT-RF-2107-FC015

Tabular data of 3 dB above the AGC threshold Output Occupied Bandwidth

Test Band	Link	Signal	Center Frequency	99 % OBW	26 dB OBW
	LIIIK	Signal	(MHz)	(MHz)	(MHz)
		LTE 20MHz	2593.00	17.978	20.055
	Downlink	5G NR 20 MHz	2593.00	18.233	19.446
BRS/EBS		5G NR 40 MHz	2593.00	37.996	39.915
United		5G NR 60 MHz	2593.00	58.054	60.977
		5G NR 80 MHz	2593.00	77.761	81.646
		5G NR 100 MHz	2593.00	97.443	102.422

Tabular data of 3 dB above the AGC threshold Input Occupied Bandwidth

Test Band	Test Band Link		Center Frequency	99 % OBW	26 dB OBW	
			(MHz)	(MHz)	(MHz)	
		LTE 20MHz	2593.00	17.920	19.845	
	Downlink	5G NR 20 MHz	2593.00	18.247	19.369	
BRS/EBS		5G NR 40 MHz	2593.00	37.937	39.935	
United		Downlink	5G NR 60 MHz	2593.00	58.037	60.908
		5G NR 80 MHz	2593.00	77.630	81.586	
		5G NR 100 MHz	2593.00	97.248	102.473	

Measured Occupied Bandwidth Comparison

	Link		Variant of Input and	Variant of Input and 3 dB above
Test Band		Signal	output	the AGC threshold output
			Occupied Bandwidth (%)	Occupied Bandwidth (%)
		LTE 20MHz	1.096	1.058
		5G NR 20 MHz	-0.144	0.398
BRS/EBS		5G NR 40 MHz	0.105	-0.050
United	Downlink	5G NR 60 MHz	0.056	0.113
		5G NR 80 MHz	0.226	0.074
		5G NR 100 MHz	0.056	-0.050

^{*} Change in input-output OBW is less than ± 5 %.

F-TP22-03 (Rev. 04) Page 20 of 73

비

Local

고

LXI

2 Metrics

Occupied Bandwidth

Transmit Freq Error

x dB Bandwidth

17.920 MHz

-21.009 kHz

19.65 MHz

Plot data of Occupied Bandwidth

Output / BRS/EBS / Downlink / LTE 20MHz Spectrum Analyzer 1 Occupied BW Ö Frequency Center Freq: 2.593000000 GHz Input Z: 50 Ω Atten: 40 dB Trig: Free Run KEYSIGHT Input: RF Center Frequency Corr CCorr Freq Ref: Int (S) NFE: Adaptive Avg|Hold: 100/100 Radio Std: None Preamp: Off te: Off Settings Align: Auto 2.593000000 GHz #IF Gain: Low Span 1 Graph 40.000 MHz Scale/Div 10.0 dB Ref Value 50.00 dBm 4.000000 MHz Freq Offset who were the 0 Hz 20.0 Span 40 MHz Center 2.59300 GHz #Video BW 1.2000 MHz Res BW 390.00 kHz Sweep 1.00 ms (1001 pts)

Total Power

x dB

% of OBW Power

50.6 dBm

99.00 %

-26.00 dB

Input / BRS/EBS / Downlink / LTE 20 MHz Spectrum Analyzer 1 Occupied BW \Diamond Frequency Atten: 10 dB Preamp: Off Center Freq: 2.593000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Trig: Free Run KEYSIGHT Input: RF Center Frequency Settings Corr CCorr Freq Ref: Int (S) Gate: Off #IF Gain: Low Align: Auto 2.593000000 GHz NFE: Adaptive LXI 1 Graph 40.000 MHz Scale/Div 10.0 dB Ref Value 2.00 dBm CF Step 4.000000 MHz Man Freq Offset 68 0 Center 2.59300 GHz #Video BW 1.2000 MHz Span 40 MHz Res BW 390.00 kHz Sweep 1.00 ms (1001 pts) 2 Metrics Occupied Bandwidth 17.922 MHz Total Power -12.4 dBm Transmit Freq Error -28.125 kHz % of OBW Power 99.00 % x dB Bandwidth 19.43 MHz x dB -26.00 dB Local

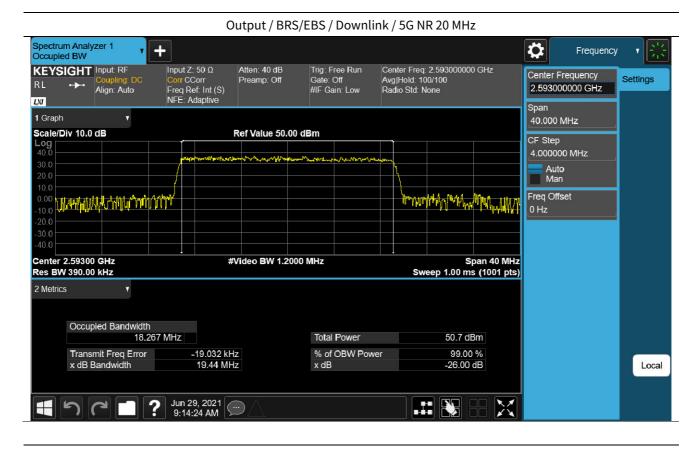
F-TP22-03 (Rev. 04) Page 21 of 73

CUSTOMER SECRET

고

3 dB above the AGC threshold output / BRS/EBS / Downlink / LTE 20 MHz Spectrum Analyzer 1 Occupied BW Ö Frequency Center Freq: 2.593000000 GHz Input Z: 50 Ω Atten: 40 dB Trig: Free Run KEYSIGHT Input: RF Center Frequency Corr CCorr Freq Ref: Int (S) NFE: Adaptive Avg|Hold: 100/100 Radio Std: None Preamp: Off te: Off Settings Align: Auto 2.593000000 GHz #IF Gain: Low LXI Span 1 Graph 40.000 MHz Scale/Div 10.0 dB Ref Value 50.00 dBm 4.000000 MHz Freq Offset 0 Hz 20.0 Span 40 MHz Center 2.59300 GHz #Video BW 1.2000 MHz Res BW 390.00 kHz Sweep 1.00 ms (1001 pts) 2 Metrics Occupied Bandwidth 17.978 MHz Total Power 49.7 dBm Transmit Freq Error -7.002 kHz % of OBW Power 99.00 % x dB Bandwidth 20.06 MHz x dB -26.00 dB Local

3 dB above the AGC threshold Input / BRS/EBS / Downlink / LTE 20 MHz


F-TP22-03 (Rev. 04) Page 22 of 73

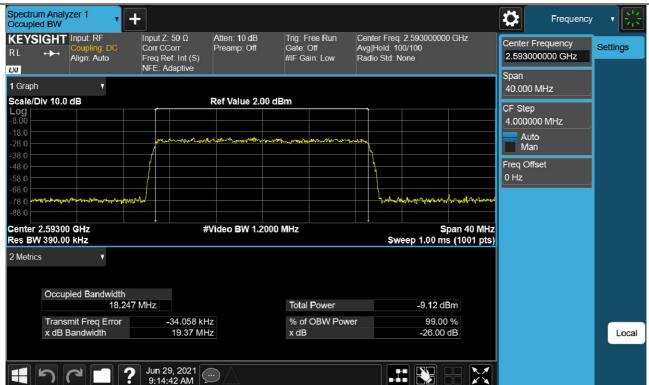
비

고

밀

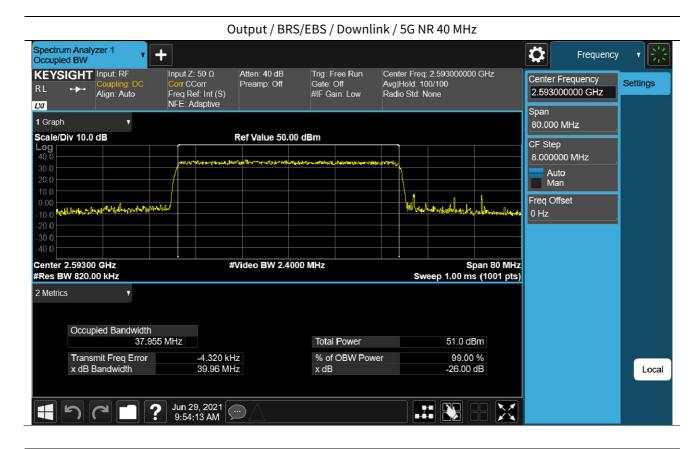
Input / BRS/EBS / Downlink / 5G NR 20 MHz Spectrum Analyzer 1 Occupied BW \Diamond Frequency Atten: 10 dB Preamp: Off Center Freq: 2.593000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Trig: Free Run KEYSIGHT Input: RF Center Frequency Settings Corr CCorr Freq Ref: Int (S) Gate: Off #IF Gain: Low Align: Auto 2.593000000 GHz LXI Span 1 Graph 40.000 MHz Scale/Div 10.0 dB Ref Value 2.00 dBm CF Step 4.000000 MHz 18.0 Freq Offset 68 0 Center 2.59300 GHz #Video BW 1.2000 MHz Span 40 MHz Res BW 390.00 kHz Sweep 1.00 ms (1001 pts) 2 Metrics Occupied Bandwidth 18.262 MHz Total Power -12.3 dBm -30.257 kHz Transmit Freq Error % of OBW Power 99.00 % 19.47 MHz -26.00 dB x dB Bandwidth x dB Local Jun 29, 2021 9:14:07 AM ? 50

F-TP22-03 (Rev. 04) Page 23 of 73


CUSTOMER SECRET

고

3 dB above the AGC threshold output / BRS/EBS / Downlink / 5G NR 20 MHz Spectrum Analyzer 1 Occupied BW Ö Frequency Center Freq: 2.593000000 GHz Input Z: 50 Ω Atten: 40 dB Trig: Free Run KEYSIGHT Input: RF Center Frequency Corr CCorr Freq Ref: Int (S) NFE: Adaptive Avg|Hold: 100/100 Radio Std: None Preamp: Off te: Off Settings Align: Auto 2.593000000 GHz #IF Gain: Low LXI Span 1 Graph 40.000 MHz Scale/Div 10.0 dB Ref Value 50.00 dBm 4.000000 MHz Freq Offset 0 Hz 20.0 Center 2.59300 GHz #Video BW 1.2000 MHz Span 40 MHz Sweep 1.00 ms (1001 pts) Res BW 390.00 kHz 2 Metrics Occupied Bandwidth 18.233 MHz Total Power 51.2 dBm Transmit Freq Error -21.430 kHz % of OBW Power 99.00 % x dB Bandwidth 19.45 MHz x dB -26.00 dB Local


3 dB above the AGC threshold Input / BRS/EBS / Downlink / 5G NR 20 MHz

Jun 29, 2021 9:15:00 AM

F-TP22-03 (Rev. 04) Page 24 of 73

Input / BRS/EBS / Downlink / 5G NR 40 MHz Spectrum Analyzer 1 Occupied BW \Diamond Frequency Atten: 10 dB Preamp: Off Center Freq: 2.593000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Trig: Free Run KEYSIGHT Input: RF Center Frequency Settings Corr CCorr Freq Ref: Int (S) Gate: Off #IF Gain: Low Align: Auto 2.593000000 GHz LXI 1 Graph 80.000 MHz Scale/Div 10.0 dB Ref Value 2.00 dBm CF Step 8.000000 MHz 18.0 Freq Offset 68 0 Center 2.59300 GHz #Video BW 2.4000 MHz Span 80 MHz #Res BW 820.00 kHz Sweep 1.00 ms (1001 pts) 2 Metrics Occupied Bandwidth 37.938 MHz Total Power -10.9 dBm Transmit Freq Error -8.810 kHz % of OBW Power 99.00 % 39.92 MHz -26.00 dB x dB Bandwidth x dB Local Jun 29, 2021 9:53:56 AM ?

F-TP22-03 (Rev. 04) Page 25 of 73

Local

Transmit Freq Error

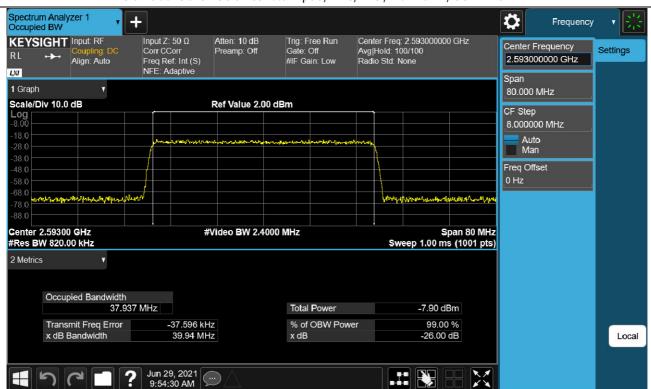
x dB Bandwidth

-35.372 kHz

39.92 MHz

Jun 29, 2021 9:54:48 AM 고 객 비 밀 CUSTOMER SECRET

3 dB above the AGC threshold output / BRS/EBS / Downlink / 5G NR 40 MHz Spectrum Analyzer 1 Occupied BW Ö Frequency Center Freq: 2.593000000 GHz Input Z: 50 Ω Atten: 40 dB Trig: Free Run KEYSIGHT Input: RF Center Frequency Corr CCorr Freq Ref: Int (S) NFE: Adaptive Avg|Hold: 100/100 Radio Std: None Preamp: Off te: Off Settings Align: Auto 2.593000000 GHz #IF Gain: Low LXI Span 1 Graph 80.000 MHz Scale/Div 10.0 dB Ref Value 50.00 dBm 8.000000 MHz the stage of the little of the stage of the Freq Offset mangentul bearboard polyalety angland 0 Hz 20.0 Span 80 MHz Center 2.59300 GHz #Video BW 2.4000 MHz #Res BW 820.00 kHz Sweep 1.00 ms (1001 pts) 2 Metrics Occupied Bandwidth 37.996 MHz Total Power 51.3 dBm


3 dB above the AGC threshold Input / BRS/EBS / Downlink / 5G NR 40 MHz

% of OBW Power

x dB

99.00 %

-26.00 dB

F-TP22-03 (Rev. 04) Page 26 of 73

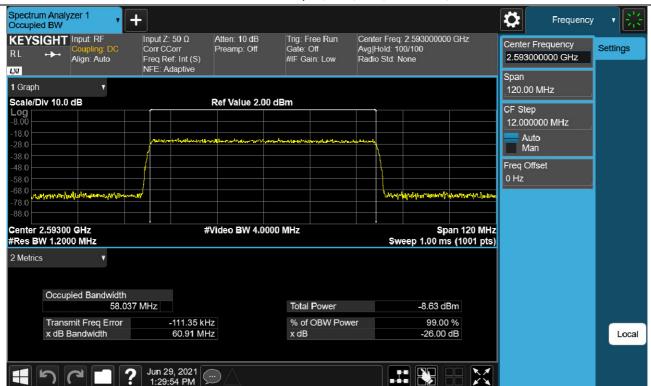
CUSTOMER SECRET

고

Output / BRS/EBS / Downlink / 5G NR 60 MHz Spectrum Analyzer 1 Occupied BW Ö Frequency Input Z: 50 Ω Atten: 40 dB Trig: Free Run Center Freq: 2.593000000 GHz KEYSIGHT Input: RF Corr CCorr Freq Ref: Int (S) NFE: Adaptive Avg|Hold: 100/100 Radio Std: None Preamp: Off te: Off Settings Align: Auto 2.593000000 GHz #IF Gain: Low LXI Span 1 Graph 120.00 MHz Scale/Div 10.0 dB Ref Value 50.00 dBm 12.000000 MHz ahardha halira bahur mada Marting Adam and American John Commission of the United States of the Un Freq Offset 0 Hz 20.0 Center 2.59300 GHz #Video BW 4.0000 MHz Span 120 MHz #Res BW 1.2000 MHz Sweep 1.00 ms (1001 pts) 2 Metrics Occupied Bandwidth 58.126 MHz Total Power 51.4 dBm Transmit Freq Error -62.216 kHz % of OBW Power 99.00 % x dB Bandwidth 60.99 MHz x dB -26.00 dB Local

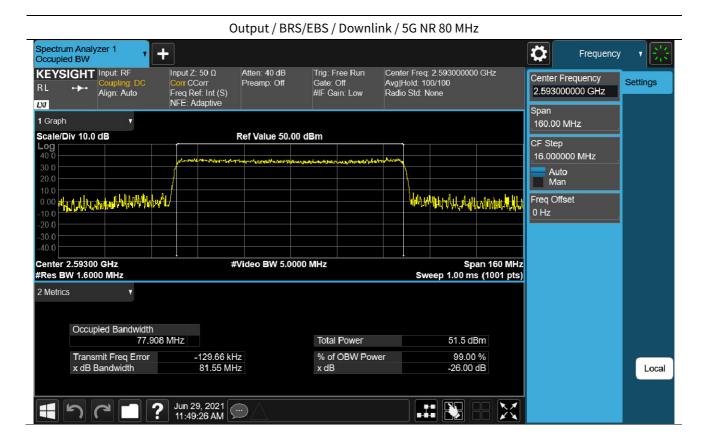
Input / BRS/EBS / Downlink / 5G NR 60 MHz Spectrum Analyzer 1 Occupied BW \Diamond Frequency Atten: 10 dB Preamp: Off Center Freq: 2.593000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Trig: Free Run KEYSIGHT Input: RF Center Frequency Settings Corr CCorr Freq Ref: Int (S) Gate: Off #IF Gain: Low Align: Auto 2.593000000 GHz LXI 1 Graph 120.00 MHz Scale/Div 10.0 dB Ref Value 2.00 dBm CF Step 12.000000 MHz Freq Offset 68 0 Center 2.59300 GHz #Video BW 4.0000 MHz Span 120 MHz #Res BW 1.2000 MHz Sweep 1.00 ms (1001 pts) 2 Metrics Occupied Bandwidth 57.985 MHz Total Power -11.7 dBm Transmit Freq Error -67.215 kHz % of OBW Power 99.00 % -26.00 dB x dB Bandwidth 60.96 MHz x dB Local ? 50

F-TP22-03 (Rev. 04) Page 27 of 73



고

3 dB above the AGC threshold output / BRS/EBS / Downlink / 5G NR 60 MHz Ö

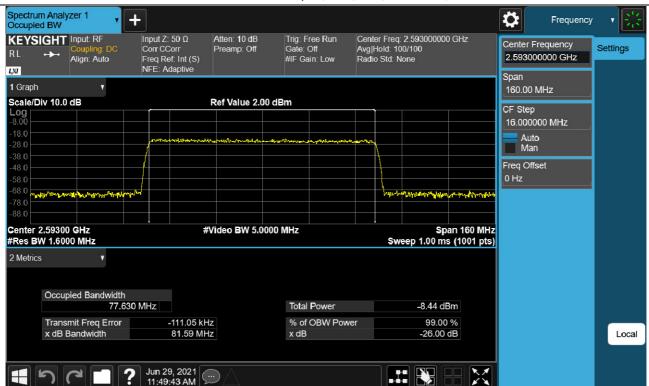

3 dB above the AGC threshold Input / BRS/EBS / Downlink / 5G NR 60 MHz

F-TP22-03 (Rev. 04) Page 28 of 73

고

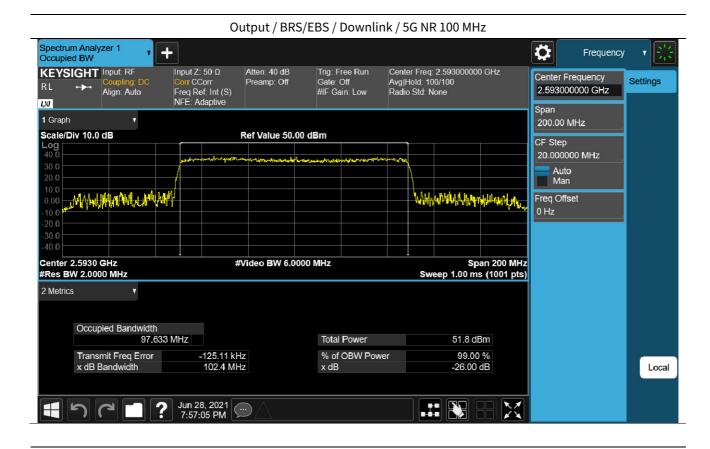
Input / BRS/EBS / Downlink / 5G NR 80 MHz Spectrum Analyzer 1 Occupied BW \Diamond Frequency Atten: 10 dB Preamp: Off Center Freq: 2.593000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Trig: Free Run KEYSIGHT Input: RF Center Frequency Settings Corr CCorr Freq Ref: Int (S) Gate: Off #IF Gain: Low Align: Auto 2.593000000 GHz NFE: Adaptive LXI 1 Graph 160.00 MHz Scale/Div 10.0 dB Ref Value 2.00 dBm CF Step 16.000000 MHz Freq Offset 68 0 Center 2.59300 GHz #Video BW 5.0000 MHz Span 160 MHz #Res BW 1.6000 MHz Sweep 1.00 ms (1001 pts) 2 Metrics Occupied Bandwidth 77.563 MHz Total Power -11.4 dBm Transmit Freq Error -74.985 kHz % of OBW Power 99.00 % 81.36 MHz -26.00 dB x dB Bandwidth x dB Local ?

F-TP22-03 (Rev. 04) Page 29 of 73



CUSTOMER SECRET

고


3 dB above the AGC threshold output / BRS/EBS / Downlink / 5G NR 80 MHz Spectrum Analyzer 1 Occupied BW Ö Frequency Center Freq: 2.593000000 GHz Input Z: 50 Ω Atten: 40 dB Trig: Free Run KEYSIGHT Input: RF Center Frequency Corr CCorr Freq Ref: Int (S) NFE: Adaptive Avg|Hold: 100/100 Radio Std: None Preamp: Off te: Off Settings Align: Auto 2.593000000 GHz #IF Gain: Low LXI Span 1 Graph 160.00 MHz Scale/Div 10.0 dB Ref Value 50.00 dBm 16.000000 MHz Freq Offset 0 Hz 20.0 Center 2.59300 GHz #Video BW 5.0000 MHz Span 160 MHz #Res BW 1.6000 MHz Sweep 1.00 ms (1001 pts) 2 Metrics Occupied Bandwidth 77.761 MHz Total Power 51.9 dBm Transmit Freq Error -67.652 kHz % of OBW Power 99.00 % x dB Bandwidth 81.65 MHz x dB -26.00 dB Local

3 dB above the AGC threshold Input / BRS/EBS / Downlink / 5G NR 80 MHz

F-TP22-03 (Rev. 04) Page 30 of 73

Input / BRS/EBS / Downlink / 5G NR 100 MHz Spectrum Analyzer 1 Occupied BW \Diamond Frequency Atten: 10 dB Preamp: Off Center Freq: 2.593000000 GHz Avg|Hold: 100/100 Radio Std: None Input Z: 50 Ω Trig: Free Run KEYSIGHT Input: RF Center Frequency Settings Corr CCorr Freq Ref: Int (S) Gate: Off #IF Gain: Low Align: Auto 2.593000000 GHz NFE: Adaptive LXI 1 Graph 200.00 MHz Scale/Div 10.0 dB Ref Value 2.00 dBm CF Step 20.000000 MHz 18.0 Freq Offset 68 0 Center 2.5930 GHz #Video BW 6.0000 MHz Span 200 MHz #Res BW 2.0000 MHz Sweep 1.00 ms (1001 pts) 2 Metrics Occupied Bandwidth 97.395 MHz Total Power -11.3 dBm Transmit Freq Error -188.84 kHz % of OBW Power 99.00 % -26.00 dB x dB Bandwidth 102.3 MHz x dB Local ? 50

F-TP22-03 (Rev. 04) Page 31 of 73

CUSTOMER SECRET

고

3 dB above the AGC threshold output / BRS/EBS / Downlink / 5G NR 100 MHz Spectrum Analyzer 1 Occupied BW Ö Frequency Center Freq: 2.593000000 GHz Input Z: 50 Ω Atten: 40 dB Trig: Free Run KEYSIGHT Input: RF Center Frequency Corr CCorr Freq Ref: Int (S) NFE: Adaptive Avg|Hold: 100/100 Radio Std: None Preamp: Off te: Off Settings Align: Auto 2.593000000 GHz #IF Gain: Low LXI Span 1 Graph 200.00 MHz Scale/Div 10.0 dB Ref Value 50.00 dBm 20.000000 MHz Freq Offset 0 Hz 20.0 Center 2.5930 GHz #Video BW 6.0000 MHz Span 200 MHz #Res BW 2.0000 MHz Sweep 1.00 ms (1001 pts) 2 Metrics Occupied Bandwidth 97.443 MHz Total Power 51.9 dBm Transmit Freq Error -74.432 kHz % of OBW Power 99.00 % x dB Bandwidth 102.4 MHz x dB -26.00 dB Local

3 dB above the AGC threshold Input / BRS/EBS / Downlink / 5G NR 100 MHz

F-TP22-03 (Rev. 04) Page 32 of 73

Report No. HCT-RF-2107-FC015

5.4. INPUT/OUTPUT POWER AND AMPLIFIER/BOOSTER GAIN

Test Requirement:

§ 2.1046 Measurements required: RF power output.

- (a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.
- (b) For single sideband, independent sideband, and single channel, controlled carrier radiotelephone transmitters the procedure specified in paragraph (a) of this section shall be employed and, in addition, the transmitter shall be modulated during the test as specified and applicable in § 2.1046 (b) (1-5). In all tests, the input level of the modulating signal shall be such as to develop rated peak envelope power or carrier power, as appropriate, for the transmitter.
- (c) For measurements conducted pursuant to paragraphs (a) and (b) of this section, all calculations and methods used by the applicant for determining carrier power or peak envelope power, as appropriate, on the basis of measured power in the radio frequency load attached to the transmitter output terminals shall be shown. Under the test conditions specified, no components of the emission spectrum shall exceed the limits specified in the applicable rule parts as necessary for meeting occupied bandwidth or emission limitations.

§ 27.50 Power limits and duty cycle.

- (h) The following power limits shall apply in the BRS and EBS:
 - (1) Main, booster and base stations.
 - (i) The maximum EIRP of a main, booster or base station shall not exceed 33 dBW + 10log(X/Y) dBW, where X is the actual channel width in MHz and Y is either 6 MHz if prior to transition or the station is in the MBS following transition or 5.5 MHz if the station is in the LBS and UBS following transition, except as provided in paragraph (h)(1)(ii) of this section.
 - (ii) If a main or booster station sectorizes or otherwise uses one or more transmitting antennas with a non-omnidirectional horizontal plane radiation pattern, the maximum EIRP in dBW in a given direction shall be determined by the following formula: EIRP = 33 dBW + 10 log(X/Y) dBW + 10 log(360/beamwidth) dBW, where X is the actual channel width in MHz, Y is either (i) 6 MHz if prior to transition or the station is in the MBS following transition or (ii) 5.5 MHz if the station is in the LBS and UBS following transition, and beamwidth is the total horizontal plane beamwidth of the individual transmitting antenna for the station or any sector measured at the half-power points.

Test Procedures:

Measurements were in accordance with the test methods section 3.5 of KDB 935210 D05 v01r04.

Adjust the internal gain control of the EUT to the maximum gain for which the equipment certification is being sought. Any EUT attenuation settings shall be set to their minimum value.

F-TP22-03 (Rev. 04) Page 33 of 73

고

Report No. HCT-RF-2107-FC015

Input power levels (uplink and downlink) should be set to maximum input ratings while confirming that the device is not capable of operating in saturation (non-linear mode) at the rated input levels, including during the performance of the input/output power measurements.

3.5.2 Measuring the EUT mean input and output power

- a) Connect a signal generator to the input of the EUT.
- b) Configure to generate the test signal.
- c) The frequency of the signal generator shall be set to the frequency f₀ as determined from out-of-band rejection test.
- d) Connect a spectrum analyzer or power meter to the output of the EUT using appropriate attenuation as necessary.
- e) Set the signal generator output power to a level that produces an EUT output level that is just below the AGC threshold, but not more than 0.5 dB below.
- f) Measure and record the output power of the EUT; use ANSI C63.26-2015 subclause 5.2.4.4.1, for power measurement.
- g) Remove the EUT from the measurement setup. Using the same signal generator settings, repeat the power measurement at the signal generator port, which was used as the input signal to the EUT, and record as the input power. EUT gain may be calculated as described in 3.5.5.
- h) Repeat steps f) and g) with input signal amplitude set to 3 dB above the AGC threshold level.
- i) Repeat steps e) to h) with the narrowband test signal.
- j) Repeat steps e) to i) for all frequency bands authorized for use by the EUT.

3.5.5 Calculating amplifier, repeater, or industrial booster gain

After the input and output power levels have been measured as described in the preceding subclauses, the gain of the EUT can be determined from:

Gain (dB) = output power (dBm) - input power (dBm).

Report the gain for each authorized operating frequency band, and each test signal stimulus.

Note. If f₀ that determined from out-of-band test is smaller or greater than difference of test signal's center frequency and operation band block, test is performed at the lowest or the highest frequency that test signals can be passed.

EIRP Sample Calculation

Item	Formula	Value	
27.50(h)(1)(i) Limit	33 dBW + 10 log(X/Y) dBW	68.23 dBm	
	= 33 dBW + 10 log(20/6) dBW = 38.23 dBW	00.23 UDIII	
Final Calculated EIRP	Output Power + Antenna gain	60.77 dBm	
	= 43.44 dBm + 17 dBi	00.11 UDIII	

F-TP22-03 (Rev. 04) Page 34 of 73

Test Results:

Tabular data of Input / Output Power and Gain

Test Band	Signal	f₀ Frequency	Input Power	Output Power	Gain		E.I.R.P	
		(MHz)	(d	Bm)	(dB)	(dBm)	(W/MHz)	(W)
	LTE 20 MHz	2569.84	-20.09	43.44	63.53	60.44	55.33	1106.62
	5G NR 20 MHz	2569.84	-20.01	43.38	63.39	60.38	54.57	1091.44
BRS/EBS	5G NR 40 MHz	2569.84	-19.98	43.42	63.40	60.42	27.54	1101.54
United	5G NR 60 MHz	2569.84	-19.98	43.37	63.35	60.37	18.15	1088.93
	5G NR 80 MHz	2569.84	-20.02	43.36	63.38	60.36	13.58	1086.43
	5G NR 100 MHz	2569.84	-20.24	43.40	63.64	60.40	10.96	1096.48

^{*}E.I.R.P(dBm) = Output Power(dBm) + Ant. Gain(17 dBi)

Tabular data of Input / 3 dB above AGC threshold Output Power and Gain

Test Band	Signal	f ₀ Frequency	Input Power	Output Power E.I.R.P			
		(MHz)		(dBm)	(dBm)	(W/MHz)	(W)
	LTE 20 MHz	2569.84	-17.10	42.83	59.83	48.08	961.61
	5G NR 20 MHz	2569.84	-16.97	43.04	60.04	50.46	1009.25
BRS/EBS	5G NR 40 MHz	2569.84	-16.93	43.32	60.32	26.91	1076.47
United	5G NR 60 MHz	2569.84	-16.96	43.20	60.20	17.45	1047.13
	5G NR 80 MHz	2569.84	-17.02	43.14	60.14	12.91	1032.76
	5G NR 100 MHz	2569.84	-17.06	43.26	60.26	10.62	1061.70

^{*}E.I.R.P(dBm) = Output Power(dBm) + Ant. Gain(17 dBi)

F-TP22-03 (Rev. 04) Page 35 of 73

Report No. HCT-RF-2107-FC015

Tabular data of PAPR

Test Band	Link	Signal	f₀ Frequency (MHz)	0.1 % PAPR (dB)	
		LTE 20MHz	2569.84	8.35	
	Downlink		5G NR 20 MHz	2569.84	8.47
BRS/EBS		5G NR 40 MHz	2569.84	8.29	
United		5G NR 60 MHz	2569.84	8.28	
		5G NR 80 MHz	2569.84	8.25	
		5G NR 100 MHz	2569.84	8.26	

F-TP22-03 (Rev. 04) Page 36 of 73