Content | RI | REVISION HISTORY5 | | | | |----|-------------------|--|----------|--| | M | IEASU | JREMENT RESULT SUMMARY | 6 | | | 1 | G | SENERAL INFORMATION | 7 | | | | 1.1 | DESCRIPTION OF EQUIPMENT UNDER TEST (EUT) | | | | | 1.2 | TECHNICAL SPECIFICATION | | | | | 1.3 | DESCRIPTION OF TEST FACILITY | 8 | | | 2 | TI | EST SPECIFICATIONS | g | | | | 2.1 | STANDARDS OR SPECIFICATION | c | | | | 2.2 | Mode of Operation during the test | | | | | 2.3 | TEST SOFTWARE LIST | 10 | | | | 2.4 | TEST PERIPHERALS LIST | 10 | | | | 2.5 | TEST ENVIRONMENT CONDITION: | 10 | | | | 2.6 | Instrument list | | | | | 2.7 | MEASUREMENT UNCERTAINTY | 13 | | | 3 | N | ЛINIMUM 6DB BANDWIDTH | 14 | | | | 3.1 | LIMIT | 14 | | | | 3.2 | Measurement Procedure | | | | | 3.3 | TEST CONFIGURATION | | | | | 3.4 | TEST RESULTS OF MINIMUM 6DB BANDWIDTH | 14 | | | 4 | N | MAXIMUM CONDUCTED OUTPUT POWER AND E.I.R.P | 15 | | | | 4.1 | LIMIT | | | | | 4.2 | Measurement Procedure | | | | | 4.3 | TEST CONFIGURATION | | | | | 4.4 | TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER | | | | 5 | P | OWER SPECTRUM DENSITY | 17 | | | | 5.1 | LIMIT | 17 | | | | 5.2 | Measurement Procedure | | | | | 5.3 | TEST CONFIGURATION | | | | | 5.4 | TEST RESULTS OF POWER SPECTRUM DENSITY | | | | 6 | El | MISSION OUTSIDE THE FREQUENCY BAND | 19 | | | | | LIMIT | | | | | 6.2 | Measurement Procedure | | | | | 6.3 | TEST CONFIGURATION | | | | | 6.4 | THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND | | | | 7 | R | ADIATED EMISSIONS IN RESTRICTED FREQUENCY BANDS | | | | | 7.1 | LIMIT | | | | | 7.2 | MEASUREMENT PROCEDURE | | | | | 7.3 | TEST CONFIGURATION | _ | | | | 7.4 | TEST RESULTS OF RADIATED EMISSIONS | | | | 8 | P | OWER LINE CONDUCTED EMISSION | | | | | 8.1 | LIMIT | | | | | 8.2 | TEST CONFIGURATION | | | | | 8.3
8.4 | MEASUREMENT PROCEDURE Test Results of Power line conducted emission | 30
31 | | | | 04 | | | | | 9 C | DCCUPIED BANDWIDTH | 33 | |-------|-----------------------------------|----| | 9.1 | LIMIT | 33 | | 9.2 | Measurement Procedure | 33 | | 9.3 | TEST CONFIGURATION | 33 | | 9.4 | THE RESULTS OF OCCUPIED BANDWIDTH | 33 | | 10 A | ANTENNA REQUIREMENT | 34 | | APPEN | IDIX A: TEST RESULTS | 35 | # **Revision History** | Report No. | Version | Description | Issued Date | |------------------|---------|-------------------------|-------------------| | 230401890SHA-001 | Rev. 01 | Initial issue of report | November 10, 2023 | | | | | | | | | | | # **Measurement result summary** | TEST ITEM | FCC REFERANCE | RESULT | |--|-----------------------------|--------| | Minimum 6dB Bandwidth | 15.247(a)(2) | Pass | | Maximum conducted output power and e.i.r.p. | 15.247(b)(3) | Pass | | Power spectrum density | 15.247(e) | Pass | | Emission outside the frequency band | 15.247(d) | Pass | | Radiated Emissions in restricted frequency bands | 15.247(d),
15.205&15.209 | Pass | | Power line conducted emission | 15.207(a) | Pass | | Occupied bandwidth | - | Tested | | Antenna requirement | 15.203 | Pass | Notes: 1: NA =Not Applicable Report No.: 230401890SHA-001 ## TEST REPORT # 1 GENERAL INFORMATION # 1.1 Description of Equipment Under Test (EUT) | Product name: | Smart cordless floor washer | | | |----------------------------|--|--|--| | | FW110300US, FW110500US, FW11xxyyzz, XX could be 00-99 or AA-ZZ, | | | | | indicate for different accessories; yy could be 00-99 indicate for different | | | | Type/Model: | sales channels; zz could be AA-ZZ indicate for different countries. | | | | | The EUT is a Smart cordless floor washer, it supports WIFI function, all | | | | | models are identical except the display, there are LCD display and LED | | | | | display. In model name, the suffix of the first two digits or two letters | | | | | indicate for different accessories, the followed two digits indicate for | | | | | different sales channels, and the last two letters indicate for different | | | | | countries, they do not matter with the testing requirements. we test the | | | | Description of EUT: | EUT with LED and LCD display and list the worst results in this report. | | | | | DC 21.6V, 230W | | | | | Adapter S030-1B260100HU: | | | | | Input: 100-240V~, 50-60Hz, 0.8A | | | | | output: 26V dc, 1.0A. | | | | | Adapter KL-WA260100-A3: | | | | Dating | Input:100-240V~, 50-60Hz, 1.2A | | | | Rating: | output: 26V dc, 1.0A. | | | | EUT type: | Table top 🔀 Floor standing | | | | Software Version: | / | | | | Hardware Version: | / | | | | Sample Identification No.: | 0230608-02-001 | | | | Sample received date: | 2023.6.8 | | | | Date of test: | 2023.6.10-2023.6.23 | | | # 1.2 Technical Specification | Frequency Band: | 2400MHz ~ 2483.5MHz | | |--|--|--| | Support Standards: | IEEE 802.11b, IEEE 802.11g, IEEE 802.11n-HT20 | | | | IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) | | | | IEEE 802.11g: OFDM (64-QAM, 16-QAM, QPSK, BPSK) | | | Type of Modulation: | IEEE 802.11n-HT20: OFDM (64-QAM, 16-QAM, QPSK, BPSK) | | | Channel Number: 11 Channels for 802.11b, 802.11g and 802.11n(HT20) | | | | Channel Separation: | 5 MHz | | | Antenna: | PCB Antenna, 2.0dBi | | # 1.3 Description of Test Facility | Name: Intertek Testing Services Shanghai | | |---|----------------| | Address: Building 86, No. 1198 Qinzhou Road(North), Shanghai 200233, P.R. (| | | Telephone: | 86 21 61278200 | | Telefax: | 86 21 54262353 | | The test facility is recognized, | CNAS Accreditation Lab
Registration No. CNAS L0139 | |-----------------------------------|---| | certified, or accredited by these | FCC Accredited Lab Designation Number: CN0175 | | organizations: | IC Registration Lab CAB identifier.: CN0014 | | | VCCI Registration Lab
Registration No.: R-14243, G-10845, C-14723, T-12252 | | | A2LA Accreditation Lab
Certificate Number: 3309.02 | ## 2 TEST SPECIFICATIONS # 2.1 Standards or specification 47CFR Part 15 (2021) ANSI C63.10 (2013) KDB 558074 (v05r02) ## 2.2 Mode of operation during the test While testing transmitting mode of EUT, the internal modulation and continuously transmission was applied. | Software name | Manufacturer | Version | Supplied by | |---------------|--------------|---------|-------------| | EspRFTestTool | - | V2.8 | Client | The lowest, middle and highest channel were tested as representatives. | Frequency Band
(MHz) | Mode | Lowest
(MHz) | Middle
(MHz) | Highest
(MHz) | |-------------------------|---------------|-----------------|-----------------|------------------| | | 802.11b | 2412 | 2437 | 2462 | | 2400-2483.5 | 802.11g | 2412 | 2437 | 2462 | | | 802.11n(HT20) | 2412 | 2437 | 2462 | ## **Data rate and Power setting:** The pre-scan for the conducted power with all rates in each modulation and bands was used, and the worst case was found and used in all test cases. After this pre-scan, we choose the following table of the data rata as the worst case. | Frequency Band
(MHz) | Mode | Worst case data rate | Power
Setting | |-------------------------|---------------|----------------------|------------------| | | 802.11b | 1Mbps | Default | | 2400-2483.5 | 802.11g | 6Mbps | Default | | | 802.11n(HT20) | MCS0 | Default | ## 2.3 Test software list | Test Items | Software | Manufacturer | Version | |--------------------|----------|--------------|---------| | Conducted emission | ESxS-K1 | R&S | V2.1.0 | | Radiated emission | ES-K1 | R&S | V1.71 | # 2.4 Test peripherals list | Item No. | Name | Band and Model | Description | | |----------|-----------------|----------------|-------------|--| | 1 | Laptop computer | DELL 5480 | - | | # 2.5 Test environment condition: | Test items | Temperature | Humidity | |--|-------------|----------| | Minimum 6dB Bandwidth | | | | Maximum conducted output power and e.i.r.p. | | | | Power spectrum density | 24°C | 52%RH | | Emission outside the frequency band | | | | Occupied bandwidth | | | | Radiated Emissions in restricted frequency bands | 25°C | 51%RH | | Power line conducted emission | 24°C | 52%RH | # 2.6 Instrument list | Conducted | Emission | | | | | | | | |-------------|--|----------------------|--------------------------------|--------------|------------|--|--|--| | Used | Equipment | Manufacturer | Туре | Internal no. | Due date | | | | | \boxtimes | Test Receiver | R&S | ESCS 30 | EC 2107 | 2023-07-09 | | | | | \boxtimes | A.M.N. | R&S | ESH2-Z5 | EC 3119 | 2023-11-09 | | | | | | A.M.N. | R&S | ENV 216 | EC 3393 | 2023-07-09 | | | | | | A.M.N. | R&S | ENV4200 | EC 3558 | 2024-06-09 | | | | | Radiated E | mission | | | | | | | | | Used | Equipment | Manufacturer | Туре | Internal no. | Due date | | | | | \boxtimes | Test Receiver | R&S | ESIB 26 | EC 3045 | 2023-10-19 | | | | | \boxtimes | Bilog Antenna | TESEQ | CBL 6112D | EC 4206 | 2023-08-06 | | | | | \boxtimes | Pre-amplifier | R&S | AFS42-
00101800-25-S-
42 | EC5262 | 2024-06-09 | | | | | \boxtimes | Horn antenna | ETS | 3117 | EC 4792-1 | 2024-03-26 | | | | | \boxtimes | Horn antenna | TOYO | HAP18-26W | EC 4792-3 | 2023-07-08 | | | | | | Active loop
antenna | Schwarzbeck | FMZB1519 | EC 5345 | 2024-04-23 | | | | | RF test | | | | | | | | | | Used | Equipment | Manufacturer | Туре | Internal no. | Due date | | | | | | PXA Signal Analyzer | Keysight | N9030A | EC 5338 | 2024-03-13 | | | | | | Power sensor | Agilent | U2021XA | EC 5338-1 | 2024-03-13 | | | | | | Vector Signal
Generator | Agilent | N5182B | EC 5175 | 2024-03-13 | | | | | | Universal Radio
Communication
Tester | R&S | CMW500 | EC5944 | 2024-01-20 | | | | | | MXG Analog Signal
Generator | Agilent | N5181A | EC 5338-2 | 2024-03-05 | | | | | | Mobile Test System | Litepoint | Iqxel | EC 5176 | 2024-01-11 | | | | | | Test Receiver | R&S | ESCI 7 | EC 4501 | 2023-12-09 | | | | | | Climate chamber | GWS | MT3065 | EC 6021 | 2024-03-05 | | | | | \boxtimes | Spectrum Analyzer | Keysight | N9030B | EC 6078 | 2024-06-08 | | | | | Tet Site | Tet Site | | | | | | | | | Used | Equipment | Manufacturer | Туре | Internal no. | Due date | | | | | \boxtimes | Shielded room | Zhongyu | - | EC 2838 | 2024-01-24 | | | | | | Shielded room | Zhongyu | - | EC 2839 | 2024-01-24 | | | | | \boxtimes | Semi-anechoic chamber | Albatross
project | - | EC 3048 | 2023-08-22 | | | | | | Fully-anechoic chamber | Albatross
project | - | EC 3047 | 2023-08-22 | | | | | |-------------|------------------------|----------------------|--------------------|--------------|------------|--|--|--|--| | Additional | Additional instrument | | | | | | | | | | Used | Equipment | Manufacturer | Туре | Internal no. | Due date | | | | | | \boxtimes | Therom-
Hygrograph | ZJ1-2A | S.M.I.F. | EC 3783 | 2024-03-23 | | | | | | | Therom-
Hygrograph | ZJ1-2A | S.M.I.F. | EC 5844 | 2024-03-08 | | | | | | | Therom-
Hygrograph | ZJ1-2A | S.M.I.F. | EC 3442 | 2024-01-04 | | | | | | | Therom-
Hygrograph | ZJ1-2A | S.M.I.F. | EC 5198 | 2024-03-08 | | | | | | | Pressure meter | YM3 | Shanghai
Mengde | EC 3320 | 2023-07-22 | | | | | # 2.7 Measurement uncertainty The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. | Test item | Measurement uncertainty | |---|-------------------------| | Maximum peak output power | ± 0.74dB | | Radiated Emissions in restricted frequency bands below 1GHz | ± 4.90dB | | Radiated Emissions in restricted frequency bands above 1GHz | ± 5.02dB | | Emission outside the frequency band | ± 2.89dB | | Power line conducted emission | ± 3.19dB | ## 3 Minimum 6dB bandwidth Test result: Pass ### 3.1 Limit For systems using digital modulation techniques that may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz and 5725 - 5850 MHz bands, the minimum 6 dB bandwidth shall be at least 500 kHz. ## 3.2 Measurement Procedure The EUT was tested according to Subclause 11.8 of ANSI C63.10. - a) Set RBW = 100 kHz. - b) Set the video bandwidth (VBW) \geq 3 × RBW. - c) Detector = Peak. - d) Trace mode = max hold. - e) Sweep = auto couple. - f) Allow the trace to stabilize. - g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. ## 3.3 Test Configuration ## 3.4 Test Results of Minimum 6dB bandwidth Please refer to Appendix A # 4 Maximum conducted output power and e.i.r.p. Test result: Pass ### 4.1 Limit For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 W. (The e.i.r.p. shall not exceed 4 W) If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 30dBm and 30+ (6 –antenna gain-beam forming gain). ### 4.2 Measurement Procedure The EUT was tested according to Subclause 11.9.2.2 of ANSI C63.10. - a) Measure the duty cycle, x, of the transmitter output signal as described in Section 6.0. - b) Set span to at least 1.5 x OBW. - c) Set RBW = 1 % to 5 % of the OBW, not to exceed 1 MHz. - d) Set VBW \geq 3 x RBW. - e) Number of points in sweep ≥ 2 x span / RBW. (This gives bin-to-bin spacing \leq RBW/2, so that narrowband signals are not lost between frequency bins.) - f) Sweep time = auto. - g) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode. - h) Do not use sweep triggering. Allow the sweep to "free run". - i) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the on and off periods of the transmitter. - j) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum. - k) Add $10 \log (1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on- and off-times of the transmission). For example, add $10 \log (1/0.25) = 6 dB$ if the duty cycle is 25 %. Report No.: 230401890SHA-001 ## **TEST REPORT** # 4.3 Test Configuration # 4.4 Test Results of Maximum conducted output power Please refer to Appendix A ## 5 Power spectrum density Test result: Pass ### 5.1 Limit For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 8dBm/MHz and 8+ (6 –antenna gain-beam forming gain). #### 5.2 Measurement Procedure The EUT was tested according to Subclause 11.10 of ANSI C63.10. This procedure is applicable when the EUT cannot be configured to transmit continuously (i.e., duty cycle < 98 %), and when sweep triggering/signal gating cannot be used to measure only when the EUT is transmitting at its maximum power control level, and when the transmission duty cycle is constant (i.e., duty cycle variations are less than ± 2 %): - a) Measure the duty cycle (x) of the transmitter output signal as described in Section 6.0. - b) Set instrument center frequency to DTS channel center frequency. - c) Set span to at least 1.5 x OBW. - d) Set RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$. - e) Set VBW ≥3 x RBW. - f) Detector = power averaging (RMS) or sample detector (when RMS not available). - g) Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$. - h) Sweep time = auto couple. - i) Do not use sweep triggering. Allow sweep to "free run". - j) Employ trace averaging (RMS) mode over a minimum of 100 traces. - k) Use the peak marker function to determine the maximum amplitude level. - I) Add 10 log (1/x), where x is the duty cycle measured in step (a, to the measured PSD to compute the average PSD during the actual transmission time. - m) If resultant value exceeds the limit, then reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced). Report No.: 230401890SHA-001 ## **TEST REPORT** # 5.3 Test Configuration # 5.4 Test Results of Power spectrum density Please refer to Appendix A # 6 Emission outside the frequency band Test result: Pass #### 6.1 Limit In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. ### **6.2** Measurement Procedure The EUT was tested according to Subclause 11.11 of ANSI C63.10. #### Reference level measurement Establish a reference level by using the following procedure: - a) Set instrument center frequency to DTS channel center frequency. - b) Set the span to \geq 1.5 times the DTS bandwidth. - c) Set the RBW = 100 kHz. - d) Set the VBW \geq 3 x RBW. - e) Detector = peak. - f) Sweep time = auto couple. - g) Trace mode = max hold. - h) Allow trace to fully stabilize. - i) Use the peak marker function to determine the maximum PSD level. ### **Emission level measurement** - a) Set the center frequency and span to encompass frequency range to be measured. - b) Set the RBW = 100 kHz. - c) Set the VBW \geq 3 x RBW. - d) Detector = peak. - e) Sweep time = auto couple. - f) Trace mode = max hold. - g) Allow trace to fully stabilize. - h) Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit. Report No.: 230401890SHA-001 ## **TEST REPORT** # 6.3 Test Configuration # 6.4 The results of Emission outside the frequency band Please refer to Appendix A # 7 Radiated Emissions in restricted frequency bands Test result: Pass #### 7.1 Limit The radiated emissions which fall in the restricted bands, must also comply with the radiated emission limits specified showed as below: | Frequencies (MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) | |-------------------|-----------------------------------|-------------------------------| | 0.009 ~ 0.490 | 2400/F(kHz) | 300 | | 0.490 ~ 1.705 | 24000/F(kHz) | 30 | | 1.705 ~ 30.0 | 30 | 30 | | 30 ~ 88 | 100 | 3 | | 88 ~ 216 | 150 | 3 | | 216 ~ 960 | 200 | 3 | | Above 960 | 500 | 3 | ### 7.2 Measurement Procedure The EUT was tested according to Subclause 11.12 of ANSI C63.10. ### For Radiated emission below 30MHz: - a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters chamber room. For the floor-standing devices, the EUT was placed on the top of a rotating table 0.1 meters above the ground at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c) Both X and Y axes of the antenna are set to make the measurement. - d) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e) The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. #### NOTE: 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz. #### For Radiated emission above 30MHz: - a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters chamber room. For the floor-standing devices, the EUT was placed on the top of a rotating table 0.1 meters above the ground at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c) The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. - f) The test-receiver system was set to peak and average detector function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary. #### Note: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz. - 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz. - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is \geq 1/T (Duty cycle < 98%) or 3 x RBW (Duty cycle \geq 98%) for Average detection (AV) at frequency above 1GHz. - 4. All modes of operation were investigated and the worst-case emissions were reported. # 7.3 Test Configuration ## For Radiated emission below 30MHz: ## For Radiated emission 30MHz to 1GHz: ## For Radiated emission above 1GHz: ## 7.4 Test Results of Radiated Emissions The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported. Ver ---- Frequency(Hz) ## Test data below 1GHz | Antenna | Frequency
(MHz) | Corrected Reading (dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | |---------|--------------------|----------------------------|-------------------|----------------|----------| | Н | 212.36 | 25.80 | 43.50 | 17.70 | PK | | Н | 304.80 | 32.10 | 46.00 | 13.90 | PK | | Н | 745.76 | 31.30 | 46.00 | 14.70 | PK | | Н | 792.03 | 34.00 | 46.00 | 12.00 | PK | | Н | 842.96 | 34.80 | 46.00 | 11.20 | PK | | Н | 911.34 | 31.00 | 46.00 | 15.00 | PK | | V | 37.26 | 27.80 | 40.00 | 12.20 | PK | | V | 40.61 | 26.40 | 40.00 | 13.60 | PK | | V | 44.95 | 26.80 | 40.00 | 13.20 | PK | | V | 70.77 | 28.60 | 40.00 | 11.40 | PK | | V | 76.81 | 28.10 | 40.00 | 11.90 | PK | | V | 100.99 | 31.70 | 43.50 | 11.80 | PK | ## Test result above 1GHz: The emission was conducted from 1GHz to 25GHz 802.11b | СН | Antenna | Frequency
(MHz) | Corrected
Reading
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | |----|---------|--------------------|----------------------------------|-------------------|----------------|----------| | | V | 2390 | 51.40 | 74.00 | 22.60 | PK | | | V | 4824 | 55.80 | 74.00 | 18.20 | PK | | L | V | 4824 | 46.10 | 54.00 | 7.90 | AV | | | V | 9648 | 58.40 | 74.00 | 15.60 | PK | | | V | 9648 | 46.40 | 54.00 | 7.60 | AV | | | V | 4874 | 57.90 | 74.00 | 16.10 | PK | | | V | 4874 | 48.50 | 54.00 | 5.50 | AV | | М | V | 9748 | 58.20 | 74.00 | 15.80 | PK | | | V | 9748 | 49.10 | 54.00 | 4.90 | AV | | | V | 2483.5 | 50.40 | 74.00 | 23.60 | PK | | | V | 4924 | 57.30 | 74.00 | 16.70 | PK | | н | V | 4924 | 47.10 | 54.00 | 6.90 | AV | | | V | 9848 | 59.70 | 74.00 | 14.30 | PK | | | V | 9848 | 49.30 | 54.00 | 4.70 | AV | 802.11g | CH | Antenna | Frequency
(MHz) | Corrected
Reading
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | |-----|---------|--------------------|----------------------------------|-------------------|----------------|----------| | | V | 2390 | 58.10 | 74.00 | 15.90 | PK | | | V | 2390 | 47.40 | 54.00 | 6.60 | AV | | | V | 4824 | 56.60 | 74.00 | 17.40 | PK | | L | V | 4824 | 47.80 | 54.00 | 6.20 | AV | | | V | 9648 | 56.40 | 74.00 | 17.60 | PK | | | V | 9648 | 47.30 | 54.00 | 6.70 | AV | | | V | 4874 | 56.80 | 74.00 | 17.20 | PK | | N.4 | V | 4874 | 47.50 | 54.00 | 6.50 | AV | | M | V | 9748 | 57.30 | 74.00 | 16.70 | PK | | | V | 9748 | 48.40 | 54.00 | 5.60 | AV | | | V | 2483.5 | 58.70 | 74.00 | 15.30 | PK | | | V | 2483.5 | 45.30 | 54.00 | 8.70 | AV | | Н | V | 4924 | 57.40 | 74.00 | 16.60 | PK | | | V | 4924 | 48.10 | 54.00 | 5.90 | AV | | | V | 9848 | 57.60 | 74.00 | 16.40 | PK | | | V | 9848 | 47.80 | 54.00 | 6.20 | AV | ## 802.11n(HT20) | СН | Antenna | Frequency
(MHz) | Corrected
Reading
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | |-----|---------|--------------------|----------------------------------|-------------------|----------------|----------| | | V | 2390 | 60.10 | 74.00 | 13.90 | PK | | | V | 2390 | 48.40 | 54.00 | 5.60 | AV | | | V | 4824 | 55.90 | 74.00 | 18.10 | PK | | L | V | 4824 | 46.30 | 54.00 | 7.70 | AV | | | V | 9648 | 56.10 | 74.00 | 17.90 | PK | | | V | 9648 | 47.60 | 54.00 | 6.40 | AV | | | V | 4874 | 56.30 | 74.00 | 17.70 | PK | | N 4 | V | 4874 | 47.20 | 54.00 | 6.80 | AV | | M | V | 9748 | 57.70 | 74.00 | 16.30 | PK | | | V | 9748 | 48.50 | 54.00 | 5.50 | AV | | | V | 2483.5 | 59.70 | 74.00 | 14.30 | PK | | | V | 2483.5 | 48.20 | 54.00 | 5.80 | AV | | | V | 4924 | 57.20 | 74.00 | 16.80 | PK | | Н | V | 4924 | 48.80 | 54.00 | 5.20 | AV | | | V | 9848 | 57.40 | 74.00 | 16.60 | PK | | | V | 9848 | 48.20 | 54.00 | 5.80 | AV |