

Page 1 of 18

FCC & ISED DFS TEST REPORT

Project Number : EA2002C-029

Test Report Number : TR-W2006-025

Type of Equipment : WiFi/BT Combo Module

Model Name : SBW-M3

Equipment Class : NII - Unlicensed National Information Instructure TX

FCC ID : WF5SBWM3

ISED Canada ID : 9080A-SBWM3

Multiple Model Name : N/A

Applicant : Aroot Co., Ltd.

Address : 28-6, Gajangsaneopdong-ro, Osan-si, Gyeonggi-do, Republic of

Korea

Manufacturer : Aroot Co., Ltd.

Address : 28-6, Gajangsaneopdong-ro, Osan-si, Gyeonggi-do, Republic of

Korea

Regulation : FCC Part 15 Subpart E Section 15.407, ISED RSS-247 Issue2

Total page of Report : 18 Pages

Date of Receipt : 2020-02-10

Date of Issue : 2020-06-30

Test Result : PASS

Report No.: TR-W2006-025

This test report only contains the result of a single test of the sample supplied for the examination. It is not a generally valid assessment of the features of the respective products of the mass-production.

Prepared by Song, In-young / Senior Engineer 2020-06-30
Signature Date

Reviewed by Choi, Yeong-min / Technical Manager 2020-06-30
Signature Date

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 464-942 Report Form_01 (Rev.2)

CONTENTS

	Page
1. TEST SUMMARY	4
1.1 REGULATIONS AND RESULTS	4
1.2 TEST METHODOLOGY	4
1.3 ADDITIONS, DEVIATIONS, EXCLUSIONS FROM STANDARDS	4
1.4 PURPOSE OF THE TEST	4
2. EUT (EQUIPMENT UNDER TEST) INFORMATION	6
2.1 GENERAL DESCRIPTION	6
2.2 ADDITIONAL MODEL	7
3. TEST CONDITION	8
3.1 EQUIPMENT USED DURING TEST	8
3.2 MODE OF OPERATION DURING THE TEST	8
3.3 TEST SETUP DRAWING	8
3.4 EUT MODIFICATIONS	8
4. TEST RESULT	9
4.1 DYAMIC FREQUENCY SELECTION (DFS)	9
ADDENDIVI TEST INSTRUMENTATION	10

Release Control Record

Issue Report No.	Issued Date	Details/Revisions
TR-W2006-025	2020-06-30	Initial Release
-	-	-

Report No.: TR-W2006-025 Page 3 of 18

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 464-942

Report Form_01 (Rev.2)

1. TEST SUMMARY

1.1 Regulations and results

The sample submitted for evaluation (Hereafter referred to as the EUT) has been tested in accordance with the following regulations or standards.

FCC Reference	ISED Reference			Res	sult	
Section	Section	Description	Р	F	N.T.	Note
15.407(h)	RSS-247 6.3	Dynamic Frequency Selection (DFS)	Р			Note 1

Remark:

P means Passed F means Failed N.T. means Not Tested

Note 1: The EUT is a client device without Radar detection

1.2 Test Methodology

The tests mentioned in clause 1.1 in this test report were performed according to FCC CFR 47 Part 2, CFR 47 Part 15, RSS-247.

KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 and KDB 905462 D03 UNII Clients Without Radar Detection New Rules v01r02

1.3 Additions, deviations, exclusions from standards

No additions, deviations or exclusions have been made from standard.

1.4 Purpose of the test

The test was performed to determine whether the equipment under test fulfills the requirements of the regulation stated in FCC Part 15 Subpart E Section 15.407, RSS-Gen and RSS-247.

Report No.: TR-W2006-025 Page 4 of 18

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 464-942

Report Form_01 (Rev.2)

1.5 Test Facility

The measurement facilities are located at 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do 12813, Korea. Our test facilities are accredited as a Conformity Assessment Body (CAB) by the FCC and ISED Canada, designated by the RRA (National Radio Research Agency), and accredited by KOLAS (Korea Laboratory Accreditation Scheme) in Korea and approved by TUV Rheinland, TUV SÜD and Korean Register of Shipping according to the requirement of ISO/IEC 17025.

Laboratory Qualification	Registration No.	Mark
FCC	KR0160	F©
ISED Canada	12721A	*
RRA	KR0160	National Radio Research Agency
TUV Rheinland	UA 50314109-0002	TÜVRheinland
TUV SÜD	CARAT 094465 0004 Rev.00	SUD
Korean Agency for Technology and Standards	KT733	MOLAS PETROS NOSTRA
KOREAN REGISTER OF SHIPPING	PCT40841-TL001	KR ROREAN REGISTER

Remark. This report is not related to KOLAS accreditation and relevant regulation.

Report No.: TR-W2006-025 Page 5 of 18

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea~464-942

Report Form_01 (Rev.2)

2. EUT (Equipment Under Test) INFORMATION

2.1 General Description

The Aroot Co., Ltd., Model SBW-M3 (referred to as the EUT in this report) is a WiFi/BT Combo Module. which has 3 Equipment Class, DSS, DTS, and NII. This test report covers NII portion only and other functions are covered by other test report. The product specification described herein was obtained from product data sheet or user's manual.

Equipment Class NII – Unlicen		NII – Unlicen	sed National Information Instructure TX	
	Bluetoot	h LE	2 402 MHz – 2 480 MHz	
	Bluetooth		2 402 MHz – 2 480 MHz	
	\\\/\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4 CU-	2 412 MHz – 2 462 MHz (802.11b/g/n HT20)	
	WLAN 2.4 GHz		2 422 MHz – 2 452 MHz (802.11n HT40)	
	UNII 1 band		5 180 MHz – 5 240 MHz (802.11a/n HT20/ac VHT20)	
	5 150 M	Hz –	5 190 MHz – 5 230 MHz (802.11n HT40/ac VHT40)	
	5 250 MHz		5 210 MHz (802.11ac VHT80)	
	UNII 2-A	band	5 260 MHz - 5 320 MHz (802.11a/n HT20/ac VHT20)	
	5 250 M	Hz –	5 270 MHz – 5 310 MHz (802.11n HT40/ac VHT40)	
Operating Frequency	5 350 M	Hz	5 290 MHz (802.11ac VHT80)	
	UNII 2-C	band	5 500 MHz – 5 700 MHz (802.11a/n HT20/ac VHT20)	
	5 470 MHz – 5 725 MHz	5 510 MHz – 5 670 MHz (802.11n HT40/ac VHT40)		
		5 530 MHz – 5 610 MHz (802.11ac VHT80)		
	UNII 3 band 5 725 MHz – 5 850 MHz	5 745 MHz – 5 825 MHz (802.11a/n HT20/ac VHT20)		
		5 755 MHz – 5 795 MHz (802.11n HT40/ac VHT40)		
		Hz	5 775 MHz (802.11ac VHT80)	
	Otal dalla		5 720 MHz (802.11a/n HT20/ac VHT20)	
	Straddle channel UNII 2-C to 3 band	5 710 MHz (802.11n HT40/ac VHT40)		
		5 690 MHz (802.11ac VHT80)		
Generated or used Free	q. in EUT		32.768 kHz, 37.4 MHz	
Type of Antenna			☐ Integrated Type ■ Dedicated Type	
Antenna Gain	Antenna Gain		4.61 dBi	
Operating Temperature			- 20 °C ~ + 55 °C	
Normal Test Voltage			DC 3.3 V	
Electrical Rating			DC 3.3 V	
Test SW Version			DBGMon version: unknown	
Software Version			Ver 1.0	
Hardware Version			Ver 1.0	

Report No.: TR-W2006-025 Page 6 of 18

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 464-942

Report Form_01 (Rev.2)

None

Report No.: TR-W2006-025 Page 7 of 18

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea~464-942

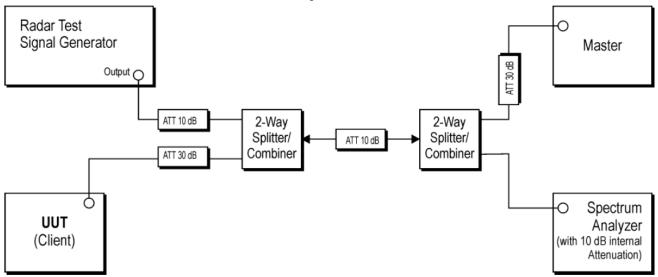
Report Form_01 (Rev.2)

3. TEST CONDITION

3.1 Equipment Used During Test

The following peripheral devices and/or interface cables were connected during the measurement:

Description	Model No.	Serial No.	Manufacturer.
WiFi/BT Combo Module (EUT)	SBW-M3	N/A	Aroot Co., Ltd.
Notebook PC	15s-du0069TU	CND9503W22	HP
Adapter for Notebook PC	TPN-CA14	N/A	Chicony Power Technology (Chongqing) Co., Ltd.
Wireless Access Point	WA730	4D7689EP000FB (FCC ID: PY315300320) (IC: 4054A-15300320)	NETGEAR


3.2 Mode of operation during the test

Software used to control the EUT for staying in continuous transmitting mode is programmed.

The used modulation type for the testing is OFDM

3.3 Test Setup Drawing

UUT is a Client and Radar Test Waveforms are injected into the Master

3.4 EUT Modifications

- No EMC Relevant Modifications were performed by this test laboratory.

Report No.: TR-W2006-025 Page 8 of 18

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 464-942

Report Form_01 (Rev.2)

4. TEST RESULT

4.1 Dyamic Frequency Selection (DFS)

4.1.1 Limit

Acc. to KDB 905462 D02 UNII DFS compliance Procedures New Rules v02, following tables shall be applied.

Table 1: Applicability of DFS Requirement Prior to Use of a Channel

	Operational Mode		
Requirement		Client Without	Client With
	Master	Radar Detection	Radar Detection
Non-Occupancy Period	Yes	Not Required	Yes
DFS Detection Threshold	Yes	Not Required	Yes
Channel Availability Check Time	Yes	Not Required	Not Required
U-NII Detection Bandwidth	Yes	Not Required	Yes

Table 2: Applicability of DFS Requirement Prior to Use of a Channel

	Operational Mode		
Requirement	Master Device or Client	Client With	
	with Radar Detection	Radar Detection	
DFS Detection Threshold	Yes	Not Required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not Required	

Additional requirements for devices	Master Device or Client	Client With	
with multiple bandwidth modes	with Radar Detection	Radar Detection	
U-NII Detection Bandwidth and	All BW modes must be tested	Not Required	
Statistical Performance Check	All BW modes must be tested	Not Required	
Channel Move Time and Channel	Test using widest BW mode	Test using the widest BW	
Closing Transmission Time	available	mode available for the link	
All other tests	Any single BW mode	Not required	

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Report No.: TR-W2006-025 Page 9 of 18

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 464-942

Report Form_01 (Rev.2)

Table 3: DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and	00 10
power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 4: DFS Response Requirement Values

rable 4. Di o Response Requirement Values			
Parameter	Value		
Non-occupancy period	Minimum 30 minutes		
Channel Available Check Time	60 seconds		
Channel Move Time	10 seconds See Note1.		
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.		
U-NII Detection Bandwidth	Minimum 100 % of the U-NII 99 % transmissions power bandwidth. See Note 3.		

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Report No.: TR-W2006-025 Page 10 of 18

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 464-942

Report Form_01 (Rev.2)

4.1.2 DFS Test Signals

Table 5: Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (μsec)	PRI (μsec)	Number of Pulses	Minimum Percentage of Successful	Minimum Number of Trials
	4	4400	40	Detection	O a a Ni ata 4
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup $\left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{PRI_{\mu \text{sec}}} \right) \right\}$	See Note1	See Note1
2	1-5	150-230	23-29	60 %	30
3	6-10	200-500	16-18	60 %	30
4	4 11-20 200-500		12-16	60 %	30
	Αg	80 %	120		

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Table 6: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of <i>Bursts</i>	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000- 2000	1-3	8-20	80 %	30

Report No.: TR-W2006-025 Page 11 of 18

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 464-942

Report Form_01 (Rev.2)

Table 7: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70 %	30

4.1.3 Method of Measurement

Acc. to KDB 905462 D02 UNII DFS compliance Procedures New Rules v02, figure 3 describes a conducted test setup.

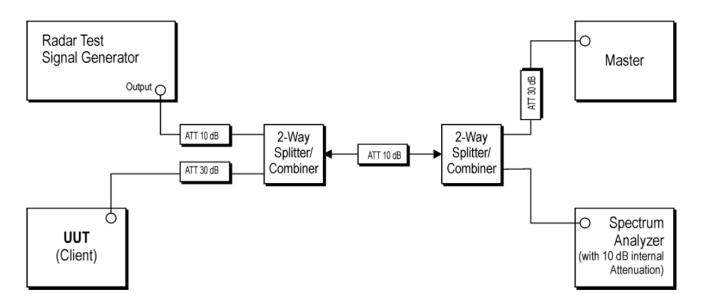


Figure 3: Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Master

The steps below define the procedure to determine the above mentioned parameters when a radar *Burst* with a level equal to the *DFS Detection Threshold* + 1dB is generated on the *Operating Channel* of the U-NII device (*In- Service Monitoring*).

- a) One frequency will be chosen from the *Operating Channels* of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands.
- b) In case the UUT is a U-NII device operating as a *Client Device* (with or without DFS), a U-NII device operating as a *Master Device* will be used to allow the UUT (Client device) to *Associate* with the *Master Device*.
- c) Stream the channel loading test file from the *Master Device* to the *Client Device* on the test *Channel* for the entire period of the test.
- d) At time T₀ the *Radar Waveform* generator sends a *Burst* of pulses for one of the Radar Type 0 in **Table 5** at levels defined in **Table 3**, on the *Operating Channel*. An additional 1 dB is added to the radar test signal to ensure it is at or above the *DFS Detection Threshold*, accounting for equipment variations/errors.
- e) Observe the transmissions of the UUT at the end of the radar Burst on the Operating Channel for duration

Report No.: TR-W2006-025 Page 12 of 18

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 464-942

Report Form_01 (Rev.2)

greater than 10 seconds. Measure and record the transmissions from the UUT during the observation time (*Channel Move Time*). Measure and record the *Channel Move Time* and *Channel Closing Transmission Time* if radar detection occurs. **Figure 17** illustrates *Channel Closing Transmission Time*.

f) When operating as a *Master Device*, monitor the UUT for more than 30 minutes following instant T_2 to verify that the UUT does not resume any transmissions on this *Channel*. Perform this test once and record the measurement result.

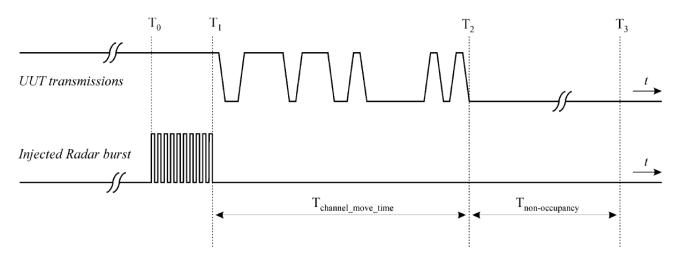
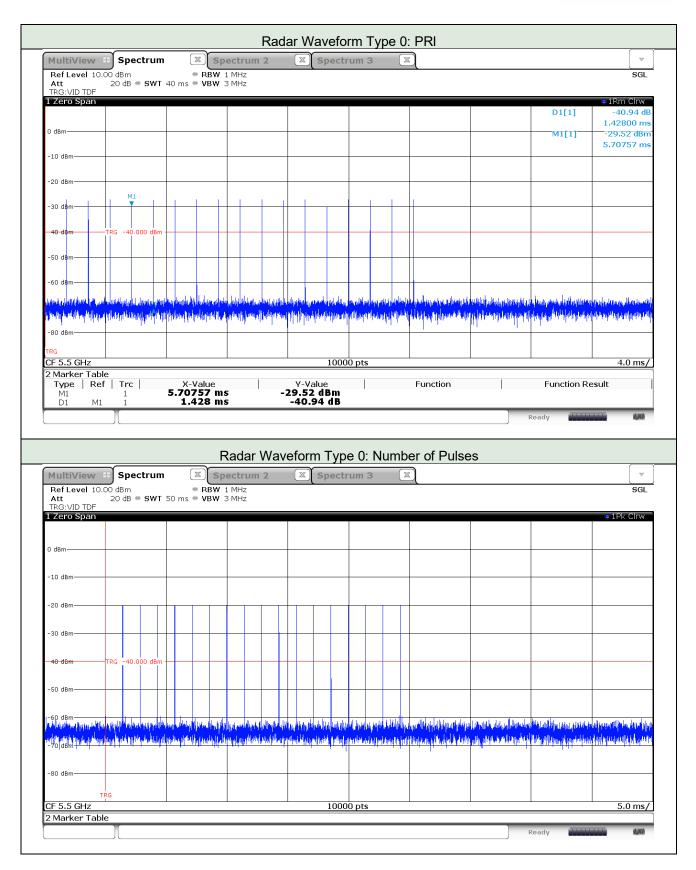


Figure 17: Example of Channel Closing Transmission Time & Channel Closing Time

4.1.4 Test Data

D		Temperature	(26.8 ± 1.4) °C		
Date of Test	2020-06-01	Relative humidity $(47.3 \pm 7.4) \%$ R.H.			
Measurement Freque	ency	5 500 MHz at 20 MHz BW /	/ 5 530 MHz at 80 MHz BW		
Test Result	PASS	Tested By	Do-heon Kim		
Test Result	PASS	Tested By	Do-heon Kim		

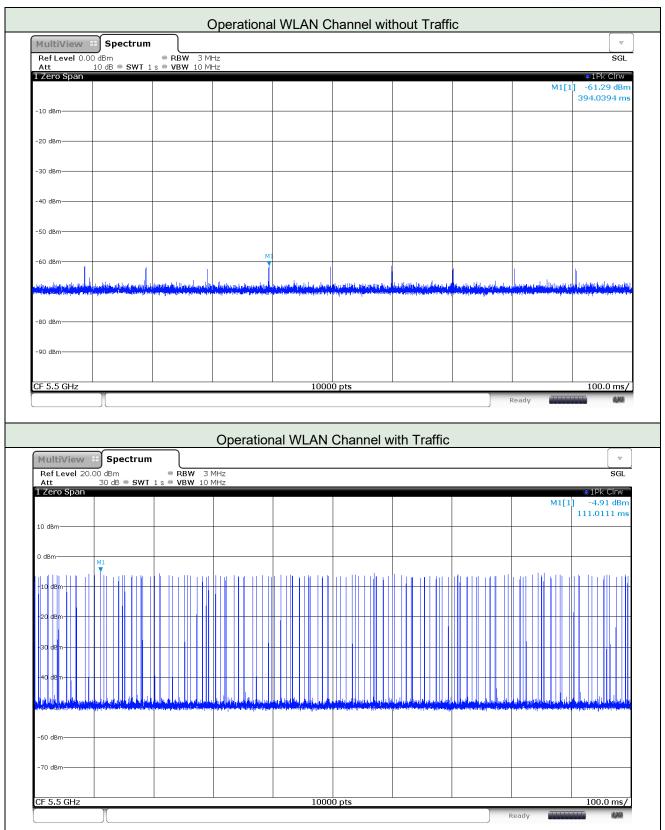
Parameter	Test Data Type 0	Limit	Test Result
Test Frequency (MHz)	5 500	-	-
Channel Move Time (Sec)	0.012	< 10 Sec.	PASS
Channel Closing Transmission Time (ms)	0.012	< 60 ms	PASS
Non-Occupancy Period (Min.)	≥30	≥30	PASS


Parameter	Test Data Type 0	Limit	Test Result			
Test Frequency (MHz)	5 530	-	-			
Channel Move Time (Sec)	0.034	< 10 Sec.	PASS			
Channel Closing Transmission Time (ms)	0.034	< 60 ms	PASS			
Non-Occupancy Period (Min.)	≥30	≥30	PASS			
Remark. The EUT is a client device without radar detecting						

Report No.: TR-W2006-025 Page 13 of 18

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 464-942

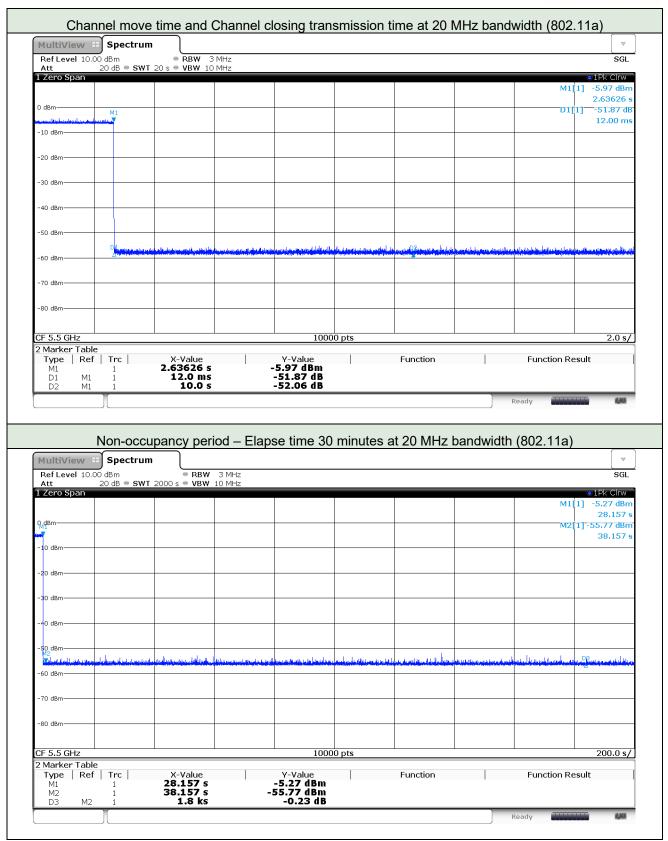
Report Form_01 (Rev.2)



Report No.: TR-W2006-025 Page 14 of 18

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 464-942

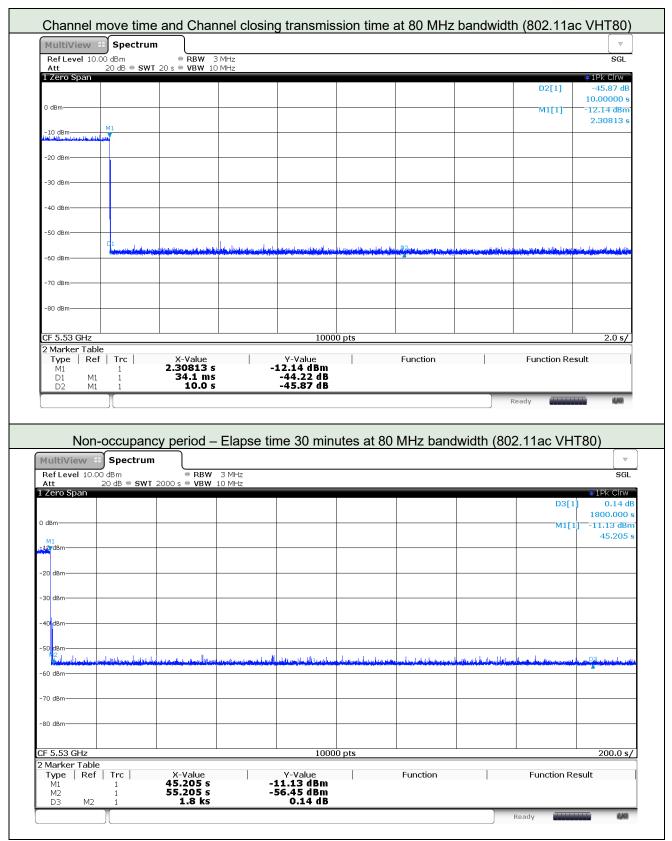
Report Form_01 (Rev.2)



Report No.: TR-W2006-025 Page 15 of 18

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea~464-942

Report Form_01 (Rev.2)



Report No.: TR-W2006-025 Page 16 of 18

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 464-942

Report Form_01 (Rev.2)

Report No.: TR-W2006-025 Page 17 of 18

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 464-942

Report Form_01 (Rev.2)

Appendix I – Test Instrumentation

Description	Model No.	Serial No.	Manufacturer.	Due for Cal.	Cal.
Signal & Spectrum Analyzer	FSW 43	100578	Rohde & Schwarz	2021-04-20	1 Y
Vector Signal Generator	SMBV100A	101441	Rohde & Schwarz	2021-01-26	1 Y
Attenuator	56-10	58769	WEINSCHEL	2021-01-20	1 Y
Attenuator	10 dB	ENG-1	Rohde & Schwarz	2021-01-16	1 Y
DC Power Supply	6032A	SG41000637	Agilent	2021-03-25	1 Y
Directional Coupler	AAMCS-UDC- 0.5G-18G-SF	000757	AAMCS	2021-01-17	1 Y
Splitter	1580	SC321	WEINSCHEL	2021-01-20	1 Y
Attenuator	8496A	3308A3798S	HP	2021-01-16	1 Y
Attenuator	8494B	3308a38821	HP	2021-01-16	1 Y
Wireless Access Point	WAC720	4D7689EP000FB	NETGEAR	-	N/A

The measuring equipment utilized to perform the tests documented in this test report has been calibrated in accordance with manufacturer's recommendations, and is traceable to recognized national standards.

Report No.: TR-W2006-025 Page 18 of 18

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 464-942

Report Form_01 (Rev.2)