

Element Suwon

(#1407) 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16954, Korea Tel. +82 31.660.7319 / Fax +82 31.660.7918 http://www.element.com

TEST REPORT PART 27, 90 MEASUREMENT REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea **Date of Testing:**

08/01/2022 - 08/17/2022

Test Site/Location:

Element Lab., Suwon,

Yongin-si, Gyeonggi-do, Korea

Test Report Serial No.:

8K22051701-00-R1.A3L

FCC ID: A3LRF4450T-71A

APPLICANT: Samsung Electronics Co., Ltd.

Application Type: Certification

Model: RF4450t-71A

EUT Type: RRU(RF4450t)

FCC Classification: Licensed Non-Broadcast Station Transmitter

FCC Rule Part(s): §27, §90(S)

Test Procedure(s): ANSI C63.26-2015, KDB 971168 D01 v03r01, KDB 662911 D01 v02r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Prepared by Jonathan Jang Test Engineer Reviewed by Charles.Shin Technical Manager

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 1 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 1 of 62

TABLE OF CONTENTS

1.0	REVI	ISION RECORD	4
2.0	INTR	ODUCTION	5
	2.1	Scope	5
	2.2	Element Test Location	5
	2.3	Test Facility / Accreditation	5
3.0	PRO	DUCT INFORMATION	6
	3.1	Equipment Description	6
	3.2	Device Capabilities	6
	3.3	Test Configuration	7
	3.4	EMI Suppression Device(s)/Modifications	8
4.0	DES	CRIPTION OF TESTS	9
	4.1	Measurement Procedure	9
	4.2	Measurement Software	9
5.0	MEA	SUREMENT UNCERTAINTY	10
6.0	TEST	Γ EQUIPMENT CALIBRATION DATA	11
7.0	SAM	PLE CALCULATIONS	12
8.0	TEST	T RESULTS	13
	8.1	Summary	13
	8.2	Occupied Bandwidth	15
	8.3	Equivalent Isotropic Radiated Power (Power Spectral Density)	19
	8.4	Peak To Average Power Ratio	25
	8.5	Band Edge Emissions and Emission Mask at Antenna Terminal	28
	8.6	Spurious and Harmonic Emissions at Antenna Terminal	32
	8.7	Frequency Stability	44
	8.8	Radiated spurious emission	48
9.0	CON	CLUSION	59
10.0	APP	ENDIX. A	60
	10.1	Conducted Average Output Power	60

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 2 01 62

MEASUREMENT REPORT

FCC Part 27 and 90

Mode	Tx Frequency (MHz)	Total Conducted	Max Emission Designator	Modulation	
		Max. Power (dBm)	Max. Power (W)	Designator	
NR_1C_5M	864 to 869	45.63	36.54	4M47G7D	QPSK
	004 (0 009	45.54	35.79	4M49W7D	QAM

5G NR n26 EUT Overview

Mode	Tx Frequency (MHz)	Total Conducted	Total Conducted output power		Modulation
		Max. Power (dBm)	Max. Power (W)	Designator	
NR_1C_5M	718 to 728	48.61	72.55	4M48G7D	QPSK
		48.64	73.05	4M50W7D	QAM

5G NR n29 EUT Overview

Mode	Tx Frequency (MHz)	Total Conducted output power		Max Emission Designator	Modulation
		Max. Power (dBm)	Max. Power (W)	Designator	
NP 1C 10M	617 to 652	51.71	148.37	9M29G7D	QPSK
NR_1C_10M	617 to 652	51.72	148.48	9M31W7D	QAM

5G NR n71 EUT Overview

Notes:

Total Power shown in the table above are the full conducted average output power that will appear on the Grant of Authorization.

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 3 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 3 01 62

1.0 REVISION RECORD

Issue Number Issued Date		Revision History
8K22051701-00.A3L	08/18/2022	Initial Issue
8K22051701-00-R1.A3L 08/22/2022		Revision due to updated Test Setup information

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 4 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 4 01 62

2.0 INTRODUCTION

2.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

2.2 Element Test Location

These measurement tests were conducted at the Element Materials Technology Suwon. Ltd. facility located at (#1407) 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16954, Korea.

2.3 Test Facility / Accreditation

Measurements were performed at Element Materials Technology Suwon Lab located in Yongin-si, Gyeonggi, Korea.

- Element Materials Technology Suwon is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation(A2LA) with Certificate number 2041.04 for Specific Absorption Rate (SAR), where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Materials Technology Suwon facility is accredited, designated, and recognized in accordance with the provision of Radio Wave Act and International Standard ISO/IEC 17025:2017 under the National Radio Research Agency.
 - Designation Number / CABID: KR0169
 - Test Firm Registration Number of FCC: 417945
 - Test Firm Registration Number of IC: 26168

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 5 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 5 01 02

3.0 PRODUCT INFORMATION

3.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung RRU(RF4450t) FCC ID: A3LRF4450T-71A**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 27 and 90.

3.2 Device Capabilities

This device supports the following conditional features and filter information:

EUT Type	RRU (RF4450t)					
Model Name	RF4450t-71A	RF4450t-71A				
Test Device Serial No	S618614983					
Device Capabilities:	5G NR					
	Band	Tx (Downlinl	()	Rx (Uplink)		
Operating Band/Frequency	n26:	864 MHz to 869	MHz	819 MHz to 824 MHz		
Range:	n29:	718 MHz to 728	MHz	N/A		
	n71:	617 MHz to 652	MHz	663 MHz to 698 MHz		
Supported Modulation	QPSK, 16QAM, 64QAM, 256QAM					
n26 Supported Number of Carriers and Channel Bandwidth	NR: 5MHz bandwidth 1CC mode for 5G NR Band n26					
n29 Supported Number of Carriers and Channel Bandwidth	NR: 5MHz bandwidth 1CC mode for 5G NR Band n29					
n71 Supported Number of Carriers and Channel Bandwidth	NR: 10MHz bar	ndwidth 1CC mode fo	or 5G NR Band n71			
Inter-Band Carrier Aggregation Supported Number of Carriers and Channel Bandwidth	n26, n29 and n	71 with up to 3CC ag	gregated of Max. B	andwidth 20 MHz		
	n26		Total 40 W			
Maximum Output Power	n29		Total 80 W			
	n71		Total 160 W			
Number of Antenna ports	4TX Configuration					
Supported Configurations	Single carrier, I	nter-Band Carrier Ag	gregation			
Input Voltage:	-48 VDC					
Antenna:	Antenna is not p	provided by manufac	ture			

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 6 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 6 01 62

3.3 Test Configuration

The setup is as follows:

- a) The EUT ("RRU(RF4450t)") and a Cabinet Digital Unit (CDU) are each powered by -48V DC power supply.
- b) The CDU is connected to a test laptop via an ethernet cable acting as backhaul.
- c) CDU connects to the EUT through a fiber optic cable.
- d) An RF cable connects the signal analyzer and the EUT Ports for respective measurement.

The Cabinet Digital Unit (CDU) authorized under SDoC.

The EUT was tested per the guidance of ANSI C63.26-2015 and KDB 971168 D01 v03r01. See Section 8.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

For Inter-Band Carrier Aggregation configuration, the QPSK modulation worst case was found while operating with all modulation and only the worst-case data were reported.

The n29 duplex mode is SDL (Supplemental Downlink) designed exclusively for downlink. It cannot operate n29 alone, and operate with uplink of other bands.

The following information is about configurations of carrier frequency and output power per port declared by the manufacturer.

n26 Single Carrier	No. of	Carrier Bandwidth	Carrier Frequency Configuration (MHz)	Rated Power	Ì
Configuration	Carriers	(MHz)	Middle	(W/path)	
NR_1C_5M	1	5	866.5	10	İ

n29	I NO OT I		Carrier Frequency (Rated Power	
Single Carrier Configuration	Carriers	(MHz)	Lowest	Highest	(W/path)
NR_1C_5M	1	5	720.5	725.5	20

n71	No. of Carriers	Carrier Bandwidth	Carrier Fr	equency Configurat	ion (MHz)	Rated Power
Single Carrier Configuration		(MHz)	Lowest	Middle	Highest	(W/path)
NR_1C_10M	1	10	622	634.5	647	40

Inter-Band Carrier Aggregation	No. of Carriers	Carrier Bandwidth (MHz)	Carrier Frequency Configuration (MHz) Middle	Rated Power (W/path)
NR n71_1C_10M+ n29_1C_5M+ n26_1C_5M	3	10+5+5	622 + 720.5 + 866.5	70

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	NG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 7 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)		Page 7 of 62

3.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 8 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 6 01 62

4.0 DESCRIPTION OF TESTS

4.1 Measurement Procedure

The measurement procedures described in the document titled "American National Standard for Compliance Testing of Transmitter Used in Licensed Radio Service" (ANSI C63.26-2015) and the guidance provided in KDB 842590 D01 v01r01 were used in the measurement of the EUT.

Occupied Bandwidth:

KDB 971168 D01 v03r01 – Section 4.3 ANSI C63.26-2015 – Section 5.4.4

Conducted Power Measurement and EIRP and PSD

KDB 971168 D01 v03r01 – Section 5.3

KDB 971168 D01 v03r01 - Section 5.4

KDB 662911 D01 v02r01 - Section E)1) In-Band Power Measurements

ANSI C63.26-2015 - Section 5.2.5

ANSI C63.26-2015 - Section 5.2.4

Peak-to-Average Power Ratio:

KDB 971168 D01 v03r01 – Section 5.7 ANSI C63.26-2015 – Section 5.2.3.4

Channel Edge Emissions at Antenna Terminal

KDB 971168 D01 v03r01 - Section 6

KDB 662911 D01 v02r01 - Section E)3) Out-of-Band and Spurious Emission Measurements

a) Absolute Emission Limits

iii) Measure and add 10 log(N_{ANT}) dB

ANSI C63.26-2015 - Section 5.7

Spurious and Harmonic Emissions at Antenna Terminal

KDB 971168 D01 v03r01 - Section 6

KDB 662911 D01 v02r01 - Section E)3) Out-of-Band and Spurious Emission Measurements

a) Absolute Emission Limits

iii) Measure and add 10 log(N_{ANT}) dB

ANSI C63.26-2015 - Section 5.7

Radiated unwanted emission

KDB 971168 D01 v03r01 - Section 7

ANSI C63.26-2015 - Section 5.8

Frequency Stability / Temperature Variation

KDB 971168 D01 v03r01 - Section 9

ANSI C63.26-2015 - Section 5.6

4.2 Measurement Software

Test item	Name	Version
Conducted Measurement	Node B automation	1.0

FCC ID: A3LRF4450T-71A element		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 9 01 62

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.37
Radiated Disturbance (<1GHz)	3.94
Radiated Disturbance (>1GHz)	4.75
Radiated Disturbance (>18GHz)	4.84

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 10 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 10 01 62

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurement antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacture	Model	Description	Cal Date	Cal interval	Cal Due	Serial Number
Rohde & Schwarz	FSW43	Signal Analyzer	07/05/2022	Annual	07/04/2023	101250
Rohde & Schwarz	ESW	EMI Test Receiver	07/04/2022	Annual	07/03/2023	101761
AC POWER KOREA	ACPD-60150	DC Power Supply	01/18/2022	Annual	01/17/2023	DC-1
SUKSAN TECHNOLOGY	SE-CT-10	Temperature Chamber	07/05/2022	Annual	07/04/2023	191021
Rohde & Schwarz	TS-SFUNIT-Rx	Shielded Filter Unit	03/02/2022	Annual	03/01/2023	102131
Schwarzbeck	VULB9162	Broadband TRILOG Antenna	07/13/2021	Biennial	07/12/2023	9162-217
Sunol sciences	DRH-118	Horn Antenna	07/14/2021	Biennial	07/13/2023	A102416-1
Schwarzbeck	BBHA 9170	Horn Antenna	01/27/2022	Biennial	01/26/2024	1037
Reachline	250W18NN-40	Attenuator	01/19/2022	Annual	01/18/2023	PK0289
Reachline	250W18NN-40	Attenuator	01/19/2022	Annual	01/18/2023	PK0290
Reachline	250W18NN-40	Attenuator	01/19/2022	Annual	01/18/2023	PK0292
Reachline	250W18NN-40	Attenuator	01/19/2022	Annual	01/18/2023	PK0293

Table 6-1. Test Equipment

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. All testing was performed before the calibration due date.

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 11 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 11 of 62

7.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 4M47G7D

Occupied Bandwidth = 4.47 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 9M31W7D

Occupied Bandwidth = 9.31 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission, telemetry, telecommand

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 12 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 12 01 62

8.0 TEST RESULTS

8.1 Summary

Company Name: <u>SAMSUNG Electronics Co., Ltd.</u>

FCC ID: <u>A3LRF4450T-71A</u>

FCC Classification: <u>Licensed Non-Broadcast Station Transmitter</u>

Mode(s): <u>5G NR</u>

FCC Part Section(s)	Test Description	Limit	Test Condition	Test Result	Reference
§ 2.1046	Conducted Average Output Power	N/A		PASS	Annex 1
§ 2.1049	Occupied Bandwidth	N/A		PASS	Section 8.2
§ 2.1046, § 27.50(c)	Equivalent Isotropic Radiated Power (Power Spectral Density)	< 1000 W/MHz		PASS	Section 8.3 (Note 4)
§ 2.1046,	Peak-to-average ratio	N/A	CONDUCTED	PASS	Section 8.4
§ 2.1051, § 27.53(g)	Band Edge Emissions and Emission Mask at Antenna Terminal	> 43 + log10(P[Watts]) at Band Edge and all out-of-		PASS	Section 8.5
§ 2.1051, § 27.53(g)	Spurious and Harmonic Emissions at Antenna Terminal	band emissions		PASS	Section 8.6
§ 2.1055 § 27.54	Frequency Stability	Fundamental emissions stay within authorized frequency block		PASS	Section 8.7
§ 2.1055, § 27.53(g)	Radiated unwanted emission	> 43 + log10(P[Watts]) at Band Edge and all out-of-band emissions	RADIATED	PASS	Section 8.8

Table 8-1. Summary of Rule part 27 Test Results

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 13 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 13 01 62

FCC Part Section(s)	Test Description	Limit	Test Condition	Test Result	Reference
§ 2.1046	Conducted Average Output Power	N/A		PASS	Annex 1
§ 2.1049	Occupied Bandwidth	N/A		PASS	Section 8.2
§ 2.1046, § 90.635	Equivalent Isotropic Radiated Power (Power Spectral Density)	< 100 W		PASS	Section 8.3 (Note 4)
§ 2.1046,	Peak-to-average ratio	N/A	CONDUCTED	PASS	Section 8.4
§ 2.1051, § 90(S).691(a)	Band Edge Emissions and Emission Mask at Antenna Terminal	> 43 + log10(P[Watts]) at Band Edge and all out-of- band emissions except		PASS	Section 8.5
§ 2.1051, § 90(S).691(a)	Spurious and Harmonic Emissions at Antenna Terminal	> 50 + log10(P[Watts]) at Band Edge and all out-of- band emissions within 37.5kHz of Block Edge		PASS	Section 8.6
§ 2.1055 § 90.213	Frequency Stability	< 1.5 ppm		PASS	Section 8.7
§ 2.1055, § 90(S).691(a)	Radiated unwanted emission	> 43 + log10(P[Watts]) at Band Edge and all out-of-band emissions	RADIATED	PASS	Section 8.8

Table 8-2. Summary of Rule part 90 Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) The maximum antenna gain is determined at the time of licensing depending on the geographical location of the base station

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 14 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 14 01 62

8.2 Occupied Bandwidth

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedures Used

KDB 971168 D01 v03r01 – Section 4.3 ANSI C63.26-2015 – Section 5.4.4

Test Setting

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The spectrum analyzer settings were as follows:

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW ≥ 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2-7 were repeated after changing the RBW such that it would be within 1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

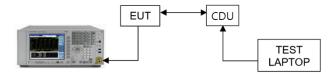


Figure 8-1. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 15 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 15 01 62

Channel	Port	OBW (MHz)				
	Port	QPSK	16QAM	64QAM	256QAM	
	0	4.45	4.49	4.46	4.46	
Middle	1	4.47	4.46	4.46	4.47	
	2	4.46	4.48	4.45	4.46	
	3	4.46	4.47	4.48	4.48	

Table 8-3. Occupied Bandwidth Summary Data (NR_n26_1C_5M)

Channel	Port		OBW (MHz)			
Channel	Port	QPSK	16QAM	64QAM	256QAM	
	0	4.48	4.47	4.47	4.48	
Low	1	4.47	4.50	4.47	4.47	
Low	2	4.46	4.49	4.47	4.47	
	3	4.47	4.46	4.46	4.47	
High	0	4.48	4.49	4.48	4.47	
	1	4.46	4.48	4.48	4.47	
	2	4.46	4.49	4.46	4.47	
	3	4.48	4.49	4.48	4.48	

Table 8-4. Occupied Bandwidth Summary Data (NR_n29_1C_5M)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 16 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	rage 10 01 02

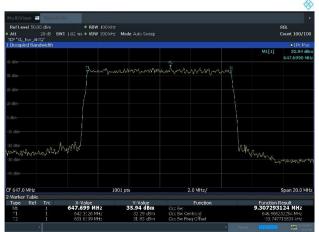
Channal	Port	OBW (MHz)				
Channel	Port	QPSK	16QAM	64QAM	256QAM	
	0	9.28	9.25	9.30	9.29	
Low	1	9.28	9.24	9.27	9.28	
Low	2	9.28	9.25	9.30	9.29	
	3	9.28	9.20	9.29	9.27	
	0	9.28	9.25	9.29	9.26	
Middle	1	9.29	9.25	9.29	9.29	
ivildale	2	9.28	9.26	9.29	9.30	
	3	9.27	9.24	9.30	9.29	
	0	9.28	9.21	9.28	9.28	
l limb	1	9.27	9.23	9.27	9.28	
High	2	9.27	9.23	9.31	9.29	
	3	9.27	9.20	9.28	9.27	

Table 8-5. Occupied Bandwidth Summary Data (NR_n71_1C_10M)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 17 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Faye 17 01 02

Plot 8-1. Occupied Bandwidth Plot (n26_1C_5M_QPSK - Mid Channel, Port 1)

Plot 8-3. Occupied Bandwidth Plot (n29_1C_5M_QPSK - Low Channel, Port 0)


Plot 8-5. Occupied Bandwidth Plot (n71_1C_10M_QPSK - Mid Channel, Port 1)

Plot 8-2. Occupied Bandwidth Plot (n26_1C_5M_16QAM - Mid Channel, Port 0)

Plot 8-4. Occupied Bandwidth Plot (n29 1C 5M 16QAM - Low Channel, Port 1)

Plot 8-6. Occupied Bandwidth Plot (n71_1C_10M_64QAM - High Channel, Port 2)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 18 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Faye 10 01 02

8.3 Equivalent Isotropic Radiated Power (Power Spectral Density)

Test Overview

A transmitter port of EUT is connected to the input of a signal analyzer. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Test Procedure Used

KDB 971168 D01 v03r01 – Section 5.2 KDB 662911 D01 v02r01 – Section E)1) In-Band Power Measurements ANSI C63.26-2015 – Section 5.2.4

Test Setting

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The spectrum analyzer settings were as follows:

- 1. Conducted average output power measurements are performed using the signal analyzer's "channel power mode" measurement capability for signals with continuous operation.
- 2. Set span to $2 \times$ to $3 \times$ the OBW.
- 3. Set RBW = set to reference bandwidth specified by the applicable regulatory requirement
- 4. Set VBW ≥ 3 × RBW.
- 5. Set number of measurement points in sweep ≥ 2 × span / RBW.
- 6. Sweep time: auto-couple
- 7. Detector = power averaging (rms).
- 8. Set sweep trigger to "free run.".
- 9. The integration bandwidth was set equal to transmission bandwidth i.e. 20MHz for 2CC and 40MHz for 1CC measurements.
- 10. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over the on and off time of the transmitter, it can be necessary to increase the number of traces to be averaged above 100, or if using a manually configured sweep time, increase the sweep time.
- 11. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function, with the band/channel limits set equal to the OBW band edges.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

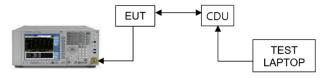


Figure 8-2. Test Instrument & Measurement Setup

Limit

N/A

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 19 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 19 01 62

Test Notes

- 1. Consider the following factors for MIMO:
 - The output power per each port is measured as dBm/MHz or dBm, the output powers are summed up in linear using the measure-and-sum technique defined in KDB 971168 D01 v03r01 Section E) 2).
- The EIRP Limit is determined at the time of licensing depending on the geographical location of the base station.
- 3. The output power per port (dBm/MHz or dBm) is converted to a linear value (mW). A summation of linear powers for all ports gives us the total MIMO Conducted Power (mW). We convert this back to logarithmic scale for further output power calculations.
- 4. All transmit signals from different antennas are completely uncorrelated with each other. So the maximum output power shall be calculated based on the aggregate power conducted across all antennas.
- 5. Sample Calculation:

Let us assume the following numbers:

a) Total MIMO Conducted Power as 10671.07 milliWatts

b)

Factors		Value	Unit
Summed MIMO Conducted Power (linear sum)		10671.07	mW/MHz
Summed MIMO Conducted Power (dBm)	= 10 * log (10671.07) =	40.28	dBm/MHz

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 20 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 20 01 62

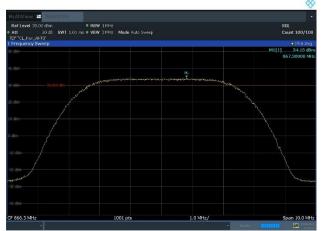
Channal	Dort	PSD Power (dBm/MHz)					
Channel	Port	QPSK	16QAM	64QAM	256QAM		
	0	34.15	34.19	34.21	34.20		
Middle	1	34.78	34.67	34.26	34.00		
ivildale	2	33.98	34.04	34.01	34.06		
	3	34.09	34.04	33.95	34.02		
Total MIMO PSD Power (mW)		10671.07	10625.37	10304.00	10212.47		
Total MIMO PSD Power (dBm)		40.28	40.26	40.13	40.09		

Table 8-6. Peak Power Spectral Density Table (NR_n26_1C_5M)

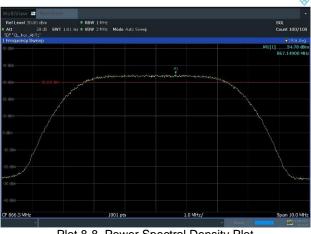
		PSD Power (dBm/MHz)				
Channel	Port		PSD Power	(apw/iviHz)		
Orianno	1 011	QPSK	16QAM	64QAM	256QAM	
	0	36.33	36.52	36.74	36.73	
Low	1	36.48	36.69	36.88	36.91	
Low	2	36.51	36.55	36.72	36.80	
	3	36.41	36.61	36.79	36.87	
Total MIMO PSD Po	Total MIMO PSD Power (mW/MHz)		18254.03	19070.15	19269.23	
Total MIMO PSD Po	ower (dBm/MHz)	42.45	42.61	42.80	42.85	
Channel	Port	QPSK	16QAM	64QAM	256QAM	
	0	36.63	37.03	36.59	36.56	
l II ala	1	36.63	36.83	36.64	36.58	
High	2	36.77	36.94	36.83	36.73	
	3	36.75	36.88	36.75	36.61	
Total MIMO PSD Power (mW/MHz)		18690.00	19684.48	18724.54	18370.05	
Total MIMO PSD Po	Total MIMO PSD Power (dBm/MHz)		42.94	42.72	42.64	

Table 8-7. Peak Power Spectral Density Table (NR_n29_1C_5M)

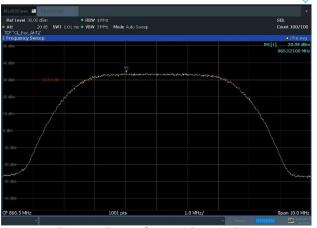
FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 21 01 02

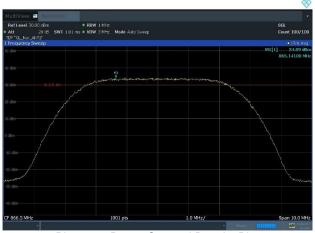


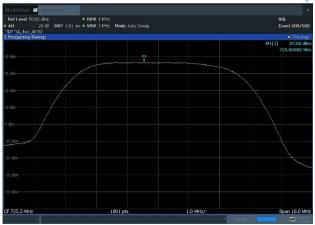
Channal	Dowt	PSD Power (dBm/MHz)				
Channel	Port	QPSK	16QAM	64QAM	256QAM	
	0	37.15	37.82	37.39	37.13	
Low	1	36.92	38.03	37.19	37.12	
LOW	2	37.02	37.72	37.09	37.29	
	3	36.87	37.97	37.12	37.34	
Total MIMO PSD Po	ower (mW/MHz)	20007.47	24588.47	20987.88	21094.43	
Total MIMO PSD Po	wer (dBm/MHz)	43.01	43.91	43.22	43.24	
Channel	Port	QPSK	16QAM	64QAM	256QAM	
	0	37.03	37.81	36.98	37.04	
Middle	1	36.96	37.97	36.83	36.80	
Middle	2	37.34	37.98	37.10	37.21	
	3	37.18	37.91	37.20	37.04	
Total MIMO PSD Po	ower (mW/MHz)	20656.51	24766.37	20185.01	20162.97	
Total MIMO PSD Po	wer (dBm/MHz)	43.15	43.94	43.05	43.05	
Channel	Port	QPSK	16QAM	64QAM	256QAM	
	0	37.04	37.99	37.25	37.34	
l li mb	1	36.99	37.65	37.31	36.94	
High	2	37.44	37.86	37.05	37.13	
	3	37.09	38.10	37.08	37.14	
Total MIMO PSD Po	ower (mW/MHz)	20721.67	24682.06	20866.50	20703.35	
Total MIMO PSD Po	wer (dBm/MHz)	43.16	43.92	43.19	43.16	

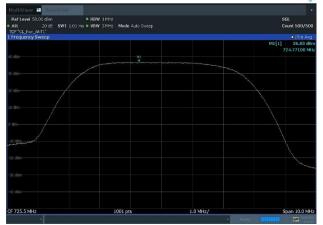

Table 8-8. Peak Power Spectral Density Table (NR_n71_1C_10M)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 22 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 22 01 62

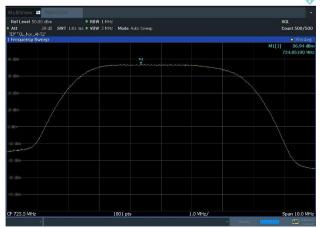


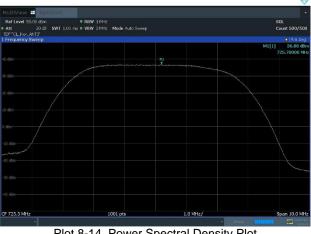

Plot 8-7. Power Spectral Density Plot (n26_1C_5M_QPSK - Mid Channel, Port 0)


Plot 8-8. Power Spectral Density Plot (n26_1C_5M_QPSK - Mid Channel, Port 1)

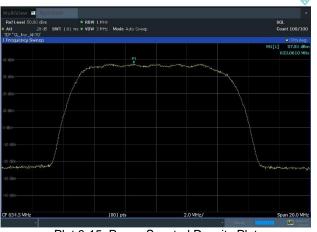

Plot 8-9. Power Spectral Density Plot (n26_1C_5M_QPSK - Mid Channel, Port 2)

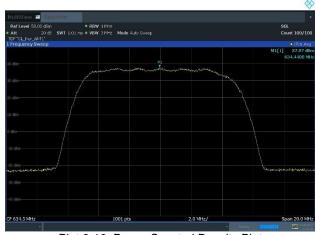
Plot 8-10. Power Spectral Density Plot (n26_1C_5M_QPSK - Mid Channel, Port 3)


Plot 8-11. Power Spectral Density Plot (n29_1C_5M_16QAM - High Channel, Port 0)


Plot 8-12. Power Spectral Density Plot (n29_1C_5M_16QAM - High Channel, Port 1)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 23 01 02




Plot 8-13. Power Spectral Density Plot (n29_1C_5M_16QAM - High Channel, Port 2)

Plot 8-14. Power Spectral Density Plot (n29_1C_5M_16QAM - High Channel, Port 3)


Plot 8-15. Power Spectral Density Plot (n71_1C_10M_16QAM - Mid Channel, Port 0)

Plot 8-16. Power Spectral Density Plot (n71_1C_10M_16QAM - Mid Channel, Port 1)

Plot 8-17. Power Spectral Density Plot (n71_1C_10M_16QAM - Mid Channel, Port 2)

Plot 8-18. Power Spectral Density Plot (n71_1C_10M_16QAM - Mid Channel, Port 3)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 24 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 24 01 62

8.4 Peak To Average Power Ratio

Test Overview

The peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

Test Procedure Used

KDB 971168 D01 v03r01 – Section 5.7 ANSI C63.26-2015 – Section 5.2.3.4

Test Setting

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The spectrum analyzer settings were as follows:

- 1. The signal analyzer's CCDF function is enabled.
- 2. Frequency = carrier center frequency
- 3. Measurement BW ≥ OBW or specified reference bandwidth
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

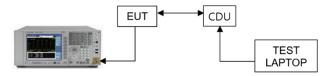


Figure 8-3. Test Instrument & Measurement Setup

Limit

N/A

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 25 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 25 01 62

Channel	Port		Limit			
		QPSK	16QAM	64QAM	256QAM	(dB)
Middle	0	7.76	7.76	7.78	7.76	
	1	7.78	7.78	7.78	7.76	N/A
	2	7.76	7.78	7.76	7.76	IN/A
	3	7.78	7.76	7.76	7.76	

Table 8-9. Peak To Average Power Ratio Summary Data (NR_n26_1C_5M)

Channel	Port		Limit			
Channel	POIL	QPSK	16QAM	64QAM	256QAM	(dB)
	0	8.26	8.32	8.34	8.18	
Low	1	8.28	8.34	8.32	8.18	
Low	2	8.26	8.32	8.32	8.18	
	3	8.28	8.34	8.32	8.18	N/A
High	0	8.26	8.32	8.30	8.22	IN/A
	1	8.26	8.34	8.36	8.24	
	2	8.26	8.36	8.40	8.24	
	3	8.28	8.34	8.32	8.24	

Table 8-10. Peak To Average Power Ratio Summary Data (NR_n29_1C_5M)

Channal	Dowt		Limit			
Channel	Port	QPSK	16QAM	64QAM	256QAM	(dB)
	0	8.14	8.12	8.14	8.16	
Low	1	8.38	8.36	8.44	8.42	
LOW	2	8.16	8.10	8.10	8.18	
	3	8.16	8.12	8.14	8.14	
NA: alalla	0	8.08	8.06	8.06	8.06	N/A
	1	8.08	8.06	8.44	8.38	
Middle	2	8.10	8.08	8.06	8.08	IN/A
	3	8.10	8.06	8.04	8.08	
	0	8.10	8.12	8.10	8.12	
High	1	8.10	8.12	8.14	8.14	
	2	8.12	8.10	8.06	8.12	
	3	8.12	8.10	8.10	8.12	

Table 8-11. Peak To Average Power Ratio Summary Data (NR_n71_1C_10M)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 26 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	F aye 20 01 02

Plot 8-19. Peak To Average Power Ratio Plot (n26_1C_5M_QPSK - Mid Channel, Port 1)

(n26_1C_5M_16QAM - Mid Channel, Port 1)

Plot 8-21. Peak To Average Power Ratio Plot (n29_1C_5M_QPSK - Low Channel, Port 1)

Plot 8-22. Peak To Average Power Ratio Plot (n29_1C_5M_64QAM- High Channel, Port 2)

Plot 8-23. Peak To Average Power Ratio Plot (n71_1C_10M_QPSK-Low Channel, Port 1)

Plot 8-24. Peak To Average Power Ratio Plot (n71_1C_10M_64QAM-Low Channel, Port 1)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 27 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Faye 21 01 02

8.5 Band Edge Emissions and Emission Mask at Antenna Terminal

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6

KDB 662911 D01 v02r01 - Section E)3) Out-of-Band and Spurious Emission Measurements

- a) Absolute Emission Limits
- iii) Measure and add 10 log(N_{ANT}) dB

ANSI C63.26-2015 - Section 5.7.3

Test Setting

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW: Please see test notes below.
- 4. $VBW \ge 3 \times RBW$
- 5. Detector = RMS
- 6. Number of sweep points ≥ 2 x Span/RBW
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Limit

NR n29 and n71 operation under Part 27.53

The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P_{\text{[Watts]}})$, where P is the transmitter power in Watts.

NR n26 operation under Part 90.691

For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.

For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 28 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 20 01 62

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

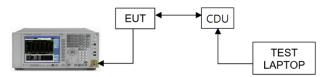


Figure 8-4. Test Instrument & Measurement Setup

Test Notes

- Per Part 27.53(g), Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least 30 kilohertz may be employed.
- 2. Per Part 90.691, the frequency block by up to and including 37.5 kHz range complies with 50 + 10 Log10(P) decibels and frequency block greater than 37.5 kHz range complies with 43 + 10Log10(P) decibels limit.
- 3. All the measurement has been tested but test plots are referred from the highest of value of each of modulation of each antenna ports.
- 4. When the channel edge detect with a margin of under 1dB to Limit, That used to integration method was performed using the spectrum analyzer's band power functions according to ANSI C63.26-2015 Section 5.7. The spectrum analyzer marker was placed at one-half of the RBW away from the band edge. The integration value was set to a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter.
- The limits were adjusted by a factor of [-10*log (4)] dB to account for the device operation as a 4 port MIMO transmitter, as per FCC KDB 622911. MIMO Factor calculation as below: MIMO Factor = 10*log (4) = 6.02 dB

Frequency range	Basic Limit (dBm)	4Tx MIMO Factor (dB)	RBW Factor (dB)	Adjusted limit (dBm)		
Low Frequency block lower than 37.5 kHz	-13	6.02	0	-19.02		
Low Frequency block – 37.5kHz	-20	6.02	0	-26.02		
High Frequency block + 37.5kHz -20 6.02 0 -26.0						
High Frequency block greater than 37.5 kHz -13 6.02 0 -19.02						
Note: Adjusted limit (dBm) = Basic limit (dBm) - MIMO Factor - RBW Factor						

Frequency range	Basic Limit (dBm)	4Tx MIMO Factor (dB)	RBW Factor (dB)	Adjusted limit (dBm)		
Low Frequency block – 100kHz	-13	6.02	0	-19.02		
High Frequency block + 100kHz -13 6.02 0 -19.02						
Note: Adjusted limit (dBm) = Basic limit (dBm) - MIMO Factor - RBW Factor						

element	MEASUREMENT REPORT (CERTIFICATION) SAMSUNG	Approved by: Technical Manager
Test Dates:	EUT Type:	Page 29 of 62
08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 29 01 62
	Test Dates:	(CERTIFICATION)

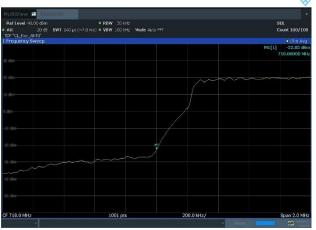
Channal	Dant	Managered Danger (MIII-)		Max. Value (dBm)				
Channel	Channel Port	Measured Range (MHz)	QPSK	16QAM	64QAM	256QAM	(dBm)	
	0	863.8625 to 863.9625	-31.02	-30.64	-30.98	-31.16	-19.02	
	0	863.9625 to 864	-28.67	-28.98	-29.56	-28.90	-26.02	
	0	869 to 869.0375	-29.80	-29.59	-29.84	-29.40	-20.02	
	0	869.0375 to 869.1375	-33.28	-32.96	-33.49	-33.59	-19.02	
	1	863.8625 to 863.9625	-31.11	-30.31	-30.73	-30.51	-19.02	
	1	863.9625 to 864	-29.04	-30.01	-29.90	-29.41	-26.02	
	1	869 to 869.0375	-29.39	-30.01	-30.51	-29.71	-20.02	
Middle	1	869.0375 to 869.1375	-32.88	-32.75	-33.17	-32.95	-19.02	
ivildale	2	863.8625 to 863.9625	-31.50	-30.67	-31.04	-31.72	-19.02	
	2	863.9625 to 864	-30.17	-30.93	-31.46	-31.09	-26.02	
	2	869 to 869.0375	-31.06	-31.71	-32.12	-31.59	-20.02	
	2	869.0375 to 869.1375	-33.17	-33.05	-33.45	-33.78	-19.02	
	3	863.8625 to 863.9625	-29.94	-29.70	-29.72	-30.52	-19.02	
	3	863.9625 to 864	-30.51	-31.34	-31.56	-31.03	-26.02	
	3	869 to 869.0375	-31.73	-32.31	-32.19	-31.62	-20.02	
	3	869.0375 to 869.1375	-31.80	-31.76	-32.14	-32.21	-19.02	

Table 8-12. Emission Mask Summary Data (NR_n26_1C_5M)

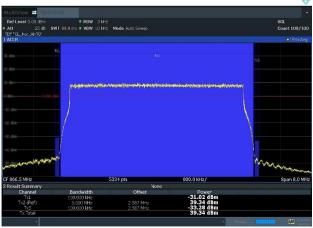
Channal	Dort	Max. Value (dBm)					Limit
Channel Port	Measured Range (MHz)	QPSK	16QAM	64QAM	256QAM	(dBm)	
	0	616 to 618	-24.27	-23.64	-22.85	-23.41	
Low	1	616 to 618	-24.08	-23.12	-23.43	-24.32	
Low	2	616 to 618	-24.99	-25.40	-24.07	-24.65	
	3	616 to 618	-25.38	-24.99	-23.83	-23.74	10.00
	0	651 to 653	-22.69	-21.74	-20.45	-22.37	-19.02
Lligh	1	651 to 653	-22.73	-22.28	-21.10	-22.37	
High	2	651 to 653	-23.73	-23.91	-23.81	-23.33	
	3	651 to 653	-23.80	-24.39	-22.97	-23.67	


Table 8-13. Band Edge Emission Summary Data (NR_n29_1C_5M)

Channal	L Dort Managered Dange (I			Limit			
Channel Port	Measured Range (MHz)	QPSK	16QAM	64QAM	256QAM	(dBm)	
	0	717 to 719	-24.28	-24.66	-22.72	-24.25	
Low	1	717 to 719	-23.38	-25.99	-24.86	-24.61	
Low	2	717 to 719	-24.19	-26.99	-23.59	-24.58	
	3	717 to 719	-24.71	-23.77	-22.27	-23.24	-19.02
	0	727 to 729	-24.97	-25.85	-25.21	-25.72	-19.02
Lliah	1	727 to 729	-24.76	-29.66	-23.86	-25.61	
High	2	727 to 729	-24.01	-26.61	-24.43	-25.50	
	3	727 to 729	-25.10	-26.88	-26.05	-25.77	


Table 8-14. Band Edge Emission Summary Data (NR_n71_1C_10M)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 30 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 30 01 62


Plot 8-25. Emission Mask Plot (n26_1C_5M_QPSK - Mid Channel, Port 0) (Frequency block by up to and including 37.5kHz)

Plot 8-27 Band Edge Emission Plot (n29 1C 5M 64QAM - Low Channel, Port 0)

Plot 8-29. Band Edge Emission Plot (n71_1C_10M_64QAM - Low Channel, Port 3)

Plot 8-26. Emission Mask Plot (n26_1C_5M_QPSK - Mid Channel, Port 0) (Frequency block by greater than 37.5kHz)

Plot 8-28. Band Edge Emission Plot (n29 1C 5M 64QAM - High Channel, Port 0)

Plot 8-30. Band Edge Emission Plot (n71_1C_10M_64QAM - High Channel, Port 1)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 31 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	raye 31 01 02

8.6 Spurious and Harmonic Emissions at Antenna Terminal

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6

KDB 662911 D01 v02r01 - Section E)3) Out-of-Band and Spurious Emission Measurements

- a) Absolute Emission Limits
- iii) Measure and add 10 log(N_{ANT}) dB

ANSI C63.26-2015 - Section 5.7

Test Setting

- 1. Start frequency was set to 9 kHz and stop frequency was set to at least 10 * the fundamental frequency excluding the frequency range of the band edge measurement.
- 2. RBW: Please see test notes below.
- 3. VBW \geq 3 x RBW
- 4. Detector = RMS
- 5. Number of sweep points ≥ 2 x Span/RBW
- 6. Trace mode = trace average
- 7. Sweep time = auto couple
- 8. The trace was allowed to stabilize

Limit

NR n29 and n71 operation under Part 27.53

The minimum permissible attenuation level of any spurious emission is $43 + log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

NR n26 operation under Part 90.691

For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.

For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 32 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 32 01 02

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

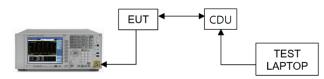


Figure 8-5. Test Instrument & Measurement Setup

Test Notes

- Per Part 27.53(g), Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least 30 kilohertz may be employed.
- 2. Per Part 90.691, the frequency block by up to and including 37.5 kHz range complies with 50 + 10 Log10(P) decibels and frequency block greater than 37.5 kHz range complies with 43 + 10Log10(P) decibels limit.
- 3. The n29 is an SDL(Supplemental Downlink) designed exclusively for downlink. Therefore, the n29 cannot operate alone, it was tested by simultaneously operating n29 and n71.
- 4. All the measurement has been tested but test plots are referred from the highest of value of each of modulation of each antenna ports.
- The limits were adjusted by a factor of [-10*log (4)] dB to account for the device operation as a 4 port MIMO transmitter, as per FCC KDB 622911. MIMO Factor calculation as below: MIMO Factor = 10*log (4) = 6.02 dB
- 6. Narrower RBW parameter is applied according to Section 5.7 of ANSI C63.26-2015 for some edge channels due to improving measurement accuracy. RBW Factor calculation as below:
 - RBW Factor = 10*log (1/0.01) = 20 dB for the measurement range from 9 kHz to 150 kHz.
 - RBW Factor = 10*log (1/0.1) = 10 dB for the measurement range from 150 kHz to 30 MHz.

Frequency range	Basic Limit (dBm)	4 TX MIMO Factor (dB)	RBW Factor (dB)	Adjusted limit (dBm)				
9 kHz to 150 kHz	-13	6.02	20	-39.02				
150 kHz to 30 MHz	-13	6.02	10	-29.02				
30 MHz to 1 GHz	-13	6.02	0	-19.02				
Frequency range Basic Limit (dBm/MHz) 4 TX MIMO Factor RBW Factor Adjusted limit (dBm/MHz) (dB) (dB)								
1 GHz to 9 GHz	-13	6.02	0	-19.02				
Note: Adjusted limit (dRm)	- Pagia limit (dPm) M	MMO Factor DDM/ Fo	otor					

Note: Adjusted limit (dBm) = Basic limit (dBm) - MIMO Factor - RBW Factor Adjusted limit (dBm/MHz) = Basic limit (dBm/MHz) - MIMO Factor - RBW Factor

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 33 01 62

Channel	Dowt	Management Dance		Level	(dBm)		Limit	Margin
Charmer Fort	Port	Measurement Range	QPSK	16QAM	64QAM	256QAM	(dBm)	(dB)
		9 kHz to 150 kHz	-61.89	-62.23	-62.22	-62.67	-39.02	-22.87
		150 kHz to 30 MHz	-46.76	-47.24	-46.64	-46.80	-29.02	-17.62
	0	30 MHz to 863.8625 MHz	-27.48	-27.93	-27.88	-27.83	-19.02	-8.46
	U	869.1375 MHz to 1 GHz	-29.47	-29.25	-29.46	-28.88	-19.02	-9.86
		1 GHz to 3 GHz	-28.85	-28.64	-29.07	-28.80	-19.02	-9.62
		3 GHz to 9 GHz	-35.60	-35.74	-35.87	-35.68	-19.02	-16.58
		9 kHz to 150 kHz	-60.34	-61.11	-60.64	-60.77	-39.02	-21.32
		150 kHz to 30 MHz	-45.36	-45.71	-45.61	-45.71	-29.02	-16.34
	1	30 MHz to 863.8625 MHz	-26.88	-28.14	-28.06	-27.72	-19.02	-7.86
	'	869.1375 MHz to 1 GHz	-29.85	-28.54	-29.35	-29.76	-19.02	-9.52
		1 GHz to 3 GHz	-28.59	-28.57	-28.83	-28.95	-19.02	-9.55
Middle		3 GHz to 9 GHz	-35.26	-35.36	-35.25	-35.48	-19.02	-16.23
Middle	2	9 kHz to 150 kHz	-61.17	-61.91	-61.61	-62.08	-39.02	-22.15
		150 kHz to 30 MHz	-45.20	-45.43	-45.52	-45.78	-29.02	-16.18
		30 MHz to 863.8625 MHz	-29.23	-28.65	-28.53	-28.61	-19.02	-9.51
		869.1375 MHz to 1 GHz	-30.49	-30.49	-30.44	-30.73	-19.02	-11.42
		1 GHz to 3 GHz	-29.28	-29.50	-29.59	-29.58	-19.02	-10.26
		3 GHz to 9 GHz	-35.35	-35.43	-35.24	-35.42	-19.02	-16.22
		9 kHz to 150 kHz	-46.92	-46.77	-46.97	-47.25	-39.02	-7.75
		150 kHz to 30 MHz	-47.26	-48.13	-47.94	-48.20	-29.02	-18.24
	3	30 MHz to 863.8625 MHz	-29.81	-27.74	-28.74	-28.62	-19.02	-8.72
	٥	869.1375 MHz to 1 GHz	-30.91	-30.44	-30.46	-29.52	-19.02	-10.50
		1 GHz to 3 GHz	-29.19	-29.37	-29.05	-29.10	-19.02	-10.03
		3 GHz to 9 GHz	-37.83	-37.78	-37.70	-37.68	-19.02	-18.66

Table 8-15. Conducted Spurious Emission Summary Data (n26_1C_5M)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 34 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 34 01 62

Political Research Politic	Observati	Dont	Management Day on		Level	(dBm)		Limit	Margin
150 kHz to 30 MHz	Channel	Port	Measurement Range	QPSK	16QAM	64QAM	256QAM	(dBm)	(dB)
0 30 MHz to 717 MHz			9 kHz to 150 kHz	-59.92	-60.58		-60.35	-39.02	-19.56
T29 MHz to 1 GHz			150 kHz to 30 MHz	-49.39		-48.98		-29.02	-19.96
Tolly to 3 GHz		0	30 MHz to 717 MHz	-34.74	-35.42	-34.08	-33.61	-19.02	-14.59
Big		U	729 MHz to 1 GHz	-32.83		-33.14	-32.60	-19.02	-13.58
Low 1			1 GHz to 3 GHz	-29.14	-29.01	-28.96	-28.44	-19.02	-9.42
Low 1									-6.53
Low Low Low Low Low Low Low Low			9 kHz to 150 kHz						
Low Table 1									
Low Company		1							
Low Comparison		'	729 MHz to 1 GHz						
Section Sect									
2 150 kHz to 150 kHz 1 -64.66	Low			-25.19			-25.36		-6.17
2 30 MHz to 717 MHz 729 MHz to 1 GHz 36.69 36.76 36.37 36.18 36.73 36.19 19.02 17. 1 GHz to 3 GHz 29.06 28.66 28.63 28.63 28.67 19.02 9.62 3 GHz to 9 GHz 25.48 25.64 25.55 25.48 19.02 -6. 9 kHz to 150 kHz 49.65 47.57 47.34 47.76 39.02 -8. 150 kHz to 30 MHz 30 MHz to 717 MHz 35.25 3 GHz to 9 GHz 3 GHz 29.23 28.85 29.06 28.63 19.02 -16. 3 GHz to 3 GHz 3 GHz 29.23 28.85 29.06 28.63 19.02 -16. 3 GHz to 3 GHz 29.23 28.85 29.06 28.63 19.02 -16. 3 GHz to 9 GHz 27.63 27.79 27.57 27.45 19.02 -2. 30 MHz to 150 kHz 63.10 -63.44 -63.34 -62.99 39.02 -22. 30 MHz to 171 MHz 35.36 -35.41 -35.59 36.00 -19.02 -6. 3 GHz to 3 GHz 24.21 -24.21 -24.44 -24.07 -23.59 -19.02 -6. 9 kHz to 150 kHz 63.41 -63.41 -63.26 -63.64 -39.02 -6. 9 kHz to 150 kHz 63.41 -63.43 -62.99 -63.60 -63.64 -63.02 -63.66 -63.66 -63	LOW		9 kHz to 150 kHz						-23.71
Table Tabl									
High 729 MHz to 1 GHz -36,76 -36,37 -36,18 -36,73 -19,02 -17,		2							-15.11
3 GHz to 9 GHz					-36.37	-36.18	-36.73	-19.02	-17.16
150 kHz to 150 kHz									
150 kHz to 30 MHz									-19.56 -19.96 -14.59 -13.58 -9.42 -6.53 -20.38 -18.67 -13.56 -15.26 -8.83 -6.17 -23.71 -18.79 -15.11 -17.16 -9.54 -6.46 -8.32 -18.39 -16.23 -16.33 -9.61 -8.43 -23.97 -22.66 -16.34 -4.57 -8.89 -6.51 -23.46 -21.43 -16.64 -6.00 -8.71 -6.11 -23.95 -20.84 -16.37 -8.26 -9.26 -6.13 -7.27 -21.84 -16.07 -8.91
A			9 kHz to 150 kHz						
High To be described by the content of the conte									
High 1 GHz to 3 GHz		3							
High 3 GHz to 9 GHz									
High 9 kHz to 150 kHz									
High High 150 kHz to 30 MHz								(dBm) (dB) -39.02 -19.5 -29.02 -19.9 -19.02 -14.5 -19.02 -9.42 -19.02 -6.53 -39.02 -20.3 -29.02 -18.6 -19.02 -15.2 -19.02 -8.83 -19.02 -6.17 -39.02 -23.7 -29.02 -18.7 -19.02 -15.1 -19.02 -15.1 -19.02 -15.1 -19.02 -15.1 -19.02 -15.1 -19.02 -15.1 -19.02 -15.1 -19.02 -15.1 -19.02 -15.1 -19.02 -15.4 -39.02 -18.3 -19.02 -6.46 -39.02 -18.3 -19.02 -16.3 -19.02 -16.3 -19.02 -16.3 -19.02 -2.6.5 -39.02 -23.4	
High High 0 30 MHz to 717 MHz -35.36 -35.41 -35.59 -35.60 -19.02 -16.									
High High Figh High High High High High High High H									
High High 729 MHz to 1 GHz -24.21 -24.44 -24.07 -23.59 -19.02 -4.3 1 GHz to 3 GHz -28.69 -27.91 -28.50 -25.53 -19.02 -8.6 3 GHz to 9 GHz -63.41 -62.48 -63.26 -63.64 -39.02 -23. 150 kHz to 30 MHz -35.94 -35.66 -35.74 -36.15 -25.58 -25.81 -25.60 -63.64 -39.02 -23. 30 MHz to 717 MHz -35.94 -35.66 -35.74 -36.15 -19.02 -6.1 729 MHz to 1 GHz -25.59 -25.21 -25.02 -25.54 -19.02 -6.1 1 GHz to 3 GHz -28.02 -27.77 -27.73 -28.26 -19.02 -6.1 9 kHz to 150 kHz -64.18 -63.02 -62.97 -63.68 -39.02 -23. 150 kHz to 30 MHz -51.00 -49.86 -50.78 -50.94 -29.02 -20. 30 MHz to 717 MHz -35.39 -35.50 -35.58 -35.42 -19.02 -6.1 1 GHz to 3 GHz -27.95 -27.56 -27.28 -28.37 -19.02 -6.1 9 kHz to 1 GHz -27.95 -27.56 -27.28 -28.37 -19.02 -6.1 9 kHz to 150 kHz -35.39 -35.50 -35.58 -35.42 -19.02 -6.1 -6.1 -6.1 -6.2 -6.2 -6.3		0							
High High 3 GHz to 9 GHz 9 kHz to 150 kHz -63.41 -62.48 -63.26 -63.64 -63.64 -39.02 -23. 150 kHz to 30 MHz -50.45 -51.13 -51.31 -51.20 -29.02 -21. 30 MHz to 717 MHz -35.94 -35.66 -35.74 -36.15 -19.02 -6.00 -6									
High High 9 kHz to 150 kHz -63.41 -62.48 -63.26 -63.64 -39.02 -23. 150 kHz to 30 MHz -50.45 -51.13 -51.31 -51.20 -29.02 -21. 30 MHz to 717 MHz -35.94 -35.66 -35.74 -36.15 -19.02 -6.0 -6.0 -6.0 -6.0 -6.0 -6.0 -6.0 -6.0				_					
High High 1 150 kHz to 30 MHz									
High High 1									
High High High 729 MHz to 1 GHz -25.59 -25.21 -25.02 -25.54 -19.02 -6.02 -6.03 -7.77 -27.73 -28.26 -19.02 -8.03 -7.77 -27.73 -28.26 -19.02 -8.03 -7.25.19 -25.28 -19.02 -6.03 -7.25.19 -25.28 -7.25.29 -7.25.28 -7.25.29 -7.26.29 -									
High High A graph of the first		1							
High 3 GHz to 9 GHz		'							
High 9 kHz to 150 kHz -64.18 -63.02 -62.97 -63.68 -39.02 -23. 150 kHz to 30 MHz -51.00 -49.86 -50.78 -50.94 -29.02 -20. 30 MHz to 717 MHz -35.39 -35.50 -35.58 -35.42 -19.02 -16. 729 MHz to 1 GHz -27.95 -27.56 -27.28 -28.37 -19.02 -8.2 1 GHz to 3 GHz -28.52 -28.28 -28.36 -28.81 -19.02 -9.2 3 GHz to 9 GHz -25.35 -25.54 -25.15 -25.36 -19.02 -6. 9 kHz to 150 kHz -46.51 -46.50 -46.31 -46.29 -39.02 -7.2 150 kHz to 30 MHz -51.43 -50.86 -51.50 -51.41 -29.02 -21. 30 MHz to 717 MHz -35.41 -35.25 -35.09 -35.26 -19.02 -16.									
2 2 30 MHz to 150 kHz -51.00 -49.86 -50.78 -50.94 -29.02 -20. 30 MHz to 717 MHz -35.39 -35.50 -35.58 -35.42 -19.02 -16. 729 MHz to 1 GHz -27.95 -27.56 -27.28 -28.37 -19.02 -8.2 1 GHz to 3 GHz -28.52 -28.28 -28.36 -28.81 -19.02 -9.2 3 GHz to 9 GHz -25.35 -25.54 -25.15 -25.36 -19.02 -6. 9 kHz to 150 kHz -46.51 -46.50 -46.31 -46.29 -39.02 -7.2 150 kHz to 30 MHz -51.43 -50.86 -51.50 -51.41 -29.02 -21. 30 MHz to 717 MHz -35.41 -35.25 -35.09 -35.26 -19.02 -16.	High								
2 30 MHz to 717 MHz									
2 729 MHz to 1 GHz -27.95 -27.56 -27.28 -28.37 -19.02 -8.3 1 GHz to 3 GHz -28.52 -28.28 -28.36 -28.81 -19.02 -9.3 3 GHz to 9 GHz -25.35 -25.54 -25.15 -25.36 -19.02 -6.3 9 kHz to 150 kHz -46.51 -46.50 -46.31 -46.29 -39.02 -7.3 150 kHz to 30 MHz -51.43 -50.86 -51.50 -51.41 -29.02 -21. 30 MHz to 717 MHz -35.41 -35.25 -35.09 -35.26 -19.02 -16.									
729 MHz to 1 GHz		2							1
3 GHz to 9 GHz		-							
9 kHz to 150 kHz									
150 kHz to 30 MHz -51.43 -50.86 -51.50 -51.41 -29.02 -21. 30 MHz to 717 MHz -35.41 -35.25 -35.09 -35.26 -19.02 -16.									
30 MHz to 717 MHz -35.41 -35.25 -35.09 -35.26 -19.02 -16.									
				_					
		3							
			729 MHz to 1 GHz	-29.10	-27.93	-28.64	-28.55		
									-9.45
3 GHz to 9 GHz -27.82 -27.61 -27.67 -27.62 -19.02 -8.9								-19.02	-8.59

Table 8-16. Conducted Spurious Emission Summary Data (n29_1C_5M)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 25 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 35 of 62

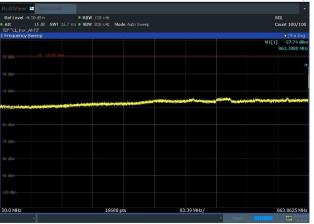
Channel	Port	Measurement Range	QPSK	Level 16QAM	(dBm) 64QAM	256QAM	Limit (dBm)	Margin (dB)
		9 kHz to 150 kHz	-61.96	-62.14	-61.90	-62.02	-39.02	-22.88
	-	150 kHz to 30 MHz	-47.41	-62.14 -47.34	-61.90	-62.02 -47.26	-39.02	-18.24
	-	30 MHz to 616 MHz	-32.24	-32.64	-47.33	-33.20	-19.02	-13.22
	0	653 MHz to 1 GHz	-39.45	-38.94	-32.74	-39.02	-19.02	-19.92
		1 GHz to 3 GHz	-28.81	-28.11	-28.76	-28.97	-19.02	-9.09
		3 GHz to 9 GHz	-28.21	-27.84	-28.44	-28.32	-19.02	-8.82
		9 kHz to 150 kHz	-56.12	-56.08	-56.09	-56.07	-39.02	-17.05
		150 kHz to 30 MHz	-45.66	-45.52	-45.82	-45.98	-29.02	-16.50
		30 MHz to 616 MHz	-32.51	-32.40	-31.63	-31.83	-19.02	-12.61
	1	653 MHz to 1 GHz	-39.61	-39.86	-39.42	-39.61	-19.02	-20.40
		1 GHz to 3 GHz	-28.74	-28.67	-28.94	-28.69	-19.02	-9.65
_	-	3 GHz to 9 GHz	-27.95	-27.69	-27.32	-27.41	-19.02	-8.30
Low		9 kHz to 150 kHz	-60.71	-61.32	-61.38	-61.26	-39.02	-21.69
		150 kHz to 30 MHz	-46.10	-45.92	-46.10	-46.05	-29.02	-16.90
		30 MHz to 616 MHz	-30.65	-31.64	-29.10	-32.85	-19.02	-10.08
	2	653 MHz to 1 GHz	-38.95	-39.18	-38.88	-39.07	-19.02	-19.86
İ		1 GHz to 3 GHz	-28.83	-28.75	-28.59	-29.27	-19.02	-9.57
		3 GHz to 9 GHz	-27.74	-27.68	-27.78	-27.56	-19.02	-8.54
		9 kHz to 150 kHz	-50.89	-50.63	-50.09	-49.87	-39.02	-10.85
		150 kHz to 30 MHz	-48.74	-49.63	-49.50	-50.05	-29.02	-19.72
	3	30 MHz to 616 MHz	-33.62	-32.74	-31.87	-33.11	-19.02	-12.85
	3	653 MHz to 1 GHz	-38.13	-38.51	-38.75	-39.00	-19.02	-19.11
		1 GHz to 3 GHz	-28.91	-28.85	-29.20	-28.98	-19.02	-9.83
		3 GHz to 9 GHz	-30.50	-31.09	-30.51	-30.79	-19.02	-11.48
		9 kHz to 150 kHz	-61.70	-61.78	-61.65	-61.87	-39.02	-22.63
		150 kHz to 30 MHz	-46.69	-47.25	-47.49	-47.40	-29.02	-17.67
	0	30 MHz to 616 MHz	-38.21	-37.02	-36.81	-36.67	-19.02	-17.65
		653 MHz to 1 GHz	-39.98	-38.84	-38.56	-39.72	72 -19.02	-19.54
		1 GHz to 3 GHz	-28.85	-29.29	-28.56	-28.71	-19.02	-9.54
		3 GHz to 9 GHz	-28.27	-28.40	-28.31	-27.74	-19.02	-8.72
		9 kHz to 150 kHz	-55.78	-56.00	-55.83	-55.99	-39.02	-16.76
		150 kHz to 30 MHz	-45.80	-45.79	-45.78	-45.97	-29.02	-16.76
	1	30 MHz to 616 MHz	-35.87	-35.78	-35.48	-35.98	-19.02	-16.46
	' 	653 MHz to 1 GHz	-37.89	-37.89	-37.39	-37.89	-19.02	-18.37
		1 GHz to 3 GHz	-28.66	-28.55	-28.85	-28.88	-19.02	-9.53
Middle		3 GHz to 9 GHz	-27.32	-27.56	-27.29	-27.87	-19.02	-8.27
	_	9 kHz to 150 kHz	-60.17	-61.94	-61.67	-61.50	-39.02	-21.15
		150 kHz to 30 MHz	-45.52	-46.39	-46.21	-46.16	-29.02	-16.50
	2	30 MHz to 616 MHz	-34.63	-34.76	-34.52	-33.98	-19.02	-14.96
		653 MHz to 1 GHz	-36.94	-36.68	-36.48	-37.18	-19.02	-17.46
		1 GHz to 3 GHz	-28.84	-28.40	-28.43	-28.81	-19.02	-9.38
		3 GHz to 9 GHz	-27.65	-27.60	-28.10	-28.08	-19.02	-8.58
	_	9 kHz to 150 kHz	-54.34	-50.76	-50.45	-51.10	-39.02	-11.43
		150 kHz to 30 MHz	-46.49	-49.84	-49.91	-49.85	-29.02	-17.47
	3	30 MHz to 616 MHz	-35.65	-35.02	-35.37	-35.43	-19.02	-16.00
		653 MHz to 1 GHz	-37.28	-37.22	-37.73	-37.76	-19.02	-18.20
		1 GHz to 3 GHz	-29.17	-29.20	-29.05	-29.04	-19.02	-10.02
High (3 GHz to 9 GHz	-30.43	-30.37	-30.64	-30.38	-19.02	-11.35
	-	9 kHz to 150 kHz 150 kHz to 30 MHz	-60.96 -46.56	-61.69	-61.53	-61.42 -47.07	-39.02	-21.94
			-46.56 -37.65	-46.83	-46.91		-29.02 -19.02	-17.54
	0	30 MHz to 616 MHz	-37.65	-37.71	-37.59	-36.92	-19.02	-17.90 15.00
	-	653 MHz to 1 GHz	-34.09	-34.02	-34.42	-34.34	-19.02	-15.00
		1 GHz to 3 GHz	-28.98	-28.79	-28.91	-27.34	-19.02	-8.32
		3 GHz to 9 GHz	-28.12	-28.48	-28.79	-28.73	-19.02	-9.10
FCC ID: A3LRF4450T-71A		element	MEASUREMEN (CERTIFICA		SAI	MSUNG	Approved	-
Test Report S/	N:	Test Dates: EUT Ty					Technical I	viariayel
8K22051701-0		08/01/2022 - 08/17/2022 RRU(R	· -				Page 36 of	62
© 2021 Element		TOTAL TOTAL TRANSPORT					ES-QP-16-	-12 Rev.01

	0 kHz to 150 kHz	E0 64	EO 20	60.20	E0 74	20.02	20.26
	9 kHz to 150 kHz	-59.64	-59.38	-60.29	-59.74	-39.02	-20.36
	150 kHz to 30 MHz	-45.36	-45.50	-45.41	-45.65	-29.02	-16.34
1	30 MHz to 616 MHz	-37.16	-37.44	-37.46	-36.50	-19.02	-17.48
	653 MHz to 1 GHz	-33.04	-33.12	-32.64	-31.21	-19.02	-12.19
	1 GHz to 3 GHz	-28.66	-28.94	-28.60	-28.31	-19.02	-9.29
	3 GHz to 9 GHz	-28.06	-27.42	-27.58	-27.23	-19.02	-8.21
	9 kHz to 150 kHz	-59.77	-61.28	-61.48	-60.69	-39.02	-20.75
	150 kHz to 30 MHz	-45.10	-45.58	-45.65	-45.71	-29.02	-16.08
2	30 MHz to 616 MHz	-36.93	-37.07	-37.03	-37.02	-19.02	-17.91
2	653 MHz to 1 GHz	-32.56	-32.35	-32.35	-32.59	-19.02	-13.33
	1 GHz to 3 GHz	-27.72	-28.33	-28.98	-28.66	-19.02	-8.70
	3 GHz to 9 GHz	-27.72	-28.34	-27.95	-28.19	-19.02	-8.70
	9 kHz to 150 kHz	-54.67	-53.56	-53.37	-53.91	-39.02	-14.35
	150 kHz to 30 MHz	-46.01	-46.85	-46.74	-46.80	-29.02	-16.99
3	30 MHz to 616 MHz	-37.18	-36.60	-36.99	-36.78	-19.02	-17.58
3	653 MHz to 1 GHz	-33.75	-33.89	-33.81	-34.18	-19.02	-14.73
	1 GHz to 3 GHz	-28.85	-29.12	-28.80	-29.14	-19.02	-9.78
	3 GHz to 9 GHz	-30.77	-30.96	-31.26	-31.05	-19.02	-11.75

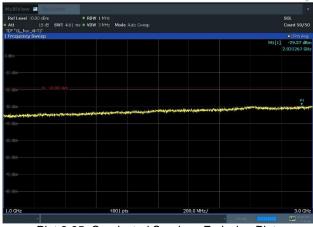
Table 8-17. Conducted Spurious Emission Summary Data (n71_1C_10M)

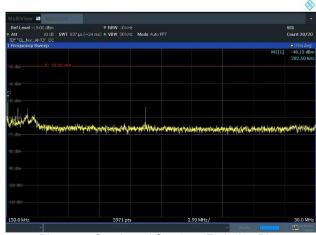
FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 37 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 37 01 62

Channel	Configuration	Port	Measurement Range	Level (dBm) QPSK	Limit (dBm)	Margin (dB)
			9 kHz to 150 kHz	-60.92	-39.02	-21.90
			150 kHz to 30 MHz	-49.68	-29.02	-20.66
			30 MHz to 617 MHz	-25.54	-19.02	-6.52
			653 MHz to 717 MHz	-32.65	-19.02	-13.63
		0	729 MHz to 863 MHz	-32.76	-19.02	-13.74
			870 MHz to 1 GHz	-40.72	-19.02	-21.70
			1 GHz to 3 GHz	-28.77	-19.02	-9.75
			3 GHz to 9 GHz	-29.11	-19.02	-10.09
			9 kHz to 150 kHz	-62.34	-39.02	-23.32
			150 kHz to 30 MHz	-49.31	-29.02	-20.29
			30 MHz to 617 MHz	-28.25	-19.02	-9.23
			653 MHz to 717 MHz	-31.87	-19.02	-12.85
		1	729 MHz to 863 MHz	-33.41	-19.02	-14.39
			870 MHz to 1 GHz	-38.72	-19.02	-19.70
			1 GHz to 3 GHz	-27.88	-19.02	-8.86
	n26+n29+n71_		3 GHz to 9 GHz	-28.54	-19.02	-9.52
Low	3C_ 10M+5M+5M		9 kHz to 150 kHz	-64.12	-39.02	-25.10
			150 kHz to 30 MHz	-49.93	-29.02	-20.91
			30 MHz to 617 MHz	-26.53	-19.02	-7.51
			653 MHz to 717 MHz	-31.54	-19.02	-12.52
		2	729 MHz to 863 MHz	-31.04	-19.02	-12.02
			870 MHz to 1 GHz	-40.34	-19.02	-21.32
			1 GHz to 3 GHz	-29.13	-19.02	-10.11
			3 GHz to 9 GHz	-29.46	-19.02	-10.44
			9 kHz to 150 kHz	-46.75	-39.02	-7.73
			150 kHz to 30 MHz	-48.70	-29.02	-19.68
			30 MHz to 617 MHz	-28.95	-19.02	-9.93
		2	653 MHz to 717 MHz	-34.63	-19.02	-15.61
		3	729 MHz to 863 MHz	-34.72	-19.02	-15.70
			870 MHz to 1 GHz	-39.50	-19.02	-20.48
			1 GHz to 3 GHz	-28.81	-19.02	-9.79
			3 GHz to 9 GHz	-31.73	-19.02	-12.71


Table 8-18. Conducted Spurious Emission Summary Data (n26+n29+n71_Inter-Band Carrier Aggregation)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 38 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 36 01 62




Plot 8-31. Conducted Spurious Emission Plot 9 kHz to 150 kHz (n26_1C_5M_16QAM - Low Channel, Port 3)


Plot 8-33. Conducted Spurious Emission Plot 30 MHz to 863.8625 MHz (n26_1C_5M_16QAM - Low Channel, Port 3)

Plot 8-35. Conducted Spurious Emission Plot 1 GHz to 3 GHz (n26_1C_5M_16QAM - Low Channel, Port 3)

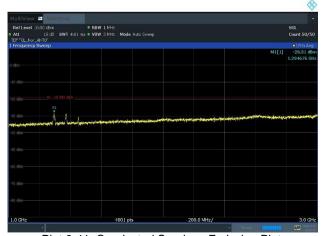
Plot 8-32. Conducted Spurious Emission Plot 150 kHz to 30 MHz (n26_1C_5M_16QAM - Low Channel, Port 3)

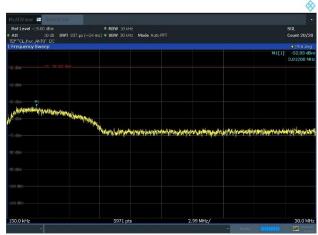
Plot 8-34. Conducted Spurious Emission Plot 869.1375 MHz to 1 GHz (n26_1C_5M_16QAM - Low Channel, Port 3)

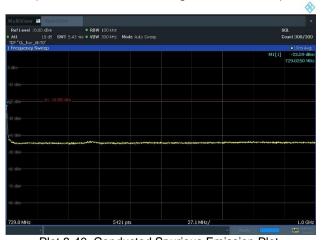
Plot 8-36. Conducted Spurious Emission Plot 3 GHz to 9 GHz (n26_1C_5M_16QAM - Low Channel, Port 3)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 39 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 39 01 62

0



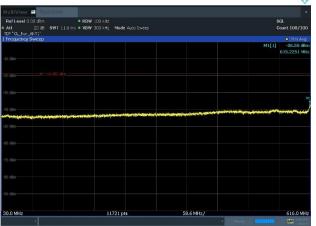

Plot 8-37. Conducted Spurious Emission Plot 9 kHz to 150 kHz (n29_1C_5M_256QAM - High Channel, Port 0)


Plot 8-39. Conducted Spurious Emission Plot 30 MHz to 717 MHz (n29_1C_5M_256QAM - High Channel, Port 0)

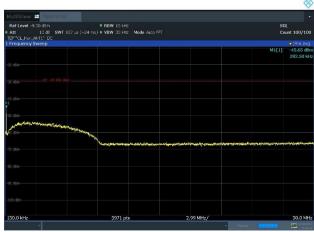
Plot 8-41. Conducted Spurious Emission Plot 1 GHz to 3 GHz (n29_1C_5M_256QAM - High Channel, Port 0)

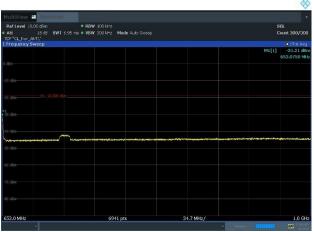
Plot 8-38. Conducted Spurious Emission Plot 150 kHz to 30 MHz (n29_1C_5M_256QAM - High Channel, Port 0)

Plot 8-40. Conducted Spurious Emission Plot 729 MHz to 1 GHz (n29_1C_5M_256QAM - High Channel, Port 0)


Plot 8-42. Conducted Spurious Emission Plot 3 GHz to 9 GHz (n29_1C_5M_256QAM - High Channel, Port 0)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 40 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 40 01 62

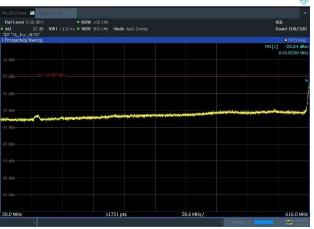

Plot 8-43. Conducted Spurious Emission Plot 9 kHz to 150 kHz (n71_1C_10M_256QAM - High Channel, Port 1)


Plot 8-45. Conducted Spurious Emission Plot 30 MHz to 616 MHz (n71_1C_10M_256QAM - High Channel, Port 1)

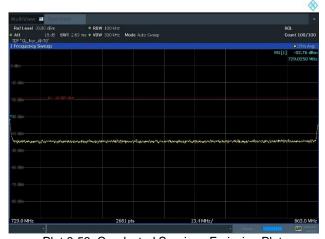

Plot 8-47. Conducted Spurious Emission Plot 1 GHz to 3 GHz (n71_1C_10M_256QAM - High Channel, Port 1)

Plot 8-44. Conducted Spurious Emission Plot 150 kHz to 30 MHz (n71_1C_10M_256QAM - High Channel, Port 1)


Plot 8-46. Conducted Spurious Emission Plot 653 MHz to 1 GHz (n71_1C_10M_256QAM - High Channel, Port 1)


Plot 8-48. Conducted Spurious Emission Plot 3 GHz to 9 GHz (n71_1C_10M_256QAM - High Channel, Port 1)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 41 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 41 01 62



Plot 8-49. Conducted Spurious Emission Plot 9 kHz to 150 kHz (n26+n29+n71_3C_Inter-Band CA_QPSK, Port 0)

Plot 8-51. Conducted Spurious Emission Plot 30 MHz to 617 MHz (n26+n29+n71_3C_Inter-Band CA_QPSK, Port 0)

Plot 8-53. Conducted Spurious Emission Plot 729 MHz to 863 MHz (n26+n29+n71_3C_Inter-Band CA_QPSK, Port 0)

Refleved 1500-58th S37 ps (1024 ms) • Very 30 lett. Mode AutoFFT S01

1003 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S440 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps (1024 ms) • Very 30 lett. Mode AutoFFT S02

1500-64th S450 SWI 537 ps

Plot 8-50. Conducted Spurious Emission Plot 150 kHz to 30 MHz (n26+n29+n71_3C_Inter-Band CA_QPSK, Port 0)


Plot 8-52. Conducted Spurious Emission Plot 653 MHz to 717 MHz (n26+n29+n71_3C_Inter-Band CA_QPSK, Port 0)

Plot 8-54. Conducted Spurious Emission Plot 870 MHz to 1 GHz (n26+n29+n71_3C_Inter-Band CA_QPSK, Port 0)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 42 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 42 01 62

Plot 8-55. Conducted Spurious Emission Plot 1 GHz to 3 GHz (n26+n29+n71_3C_Inter-Band CA_QPSK, Port 0)

Plot 8-56. Conducted Spurious Emission Plot 3 GHz to 9 GHz (n26+n29+n71_3C_Inter-Band CA_QPSK, Port 0)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 43 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 43 01 62

8.7 Frequency Stability

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of KDB 971168 D01 v03r01. The frequency stability of the transmitter is measured by:

- a.) Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for DC powered equipment.

Test Description

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.

Frequency measurements are made -30°C to +50°C in 10°C increments. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Limit

NR n29 and n71 operation under Part 27.54

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

NR n26 operation under Part 90.213(a),

The frequency stability of the transmitter shall be maintained within ±1.5 ppm (±0.00015%) of center frequency.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

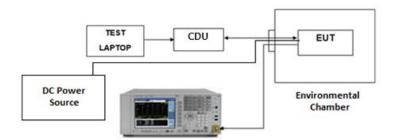


Figure 8-6. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 44 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Faye 44 01 02

OPERATING FREQUENCY: 865,500,000 Hz REFERENCE VOLTAGE: 48.00 VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %		+ 20 (Ref)	865,500,040	0	0.0000000
100 %		- 30	865,500,051	11	0.0000013
100 %		- 20	865,500,051	11	0.0000013
100 %		- 10	865,500,050	10	0.0000012
100 %	-48.00	0	865,500,050	10	0.0000012
100 %		+ 10	865,500,053	13	0.0000015
100 %		+ 30	865,500,040	0	0.0000000
100 %		+ 40	865,500,040	0	0.0000000
100 %		+ 50	865,500,040	0	0.0000000
85 %	-40.80	+ 20	865,500,040	0	0.0000000
115 %	-55.20	+ 20	865,500,040	0	0.0000000

Table 8-19. Frequency Stability Summary Data (NR_n26_1C_5M)

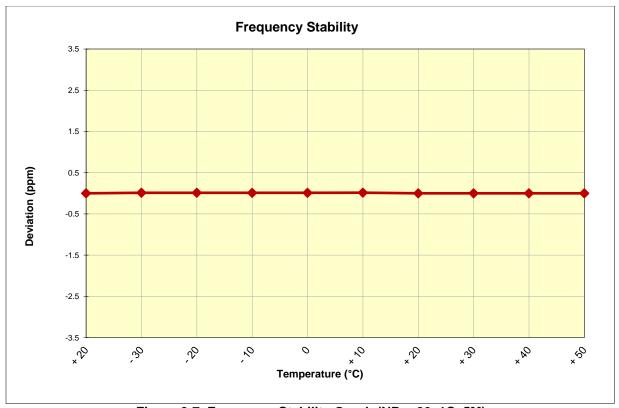


Figure 8-7. Frequency Stability Graph (NR_n26_1C_5M)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 45 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 45 of 62

OPERATING FREQUENCY: 725,500,000 Hz REFERENCE VOLTAGE: -48.00 VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %		+ 20 (Ref)	725,500,028	0	0.0000000
100 %		- 30	725,500,029	1	0.0000001
100 %		- 20	725,500,028	0	0.0000000
100 %		- 10	725,500,029	1	0.000001
100 %	-48.00	0	725,500,029	1	0.0000001
100 %		+ 10	725,500,029	1	0.000001
100 %		+ 30	725,500,028	0	0.0000000
100 %		+ 40	725,500,029	1	0.000001
100 %		+ 50	725,500,029	1	0.000001
85 %	-40.80	+ 20	725,500,028	0	0.0000000
115 %	-55.20	+ 20	725,500,028	0	0.0000000

Table 8-20. Frequency Stability Summary Data (NR_n29_1C_5M)

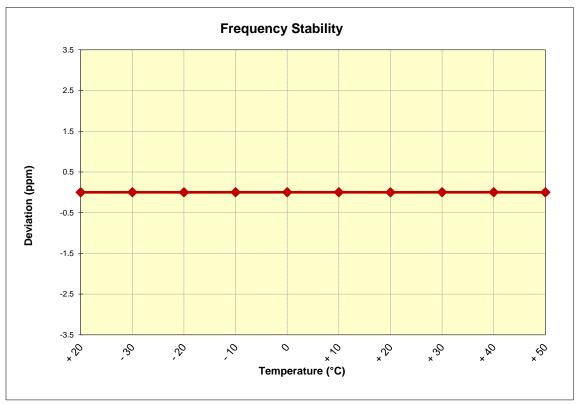


Figure 8-8. Frequency Stability Graph (NR_n29_1C_5M)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 46 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 46 of 62

OPERATING FREQUENCY: 622,000,000 Hz REFERENCE VOLTAGE: -48.00 VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %		+ 20 (Ref)	622,000,024	0	0.0000000
100 %		- 30	622,000,024	0	0.0000000
100 %		- 20	622,000,025	1	0.0000002
100 %	-48.00	- 10	622,000,026	2	0.0000003
100 %		0	622,000,025	1	0.0000002
100 %		+ 10	622,000,025	1	0.0000002
100 %		+ 30	622,000,024	0	0.0000000
100 %		+ 40	622,000,025	1	0.0000002
100 %		+ 50	622,000,024	0	0.0000000
85 %	-40.80	+ 20	622,000,024	0	0.0000000
115 %	-55.20	+ 20	622,000,024	0	0.0000000

Table 8-21. Frequency Stability Summary Data (NR_n71_1C_10M)

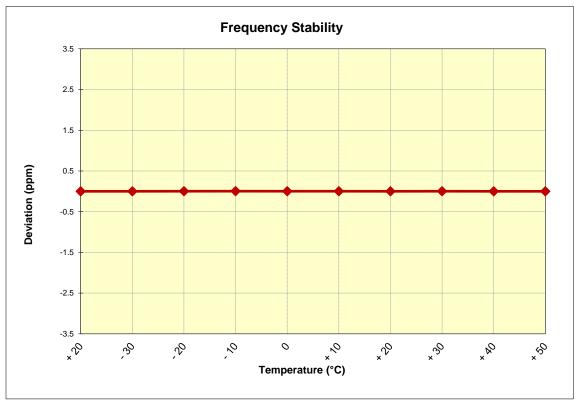


Figure 8-9. Frequency Stability Graph (NR_n71_1C_10M)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 47 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 47 of 62

8.8 Radiated spurious emission

Test Overview

Radiated spurious emissions measurements are performed using the field strength method described in ANSI C63.26-2015 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized broadband tri-log antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas.

Test Procedure Used

ANSI C63.26 - Section 5.5.3.2

Test Setting

- 1. Start frequency was set to 30 MHz and stop frequency was set to at least 10 * the fundamental frequency
- 2. RBW = 100 kHz for emissions below 1 GHz and 1 MHz for emissions above 1GHz
- 3. VBW ≥ 3 x RBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak for the pre-scan, (In cases where the level is within 2 dB of the limit, the final measurement is taken using RMS detector.)
- 6. Trace mode = Max Hold (In cases where the level is within 2 dB of the limit, the final measurement is taken using triggering/gating and trace averaging.)
- 7. The trace was allowed to stabilize.

<u>Limit</u>

NR n29 and n71 operation under Part 27.53

The minimum permissible attenuation level of any spurious emission is $43 + log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

NR n26 operation under Part 90.691

For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.

For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 48 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 46 01 62

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

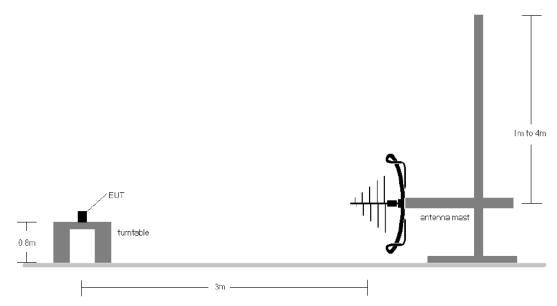


Figure 8-10. Test Instrument & Measurement Setup < 1 GHz

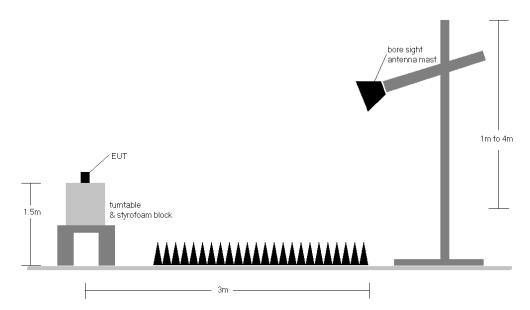


Figure 8-11. Test Instrument & Measurement Setup > 1 GHz

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 49 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 49 01 62

Test Notes

- 1. Per Part 90.691, the frequency block by up to and including 37.5 kHz range complies with 50 + 10 Log10(P) decibels and frequency block greater than 37.5 kHz range complies with 43 + 10Log10(P) decibels limit.
- 2. The average EIRP reported below is calculated per 5.2.7 of ANSI C63.26-2015 which states:

The measured e.i.r.p is converted to E-field in V/m. Then the distance correction is applied before converted back to calculated e.i.r.p.as explained in KDB 971168 D01 D01 v03r01.

Effective Isotropic Radiated Power Sample Calculation

Field Strength [dBμV/m] = Measured Value [dBm] + 107 + AFCL [dB/m]

 $= -75.54 \text{ [dBm]} + 107 + 20.94 \text{ [dB/m]} = 52.40 \text{ dB}\mu\text{V/m}$

e.i.r.p. [dBm] = E[dB μ V/m] + 20 log₁₀(d[m]) - 104.8

= 52.40 dB[μ V/m] + (20*log (3)) - 104.8

= -42.06 dBm

*AFCL (dB/m) contains measurement antenna factor(dB/m) and cable loss(dB) as below:

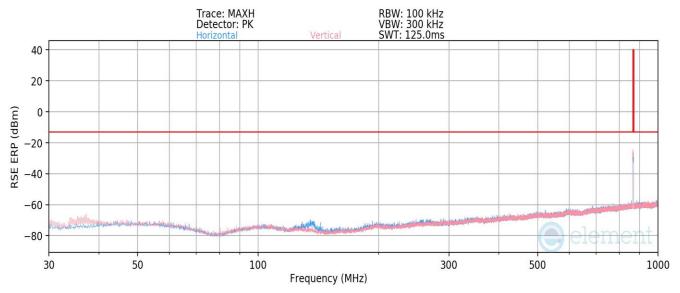
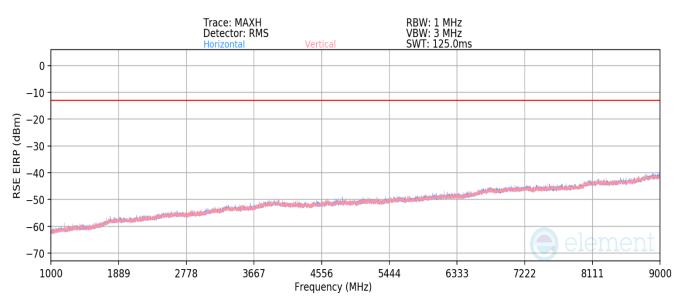
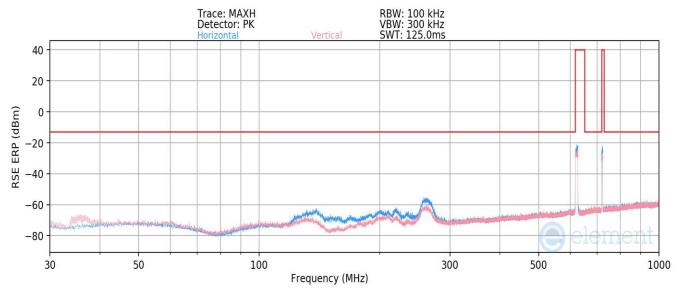
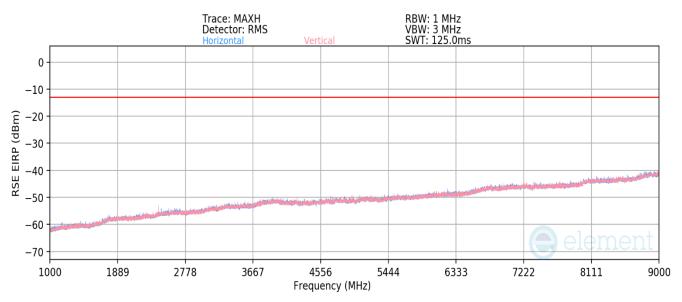

Frequency [MHz]	Antenna Factor (dB/m)	Chamber measurement cable loss + amplifier [dB]	AFCL (dB/m)
271.42	13.08	1.34	14.42
8946.47	37.34	-16.40	20.94

Table 8-22. Adopted AFCL value in the calculation

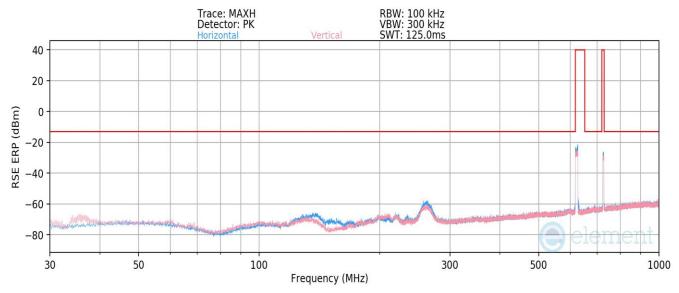

- 3. The EUT was tested in both horizontal and vertical antenna polarizations and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, channel bandwidth configurations shown in the tables below.
- 4. The spectrum is measured from 30 MHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 5. All emissions were measured at a 3-meter test distance.
- 6. Spurious emissions were measured with all EUT antennas transmitting simultaneously and all antenna ports terminated.
- 7. The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 8. All modes of operation were investigated and the worst case configuration results are reported in this section.

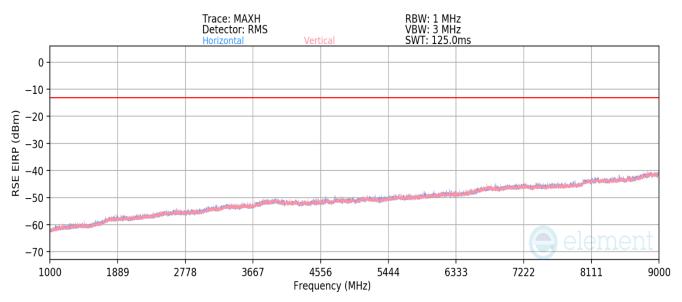
FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 50 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 50 01 62


Plot 8-57. Radiated spurious emission_30 MHz to 1000 MHz (n26_1C_5M_Mid Channel)

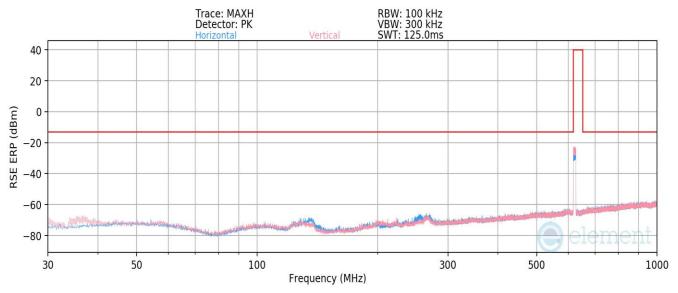

Plot 8-58. Radiated spurious emission_1 GHz to 9 GHz (n26_1C_5M_Mid Channel)

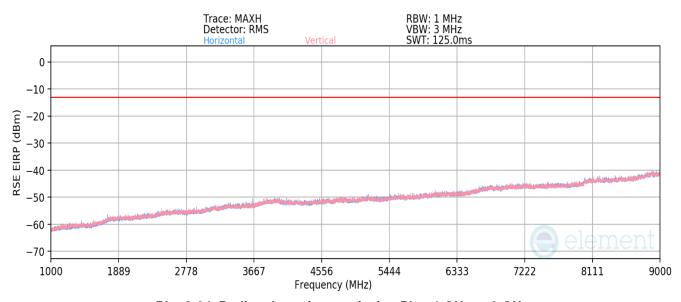
FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo F1 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 51 of 62


Plot 8-59. Radiated spurious emission_30 MHz to 1000 MHz (n71+n29_2C_10M+5M_Low Channel)

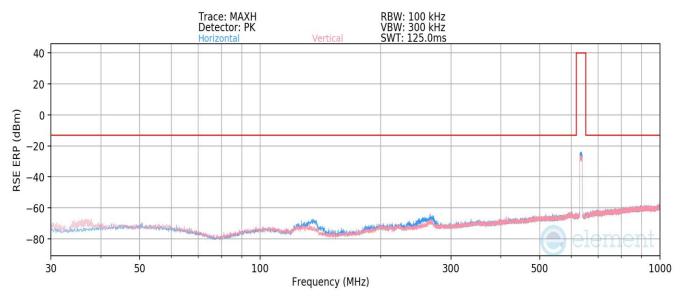

Plot 8-60. Radiated spurious emission Plot_1 GHz to 9 GHz (n71+n29_2C_10M+5M_Low Channel)

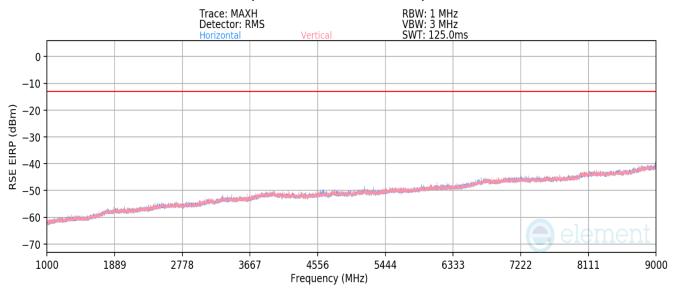
FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 52 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 52 01 62


Plot 8-61. Radiated spurious emission_30 MHz to 1000 MHz (n71+n29_2C_10M+5M_High Channel)

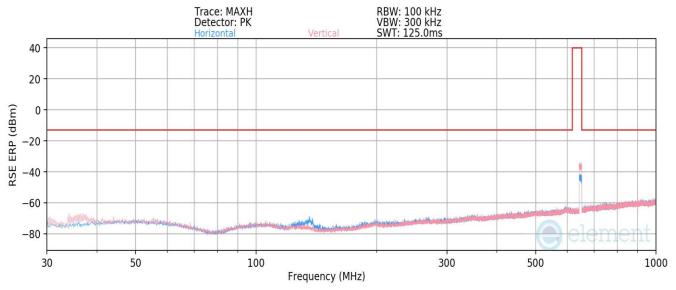

Plot 8-62. Radiated spurious emission Plot_1 GHz to 9 GHz (n71+n29_2C_10M+5M_High Channel)

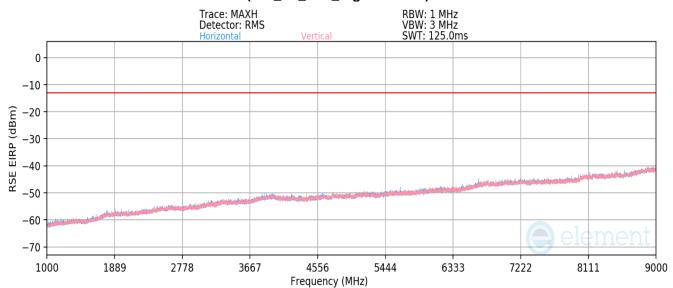
FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 53 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 55 01 62


Plot 8-63. Radiated spurious emission_30 MHz to 1000 MHz (n71_1C_10M_Low Channel)

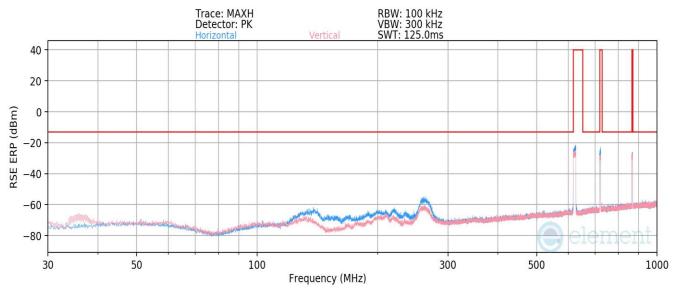

Plot 8-64. Radiated spurious emission Plot_1 GHz to 9 GHz (n71_1C_10M_Low Channel)

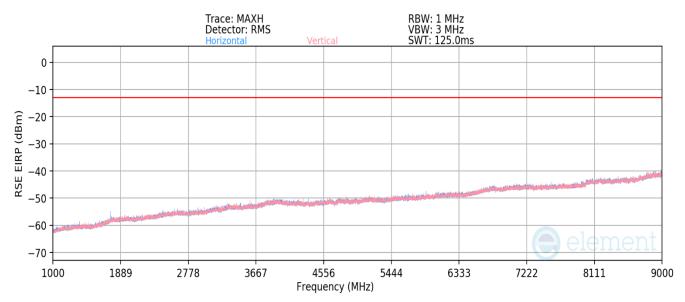
FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 54 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 54 01 62


Plot 8-65. Radiated spurious emission_30 MHz to 1000 MHz (n71_1C_10M_Mid Channel)


Plot 8-66. Radiated spurious emission Plot_1 GHz to 18 GHz (n71 1C 10M Mid Channel)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 55 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 55 01 62


Plot 8-67. Radiated spurious emission_30 MHz to 1000 MHz (n71_1C_10M_High Channel)


Plot 8-68. Radiated spurious emission Plot_1 GHz to 9 GHz (n71_1C_10M_High Channel)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 56 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 56 01 62

Plot 8-69. Radiated spurious emission_30 MHz to 1000 MHz (n71+n29+n26_3C_10M+5M+5M _Inter-Band Carrier Aggregation)

Plot 8-70. Radiated spurious emission Plot_1 GHz to 9 GHz (n71+n29+n26_3C_10M+5M+5M _Inter-Band Carrier Aggregation)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 57 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 57 01 62

Bandwidth (MHz)	n71+n29_2C_10 MHz + 5 MHz		
Center Frequency (MHz)	622 MHz + 720.5 MHz		
Modulation Signal	QPSK		

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Heigh [cm]	Turntable azimuth [degree]	Analyzer Level [dBm/MHz]	AFCL [dBm]	Field Strength [dB#//m]	RSE EIRP [dBm/MHz]	Limit [dBm/MHz]	Margin [dB]
271.42	Н	120	250	-81.28	14.42	40.14	-54.32	-13	-41.32
274.65	V	100	40	-86.62	14.46	34.84	-59.62	-13	-46.62
8946.47	Н	150	20	-75.54	20.94	52.40	-42.06	-13	-29.06
8929.85	V	200	100	-76.62	20.94	51.32	-43.14	-13	-30.14

Table 8-23. Radiated spurious emission Worst case Summary Data (n71+n29_2C_10M+5M_Low Channel)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 58 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 36 01 62

9.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Samsung RRU(RF4450t) FCC ID: A3LRF4450T-71A** complies with all of the requirements of Part 27 and 90 FCC Rules.

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 59 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	raye 39 01 02

10.0 APPENDIX. A

10.1 Conducted Average Output Power

Test Overview

A transmitter port of EUT is connected to the input of a signal analyzer. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Test Description

KDB 971168 D01 v03r01 – Section 5 KDB 662911 D01 v02r01 – Section E)1) In-Band Power Measurements ANSI C63.26-2015 – Section 5.2.4.4.1

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The spectrum analyzer settings were as follows:

- 1. Conducted power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = $1 \sim 5\%$ of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Span = $2 \sim 3 \times OBW$
- 5. No. of sweep points $\geq 2 \times \text{span} / \text{RBW}$
- 6. Detector = RMS
- 7. Trigger Settings is set to "RF Power" for signals with non-continuous operation with the sweep times set to "auto". Refer test note 3 for details.
- 8. Trace mode = Trace-Averaging (RMS) set to average over 100 sweeps
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

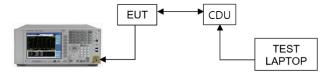


Figure 10-1. Test Instrument & Measurement Setup

Limit

N/A

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 60 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Page 60 01 62

Note

- 1. Conducted Average Output Power test result used to Grant of Authorization power and MPE.
- 2. MIMO Calculations are done considering output channel power for all ports and respective margins are calculated according to procedures in section 6.4 of ANSI C63.26 and section D of KDB 971168 D01 v03r01.
- 3. Consider the following factors for MIMO Power:

Conducted power for each port is measured in dBm.

Powers are summed up in linear using the measure-and-sum technique defined in KDB 971168 D01 v03r01-Section D

Conducted power per port (dBm) is converted to a linear value (mW). A summation of linear powers for all ports gives us the total MIMO conducted power in milliWatts (mW).

4. Sample Calculation:

Let us assume the following numbers:

a) Total MIMO Conducted Power as 36535.95 mW

b)

Factors		Value	Unit
Summed MIMO Conducted Power (linear sum)		36535.95	mW
Summed MIMO Conducted Power (dBm)	= 10 * log (81863.59) =	45.63	dBm

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 61 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 61 01 62

Channel	Port	QPSK	16QAM	64QAM	256QAM
	0	39.68	39.22	39.60	39.58
	1	39.84	39.45	39.46	39.65
Mid	2	39.32	39.20	39.20	39.33
Mid	3	39.57	39.23	39.31	39.50
	Total Conducted Power (mW)	36535.95	33859.45	34799.55	35786.81
	Total Conducted Power(dBm)	45.63	45.30	45.42	45.54

Table 10-1. Conducted Average Output Power Table (NR_n26_1C_5M)

Channel	Port	QPSK	16QAM	64QAM	256QAM
	0	42.06	42.12	42.41	42.60
	1	42.32	42.21	42.57	42.50
Low	2	42.39	42.05	42.31	42.40
LOW	3	42.05	42.10	42.45	42.42
	Total Conducted Power (mW)	66500.73	65177.64	70090.63	70816.03
	Total Conducted Power(dBm)	48.23	48.14	48.46	48.50
	0	42.52	42.62	42.48	42.47
	1	42.53	42.61	42.50	42.55
Lliah	2	42.72	42.71	42.70	42.62
High	3	42.57	42.52	42.46	42.53
	Total Conducted Power (mW)	72549.50	73048.63	71724.52	71836.15
	Total Conducted Power(dBm)	48.61	48.64	48.56	48.56

Table 10-2. Conducted Average Output Power Table (NR_n29_1C_5M)

Channel	Port	QPSK	16QAM	64QAM	256QAM
Low	0	45.84	45.76	45.82	45.72
	1	45.42	45.67	45.57	45.41
	2	45.72	45.61	45.77	45.61
	3	45.62	45.64	45.62	45.60
	Total Conducted Power (mW)	147004.87	147603.40	148484.91	144777.94
	Total Conducted Power(dBm)	51.67	51.69	51.72	51.61
Mid	0	45.78	45.68	45.74	45.70
	1	45.64	45.61	45.39	45.42
	2	45.69	45.62	45.70	45.68
	3	45.66	45.60	45.59	45.57
	Total Conducted Power (mW)	148368.99	146157.52	145469.06	145027.94
	Total Conducted Power(dBm)	51.71	51.65	51.63	51.61
High	0	45.46	45.81	45.64	45.65
	1	45.23	45.48	45.72	45.53
	2	45.64	45.60	45.62	45.58
	3	45.50	45.74	45.68	45.66
	Total Conducted Power (mW)	140623.78	147230.01	147426.99	145409.40
	Total Conducted Power(dBm)	51.48	51.68	51.69	51.63

Table 10-3. Conducted Average Output Power Table (NR_n71_1C_10M)

FCC ID: A3LRF4450T-71A	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 62 of 62
8K22051701-00-R1.A3L	08/01/2022 - 08/17/2022	RRU(RF4450t)	Fage 62 01 62