# Shenzhen CTA Testing Technology Co., Ltd.



Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

| CTIN .                                                                                                                                                                                                                                      | FCC PART 15.                                                                                                                                                                                                                                                                                                                                                     | .231                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report Reference                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                   |
|                                                                                                                                                                                                                                             | :: 2A49Z-RMRC2025                                                                                                                                                                                                                                                                                                                                                | CTATE:                                                                                                                                                                            |
| Compiled by ( position+printed na                                                                                                                                                                                                           | ame+signature).: File administrators Jo                                                                                                                                                                                                                                                                                                                          | oan Wu                                                                                                                                                                            |
| Supervised by                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                  | Depenter Canal                                                                                                                                                                    |
| (position+printed na                                                                                                                                                                                                                        | ame+signature) .: Project Engineer Zoe                                                                                                                                                                                                                                                                                                                           | ey Cao                                                                                                                                                                            |
| Approved by<br>( position+printed na                                                                                                                                                                                                        | ame+signature).: RF Manager Eric Wa                                                                                                                                                                                                                                                                                                                              | ang ang                                                                                                                                                                           |
| Date of issue                                                                                                                                                                                                                               | Feb. 17, 2025                                                                                                                                                                                                                                                                                                                                                    | TESTINC                                                                                                                                                                           |
| Testing Laboratory                                                                                                                                                                                                                          | y Name: Shenzhen CTA Test                                                                                                                                                                                                                                                                                                                                        | ting Technology Co., Ltd.                                                                                                                                                         |
| Address                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                            | 1, Yibaolai Industrial Park, Qiaotou Commur<br>District, Shenzhen, China                                                                                                          |
| Applicant's name                                                                                                                                                                                                                            | Nanjing Arrowy Rad                                                                                                                                                                                                                                                                                                                                               | cing Technology Co., Ltd.                                                                                                                                                         |
| Address                                                                                                                                                                                                                                     | - 1 GA                                                                                                                                                                                                                                                                                                                                                           | Cuiping scientific innovation park, No. 37, angning District, Nanjing, China                                                                                                      |
| Test energification                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                   |
| Test specification.                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                   |
| Standard                                                                                                                                                                                                                                    | FCC Part 15.231<br>sting Technology Co., Ltd. All rights re                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                   |
| Standard<br>Shenzhen CTA Tes<br>This publication ma<br>Shenzhen CTA Tes<br>material. Shenzhen                                                                                                                                               | FCC Part 15.231<br>sting Technology Co., Ltd. All rights re<br>ay be reproduced in whole or in part for no<br>sting Technology Co., Ltd. is acknowledge<br>in CTA Testing Technology Co., Ltd. takes                                                                                                                                                             | on-commercial purposes as long as the                                                                                                                                             |
| Standard<br>Shenzhen CTA Tes<br>This publication ma<br>Shenzhen CTA Tes<br>material. Shenzhen<br>for damages resultin                                                                                                                       | FCC Part 15.231<br>sting Technology Co., Ltd. All rights re<br>ay be reproduced in whole or in part for no<br>sting Technology Co., Ltd. is acknowledge<br>in CTA Testing Technology Co., Ltd. takes<br>ing from the reader's interpretation of the r                                                                                                            | on-commercial purposes as long as the<br>ed as copyright owner and source of the<br>no responsibility for and will not assume liab                                                |
| Standard<br>Shenzhen CTA Tes<br>This publication ma<br>Shenzhen CTA Tes<br>material. Shenzhen<br>for damages resultin<br>context.                                                                                                           | FCC Part 15.231<br>sting Technology Co., Ltd. All rights re<br>ay be reproduced in whole or in part for no<br>sting Technology Co., Ltd. is acknowledge<br>in CTA Testing Technology Co., Ltd. takes<br>ing from the reader's interpretation of the re-<br>tion: RaceMaster                                                                                      | on-commercial purposes as long as the<br>ed as copyright owner and source of the<br>no responsibility for and will not assume liab                                                |
| Standard<br>Shenzhen CTA Tes<br>This publication ma<br>Shenzhen CTA Tes<br>material. Shenzhen<br>for damages resultin<br>context.<br>Test item descripti                                                                                    | FCC Part 15.231<br>esting Technology Co., Ltd. All rights re<br>ay be reproduced in whole or in part for no<br>sting Technology Co., Ltd. is acknowledge<br>to CTA Testing Technology Co., Ltd. takes<br>ing from the reader's interpretation of the re-<br>tion: RaceMaster<br>                                                                                 | on-commercial purposes as long as the<br>ed as copyright owner and source of the<br>no responsibility for and will not assume liab                                                |
| Standard<br>Shenzhen CTA Tes<br>This publication ma<br>Shenzhen CTA Tes<br>material. Shenzhen<br>for damages resultin<br>context.<br>Test item descript<br>Trade Mark                                                                       | FCC Part 15.231<br>esting Technology Co., Ltd. All rights re<br>ay be reproduced in whole or in part for no<br>sting Technology Co., Ltd. is acknowledge<br>to CTA Testing Technology Co., Ltd. takes<br>ing from the reader's interpretation of the r<br>tion: RaceMaster<br>ARROWY RACING<br>Nanjing Arrowy Racin<br>DMD00005                                  | on-commercial purposes as long as the<br>ed as copyright owner and source of the<br>no responsibility for and will not assume liab<br>reproduced material due to its placement an |
| Standard<br>Shenzhen CTA Tes<br>This publication ma<br>Shenzhen CTA Tes<br>material. Shenzhen<br>for damages resultin<br>context.<br>Test item descripti<br>Trade Mark<br>Manufacturer                                                      | FCC Part 15.231<br>esting Technology Co., Ltd. All rights re<br>ay be reproduced in whole or in part for no<br>sting Technology Co., Ltd. is acknowledge<br>to CTA Testing Technology Co., Ltd. takes<br>ing from the reader's interpretation of the r<br>tion: RaceMaster<br>ARROWY RACING<br>Nanjing Arrowy Racin<br>DMD00005                                  | on-commercial purposes as long as the<br>ed as copyright owner and source of the<br>no responsibility for and will not assume liak<br>reproduced material due to its placement an |
| Standard<br>Shenzhen CTA Tes<br>This publication ma<br>Shenzhen CTA Tes<br>material. Shenzhen<br>for damages resultin<br>context.<br>Test item descripti<br>Trade Mark<br>Manufacturer<br>Model/Type referen                                | FCC Part 15.231  Sting Technology Co., Ltd. All rights re ay be reproduced in whole or in part for no sting Technology Co., Ltd. is acknowledge to CTA Testing Technology Co., Ltd. takes ing from the reader's interpretation of the r  tion: RaceMaster                                                                                                        | on-commercial purposes as long as the<br>ed as copyright owner and source of the<br>no responsibility for and will not assume liak<br>reproduced material due to its placement an |
| Standard<br>Shenzhen CTA Tes<br>This publication ma<br>Shenzhen CTA Tes<br>material. Shenzhen<br>for damages resultin<br>context.<br>Test item descripti<br>Trade Mark<br>Manufacturer<br>Model/Type referen<br>Listed Models               | FCC Part 15.231<br>sting Technology Co., Ltd. All rights re<br>ay be reproduced in whole or in part for no<br>sting Technology Co., Ltd. is acknowledge<br>of CTA Testing Technology Co., Ltd. takes<br>ing from the reader's interpretation of the r<br>tion: RaceMaster<br>ARROWY RACING<br>                                                                   | on-commercial purposes as long as the<br>ed as copyright owner and source of the<br>no responsibility for and will not assume liak<br>reproduced material due to its placement an |
| Standard<br>Shenzhen CTA Tes<br>This publication ma<br>Shenzhen CTA Tes<br>material. Shenzhen<br>for damages resultin<br>context.<br>Test item descripti<br>Trade Mark<br>Manufacturer<br>Model/Type referen<br>Listed Models<br>Modulation | FCC Part 15.231<br>sting Technology Co., Ltd. All rights re<br>ay be reproduced in whole or in part for no<br>sting Technology Co., Ltd. is acknowledge<br>in CTA Testing Technology Co., Ltd. takes<br>ing from the reader's interpretation of the r<br>tion RaceMaster<br>ARROWY RACING<br>Nanjing Arrowy Racin<br>nce RMRC2025<br>RMT2025<br>ASK<br>430.50MHz | on-commercial purposes as long as the<br>ed as copyright owner and source of the<br>no responsibility for and will not assume liab<br>reproduced material due to its placement an |

| Report No.: CTA2502050110                                                          | 01                                                                                                                              | Page 2 o                                    | f 29 |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|
|                                                                                    | TEST REPORT                                                                                                                     |                                             |      |
| CTATESTING                                                                         |                                                                                                                                 |                                             |      |
| Equipment under Test                                                               | : RaceMaster                                                                                                                    |                                             |      |
|                                                                                    |                                                                                                                                 |                                             |      |
| Model /Type                                                                        | : RMRC2025                                                                                                                      | CTATESTING                                  |      |
| Listed Models                                                                      | : RMT2025                                                                                                                       |                                             |      |
| STING                                                                              |                                                                                                                                 |                                             |      |
|                                                                                    | : The PCB board, circuit, structure and                                                                                         |                                             |      |
| Model difference                                                                   | are the same, Only model number an                                                                                              | d colour is different for                   |      |
| CTA .                                                                              | these model.                                                                                                                    |                                             |      |
| Applicant                                                                          | : Nanjing Arrowy Racing Technolog                                                                                               | Co. Itd                                     |      |
| Applicant                                                                          |                                                                                                                                 | - 00., Elu.                                 |      |
| Address                                                                            | : Room 3322, floor 3, Cuiping scientific Jiangjun Avenue, Jiangning District,                                                   |                                             |      |
|                                                                                    |                                                                                                                                 |                                             |      |
| Manufacturer                                                                       | : Nanjing Arrowy Racing Technolog                                                                                               | v Co., Ltd.                                 |      |
| CIT                                                                                | TESTINC                                                                                                                         |                                             |      |
| Address                                                                            | : Room 3322, floor 3, Cuiping scientific                                                                                        | innovation park No. 37                      |      |
| Address                                                                            |                                                                                                                                 |                                             |      |
| Address                                                                            | Jiangjun Avenue, Jiangning District,                                                                                            |                                             |      |
| Address                                                                            |                                                                                                                                 |                                             |      |
|                                                                                    | Jiangjun Avenue, Jiangning District,                                                                                            | Janjing, China                              | G    |
|                                                                                    | Jiangjun Avenue, Jiangning District,                                                                                            |                                             |      |
|                                                                                    | Jiangjun Avenue, Jiangning District,                                                                                            | Janjing, China                              |      |
| Test Res                                                                           | Jiangjun Avenue, Jiangning District,<br>ult:                                                                                    | Janjing, China<br>PASS                      | (e   |
| Test Res                                                                           | Jiangjun Avenue, Jiangning District,<br>ult:<br>rresponds to the test sample.                                                   | Vanjing, China PASS he written permission o |      |
| Test Res<br>The test report merely co<br>It is not permitted to co                 | Jiangjun Avenue, Jiangning District,<br>ult:<br>rresponds to the test sample.                                                   | Vanjing, China PASS he written permission o |      |
| Test Res<br>The test report merely co<br>It is not permitted to co                 | Jiangjun Avenue, Jiangning District,<br>ult:<br>rresponds to the test sample.                                                   | Vanjing, China PASS he written permission o |      |
| Test Res<br>The test report merely co<br>It is not permitted to co                 | Jiangjun Avenue, Jiangning District,<br>ult:                                                                                    | Vanjing, China PASS he written permission o |      |
| Test Res<br>The test report merely coult is not permitted to coulaboratory.        | Jiangjun Avenue, Jiangning District,<br>ult:<br>rresponds to the test sample.                                                   | Janjing, China<br>PASS                      |      |
| Test Res<br>The test report merely coult is not permitted to coulaboratory.        | Jiangjun Avenue, Jiangning District,<br>ult:<br>rresponds to the test sample.                                                   | Vanjing, China PASS he written permission o |      |
| Test Res<br>The test report merely con<br>It is not permitted to co<br>laboratory. | Jiangjun Avenue, Jiangning District,<br>ult:<br>rresponds to the test sample.<br>opy extracts of these test result without the  | Vanjing, China PASS he written permission o |      |
| Test Res<br>The test report merely con<br>It is not permitted to co<br>laboratory. | Jiangjun Avenue, Jiangning District,<br>sult:<br>rresponds to the test sample.<br>opy extracts of these test result without the | PASS                                        |      |
| Test Res<br>The test report merely con<br>It is not permitted to co<br>laboratory. | Jiangjun Avenue, Jiangning District,<br>sult:<br>rresponds to the test sample.<br>opy extracts of these test result without the | PASS                                        |      |
| Test Res<br>The test report merely con<br>It is not permitted to co<br>laboratory. | Jiangjun Avenue, Jiangning District,<br>sult:<br>rresponds to the test sample.<br>opy extracts of these test result without the | Vanjing, China PASS he written permission o |      |

# Contents

|            | TESTING Conte                                                               | ents        |             |
|------------|-----------------------------------------------------------------------------|-------------|-------------|
| r C        | TEST STANDARDS                                                              | 1C          | 4           |
|            | TES                                                                         |             | <u></u>     |
| 2          | SUMMARY                                                                     | TING        | 5           |
| —          | 5                                                                           | TES         |             |
| 2.1        | General Remarks                                                             | CTATE CTATE | 5           |
| 2.2        | Product Description                                                         |             | 5           |
| 2.3        | Equipment Under Test                                                        |             | 5           |
| 2.4        | Short description of the Equipment under Te                                 | est (EUT)   | 5<br>5<br>5 |
| 2.5<br>2.6 | EUT configuration<br>Block Diagram of Test Setup                            |             | 5           |
| 2.0        | Special Accessories                                                         |             | 6           |
| 2.8        | Related Submittal(s) / Grant (s)                                            |             | 6           |
| 2.9        | Modifications                                                               |             | 6           |
|            | GV                                                                          |             |             |
| <u>3</u>   | TEST ENVIRONMENT                                                            | TE-         | 7           |
|            | Ga                                                                          | 5°'         | STIM        |
| 3.1        | Address of the test laboratory                                              | CTATES      | 7           |
| 3.2        | Test Facility                                                               | C''         | 7           |
| 3.3        | Environmental conditions                                                    |             | 7           |
| 3.4        | Summary of measurement results                                              |             | 8           |
| 3.5<br>3.6 | Statement of the measurement uncertainty<br>Equipments Used during the Test |             | 8<br>8      |
| 0.0        | Equipments obed during the rest                                             |             | Ū           |
| <u>4</u> C | TEST CONDITIONS AND RESULT                                                  | 6           | 10          |
|            | TECT CONDITIONC AND RECOULT                                                 |             | <u> iv</u>  |
| 4.1        | AC Power Conducted Emission                                                 |             | 10          |
| 4.1<br>4.2 | Radiated Emission                                                           |             | 10<br>13    |
| 4.3        | 20dB Bandwidth                                                              | CTA IL      | 18          |
| 4.4        | Deactivation Time                                                           | GTA TESTING | 19          |
| 4.5        | Antenna Requirement                                                         |             | 20          |
|            |                                                                             |             |             |
| 5 ING      | TEST SETUP PHOTOS OF THE E                                                  | <u>UT</u>   | 21          |
|            |                                                                             |             |             |
| <u>6</u>   | PHOTOS OF THE EUT                                                           |             | 22          |
|            | PHOTOS OF THE EUT                                                           | CTATESTING  |             |
|            |                                                                             |             |             |
|            |                                                                             |             |             |
|            |                                                                             | U''         | TIN         |
|            |                                                                             | TATE        |             |
|            |                                                                             | GAN CI.     |             |
|            |                                                                             | CTATES I.   |             |
|            | TATESTING<br>CTATESTIN                                                      |             |             |
|            |                                                                             |             |             |
|            |                                                                             |             |             |
|            | TA .                                                                        |             |             |
|            | TESI                                                                        |             |             |
|            |                                                                             |             |             |
|            | TATES                                                                       | TESI        |             |
|            |                                                                             |             |             |
|            |                                                                             | CTA TESTING |             |
|            |                                                                             |             |             |
|            |                                                                             |             |             |

# 1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.231: Periodic operation in the band 40.66-40.70 MHz and above 70 MHz. ANSI C63.10:2013 : American National Standard for Testing Unlicensed Wireless Devices

#### 2 SUMMARY

# 2.1 General Remarks

| Date of receipt of test sample | :       | Feb. 05, 2025 |
|--------------------------------|---------|---------------|
|                                |         | 0.            |
| Testing commenced on           |         | Feb. 05, 2025 |
|                                | C DENEL |               |
| Testing concluded on           | :       | Feb. 17, 2025 |

# 2.2 Product Description

| Product Name:         | RaceMaster                                                           |
|-----------------------|----------------------------------------------------------------------|
| Model/Type reference: | RMRC2025                                                             |
| Power supply:         | DC 10.8V From battery and DC 13.5V From external circuit             |
| Adapter information:  | Model: SW-13520<br>Input: AC 100-240V 50/60Hz<br>Output: DC 13.5V 2A |
| Testing sample ID:    | CTA250205011-1# (Engineer sample),<br>CTA250205011-2#(Normal sample) |
| Modulation:           | ASK                                                                  |
| Operation frequency:  | 430.50MHz                                                            |
| Channel number:       | 1                                                                    |
| Antenna type:         | External antenna                                                     |
| Antenna gain:         | 2.0 dBi                                                              |

# 2.3 Equipment Under Test

# Power supply system utilised

| Power supply system ut                        | ilised |   |                        |           |               |  |
|-----------------------------------------------|--------|---|------------------------|-----------|---------------|--|
| Power supply voltage                          | :      | 0 | 230V / 50 Hz           | С         | ) 120V / 60Hz |  |
| <u>, , , , , , , , , , , , , , , , , , , </u> |        | 0 | 12 V DC                | С         | 24 V DC       |  |
|                                               |        |   | Other (specified in bl | ank below | /)            |  |

DC 10.8V From battery and DC 13.5V From external circuit

# 2.4 Short description of the Equipment under Test (EUT)

CIN

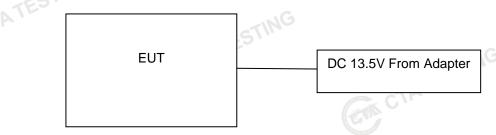
This is a RaceMaster.

For more details, refer to the user's manual of the EUT.

# 2.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

ATE


STING

CTA TESTING

- supplied by the manufacturer
- O supplied by the lab

Ο

#### **Block Diagram of Test Setup** 2.6



#### 2.7 **Special Accessories**

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

| Description | Manufacturer | Model            | Technical Parameters | Certificate | Provided by |
|-------------|--------------|------------------|----------------------|-------------|-------------|
|             | /            | TES              | . G                  | /           |             |
|             | GAL          |                  | ESTINC               |             |             |
| 2.8 Relat   | ted Submitta | l(s) / Grant (s) | CTAIL                |             | STING       |

#### Related Submittal(s) / Grant (s) 2.8

This submittal(s) (test report) is intended for the device filing to comply with Section 15.231 of the FCC Part 15, Subpart C Rules.

#### 2.9 **Modifications**

No modifications were implemented to meet testing criteria. CTATE CTA TESTING

#### 3 TEST ENVIRONMENT

#### 3.1 Address of the test laboratory

#### Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

#### 3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

#### Industry Canada Registration Number. Is: 27890 CAB identifier: CN0127

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

#### A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

#### 3.3 Environmental conditions

GTA CTATESTING During the measurement the environmental conditions were within the listed ranges:

#### Radiated Emission:

| Temperature:          | 25 ° C       |
|-----------------------|--------------|
|                       |              |
| Humidity:             | 45 %         |
|                       |              |
| Atmospheric pressure: | 950-1050mbar |

#### Conducted testing:

|        | Atmospheric pressure: | 950-1050mbar   |  |
|--------|-----------------------|----------------|--|
|        |                       |                |  |
| CTATES | Conducted testing:    | 3              |  |
|        | Temperature:          | 25 ° C         |  |
|        | TA IL                 |                |  |
|        | Humidity:             | 44 %           |  |
|        | G                     |                |  |
|        | Atmospheric pressure: | 950-1050mbar 🕓 |  |

#### Summary of measurement results 3.4

| FCC and IC Requirements                |                                                 |      |
|----------------------------------------|-------------------------------------------------|------|
| FCC Part 15.207                        | Conducted Emission                              | PASS |
| FCC Part 15.231(a)(2)                  | Automatically Deactivate                        | PASS |
| FCC Part 15.231(b)                     | Electric Field Strength of Fundamental Emission | PASS |
| FCC Part 15.205 &15.209& 15.231(b)     | Electric Field Strength of Spurious Emission    | PASS |
| FCC Part 15.231(c)                     | -20dB bandwidth                                 | PASS |
| Demorty The measurement uncertainty is | not included in the test result                 |      |

Remark: The measurement uncertainty is not included in the test result.

TATESTING

#### 3.5 Statement of the measurement uncertainty

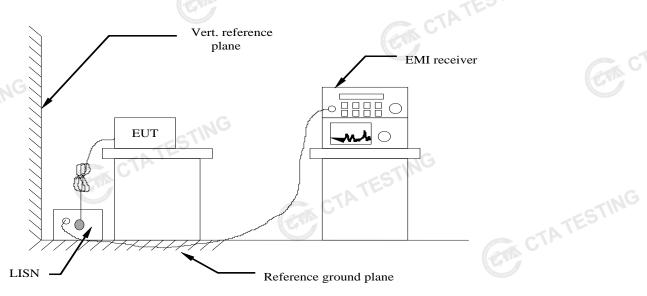
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.

| Test                                       | Range       | Measurement<br>Uncertainty | Notes |
|--------------------------------------------|-------------|----------------------------|-------|
| Radiated Emission                          | 9KHz~30MHz  | 3.02 dB                    | (1)   |
| Radiated Emission                          | 30~1000MHz  | 4.06 dB                    | (1)   |
| Radiated Emission                          | 1~18GHz     | 5.14 dB                    | (1)   |
| Radiated Emission                          | 18-40GHz    | 5.38 dB                    | (1)   |
| Conducted Disturbance                      | 0.15~30MHz  | 2.14 dB                    | (1)   |
| Output Peak power                          | 30MHz~18GHz | 0.55 dB                    | (1)   |
| Power spectral density                     |             | 0.57 dB                    | (1)   |
| Spectrum bandwidth                         |             | 1.1%                       | (1)   |
| Radiated spurious emission<br>(30MHz-1GHz) | 30~1000MHz  | 4.10 dB                    | (1)   |
| Radiated spurious emission<br>(1GHz-18GHz) | 1~18GHz     | 4.32 dB                    | (1)   |
| Radiated spurious emission (18GHz-40GHz)   | 18-40GHz    | 5.54 dB                    | (1)   |

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

#### Equipments Used during the Test 3.6

| 6 Equipments      | Used during the | e Test    |                  | CTATESTING          |                         |  |
|-------------------|-----------------|-----------|------------------|---------------------|-------------------------|--|
| Test Equipment    | Manufacturer    | Model No. | Equipment<br>No. | Calibration<br>Date | Calibration<br>Due Date |  |
| LISN              | G<br>R&S        | ENV216    | CTA-308          | 2024/08/03          | 2025/08/02              |  |
| LISN              | R&S             | ENV216    | CTA-314          | 2024/08/03          | 2025/08/02              |  |
| EMI Test Receiver | R&S             | ESPI      | CTA-307          | 2024/08/03          | 2025/08/02              |  |
| EMI Test Receiver | R&S             | ESCI      | CTA-306          | 2024/08/03          | 2025/08/02              |  |
| Spectrum Analyzer | Agilent         | N9020A    | CTA-301          | 2024/08/03          | 2025/08/02              |  |


# Page 9 of 29

| _  |                                           |                           |             |                   | Come State          |                         |    |
|----|-------------------------------------------|---------------------------|-------------|-------------------|---------------------|-------------------------|----|
|    | Spectrum Analyzer                         | R&S                       | FSU         | CTA-337           | 2024/08/03          | 2025/08/02              |    |
|    | Vector Signal generator                   | Agilent                   | N5182A      | CTA-305           | 2024/08/03          | 2025/08/02              |    |
|    | Analog Signal<br>Generator                | R&S                       | SML03       | CTA-304           | 2024/08/03          | 2025/08/02              |    |
|    | WIDEBAND RADIO<br>COMMUNICATION<br>TESTER | CMW500                    | R&S         | CTA-302           | 2024/08/03          | 2025/08/02              |    |
|    | Temperature and<br>humidity meter         | Chigo                     | ZG-7020     | CTA-326           | 2024/08/03          | 2025/08/02              | ZF |
|    | Ultra-Broadband<br>Antenna                | Schwarzbeck               | VULB9163    | CTA-310           | 2023/10/17          | 2026/10/16              |    |
| TE | Horn Antenna                              | Schwarzbeck               | BBHA 9120D  | CTA-309           | 2023/10/13          | 2026/10/12              |    |
| P  | Loop Antenna                              | Zhinan                    | ZN30900C    | CTA-311           | 2023/10/17          | 2026/10/16              |    |
|    | Horn Antenna                              | Beijing Hangwei<br>Dayang | OBH100400   | CTA-336           | 2023/10/17          | 2026/10/16              |    |
|    | Amplifier                                 | Schwarzbeck               | BBV 9745    | CTA-312           | 2024/08/03          | 2025/08/02              | )  |
|    | Amplifier                                 | Taiwan chengyi            | EMC051845B  | CTA-313           | 2024/08/03          | 2025/08/02              |    |
|    | Directional coupler                       | NARDA                     | 4226-10     | CTA-303           | 2024/08/03          | 2025/08/02              |    |
|    | High-Pass Filter                          | G XingBo                  | XBLBQ-GTA18 | CTA-402           | 2024/08/03          | 2025/08/02              |    |
|    | High-Pass Filter                          | XingBo                    | XBLBQ-GTA27 | CTA-403           | 2024/08/03          | 2025/08/02              |    |
|    | Automated filter<br>bank                  | Tonscend                  | JS0806-F    | CTA-404           | 2024/08/03          | 2025/08/02              |    |
|    | Power Sensor                              | Agilent                   | U2021XA     | CTA-405           | 2024/08/03          | 2025/08/02              |    |
|    | Amplifier                                 | Schwarzbeck               | BBV9719     | CTA-406           | 2024/08/03          | 2025/08/02              |    |
| Г  |                                           |                           |             | Mansian           | Coliberation        | Calibration             | TP |
|    | Test Equipment                            | Manufacturer              | Model No.   | Version<br>number | Calibration<br>Date | Calibration<br>Due Date |    |
| TE | EMI Test Software                         | Tonscend                  | TS®JS32-RE  | 5.0.0.2           | N/A                 | N/A                     |    |
|    | EMI Test Software                         | Tonscend                  | TS®JS32-CE  | 5.0.0.1           | N/A                 | N/A                     |    |
|    | RF Test Software                          | Tonscend                  | TS®JS1120-3 | 3.1.65            | N/A                 | N/A                     |    |
|    | RF Test Software                          | Tonscend                  | TS®JS1120   | 3.1.46            | N/A                 | N/A                     |    |

#### TEST CONDITIONS AND RESULTS 4

# ATESTING 4.1 AC Power Conducted Emission

#### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

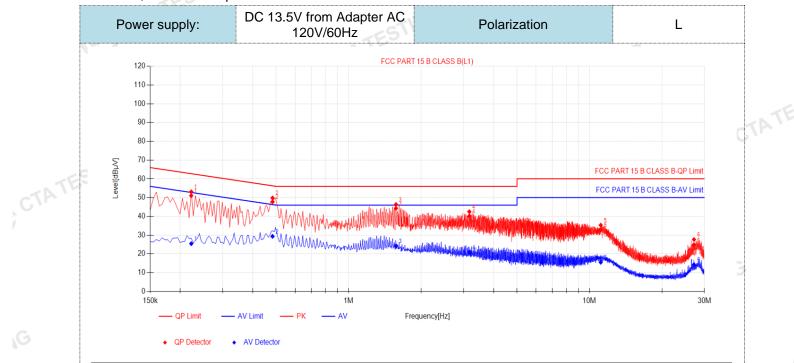
4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes. 8 During the above scans, the emissions were maximized by cable manipulation.

#### AC Power Conducted Emission Limit

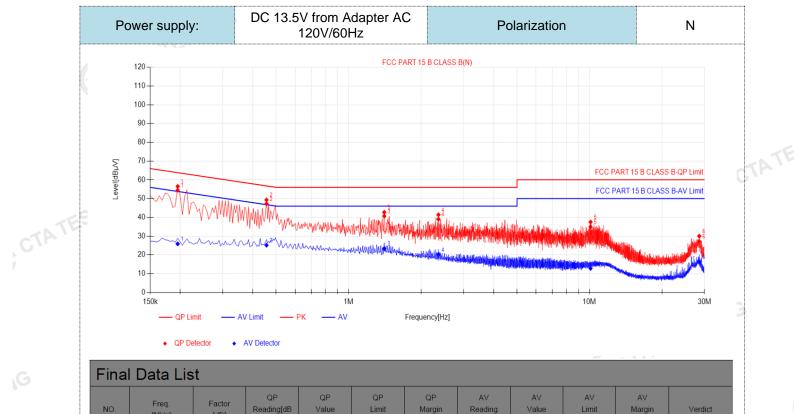

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

|                                       | Limit      | (dBuV)    |
|---------------------------------------|------------|-----------|
| Frequency range (MHz)                 | Quasi-peak | Average   |
| 0.15-0.5                              | 66 to 56*  | 56 to 46* |
| 0.5-5                                 | 56         | 46        |
| 5-30                                  | G 60       | 50        |
| * Decreases with the logarithm of the | frequency. |           |
| TEST RESULTS                          | GTA IL     | TATESTING |

#### TEST RESULTS

# Remark:

1. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:




#### Final Data List

| NO. | Freq.<br>[MHz]            | Factor<br>[dB] | QP<br>Reading[dB<br>µV] | QP<br>Value<br>[dBµV] | QP<br>Limit<br>[dBµV] | QP<br>Margin<br>[dB] | AV<br>Reading<br>[dBµV] | AV<br>Value<br>[dBµV] | A∨<br>Limit<br>[dBµV] | A∨<br>Margin<br>[dB] | Verdict |   |
|-----|---------------------------|----------------|-------------------------|-----------------------|-----------------------|----------------------|-------------------------|-----------------------|-----------------------|----------------------|---------|---|
| 1   | 0.222                     | 10.03          | 41.03                   | 51.06                 | 62.74                 | 11.68                | 15.43                   | 25.46                 | 52.74                 | 27.28                | PASS    |   |
| 2   | 0.483                     | 9.99           | 37.79                   | 47.78                 | 56.29                 | 8.51                 | 19.38                   | 29.37                 | 46.29                 | 16.92                | PASS    |   |
| 3   | 1.572                     | 9.90           | 34.40                   | 44.30                 | 56.00                 | 11.70                | 14.31                   | 24.21                 | 46.00                 | 21.79                | PASS    |   |
| 4   | 3.1695                    | 10.00          | 30.14                   | 40.14                 | 56.00                 | 15.86                | 10.90                   | 20.90                 | 46.00                 | 25.10                | PASS    |   |
| 5   | 11.1345                   | 10.26          | 22.52                   | 32.78                 | 60.00                 | 27.22                | 5.28                    | 15.54                 | 50.00                 | 34.46                | PASS    |   |
| 6   | 27.159                    | 10.56          | 14.25                   | 24.81                 | 60.00                 | 35.19                | 3.71                    | 14.27                 | 50.00                 | 35.73                | PASS    | - |
|     | ).QP Value<br>tor (dB)=ir | · · /          |                         | •                     | • •                   |                      |                         |                       |                       |                      | (cm)    |   |

Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) 3). QPMargin(dB) = QP Limit (dBµV) - QP Value (dBµV) 4). AVMargin(dB) = AV Limit (dBµV) - AV Value (dBµV)

# Page 12 of 29



|   | NO.               | Freq.<br>[MHz]                                        | Factor<br>[dB]         | QP<br>Reading[dB<br>μV] | Q₽<br>Value<br>[dBµV] | QP<br>Limit<br>[dBµV] | QP<br>Margin<br>[dB] | A∨<br>Reading<br>[dBµV] | A∨<br>Value<br>[dBµV] | A∨<br>Limit<br>[dBµ∨] | AV<br>Margin<br>[dB] | Verdict |       |
|---|-------------------|-------------------------------------------------------|------------------------|-------------------------|-----------------------|-----------------------|----------------------|-------------------------|-----------------------|-----------------------|----------------------|---------|-------|
|   | 1                 | 0.195                                                 | 9.97                   | 44.47                   | 54.44                 | 63.82                 | 9.38                 | 15.91                   | 25.88                 | 53.82                 | 27.94                | PASS    |       |
|   | 2                 | 0.456                                                 | 9.98                   | 37.26                   | 47.24                 | 56.77                 | 9.53                 | 15.19                   | 25.17                 | 46.77                 | 21.60                | PASS    |       |
|   | 3                 | 1.4055                                                | 10.15                  | 30.52                   | 40.67                 | 56.00                 | 15.33                | 13.24                   | 23.39                 | 46.00                 | 22.61                | PASS    |       |
|   | 4                 | 2.3595                                                | 10.14                  | 28.88                   | 39.02                 | 56.00                 | 16.98                | 10.15                   | 20.29                 | 46.00                 | 25.71                | PASS    |       |
|   | 5                 | 10.104                                                | 10.40                  | 24.57                   | 34.97                 | 60.00                 | 25.03                | 2.43                    | 12.83                 | 50.00                 | 37.17                | PASS    |       |
|   | 6                 | 28.563                                                | 10.80                  | 16.32                   | 27.12                 | 60.00                 | 32.88                | 5.55                    | 16.35                 | 50.00                 | 33.65                | PASS    |       |
| 2 | 2). Fac<br>3). QP | ).QP Value<br>ctor (dB)=ir<br>Margin(dB<br>. AVMargir | nsertion I<br>) = QP L | oss of Ll<br>imit (dBµ  | SN (dB)<br>V) - QP    | + Cable<br>Value (d   | loss (dB<br>BµV)     |                         | GW                    | -                     |                      | GM      | CTATE |

4). AVMargin(dB) = AV Limit (dBμV) - AV Value (dBμV) CTATESTING

CTATES

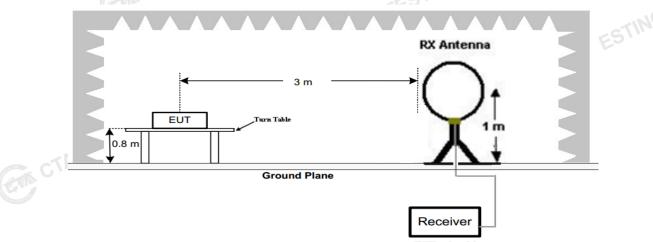
## 4.2 Radiated Emission

## Limit

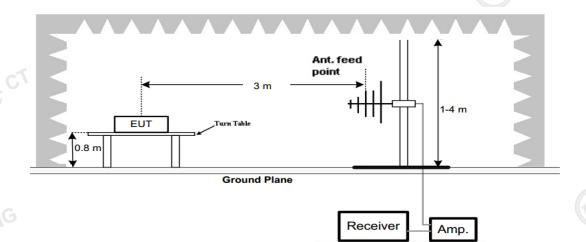
For intentional device, according to 15.209(a) the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table.

|          | Frequency (MHz)          | Distance (Meters)         | Radiated (dBµV/m)                            | Radiated (µV/m)   |
|----------|--------------------------|---------------------------|----------------------------------------------|-------------------|
|          | 0.009-0.49               | 3                         | 20log(2400/F(KHz))+40log(300/3)              | 2400/F(KHz)       |
|          | 0.49-1.705               | 3                         | 20log(24000/F(KHz))+ 40log(30/3)             | 24000/F(KHz)      |
|          | 1.705-30                 | 3                         | 20log(30)+ 40log(30/3)                       | 30                |
|          | 30-88                    | 3                         | 40.0                                         | 100               |
|          | 88-216                   | 3                         | 43.5                                         | 150               |
| CTATE    | 216-960                  | 3.6                       | 46.0                                         | 200               |
|          | Above 960                | 3                         | 54.0                                         | 500               |
| <i>V</i> | la addition to the provi | since of 15 001(b) the fi | ald strongth of emissions from intentional r | adiatara anaratad |

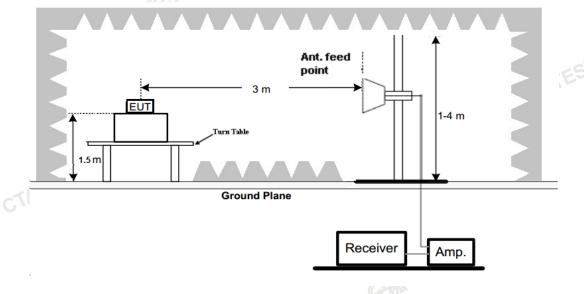
In addition to the provisions of 15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:


| Funda-<br>mental fre-<br>quency<br>(MHz) | Field strength of funda-<br>mental (microvolts/<br>meter) | Field strength of<br>spurious emissions<br>(microvolts/meter) |
|------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|
| 40.66–<br>40.70.                         | 2,250                                                     | 225                                                           |
| 70–130                                   | 1,250                                                     | 125                                                           |
| 130-174                                  | <sup>1</sup> 1,250 to 3,750                               | 1 125 to 375                                                  |
| 174-260                                  | 3,750                                                     | 375                                                           |
| 260-470                                  | <sup>1</sup> 3,750 to 12,500                              | <sup>1</sup> 375 to 1,250                                     |
| Above 470                                | 12,500                                                    | 1,250                                                         |

<sup>1</sup>Linear interpolations.


[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 260-470 MHz, 20\*log(41.6667\*430.500-7083.3333)=80.81dBuV/m The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

#### TEST CONFIGURATION


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz



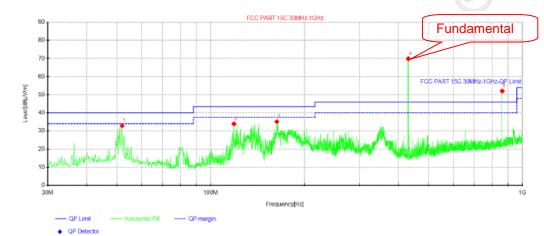
(B) Radiated Emission Test Set-Up, Frequency below 1000MHz



(C) Radiated Emission Test Set-Up, Frequency above 1000MHz



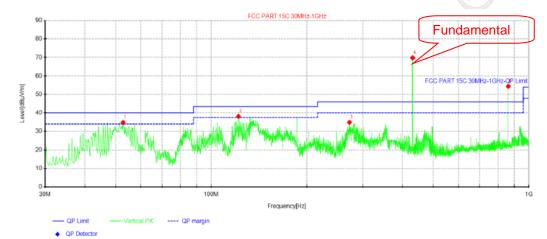
#### **Test Procedure**


- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- And also, each emission was to be maximized by changing the polarization of receiving antenna both CTA TESTING 3. horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- There were no emissions found below 30MHz within 20dB of the limit. 5.

#### **TEST RESULTS**

The emissions from 30MHz to 5GHz are measured peak and average level, below 1 GHz measured QP level, detailed test data please see below. Besides, we tested 3 directions and recorded the worst data.

Note: We tested all Modes and recorded the worst case as follow. CTATES'


5



| Suspe | ected Data | List    |          |        |          |        |        |       |            |
|-------|------------|---------|----------|--------|----------|--------|--------|-------|------------|
| NO    | Freq.      | Reading | Level    | Factor | Limit    | Margin | Height | Angle | Delevity   |
| NO.   | [MHz]      | [dBµV]  | [dBµV/m] | [dB/m] | [dBµV/m] | [dB]   | [cm]   | [°]   | Polarity   |
| 1     | 51.9462    | 44.14   | 32.84    | -11.30 | 40.00    | 7.16   | 100    | 268   | Horizontal |
| 2     | 118.755    | 47.75   | 33.94    | -13.81 | 43.50    | 9.56   | 100    | 279   | Horizontal |
| 3     | 163.011    | 50.73   | 35.20    | -15.53 | 43.50    | 8.30   | 100    | 81    | Horizontal |
| 4     | 430.5      | 79.70   | 69.85    | -9.85  | 46.00    | -23.85 | 100    | 360   | Horizontal |
| 5     | 861        | 55.63   | 52.05    | -3.58  | 46.00    | -6.05  | 100    | 360   | Horizontal |

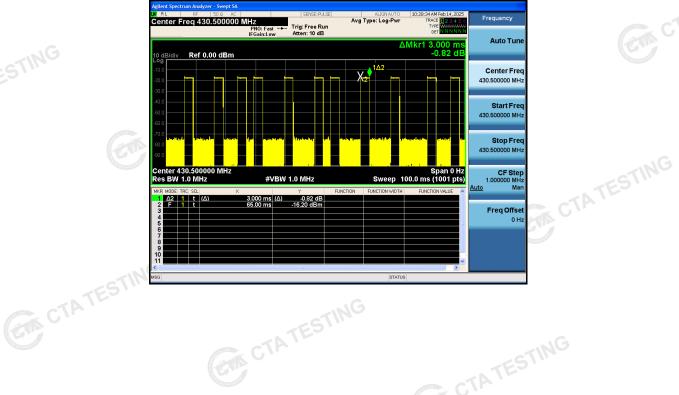
| Emission<br>Styles | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | PK Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | Direction<br>(H) |
|--------------------|--------------------|-------------------|------------------|----------------------|-------------------|----------------|----------|------------------|
| Fundamental        | 430.50             | 79.70             | -9.85            | 69.85                | 100.81            | 30.96          | PK       | Н                |
| Harmonics          | 861.00             | 55.63             | -3.58            | 52.05                | 80.81             | 28.76          | PK       | Н                |
| Harmonics          | 1291.50            | 65.43             | -20.17           | 45.26                | 74.00             | 28.74          | PK       | Н                |
|                    |                    |                   |                  | · · ·                | CTA CT            |                |          |                  |

| г   |                    |                    | 1                       | Γ                   | (CTA                    | <b>U</b>          | T              | Γ                |
|-----|--------------------|--------------------|-------------------------|---------------------|-------------------------|-------------------|----------------|------------------|
| TES | Emission<br>Styles | Frequency<br>(MHz) | PK<br>Level<br>(dBuV/m) | AV Factor<br>(dB/m) | AV<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Direction<br>(H) |
|     | Fundamental        | 430.50             | 69.85                   | -9.63               | 60.22                   | 80.81             | 20.59          | Н                |
|     | Harmonics          | 861.00             | 52.05                   | -9.63               | 42.42                   | 60.81             | 18.39          | Н                |
|     | Harmonics          | 1291.50            | 45.26                   | -9.63               | 35.63                   | 54                | 18.37          | Н                |



|                | _   |    |
|----------------|-----|----|
| Suspected Data | Lis | st |

|        |       |            |                                  |                |        | requerespiral |        |        |       |          |   |
|--------|-------|------------|----------------------------------|----------------|--------|---------------|--------|--------|-------|----------|---|
| E.C.   |       |            | QP Limit      Ve     QP Detector | rtical PK QP m | argin  |               |        |        |       |          |   |
| CTATES | Suspe | ected Data | List                             |                |        |               |        |        |       |          |   |
|        |       | Freq.      | Reading                          | Level          | Factor | Limit         | Margin | Height | Angle | Delority |   |
| 7      | NO.   | [MHz]      | [dBµV]                           | [dBµV/m]       | [dB/m] | [dBµV/m]      | [dB]   | [cm]   | [°]   | Polarity |   |
|        | 1     | 52.795     | 46.25                            | 34.88          | -11.37 | 40.00         | 5.12   | 100    | 14    | Vertical |   |
|        | 2     | 121.786    | 52.68                            | 38.09          | -14.59 | 43.50         | 5.41   | 100    | 224   | Vertical | 3 |
|        | 3     | 272.257    | 46.52                            | 34.95          | -11.57 | 46.00         | 11.05  | 100    | 165   | Vertical |   |
|        | 4     | 430.5      | 79.62                            | 69.77          | -9.85  | 46.00         | -23.77 | 100    | 107   | Vertical |   |
|        | 5     | 861        | 57.96                            | 54.38          | -3.58  | 46.00         | -8.38  | 100    | 165   | Vertical |   |
|        |       |            |                                  |                |        |               |        |        |       |          |   |

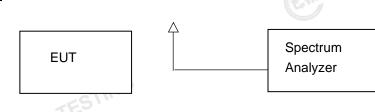

| Emission    | Frequency | •      | Factor | PK Level | Limit    | Margin | Detector | Direction |
|-------------|-----------|--------|--------|----------|----------|--------|----------|-----------|
| Styles      | (MHz)     | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |          | (V)       |
| Fundamental | 430.50    | 79.62  | -9.85  | 69.77    | 100.81   | 31.04  | PK       | V         |
| Harmonics   | 861.00    | 57.96  | -3.58  | 54.38    | 80.81    | 26.43  | PK       | V         |
| Harmonics   | 1291.50   | 69.41  | -20.17 | 49.24    | 74.00    | 24.76  | PK       | V         |
|             |           |        |        |          |          |        |          |           |

|       | Harmonics          | 1291.50          | 69.41   | -20.17         | 49.2 | 24 74.                  | 00 24.76          | PK             | V                |     |
|-------|--------------------|------------------|---------|----------------|------|-------------------------|-------------------|----------------|------------------|-----|
| CTATE |                    |                  |         |                |      |                         |                   |                |                  | -7A |
|       | Emission<br>Styles | Frequen<br>(MHz) | Level   | AV Fa<br>(dB/r | n)   | AV<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Direction<br>(V) |     |
|       | Fundamental        | 430.50           | 69.77   | -9.6           | 3    | 60.14                   | 80.81             | 20.67          | V                |     |
|       | Harmonics          | 861.00           | 54.38   | -9.6           | 3    | 44.75                   | 60.81             | 16.06          | V                |     |
|       | Harmonics          | 1291.5           | 0 49.24 | -9.6           | 3    | 39.61                   | 54.00             | 14.39          | V                | 5   |
|       |                    |                  |         |                |      |                         |                   |                | TESTIN           |     |

Note:

- --: The other emission levels were very low against the limit.
- Level (dBuV/m)= Reading (dBuV)+Factor(dB/m) 1.
- 2. AV Level (dBuV/m)= PK Level (dBuV/m)+ AV Factor(dB)
- 3. In a transmit cycle 100ms period found burst 11pcs, the Duty Cycle can calculate as below: Duty Cycle= (3.00\*11)/100=33/100.28=0.3300 CTATE AV Factor=20\*log(Duty Cycle)=20\*log(0.3300)=-9.63

(The plot of Duty Cycle See the follow page)




#### 4.3 20dB Bandwidth

## Limit

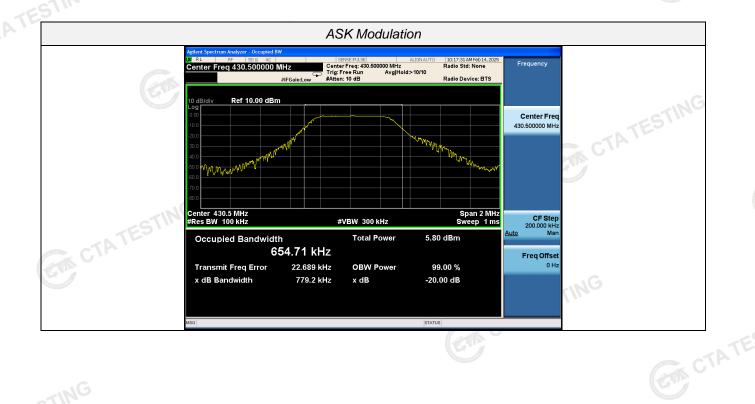
According to 47 CFR 15.231(c) The bandwidth of the emission shall be no wider than 0.25% of the centre frequency for devices operating above 70MHz and below 900MHz. Bandwidth is determined at the points 20dB down from the modulated carrier.

# **Test Configuration**



# CTATESTING **Test Procedure**

The 20dB bandwidth and 99% bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.

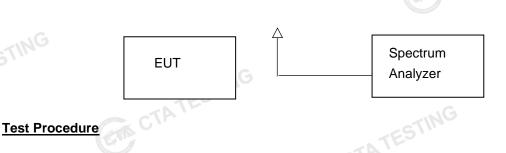

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

The occupied bandwidth (OBW), that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

#### **Test Results**

| Modulation      | Channel<br>Frequency<br>(MHz) |        | 20dB<br>bandwidth<br>(KHz) | Limit<br>(KHz)            | Result | 16   |
|-----------------|-------------------------------|--------|----------------------------|---------------------------|--------|------|
| ASK             | 430.50                        | 654.71 | 779.2                      | 0.25%*430.50*1000=1076.25 | Pass   | YA'' |
| Test plot as fo | llows:                        |        |                            |                           | GIN    | -    |

# Test plot as follows:



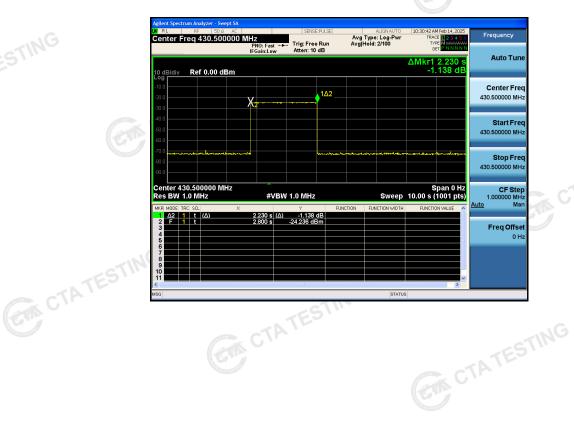

#### **Deactivation Time** 4.4

#### Limit

According to FCC §15.231(a)(2), A transmitter activated automatically shall cease transmission within 5 CTATEST seconds after activation.

#### **Test Configuration**




#### 1. The EUT was placed on a wooded table which is 0.8m height and close to receiver antenna of spectrum analyzer.

2. The spectrum analyzer resolution bandwidth was set to 1 MHz and video bandwidth was set to 1 MHz to encompass all significant spectral components during the test. The spectrum analyzer was operated in linear scale and zero span mode after tuning to the transmitter carrier frequency.

## **TEST RESULTS**

Note: The transmitter was automatically activated, and the carrier frequency 430.50MHz:

| Frequency<br>(MHz) | One transmission time<br>(S)                                                                                                                      | Limit(S)                                                                                                                                          | Result |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| 430.50             | 2.230                                                                                                                                             | 5                                                                                                                                                 | Pass   |  |
|                    |                                                                                                                                                   | GIA                                                                                                                                               |        |  |
|                    | lglient Spectrum Analyzer - Swept SA<br>■ RL RF 50 Q AC<br>Senter Freq 430.5000000 MHz<br>PNO: Fast →<br>IFGainLow Trig: Free Run<br>After: 10 dB | ALISNAUTO 10:30:42 AM Feb 14, 2025<br>Avg Type: Log-Pwr TRACE 22 4 5<br>Avg[Hold: 2/100 Type Research 14, 2025<br>Oct 2010 Type Research 14, 2025 |        |  |



#### 4.5 Antenna Requirement

#### Standard Applicable

According to FCC Part 15C 15.203

- An intentional radiator shall be de-signed to ensure that no antenna other than that furnished by the a) responsible party shall be used with the device.
- The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use b) of a standard antenna jack or electrical connector is prohibited.

# CTATESTING Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

#### Antenna Connected Construction

CTATESTING The antenna used in this product is a External Antenna, The directional gains of antenna used for transmitting is 2.0 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATES

#### Test Setup Photos of the EUT 5



# 6 <u>Photos of the EUT</u>

TING













CTA TESTIN

CTA TESTING

TING







GM CTATESTIN

CTATESTING







EM

CTA TESTIN

GA CTATESTING

CTA TESTING

TING

ring



0

0  0

10

R S

0 . 1



CTATE CTATESTING



Page 28 of 29



