

# FCC 47 CFR PART 15 SUBPART C

# **CERTIFICATION TEST REPORT**

For

# Tablet PC

# MODEL No.:xTablet T8650

# FCC ID: 086T8650A

# Trade Mark: MobileDemand

# **REPORT NO:ES170719047E3**

# **ISSUE DATE:September 15, 2017**

Prepared for

MobileDemand, L.C. 1501 Boyson Sq Dr, Ste 101 Hiawatha, Iowa, United States

Prepared by

EMTEK(SHENZHEN) CO., LTD. Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China TEL: 86-755-26954280 FAX: 86-755-26954282



# TABLE OF CONTENTS

| 1 | TES                                           | ST RESULT CERTIFICATION                                                                                                                                                                                                             | 3      |
|---|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 2 | EUT                                           | TECHNICAL DESCRIPTION                                                                                                                                                                                                               | 4      |
| 3 | SUN                                           | MMARY OF TEST RESULT                                                                                                                                                                                                                | 5      |
| 4 | TES                                           | ST METHODOLOGY                                                                                                                                                                                                                      | 6      |
|   | 4.1<br>4.2<br>4.3                             | GENERAL DESCRIPTION OF APPLIED STANDARDS<br>MEASUREMENT EQUIPMENT USED<br>DESCRIPTION OF TEST MODES                                                                                                                                 | 6      |
| 5 | FAC                                           | CILITIES AND ACCREDITATIONS                                                                                                                                                                                                         | 8      |
|   | 5.1<br>5.2                                    | FACILITIES<br>LABORATORY ACCREDITATIONS AND LISTINGS                                                                                                                                                                                | 8<br>8 |
| 6 | TES                                           | ST SYSTEM UNCERTAINTY                                                                                                                                                                                                               | 9      |
| 7 | SET                                           | IUP OF EQUIPMENT UNDER TEST                                                                                                                                                                                                         | 10     |
|   | 7.1<br>7.2<br>7.3<br>7.4<br>7.5               | RADIO FREQUENCY TEST SETUP 1<br>RADIO FREQUENCY TEST SETUP 2<br>CONDUCTED EMISSION TEST SETUP<br>BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM<br>SUPPORT EQUIPMENT.                                                                   |        |
| 8 | TES                                           | ST REQUIREMENTS                                                                                                                                                                                                                     |        |
|   | 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7 | DTS(6DB)BANDWIDTH<br>MAXIMUM PEAK CONDUCTED OUTPUT POWER<br>MAXIMUM POWER SPECTRAL DENSITY<br>UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS<br>RADIATED SPURIOUS EMISSION<br>CONDUCTED EMISSIONS TEST<br>ANTENNA APPLICATION |        |
|   | 0                                             |                                                                                                                                                                                                                                     |        |



# **1 TEST RESULT CERTIFICATION**

| Applicant:       | MobileDemand, L.C.<br>1501 Boyson Sq Dr, Ste 101 Hiawatha, Iowa, United States       |
|------------------|--------------------------------------------------------------------------------------|
| Manufacturer:    | MobileDemand, L.C.<br>No.88 East Qianjin Road, Kunshan city, Jiangsu province, China |
| EUT Description: | Tablet PC                                                                            |
| Model Number:    | xTablet T8650                                                                        |
| Trade Mark:      | MobileDemand                                                                         |
| File Number:     | ES170719047E3                                                                        |
| Date of Test:    | April 17, 2017 to July 01, 2017                                                      |
|                  |                                                                                      |

Measurement Procedure Used:

| APPLICABLE STANDARDS               |             |  |  |
|------------------------------------|-------------|--|--|
| STANDARD                           | TEST RESULT |  |  |
| FCC 47 CFR Part 2 2016, Subpart J  | PASS        |  |  |
| FCC 47 CFR Part 15 2016, Subpart C | FA00        |  |  |

The above equipment was tested by EMTEK(SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 2016 and Part 15.247 2016 The test results of this report relate only to the tested sample identified in this report.

Date of Test :

Prepared by :

Reviewer:

June 01, 2017 to September 01, 2017

Dorts Su

Doris Su /Tester

cm/:

Sevin Li / Supervisor

Approve & Authorized Signer :

Lisa Wang/Manager



# 2 EUT TECHNICAL DESCRIPTION

| Characteristics                    | Description                                                                                                                                                       |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IEEE 802.11 WLAN<br>Mode Supported | <ul> <li>⊠802.11b</li> <li>⊠802.11g</li> <li>⊠802.11n(20MHz channel bandwidth)</li> <li>⊠802.11n(40MHz channel bandwidth)</li> </ul>                              |
| Data Rate                          | <ul> <li>⊠802.11 b:1,2,5.5,11Mbps;</li> <li>⊠802.11 g:6,9,12,18,24,36,48,54Mbps;</li> <li>⊠802.11n(HT20):MCS0-MCS7;</li> <li>⊠802.11n(HT40):MCS0-MCS7;</li> </ul> |
| Modulation                         | DSSS with DBPSK/DQPSK/CCK for 802.11b;<br>OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;                                                                          |
| Operating Frequency<br>Range       | <ul> <li>□ 2412-2462MHz for 802.11b/g;</li> <li>□ 2412-2462MHz for 802.11n(HT20);</li> <li>□ 2422-2452MHz for 802.11n(HT40);</li> </ul>                           |
| Number of Channels                 | <ul> <li>☐11 channels for 802.11b/g;</li> <li>☐11 channels for 802.11n(HT20);</li> <li>☐7 channels for 802.11n(HT40);</li> </ul>                                  |
| Transmit Power Max                 | 15.49 dBm for 802.11b;<br>15.91 dBm for 802.11g;<br>18.95 dBm for 802.11n(HT20);<br>19.47 dBm for 802.11n(HT40);                                                  |
| Antenna Type                       | FPC antenna                                                                                                                                                       |
| Antenna Gain                       | Antenna 1: 3.21 antenna<br>Antenna 2: 3.46 antenna                                                                                                                |
| Direction Gain                     | 6.35dBi                                                                                                                                                           |
| Antenna Port                       | ⊠Ant 0 ;⊠Ant 1 ;                                                                                                                                                  |
| Smart system                       | ⊠SISO for 802.11b/g/n<br>⊠MIMO for 802.11n                                                                                                                        |
|                                    | DC 3.7V internal rechargeable lithium battery                                                                                                                     |
| Power supply:                      | ⊠Adapter:<br>Model: A12-065N2A<br>INPUT: 100-240V~ 1.7A 50-60Hz<br>OUTPUT: DC 19V 3.42A                                                                           |
| Battery information:               | Model: 466192<br>Rating: DC 3.7V, 6700mAh, 24.79Wh                                                                                                                |



| FCC PartClause | Test Parameter                                                            | Verdict       | Remark |  |  |
|----------------|---------------------------------------------------------------------------|---------------|--------|--|--|
| 15.247(a)(2)   | DTS (6dB) Bandwidth                                                       | PASS          |        |  |  |
| 15.247(b)(3)   | Maximum Peak Conducted Output Power                                       | PASS          |        |  |  |
| 15.247(e)      | Maximum Power Spectral Density Level                                      | PASS          |        |  |  |
| 15.247(d)      | Unwanted Emission Into Non-Restricted<br>Frequency Bands                  | PASS          |        |  |  |
| 15.247(d)      | Unwanted Emission Into Restricted Frequency                               | PASS          |        |  |  |
| 15.209         | Bands (conducted)                                                         |               |        |  |  |
| 15.247(d)      | Radiated Spurious Emission                                                | PASS          |        |  |  |
| 15.209         |                                                                           |               |        |  |  |
| 15.207         | Conducted EmissionTest                                                    | PASS          |        |  |  |
| 15.203         | Antenna Application                                                       | PASS          |        |  |  |
|                | NOTE1:N/A (Not Applicable)                                                | -<br>-        |        |  |  |
|                | NOTE2: According to FCC OET KDB 558074, the                               | report use ra | diated |  |  |
|                | measurements in the restricted frequency bands. In addition, the radiated |               |        |  |  |
|                | test is also performed to ensure the emissions emanating from the device  |               |        |  |  |
|                | cabinet also comply with the applicable limits.                           | -             |        |  |  |

# **3 SUMMARY OF TEST RESULT**

## RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: O86T8650Afiling to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.



## 4 TEST METHODOLOGY

#### 4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C FCC KDB 558074 D01 DTS Meas Guidance v04

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

FCC KDB 662911 D02MIMO With Cross Polarized Antenna V01

#### 4.2 MEASUREMENT EQUIPMENT USED

4.2.1 Conducted Emission Test Equipment

| EQUIPMENT<br>TYPE     | MFR             | MODEL<br>NUMBER | SERIAL<br>NUMBER             | Year:2016<br>CAL. | Year:2017<br>CAL. | DUE CAL.     |
|-----------------------|-----------------|-----------------|------------------------------|-------------------|-------------------|--------------|
| Test Receiver         | Rohde & Schwarz | ESCI            | CI 26115-010-00 May 28, 2016 | May 28, 2016      | May 20, 2017      | May 19, 2018 |
| L.I.S.N.              | Rohde & Schwarz | ENV216          | 101161                       | May 28, 2016      | May 20, 2017      | May 19, 2018 |
| 50Ω Coaxial<br>Switch | Anritsu         | MP59B           | 6100175589                   | May 29, 2016      | May 21, 2017      | May 20, 2018 |
| Voltage Probe         | Rohde & Schwarz | ESH2-Z3         | 100122                       | May 29, 2016      | May 21, 2017      | May 20, 2018 |
| Pulse Limiter         | Rohde & Schwarz | ESH3-Z2         | 100006                       | May 28, 2016      | May 20, 2017      | May 19, 2018 |
| I.S.N                 | Teseq GmbH      | ISN T800        | 30327                        | May 29, 2016      | May 21, 2017      | May 20, 2018 |

#### 4.2.2 Radiated Emission Test Equipment

| EQUIPMENT            | MFR             | MODEL      | SERIAL       | Year:2016    | Year:2017    | DUE CAL.     |
|----------------------|-----------------|------------|--------------|--------------|--------------|--------------|
| TYPE                 |                 | NUMBER     | NUMBER       | CAL.         | CAL.         |              |
| EMI Test<br>Receiver | Rohde & Schwarz | ESU        | 1302.6005.26 | May 29, 2016 | May 21, 2017 | May 20, 2018 |
| Pre-Amplifier        | HP              | 8447F      | 2944A07999   | May 28, 2016 | May 20, 2017 | May 19, 2018 |
| Bilog Antenna        | Schwarzbeck     | VULB9163   | 142          | May 28, 2016 | May 20, 2017 | May 19, 2018 |
| Loop Antenna         | ARA             | PLA-1030/B | 1029         | May 28, 2016 | May 20, 2017 | May 19, 2018 |
| Horn Antenna         | Schwarzbeck     | BBHA 9170  | BBHA9170399  | May 29, 2016 | May 21, 2017 | May 20, 2018 |
| Horn Antenna         | Schwarzbeck     | BBHA 9120  | D143         | May 28, 2016 | May 20, 2017 | May 19, 2018 |
| Cable                | Schwarzbeck     | AK9513     | ACRX1        | May 29, 2016 | May 21, 2017 | May 20, 2018 |
| Cable                | Rosenberger     | N/A        | FP2RX2       | May 29, 2016 | May 21, 2017 | May 20, 2018 |
| Cable                | Schwarzbeck     | AK9513     | CRPX1        | May 29, 2016 | May 21, 2017 | May 20, 2018 |
| Cable                | Schwarzbeck     | AK9513     | CRRX2        | May 29, 2016 | May 21, 2017 | May 20, 2018 |

#### 4.2.3 Radio Frequency Test Equipment

| EQUIPMENT<br>TYPE    | MFR     | MODEL<br>NUMBER | SERIAL<br>NUMBER | LASTCAL.     | DUE CAL.     | DUE CAL.     |
|----------------------|---------|-----------------|------------------|--------------|--------------|--------------|
| Spectrum<br>Analyzer | Agilent | E4407B          | 88156318         | May 29, 2016 | May 21, 2017 | May 20, 2018 |
| Signal Analyzer      | Agilent | N9010A          | My53470879       | May 29, 2016 | May 21, 2017 | May 20, 2018 |
| Power meter          | Anritsu | ML2495A         | 0824006          | May 29, 2016 | May 21, 2017 | May 20, 2018 |
| Power sensor         | Anritsu | MA2411B         | 0738172          | May 29, 2016 | May 21, 2017 | May 20, 2018 |

Remark: Each piece of equipment is scheduled for calibration once a year.



#### 4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n(HT20): MCS0; 802.11n(HT40): MCS0) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|
| 1       | 2412               | 5       | 2432               | 9       | 2452               |
| 2       | 2417               | 6       | 2437               | 10      | 2457               |
| 3       | 2422               | 7       | 2442               | 11      | 2462               |
| 4       | 2427               | 8       | 2447               |         |                    |

Frequency and Channel list for 802.11 b/g/n(HT20)/n(HT40):

Test Frequency and Channel for 802.11 b/g/n (HT20)/n(HT40):

| Lowest I | Lowest Frequency   |         | Frequency          | Highest Frequency |                    |
|----------|--------------------|---------|--------------------|-------------------|--------------------|
| Channel  | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel           | Frequency<br>(MHz) |
| 1        | 2412               | 6       | 2437               | 11                | 2462               |



## 5 FACILITIES AND ACCREDITATIONS

#### 5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Bldg 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

#### 5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

- EMC Lab.
- : Accredited by CNAS, 2016.10.24 The certificate is valid until 2022.10.28 The Laboratory has been assessed and proved to be in compliance with CNAS-CL01: 2006(identical to ISO/IEC17025: 2005) The Certificate Registration Number is L229
  - : Accredited by TUV Rheinland Shenzhen, 2016.5.19 The Laboratory has been assessed according to the requirements ISO/IEC 17025.
  - : Accredited by FCC, August 03, 2017 Designation Number: CN1204 Test Firm Registration Number: 882943 Accredited by A2LA, July 31, 2017 The Certificate Registration Number is 4321.01.
  - : Accredited by Industry Canada, November 24, 2015 The Certificate Registration Number is 4480A.



# 6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| Parameter                      | Uncertainty |
|--------------------------------|-------------|
| Radio Frequency                | ±1x10^-5    |
| Maximum Peak Output Power Test | ±1.0dB      |
| Conducted Emissions Test       | ±2.0dB      |
| Radiated Emission Test         | ±2.0dB      |
| Power Density                  | ±2.0dB      |
| Occupied Bandwidth Test        | ±1.0dB      |
| Band Edge Test                 | ±3dB        |
| All emission, radiated         | ±3dB        |
| Antenna Port Emission          | ±3dB        |
| Temperature                    | ±0.5°C      |
| Humidity                       | ±3%         |

Measurement Uncertainty for a level of Confidence of 95%



# 7 SETUP OF EQUIPMENT UNDER TEST

#### 7.1 RADIO FREQUENCY TEST SETUP 1

The WLAN component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

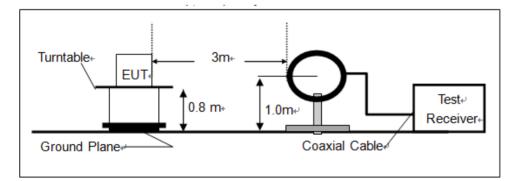


### 7.2 RADIO FREQUENCY TEST SETUP 2

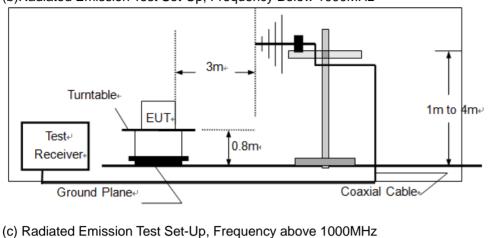
The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Below 30MHz:

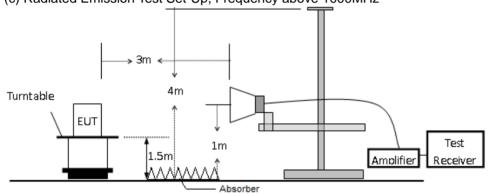
The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT androtated about its vertical axis formaximum response at each azimuth about the EUT. The center of the loopshall be 1 m above the ground.For certain applications, the loop antennaplane may also need to be positioned horizontally at the specified distance from the EUT.


#### 30MHz-1GHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).


#### Above 1GHz:

The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

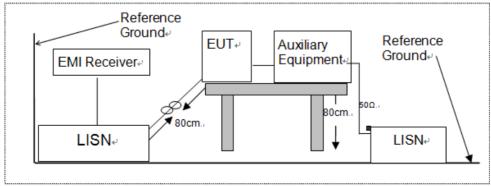

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz





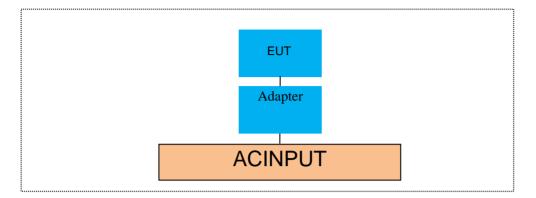


(b)Radiated Emission Test Set-Up, Frequency Below 1000MHz




#### 7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.


Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.





### 7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM



#### 7.5 SUPPORT EQUIPMENT

| Item | Equipment | Mfr/Brand | Model/Type No. | FCC ID | Series No. | Note |
|------|-----------|-----------|----------------|--------|------------|------|
| N/A  | N/A       | N/A       | N/A            | N/A    | N/A        | N/A  |

#### Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.



#### 8 **TEST REQUIREMENTS**

#### 8.1 DTS(6DB)BANDWIDTH

#### 8.1.1 Applicable Standard

According to FCC Part15.247(a)(2) and KDB558074 DTS 01 Meas. Guidance v04

#### 8.1.2 Conformance Limit

The minimum -6 dB bandwidth shall be at least 500 kHz.

#### 8.1.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

#### 8.1.4 **Test Procedure**

The EUT was operating in IEEE 802.11b/g/n mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 100 kHz.

Set the video bandwidth (VBW) =300kHz.

Set Span=2 times OBW

Set Detector = Peak.

Set Trace mode = max hold.

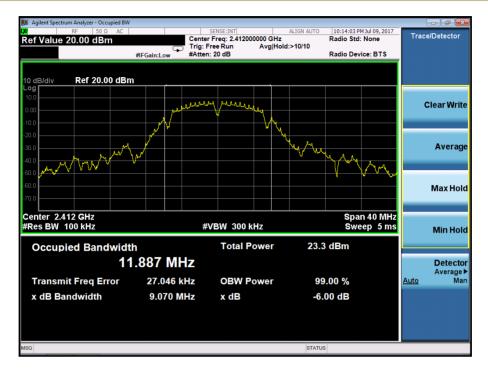
Set Sweep = auto couple.

Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Measure and record the results in the test report.

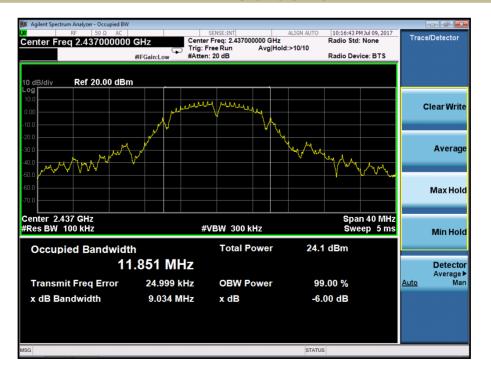
#### 8.1.5 Test Results

| Temperature : | <b>26°</b> C | Test Date : | July 07, 2017 |
|---------------|--------------|-------------|---------------|
| Humidity :    | 60 %         | Test By:    | King Kong     |


| Operation | Channel | Channel Frequency | Measurement Ba | andwidth (MHz) | Limit | Verdict |
|-----------|---------|-------------------|----------------|----------------|-------|---------|
| Mode      | Number  | (MHz)             | Ant 0          | Ant 1          | (kHz) | VEILICE |
|           | 1       | 2412              | 9.07           | 9.078          | 500   | PASS    |
| 802.11b   | 6       | 2437              | 9.034          | 8.573          | 500   | PASS    |
|           | 11      | 2462              | 9.059          | 9.04           | 500   | PASS    |
|           | 1       | 2412              | 16.38          | 16.34          | 500   | PASS    |
| 802.11g   | 6       | 2437              | 16.36          | 16.32          | 500   | PASS    |
| _         | 11      | 2462              | 16.4           | 16.05          | 500   | PASS    |
| 802.11n   | 1       | 2412              | 17.66          | 15.38          | 500   | PASS    |
|           | 6       | 2437              | 17.6           | 15.38          | 500   | PASS    |
| (ht20)    | 11      | 2462              | 17.64          | 15.36          | 500   | PASS    |
| 802.11n   | 3       | 2422              | 36.41          | 35.17          | 500   | PASS    |
|           | 6       | 2437              | 36.44          | 35.39          | 500   | PASS    |
| (ht40)    | 9       | 2452              | 36.40          | 35.40          | 500   | PASS    |

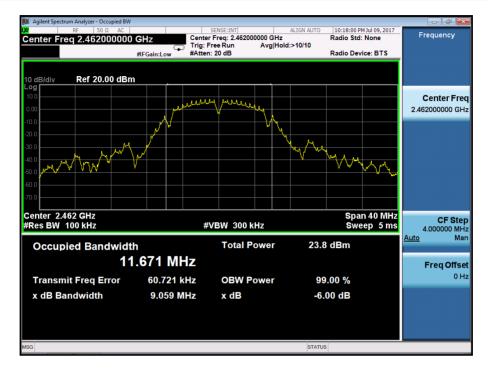


#### Antenna 0


### Test Model

#### DTS (6dB) Bandwidth 802.11b Channel 1: 2412MHz




#### **Test Model**

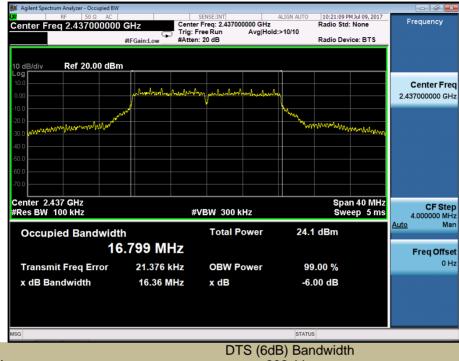
#### DTS (6dB) Bandwidth 802.11b Channel 6: 2437MHz





#### DTS (6dB) Bandwidth 802.11b Channel 11: 2462MHz




### Test Model

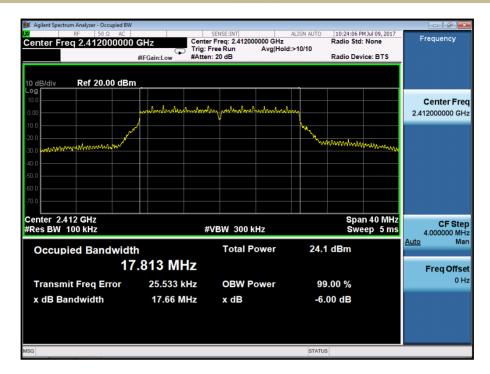
#### DTS (6dB) Bandwidth 802.11g Channel 1: 2412MHz

| Agilent Spectrum Analyzer - Occupied BW           Κ           RF         50 Ω           Center Freq 2.412000000 | Trig: F            | SENSE:INT<br>r Freq: 2.412000000 GHz<br>Free Run Avg Hol<br>1: 20 dB | Radio<br>d:>10/10  | 0:08 PM Jul 09, 2017<br>• Std: None<br>• Device: BTS | Frequency                      |
|-----------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------|--------------------|------------------------------------------------------|--------------------------------|
|                                                                                                                 | #IFGain:Low #Atter | . 20 08                                                              | Radio              | Device. BTS                                          |                                |
| 10 dB/div Ref 20.00 dBm                                                                                         | 1                  |                                                                      |                    |                                                      |                                |
| 0.00                                                                                                            | palsantrentantern  | monte marked and and and and and and and and and an                  | <b>W</b>           |                                                      | Center Freq<br>2.412000000 GHz |
| -10.0                                                                                                           | Josh               | V                                                                    | h have             |                                                      |                                |
| -20.0                                                                                                           |                    |                                                                      | <sup>n</sup> www.w | www.www.www.                                         |                                |
| -40.0                                                                                                           |                    |                                                                      |                    |                                                      |                                |
| -60.0                                                                                                           |                    |                                                                      |                    |                                                      |                                |
| -70.0                                                                                                           |                    |                                                                      |                    |                                                      |                                |
| Center 2.412 GHz<br>#Res BW 100 kHz                                                                             | #                  | VBW 300 kHz                                                          |                    | Span 40 MHz<br>Sweep 5 ms                            | CF Step<br>4.000000 MHz        |
| Occupied Bandwidt                                                                                               | h                  | Total Power                                                          | 23.7 dBn           | n                                                    | <u>Auto</u> Man                |
|                                                                                                                 | 5.828 MHz          |                                                                      |                    |                                                      | Freq Offset                    |
| Transmit Freq Error                                                                                             | 84.292 kHz         | OBW Power                                                            | 99.00 %            | <b>/</b> 0                                           | 0 Hz                           |
| x dB Bandwidth                                                                                                  | 16.38 MHz          | x dB                                                                 | -6.00 dE           | 3                                                    |                                |
|                                                                                                                 |                    |                                                                      |                    |                                                      |                                |
|                                                                                                                 |                    |                                                                      | · · ·              |                                                      |                                |
| MSG                                                                                                             |                    |                                                                      | STATUS             |                                                      |                                |



#### DTS (6dB) Bandwidth 802.11g Channel 6: 2437MHz




#### **Test Model**

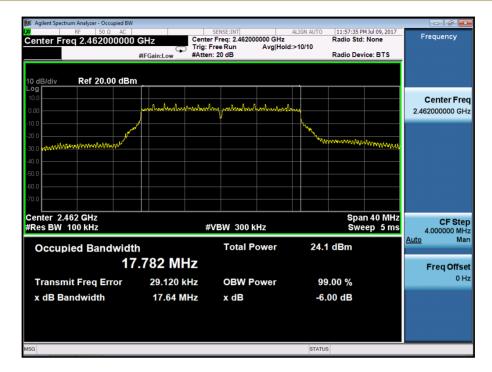
#### DTS (6dB) Bandwidth 802.11g Channel 11: 2462MHz





#### DTS (6dB) Bandwidth 802.11n (HT20) Channel 1: 2412MHz




### Test Model

#### DTS (6dB) Bandwidth 802.11n (HT20) Channel 6: 2437MHz

| Juilent Spectrum Analyzer - Occupied BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------|
| M         RF         50 Ω         AC         A | Trig: F                | SENSE:INT<br>r Freq: 2.437000000 GHz<br>Free Run Avg Hol<br>n: 20 dB | d:>10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11:56:47 PM Jul 09, 2017<br>Radio Std: None<br>Radio Device: BTS | Frequency                      |
| 10 dB/div Ref 20.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | por hand with a second | nyunhadauluuluuluu                                                   | how                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  | Center Freq<br>2.437000000 GHz |
| -10.0<br>-20.0<br>-30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A <sup>4</sup>         |                                                                      | Contraction of the second seco | Anmahanana                                                       |                                |
| -40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                |
| -50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                |
| -70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                |
| Center 2.437 GHz<br>#Res BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | #                      | VBW 300 kHz                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Span 40 MHz<br>Sweep 5 ms                                        | CF Step<br>4.000000 MHz        |
| Occupied Bandwidt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | h                      | Total Power                                                          | 24.3 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lBm                                                              | <u>Auto</u> Man                |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .778 MHz               |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | Freq Offset                    |
| Transmit Freq Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23.279 kHz             | OBW Power                                                            | 99.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 %                                                              | 0 Hz                           |
| x dB Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.60 MHz              | x dB                                                                 | -6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) dB                                                             |                                |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                                                      | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  |                                |



#### DTS (6dB) Bandwidth 802.11n (HT20) Channel 11: 2462MHz



### Test Model

#### DTS (6dB) Bandwidth 802.11n (HT40) Channel 3: 2422MHz

| 💓 Agilent Spectrum Analyzer - Occupied BW                                      |                             |                                                                      |                                     |           |                      | - 7 -                          |
|--------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------|-------------------------------------|-----------|----------------------|--------------------------------|
| 0% RF 50 Ω AC<br>Center Freq 2.422000000                                       |                             | SENSE:INT<br>Center Freq: 2.42200<br>Trig: Free Run<br>#Atten: 20 dB |                                     | Radio Std |                      | Frequency                      |
| 10 dB/div Ref 20.00 dBm                                                        | ļ                           |                                                                      |                                     |           |                      |                                |
| 0.00                                                                           | y hallarkartarterepertarter | hinterstrationary providential                                       | urt second raybes to show have been |           |                      | Center Freq<br>2.422000000 GHz |
| -10.0<br>-20.0<br>-30.0 amp <sup>1</sup> ationsecond-twicingtonio-languagement |                             | ¥                                                                    | \                                   |           | Martantana           |                                |
| -40.0                                                                          |                             |                                                                      |                                     |           |                      |                                |
| -70.0                                                                          |                             |                                                                      |                                     |           | - 00 Mile            |                                |
| Center 2.422 GHz<br>#Res BW 100 kHz                                            |                             | #VBW 300 k                                                           | Hz                                  |           | n 80 MHz<br>9.933 ms | CF Step<br>8.000000 MHz        |
| Occupied Bandwidt                                                              |                             | Total P                                                              | ower                                | 23.3 dBm  |                      | <u>Auto</u> Man                |
| 36                                                                             | .292 MH                     | Z                                                                    |                                     |           |                      | Freq Offset                    |
| Transmit Freq Error                                                            | -19.199 kH                  |                                                                      | ower                                | 99.00 %   |                      | 0 Hz                           |
| x dB Bandwidth                                                                 | 36.41 M⊦                    | lz x dB                                                              |                                     | -6.00 dB  |                      |                                |
| мsg 🧼 Alignment Completed                                                      |                             |                                                                      |                                     | STATUS    |                      |                                |



#### DTS (6dB) Bandwidth 802.11n (HT40) Channel 6: 2437MHz

| Description Science - Occupied BW                              |                           |                                |                  |                                 |                        |                          |
|----------------------------------------------------------------|---------------------------|--------------------------------|------------------|---------------------------------|------------------------|--------------------------|
| Center Freq 2.437000000                                        | GHz 0                     | SENSE:INT                      | ALIGN A          | UTO 12:03:31 Af<br>Radio Std:   | 1 Jul 10, 2017<br>None | Frequency                |
| Center 1100 2.437000000                                        |                           |                                | Avg Hold:>10/10  | )<br>Radio Devi                 | ice: BTS               |                          |
|                                                                | #IFGain:Low#              | Atten: 20 dB                   |                  | Radio Dev                       | ce. B13                |                          |
| 10 dB/div Ref 20.00 dBm                                        |                           |                                |                  |                                 |                        |                          |
| Log                                                            |                           |                                |                  |                                 |                        |                          |
| 10.0                                                           |                           |                                |                  |                                 |                        | Center Freq              |
| 0.00                                                           | phalladariadagharantadari | andrelinen narskalaskarkurlash | renderministerie |                                 |                        | 2.437000000 GHz          |
| -10.0                                                          | /                         | Y                              |                  |                                 |                        |                          |
| 30.0 alan antiparti far an |                           |                                |                  | wood op the house of the second | deal strates to        |                          |
| -40.0                                                          |                           |                                |                  |                                 | . n                    |                          |
| -50.0                                                          |                           |                                |                  |                                 |                        |                          |
| -60.0                                                          |                           |                                |                  |                                 |                        |                          |
| .70.0                                                          |                           |                                |                  |                                 |                        |                          |
|                                                                |                           |                                |                  |                                 |                        |                          |
| Center 2.437 GHz<br>#Res BW 100 kHz                            |                           | #VBW 300 kH                    | z                |                                 | n 80 MHz<br>9.933 ms   | CF Step                  |
|                                                                |                           |                                |                  | · · ·                           |                        | 8.000000 MHz<br>Auto Man |
| Occupied Bandwidt                                              | h                         | Total Po                       | wer              | 23.3 dBm                        |                        |                          |
| 36                                                             | .306 MHz                  | 2                              |                  |                                 |                        | Freq Offset              |
| Transmit Freq Error                                            | -42.042 kH                | z OBW Po                       | wer              | 99.00 %                         |                        | 0 Hz                     |
| x dB Bandwidth                                                 | 36.44 MHz                 | z x dB                         |                  | -6.00 dB                        |                        |                          |
|                                                                |                           |                                |                  |                                 |                        |                          |
|                                                                |                           |                                |                  |                                 |                        |                          |
|                                                                |                           |                                |                  |                                 |                        |                          |
| мsg 🗼 File <screen_0011.png> sa</screen_0011.png>              | ved                       |                                | s                | STATUS                          |                        |                          |

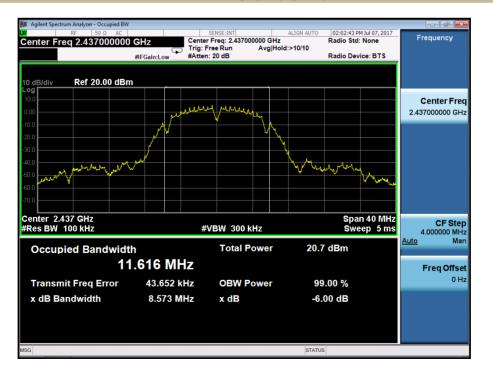
## Test Model

#### DTS (6dB) Bandwidth 802.11n (HT40) Channel 9: 2452MHz

| Agilent Spectrum Analyzer - Occupied BW                  |                                         |                                      |                             |                        |             | 7 🗙           |
|----------------------------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------|------------------------|-------------|---------------|
| Center Freq 2.45200000                                   |                                         | SENSE:INT<br>r Freq: 2.452000000 GHz | Radio Std:                  | 1 Jul 10, 2017<br>None | Trace/Dete  | ctor          |
|                                                          | Trig: I                                 | Free Run Avg Holo<br>n: 20 dB        | d:>10/10<br>Radio Devi      | ce: BTS                |             |               |
|                                                          |                                         |                                      |                             |                        |             |               |
| 10 dB/div Ref 20.00 dBr                                  | n                                       |                                      |                             |                        |             |               |
| Log                                                      |                                         |                                      |                             |                        |             |               |
| 0.00                                                     |                                         |                                      |                             |                        | Clear       | Write         |
| -10.0                                                    | and a start a start and a start a light | ray prostal-state-tataandashalad     | ert alu                     |                        |             |               |
| -20.0                                                    | 1                                       | Y                                    |                             |                        |             |               |
| 30.0 mark the cash had been to the second and the second | ·                                       |                                      | Kingthe mill and the second | han an an a            | Av          | erage         |
| -40.0                                                    |                                         |                                      |                             | (hall here for the for |             |               |
| -50.0                                                    |                                         |                                      |                             |                        |             |               |
| -60.0                                                    |                                         |                                      |                             |                        | May         | (Hold         |
| -70.0                                                    |                                         |                                      |                             |                        | inta/       | mora          |
| Center 2.452 GHz                                         |                                         |                                      |                             |                        |             |               |
| #Res BW 100 kHz                                          | #                                       | VBW 300 kHz                          |                             | n 80 MHz<br>9.933 ms   | Min         | n Hold        |
|                                                          |                                         |                                      |                             |                        | IVIII       | Ποία          |
| Occupied Bandwidt                                        |                                         | Total Power                          | 22.8 dBm                    |                        |             |               |
| 30                                                       | 6.280 MHz                               |                                      |                             |                        |             | tector        |
| Transmit Freq Error                                      | -39.457 kHz                             | OBW Power                            | 99.00 %                     |                        | Ave<br>Auto | erage►<br>Man |
| x dB Bandwidth                                           | 36.40 MHz                               | x dB                                 | -6.00 dB                    |                        |             |               |
|                                                          | 30.40 MHZ                               | X UB                                 | -0.00 dB                    |                        |             |               |
|                                                          |                                         |                                      |                             |                        |             |               |
|                                                          |                                         |                                      |                             |                        |             |               |
| MSG                                                      |                                         |                                      | STATUS                      |                        |             |               |
|                                                          |                                         |                                      |                             |                        |             | _             |

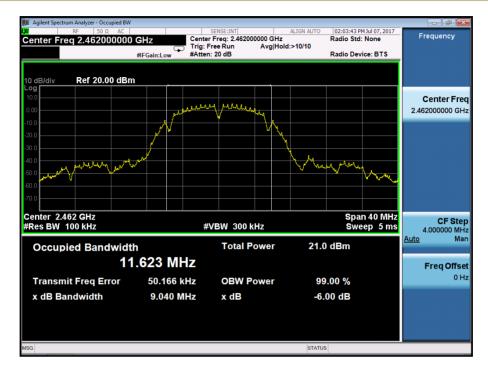


#### Antenna 1



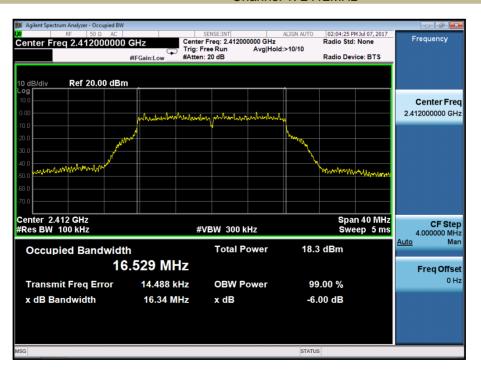

#### DTS (6dB) Bandwidth 802.11b Channel 1: 2412MHz




#### **Test Model**

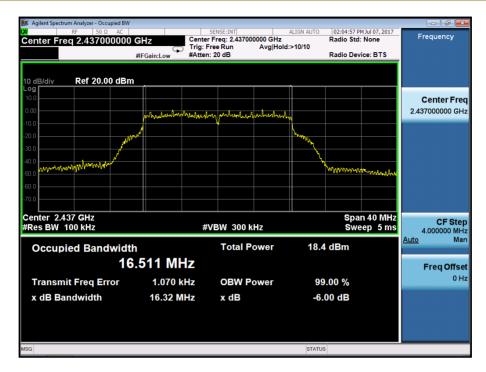
#### DTS (6dB) Bandwidth 802.11b Channel 6: 2437MHz





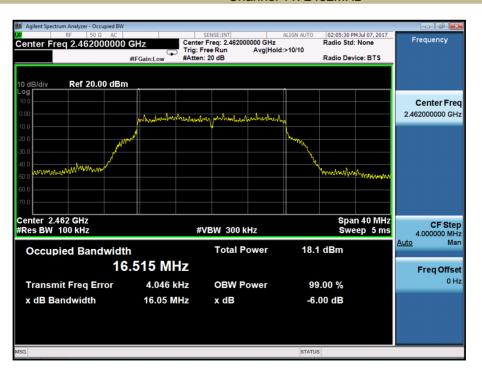

#### DTS (6dB) Bandwidth 802.11b Channel 11: 2462MHz




#### Test Model

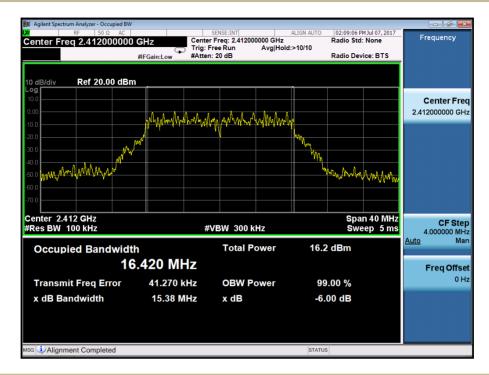
#### DTS (6dB) Bandwidth 802.11g Channel 1: 2412MHz





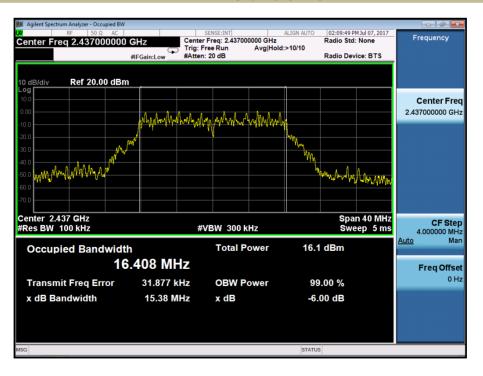

#### DTS (6dB) Bandwidth 802.11g Channel 6: 2437MHz




#### Test Model

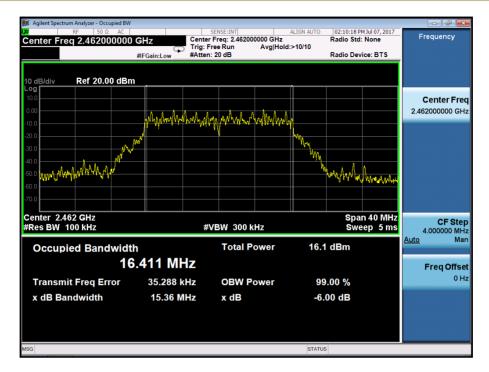
#### DTS (6dB) Bandwidth 802.11g Channel 11: 2462MHz





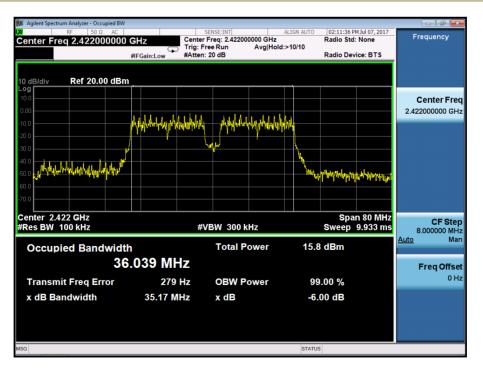

#### DTS (6dB) Bandwidth 802.11n (HT20) Channel 1: 2412MHz




#### Test Model

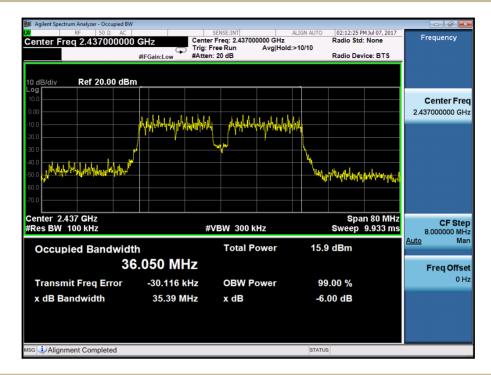
#### DTS (6dB) Bandwidth 802.11n (HT20) Channel 6: 2437MHz





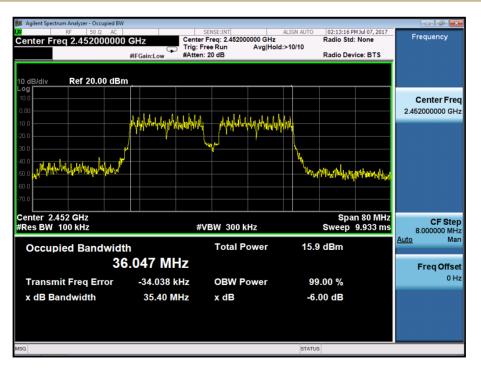

#### DTS (6dB) Bandwidth 802.11n (HT20) Channel 11: 2462MHz




#### Test Model

#### DTS (6dB) Bandwidth 802.11n (HT40) Channel 3: 2422MHz






#### DTS (6dB) Bandwidth 802.11n (HT40) Channel 6: 2437MHz



#### Test Model

#### DTS (6dB) Bandwidth 802.11n (HT40) Channel 9: 2452MHz





#### 8.2 MAXIMUM PEAK CONDUCTED OUTPUT POWER

#### 8.2.1 Applicable Standard

According to FCC Part15.247(b)(3) and KDB558074 DTS 01 Meas. Guidance v04

#### 8.2.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm).

#### 8.2.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

#### 8.2.4 Test Procedure

According to FCC Part15.247(b)(3)

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The RF output of EUT was connected to the power meter by RF cable and attnuator. The path loss was compensated to the results for each measurement.

Set to the maximum output power setting and enable the EUT transmit continuously.

Measure the conducted output power with cable loss and record the results in the test report.

Measure and record the results in the report.

According to FCC Part 15.247(b)(4):

Conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note: If antenna Gain exceeds 6 dBi, then Output power Limit=30-(Gain- 6)

#### 8.2.5 Test Results

| Temperature : | <b>26</b> ℃ | Test Date : | May 03, 2017 |
|---------------|-------------|-------------|--------------|
| Humidity :    | 60 %        | Test By:    | King Kong    |

| Operation         | Channel | Channel            | Meas  | Measurement Level (dBm) |               |       |         |
|-------------------|---------|--------------------|-------|-------------------------|---------------|-------|---------|
| Mode              | Number  | Frequency<br>(MHz) | Ant 0 | Ant 1                   | Ant 0 + Ant 1 | (dBm) | Verdict |
|                   | 1       | 2412               | 15.45 | 15.41                   | -             | 29.65 | PASS    |
| 802.11b           | 6       | 2437               | 15.49 | 15.46                   | -             | 29.65 | PASS    |
|                   | 11      | 2462               | 15.42 | 15.38                   | -             | 29.65 | PASS    |
|                   | 1       | 2412               | 15.81 | 15.75                   | -             | 29.65 | PASS    |
| 802.11g           | 6       | 2437               | 15.91 | 15.79                   | -             | 29.65 | PASS    |
|                   | 11      | 2462               | 15.83 | 15.62                   | -             | 29.65 | PASS    |
| 000.44 m          | 1       | 2412               | 15.89 | 15.79                   | 18.85         | 29.65 | PASS    |
| 802.11n<br>(ht20) | 6       | 2437               | 15.97 | 15.91                   | 18.95         | 29.65 | PASS    |
| (1120)            | 11      | 2462               | 15.76 | 15.78                   | 18.78         | 29.65 | PASS    |
| 000.44.5          | 3       | 2422               | 15.42 | 15.38                   | 18.41         | 29.65 | PASS    |
| 802.11n<br>(ht40) | 6       | 2437               | 15.47 | 15.45                   | 18.47         | 29.65 | PASS    |
| (1140)            | 9       | 2452               | 15.41 | 15.39                   | 18.41         | 29.65 | PASS    |



## Duty cycle=100%

| T        | ectrum Analyzer - Swept SA<br>RF 50 Ω AC |                                    | SENSE:INT                      | ALIG                          |                 |                                           | Frequency                                    |
|----------|------------------------------------------|------------------------------------|--------------------------------|-------------------------------|-----------------|-------------------------------------------|----------------------------------------------|
| enter F  | req 2.41200000                           | O GHZ<br>PNO: Fast ↔<br>IFGain:Low | Trig: Free Run<br>Atten: 20 dB | Avg Type: Lo<br>Avg Hold: 100 | 99-Pwr<br>0/100 | TRACE 1 2 3 4 5 6<br>TYPE M<br>DET P NNNN | Auto Tur                                     |
| ) dB/div | Ref 10.00 dBm                            |                                    |                                |                               |                 |                                           |                                              |
| ).00     |                                          |                                    |                                |                               |                 |                                           | Center Fre<br>2.412000000 GH                 |
| 0.0      |                                          |                                    |                                |                               |                 |                                           | <b>Start Fre</b><br>2.412000000 GF           |
| 0.0      |                                          |                                    |                                |                               |                 |                                           | <b>Stop Fre</b><br>2.412000000 GH            |
| D.O      |                                          |                                    |                                |                               |                 |                                           | <b>CF Ste</b><br>1.000000 M<br><u>Auto</u> M |
| ).0      |                                          |                                    |                                |                               |                 |                                           | Freq Offs                                    |
| 0.0      |                                          |                                    |                                |                               |                 |                                           |                                              |
|          | 412000000 GHz<br>1.0 MHz                 | #\/B\A                             | 3.0 MHz                        | Star                          | eep 100.0 m     | Span 0 Hz<br>ns (1001 pts)                |                                              |
| G        | 1.0 WI12                                 | #VDV                               | 5.0 WHZ                        | 50                            | STATUS          | is (1001 pts)                             |                                              |



#### 8.3 MAXIMUM POWER SPECTRAL DENSITY

#### 8.3.1 Applicable Standard

According to FCC Part15.247(e) and KDB558074 DTS 01 Meas. Guidance v04

#### 8.3.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

#### 8.3.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

#### 8.3.4 Test Procedure

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance

The transmitter output (antenna port) was connected to the spectrum analyzer Set analyzer center frequency to DTS channel center frequency. Set the span to 1.5 times the DTS bandwidth. Set the RBW to: 3 kHz Set the VBW to:10 kHz. Set Detector = peak. Set Sweep time = auto couple. Set Trace mode = max hold. Allow trace to fully stabilize. Use the peak marker function to determine the maximum amplitude level within the RBW. Note: If antenna Gain exceeds 6 dBi, then PSD Limit=8-(Gain- 6)

#### 8.3.5 Test Results

| Temperature : | <b>26</b> ℃ | Test Date : | July 10, 2017; July 03, 2017 |
|---------------|-------------|-------------|------------------------------|
| Humidity :    | 60 %        | Test By:    | King Kong                    |

| Operation                | Channel           | Channel                    | Measu         | rement Level (d | dBm/3kHz)       | Limit          |           |
|--------------------------|-------------------|----------------------------|---------------|-----------------|-----------------|----------------|-----------|
| Operation<br>Mode        | Channel<br>Number | Channel<br>Frequency (MHz) | Ant0          | Ant1            | Ant0+ Ant1      | (dBm/<br>3kHz) | Verdict   |
|                          | 1                 | 2412                       | -4.190        | -6.012          | -               | <=7.65         | PASS      |
| 802.11b                  | 6                 | 2437                       | -5.508        | -6.154          | -               | <=7.65         | PASS      |
|                          | 11                | 2462                       | -6.030        | -6.974          | -               | <=7.65         | PASS      |
|                          | 1                 | 2412                       | -6.719        | -9.578          | -               | <=7.65         | PASS      |
| 802.11g                  | 6                 | 2437                       | -7.929        | -8.328          | -               | <=7.65         | PASS      |
|                          | 11                | 2462                       | -6.558        | -8.508          | -               | <=7.65         | PASS      |
| 802.11n                  | 1                 | 2412                       | -7.495        | -9.482          | -5.37           | <=7.65         | PASS      |
| (ht20)                   | 6                 | 2437                       | -6.498        | -8.103          | -4.22           | <=7.65         | PASS      |
| (1120)                   | 11                | 2462                       | -8.641        | -7.177          | -4.84           | <=7.65         | PASS      |
| 802.11n                  | 3                 | 2422                       | -11.008       | -12.385         | -8.63           | <=7.65         | PASS      |
| (ht40)                   | 6                 | 2437                       | -11.348       | -12.544         | -8.89           | <=7.65         | PASS      |
| (1140)                   | 9                 | 2452                       | -12.329       | -10.897         | -8.54           | <=7.65         | PASS      |
| Note: For s delivered to |                   | na systems, Maximun<br>as. | n Conducted C | Output Power is | summedat the to | otal transm    | nit power |



#### ANT 0

Test Model

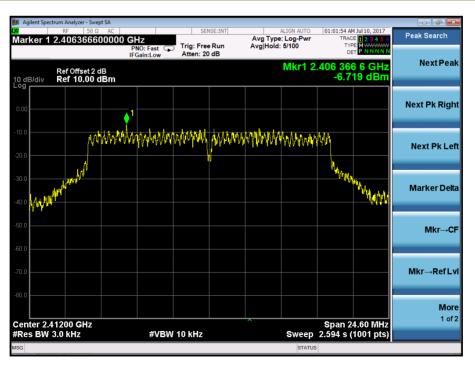
#### Power Spectral Density 802.11b Channel 1: 2412MHz



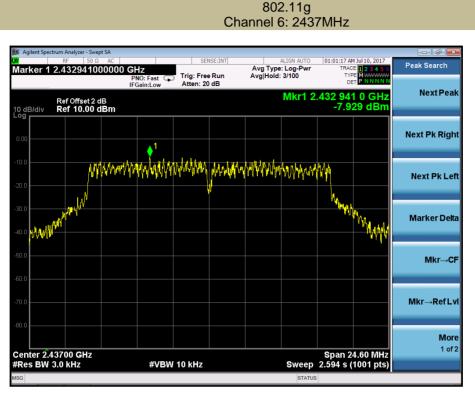
#### **Test Model**

#### Power Spectral Density 802.11b Channel 6: 2437MHz





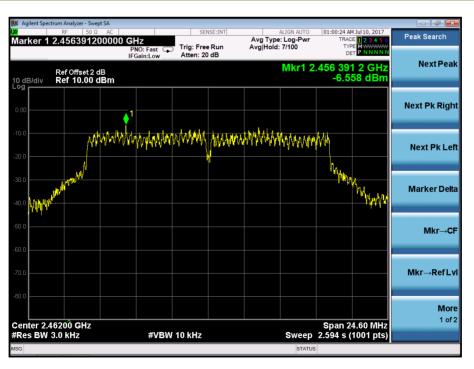

#### Power Spectral Density 802.11b Channel 11: 2462MHz



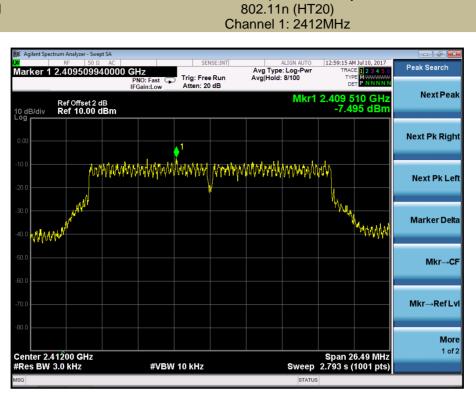

#### Test Model

#### Power Spectral Density 802.11g Channel 1: 2412MHz









**Power Spectral Density** 

# Test Model

#### Power Spectral Density 802.11g Channel 11: 2462MHz








#### **Test Model**

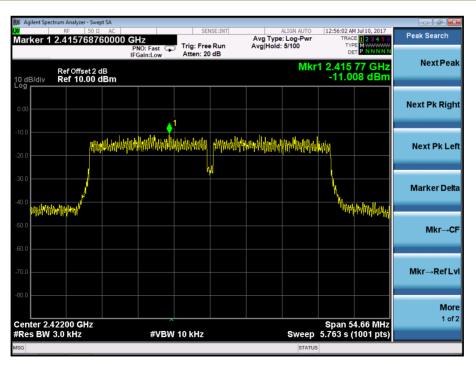
#### **Test Model**

#### Power Spectral Density 802.11n (HT20) Channel 6: 2437MHz

**Power Spectral Density** 

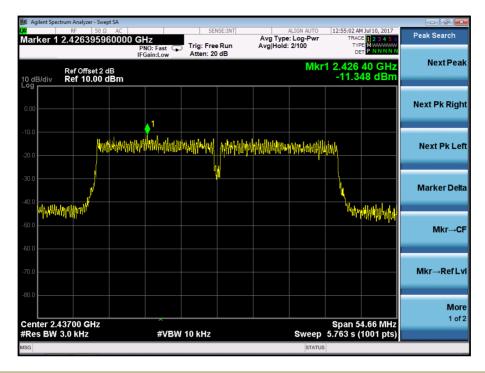





#### 12:57:22 AM Jul 10, 2017 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N Peak Search Avg Type: Log-Pwr Avg|Hold: 4/100 Marker 1 2.467298000000 GHz Trig: Free Run Atten: 20 dB PNO: Fast IFGain:Low Next Peak Mkr1 2.467 298 GHz -8.641 dBm Ref Offset 2 dB Ref 10.00 dBm 10 dB/div Next Pk Right Manyanananananananan www.www.www.www.www.www. Next Pk Left Marker Delta И., A.KILA Mkr→CF Mkr→RefLvl More 1 of 2 Span 26.49 MHz Sweep 2.793 s (1001 pts) Center 2.46200 GHz #Res BW 3.0 kHz #VBW 10 kHz

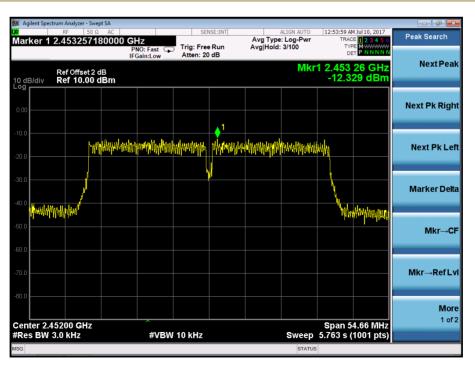
# Test Model

#### Power Spectral Density 802.11n (HT40) Channel 3: 2422MHz


Power Spectral Density 802.11n (HT20)

Channel 11: 2462MHz






#### Power Spectral Density 802.11n (HT40) Channel 6: 2437MHz



#### Test Model

#### Power Spectral Density 802.11n (HT40) Channel 9: 2452MHz





### ANT 1

**Test Model** 

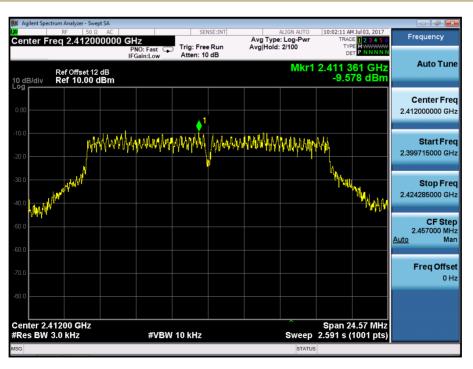
#### Power Spectral Density 802.11b Channel 1: 2412MHz



#### **Test Model**

#### Power Spectral Density 802.11b Channel 6: 2437MHz






#### Power Spectral Density 802.11b Channel 11: 2462MHz

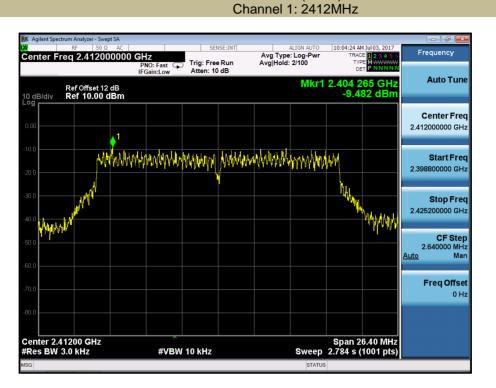


#### Test Model

#### Power Spectral Density 802.11g Channel 1: 2412MHz








# Test Model

#### Power Spectral Density 802.11g Channel 11: 2462MHz

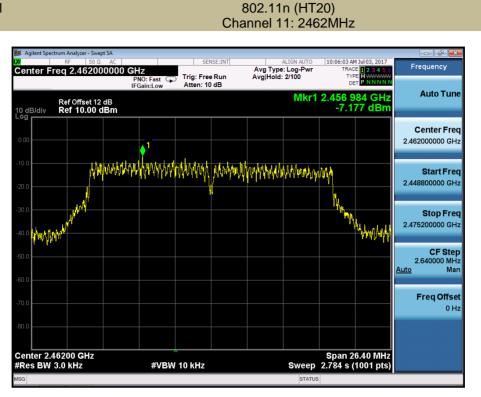






## **Test Model**

## **Test Model**


#### Power Spectral Density 802.11n (HT20) Channel 6: 2437MHz

**Power Spectral Density** 

802.11n (HT20)

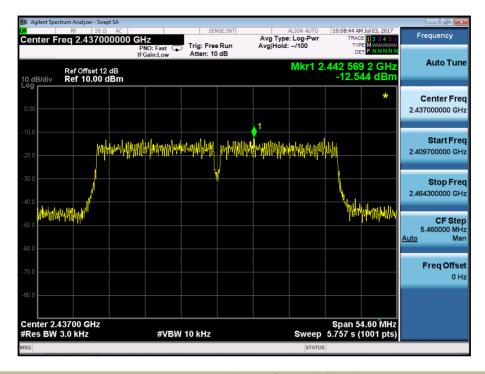






### Test Model

#### **Test Model**


### Power Spectral Density 802.11n (HT40) Channel 3: 2422MHz

**Power Spectral Density** 

|          | trum Analyzer - Swept<br>RF 50 Ω | AC                |                          | SEI                     | NSE:INT  |                       | ALIGN AUTO         |        | M Jul 03, 2017                       | Frequency                               |
|----------|----------------------------------|-------------------|--------------------------|-------------------------|----------|-----------------------|--------------------|--------|--------------------------------------|-----------------------------------------|
| enter Fi | req 2.42200                      | PN                | 2<br>D:Fast 🖵<br>ain:Low | Trig: Free<br>Atten: 10 |          | Avg Type<br>Avg Hold: | : Log-Pwr<br>1/100 | TY     | CE 123456<br>PE MWWWWW<br>ET P NNNNN |                                         |
| dB/div   | Ref Offset 12 c<br>Ref 10.00 dl  |                   |                          |                         |          |                       | Mkr1 2             |        | 8 8 GHz<br>85 dBm                    | Auto Tun                                |
| 00       |                                  |                   | .1                       |                         |          |                       |                    |        |                                      | Center Fre<br>2.422000000 G⊦            |
| .0       | <u>alwa</u>                      | apolicipalization | himmeter                 | 4444mmMy                | 1944 WWW | www.                  | milhinghag         | h      |                                      | <b>Start Fre</b><br>2.394700000 GF      |
| .0       |                                  |                   |                          |                         | N        |                       |                    |        | Ուսեւս                               | <b>Stop Fre</b><br>2.449300000 GF       |
|          | ₩µ-4m1                           |                   |                          |                         |          |                       |                    | rwy.   | riman <mark>a hi</mark> n            | CF Ste<br>5.460000 MH<br><u>Auto</u> Ma |
|          |                                  |                   |                          |                         |          |                       |                    |        |                                      | Freq Offs<br>0 F                        |
|          | 12200 GHz<br>3.0 kHz             |                   | #\/B\/                   | 10 kHz                  |          |                       | Sween              | Span 5 | 4.60 MHz<br>(1001 pts)               |                                         |
|          | 010-1112                         |                   | " <b>VE</b> M            | TO KITZ                 |          |                       | STATUS             |        | neer proj                            |                                         |



#### Power Spectral Density 802.11n (HT40) Channel 6: 2437MHz



# Test Model

#### Power Spectral Density 802.11n (HT40) Channel 9: 2452MHz



#### **Test Model**



# 8.4 UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS

### 8.4.1 Applicable Standard

According to FCC Part15.247(d) and KDB558074 DTS 01 Meas. Guidance v04

#### 8.4.2 Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

#### 8.4.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

#### 8.4.4 Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

### Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to  $\geq$  1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW  $\ge$  3 x RBW.

Set Detector = peak.

Set Sweep time = auto couple.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

## Emission level measurement

Set the center frequency and span to encompass frequency range to be measured.

Set the RBW = 100 kHz.

Set the VBW =300 kHz.

Set Detector = peak

Sweep time = auto couple.

Trace mode = max hold.

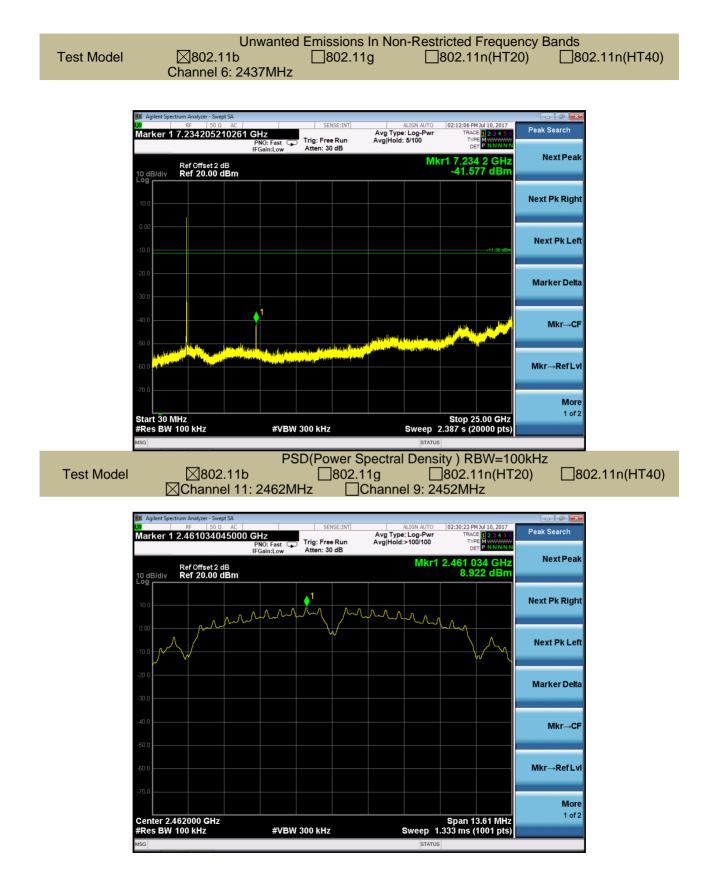
Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level.

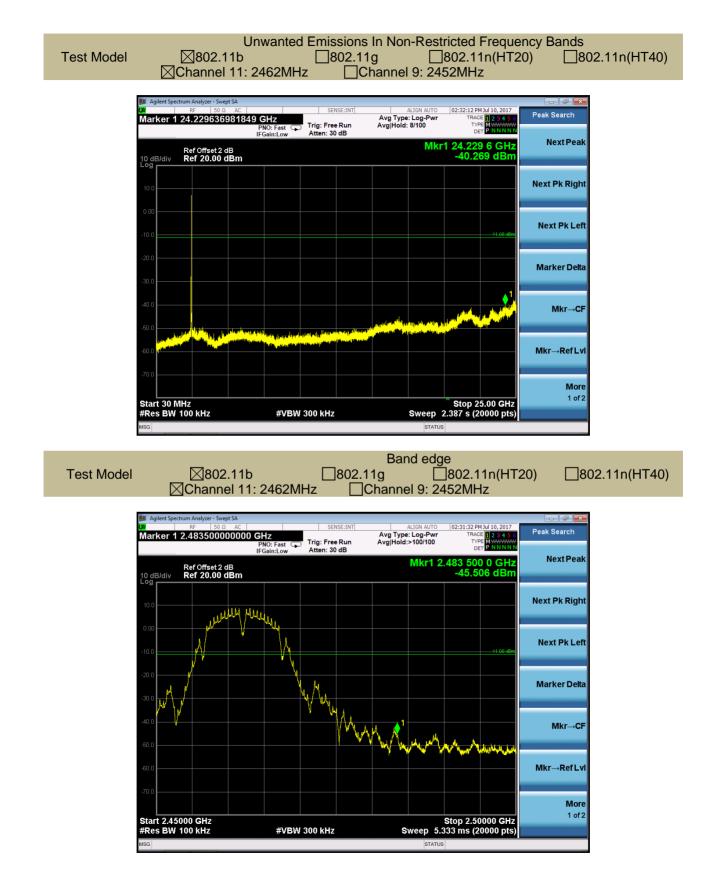
Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements. Report the three highest emissions relative to the limit.

8.4.5 Test Results




All modes 2.4G 802.11b/g/n have been tested, and the worst result recorded was report as below: ANT 0:



















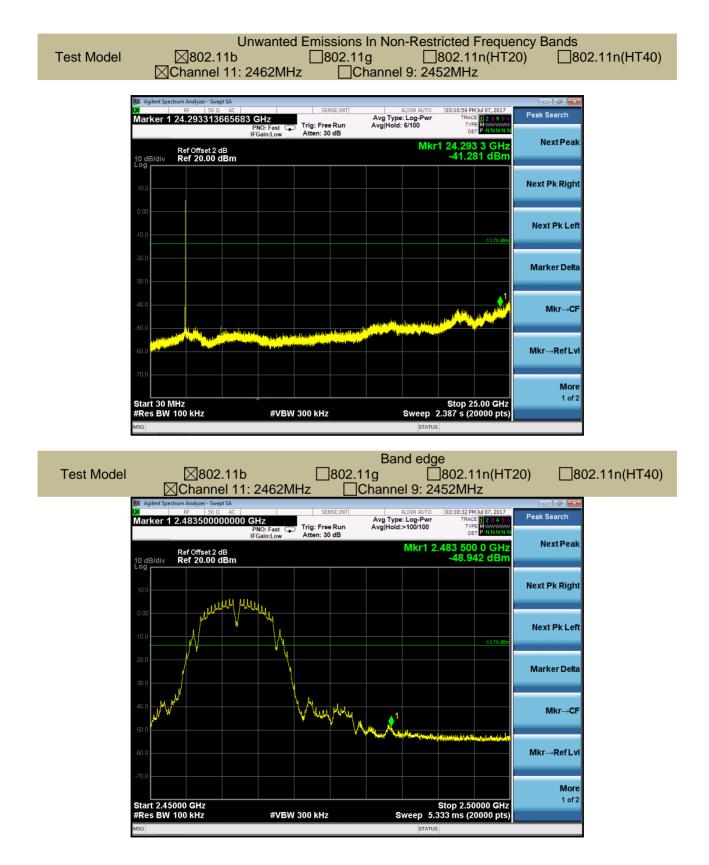











Freq Offset 0 Hz

#VBW 300 kHz

Span 13.62 MHz Sweep 1.333 ms (1001 pts)

Center 2.462000 GHz #Res BW 100 kHz







# 8.5 RADIATED SPURIOUS EMISSION

## 8.5.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and KDB558074 DTS 01 Meas. Guidance v04

#### 8.5.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

| According to 1 OO 1 art13. |                     |               |             |
|----------------------------|---------------------|---------------|-------------|
| MHz                        | MHz                 | MHz           | GHz         |
| 0.090-0.110                | 16.42-16.423        | 399.9-410     | 4.5-5.15    |
| 10.495-0.505               | 16.69475-16.69525   | 608-614       | 5.35-5.46   |
| 2.1735-2.1905              | 16.80425-16.80475   | 960-1240      | 7.25-7.75   |
| 4.125-4.128                | 25.5-25.67          | 1300-1427     | 8.025-8.5   |
| 4.17725-4.17775            | 37.5-38.25          | 1435-1626.5   | 9.0-9.2     |
| 4.20725-4.20775            | 73-74.6             | 1645.5-1646.5 | 9.3-9.5     |
| 6.215-6.218                | 74.8-75.2           | 1660-1710     | 10.6-12.7   |
| 6.26775-6.26825            | 123-138             | 2200-2300     | 14.47-14.5  |
| 8.291-8.294                | 149.9-150.05        | 2310-2390     | 15.35-16.2  |
| 8.362-8.366                | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |
| 8.37625-8.38675            | 156.7-156.9         | 2690-2900     | 22.01-23.12 |
| 8.41425-8.41475            | 162.0125-167.17     | 3260-3267     | 23.6-24.0   |
| 12.29-12.293               | 167.72-173.2        | 3332-3339     | 31.2-31.8   |
| 12.51975-12.52025          | 240-285             | 3345.8-3358   | 36.43-36.5  |
| 12.57675-12.57725          | 322-335.4           | 3600-4400     | (2)         |
| 13.36-13.41                |                     |               |             |
|                            |                     |               |             |

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

| Restricted Frequency(MHz) | Field Strength (µV/m) | Field Strength (dBµV/m) | Measurement Distance |
|---------------------------|-----------------------|-------------------------|----------------------|
| 0.009-0.490               | 2400/F(KHz)           | 20 log (uV/m)           | 300                  |
| 0.490-1.705               | 2400/F(KHz)           | 20 log (uV/m)           | 30                   |
| 1.705-30                  | 30                    | 29.5                    | 30                   |
| 30-88                     | 100                   | 40                      | 3                    |
| 88-216                    | 150                   | 43.5                    | 3                    |
| 216-960                   | 200                   | 46                      | 3                    |
| Above 960                 | 500                   | 54                      | 3                    |

## 8.5.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

## 8.5.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for  $f \ge 1$  GHz(1GHz to 25GHz), 100 kHz for f < 1 GHz(30MHz to 1GHz), 200Hz for f<150KHz(9KHz to 150KHz), 9KHz for f<30MHz(150KHz to 30KHz)

 $\mathsf{VBW} \geq \mathsf{RBW}$ 

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT,



measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

## 8.5.5 Test Results

Spurious Emission below 30MHz(9KHz to 30MHz)

| Temperature: | 24°C    | Test Date: | August 02, 2017 |
|--------------|---------|------------|-----------------|
| Humidity:    | 53 %    | Test By:   | King Kong       |
| Test mode:   | TX Mode |            |                 |

| Freq. | Ant.Pol. |    | sion<br>BuV/m) | Limit 3m( | (dBuV/m) | Over(dB) |    |  |
|-------|----------|----|----------------|-----------|----------|----------|----|--|
| (MHz) | H/V      | PK | AV             | PK        | AV       | PK       | AV |  |
|       |          |    |                |           |          |          |    |  |

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)( dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

Spurious Emission Above 1GHz(1GHz to 25GHz)

All modes 2.4G 802.11b/g/n and two antenna have been tested, and the worst result 802.11b with ant0 recorded was report as below:

| Temperatu<br>Humidity :<br>Test mode | 60            | -                 | Test D<br>Test E<br>Frequ | By:              | August 02, 2017<br>King Kong<br>Channel 1: 2412MHz |          |        |  |
|--------------------------------------|---------------|-------------------|---------------------------|------------------|----------------------------------------------------|----------|--------|--|
| Freq. Ant.Pol.                       |               | Emiss<br>Level(dB | -                         | Limit 3m(dBuV/m) |                                                    | Over(dB) |        |  |
| (MHz)                                | H/V           | PK                | AV                        | PK               | AV                                                 | PK       | AV     |  |
| 4824.26                              | V             | 48.55             | 39.77                     | 74.00            | 54.00                                              | -25.45   | -14.23 |  |
| 7237.10                              | V             | 47.90             | 38.71                     | 74.00            | 54.00                                              | -26.10   | -15.29 |  |
| 9708.16                              | V             | 50.91             | 39.55                     | 74.00            | 54.00                                              | -23.09   | -14.45 |  |
|                                      |               |                   |                           |                  |                                                    |          |        |  |
|                                      |               |                   |                           |                  |                                                    |          |        |  |
|                                      |               |                   |                           |                  |                                                    |          |        |  |
| 4824.51                              | 324.51 H      |                   | 38.34                     | 74.00            | 54.00                                              | -24.44   | -15.66 |  |
| 7236.48                              | 236.48 H 46.2 |                   | 37.15                     | 74.00            | 54.00                                              | -27.80   | -16.85 |  |
| 9588.55                              | Н             | 49.60             | 39.66                     | 74.00            | 54.00                                              | -24.40   | -14.34 |  |



| Temperatu<br>Humidity :<br>Test mode | 60       |                           | Test D<br>Test B<br>Frequ | By:              | August 02<br>King Kong<br>Channel ( |          |        |  |
|--------------------------------------|----------|---------------------------|---------------------------|------------------|-------------------------------------|----------|--------|--|
| Freq.                                | Ant.Pol. | Emission<br>Level(dBuV/m) |                           | Limit 3m(dBuV/m) |                                     | Over(dB) |        |  |
| (MHz)                                | H/V      | PK                        | AV                        | PK               | AV                                  | PK       | AV     |  |
| 4875.23                              | V        | 48.5                      | 40.76                     | 74.00            | 54.00                               | -25.50   | -13.24 |  |
| 7312.82                              | V        | 47.34                     | 47.34 38.79               |                  | 54.00                               | -26.66   | -15.21 |  |
| 9241.45                              | V        | 49.96                     | 39.02                     | 74.00            | 54.00                               | -24.04   | -14.98 |  |
|                                      |          |                           |                           |                  |                                     |          |        |  |
|                                      |          |                           |                           |                  |                                     |          |        |  |
|                                      |          |                           |                           |                  |                                     |          |        |  |
| 4874.78                              | Н        | 49.71                     | 37.68                     | 74.00            | 54.00                               | -24.29   | -16.32 |  |
| 7311.76                              | Н        | 45.97                     | 37.18                     | 74.00            | 54.00                               | -28.03   | -16.82 |  |
| 9435.49                              | Н        | 49.59                     | 39.61                     | 74.00            | 54.00                               | -24.41   | -14.39 |  |

| Temperatu<br>Humidity :<br>Test mode | 60       | -                 | Test D<br>Test E<br>Frequ | By:              | August 02<br>King Kon<br>Channel |          | z      |
|--------------------------------------|----------|-------------------|---------------------------|------------------|----------------------------------|----------|--------|
| Freq.                                | Ant.Pol. | Emiss<br>Level(dB |                           | Limit 3m(dBuV/m) |                                  | Over(dB) |        |
| (MHz)                                | H/V      | PK                | AV                        | PK               | AV                               | PK       | AV     |
| 4924.88                              | V        | 48.38             | 40.68                     | 74.00            | 54.00                            | -25.62   | -13.32 |
| 7387.79                              | V        | 49.51             | 37.58                     | 74.00            | 54.00                            | -24.49   | -16.42 |
| 9855.66                              | V        | 51.32             | 40.35                     | 74.00            | 54.00                            | -22.68   | -13.65 |
|                                      |          |                   |                           |                  |                                  |          |        |
|                                      |          |                   |                           |                  |                                  |          |        |
|                                      |          |                   |                           |                  |                                  |          |        |
| 4925.79                              | Н        | 50.87             | 36.33                     | 74.00            | 54.00                            | -23.13   | -17.67 |
| 7386.74                              | Н        | 46.33             | 37.13                     | 74.00            | 54.00                            | -27.67   | -16.87 |
| 9819.00                              | Н        | 49.52             | 40.24                     | 74.00            | 54.00                            | -24.48   | -13.76 |

Note: (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).

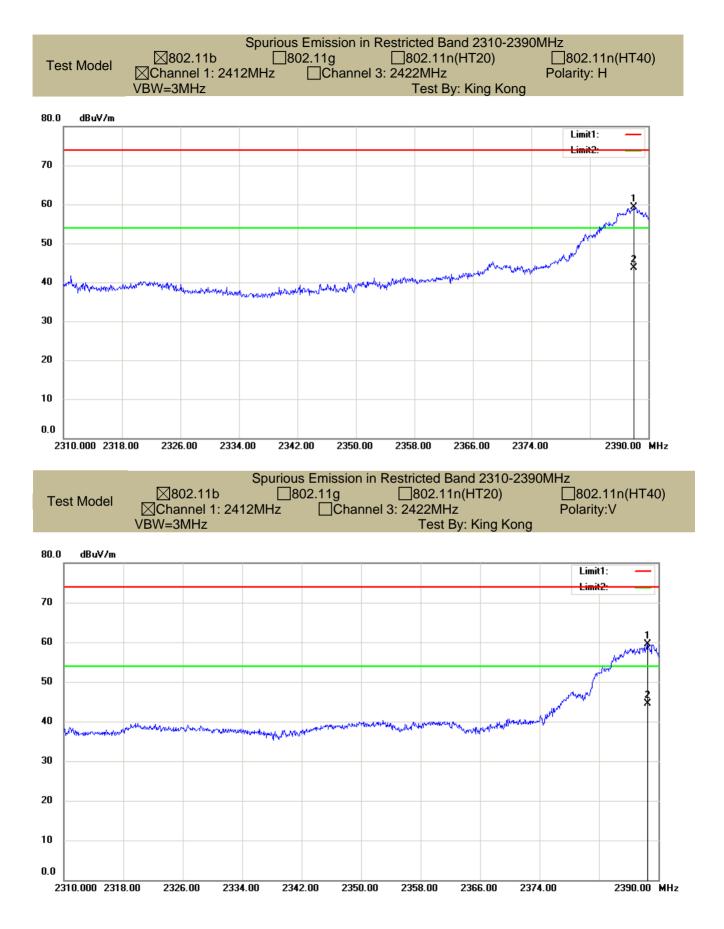
(2) Emission Level= Reading Level+Probe Factor +Cable Loss.

(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

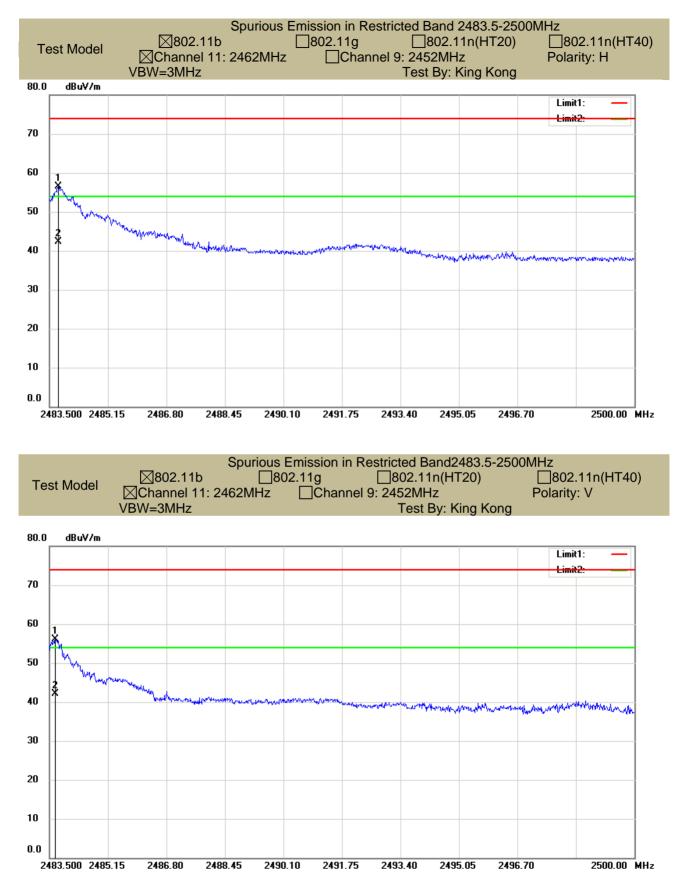


■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

All modes 2.4G 802.11b/g/n and two antenna have been tested, and the worst result 802.11b recorded was report as below:


| Temperature :<br>Humidity :<br>Test mode: | 26℃<br>60 %<br>802.11b | Т                        | est Date :<br>est By:<br>requency: | King k         | st 02, 2017<br>Kong<br>nel 1: 2412MHz  |                      |                |
|-------------------------------------------|------------------------|--------------------------|------------------------------------|----------------|----------------------------------------|----------------------|----------------|
| Frequency<br>(MHz)                        | Polarity               | PK(dBuV/m)<br>(VBW=3MHz) | Limit 3m<br>(dBuV/m)               | Margin<br>(dB) | AV(dBuV/m)<br>(VBW=10Hz)               | Limit 3m<br>(dBuV/m) | Margin<br>(dB) |
| 2388.00                                   | Н                      | 59.28                    | 74.00                              | -14.72         | 43.70                                  | 54.00                | -10.30         |
| 2388.56                                   | V                      | 59.43                    | 74.00                              | -14.57         | 44.60                                  | 54.00                | -9.40          |
| Temperature :<br>Humidity :<br>Test mode: | 26℃<br>60 %<br>802.11b | Т                        | est Date :<br>est By:<br>requency: | King k         | st 02, 2017<br>Kong<br>nel 11: 2462MHz |                      |                |
| Frequency<br>(MHz)                        | Polarity               | PK(dBuV/m)<br>(VBW=3MHz) | Limit 3m<br>(dBuV/m)               | Margin<br>(dB) | AV(dBuV/m)<br>(VBW=10Hz)               | Limit 3m<br>(dBuV/m) | Margin<br>(dB) |
| 2483.74                                   | 2483.74 H 56.45        |                          | 74.00                              | -17.55 42.30   |                                        | 54.00                | -11.70         |
| 2483.66                                   | V                      | 56.08                    | 74.00                              | -17.92         | 42.10                                  | 54.00                | -11.90         |

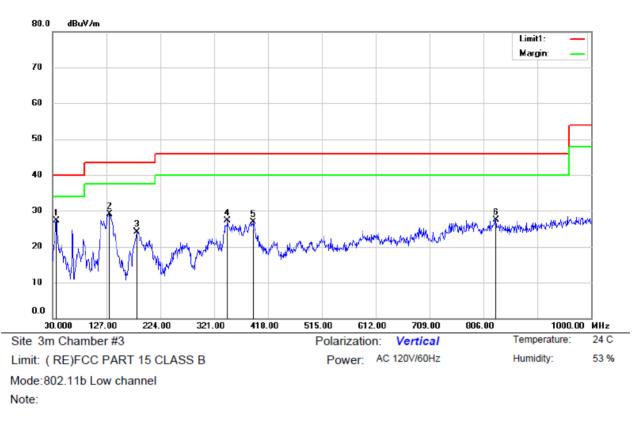
Note: (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).


(2) Emission Level= Reading Level+Probe Factor +Cable Loss.

(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.











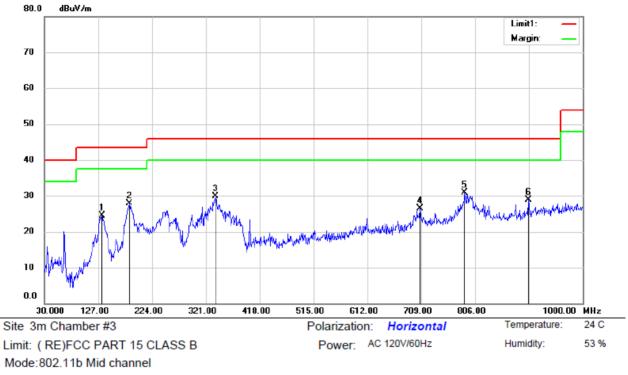

■ Spurious Emission below 1GHz (30MHz to 1GHz)

All modes 2.4G 802.11b/g/n and two antennas have been tested, and the worst result recorded was report as below:



| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | cm                | degree          | Comment |
| 1   | *  | 36.7900  | 43.44            | -16.17            | 27.27            | 40.00  | -12.73 | QP       |                   |                 |         |
| 2   |    | 132.8200 | 48.39            | -19.19            | 29.20            | 43.50  | -14.30 | QP       |                   |                 |         |
| 3   |    | 181.3200 | 41.19            | -17.11            | 24.08            | 43.50  | -19.42 | QP       |                   |                 |         |
| 4   |    | 345.2500 | 37.94            | -10.67            | 27.27            | 46.00  | -18.73 | QP       |                   |                 |         |
| 5   |    | 390.8400 | 36.69            | -9.88             | 26.81            | 46.00  | -19.19 | QP       |                   |                 |         |
| 6   |    | 828.3100 | 29.29            | -1.77             | 27.52            | 46.00  | -18.48 | QP       |                   |                 |         |

\*:Maximum data x:Over limit !:over margin






| No. | M | k. Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|---|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |   | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | cm                | degree          | Comment |
| 1   |   | 292.8700 | 39.53            | -12.38            | 27.15            | 46.00  | -18.85 | QP       |                   |                 |         |
| 2   | * | 338.4600 | 44.07            | -10.86            | 33.21            | 46.00  | -12.79 | QP       |                   |                 |         |
| 3   |   | 598.4200 | 29.18            | -5.08             | 24.10            | 46.00  | -21.90 | QP       |                   |                 |         |
| 4   |   | 746.8300 | 31.57            | -2.71             | 28.86            | 46.00  | -17.14 | QP       |                   |                 |         |
| 5   |   | 802.1200 | 32.72            | -2.12             | 30.60            | 46.00  | -15.40 | QP       |                   |                 |         |
| 6   |   | 953.4400 | 27.92            | 0.60              | 28.52            | 46.00  | -17.48 | QP       |                   |                 |         |

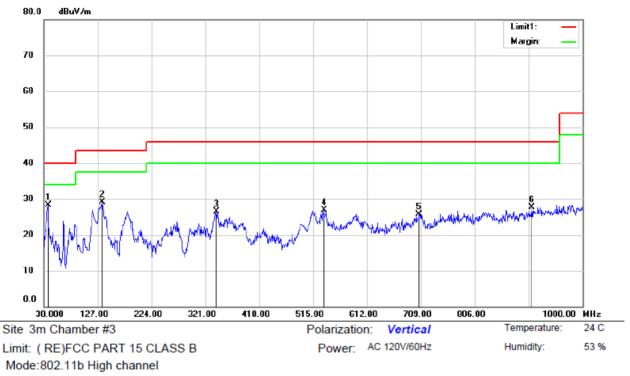
\*:Maximum data x:Over limit !:over margin





| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | cm                | degree          | Comment |
| 1   |    | 133.7900 | 43.81            | -19.24            | 24.57            | 43.50  | -18.93 | QP       |                   |                 |         |
| 2   |    | 183.2600 | 44.83            | -16.87            | 27.96            | 43.50  | -15.54 | QP       |                   |                 |         |
| 3   |    | 338.4600 | 40.68            | -10.86            | 29.82            | 46.00  | -16.18 | QP       |                   |                 |         |
| 4   |    | 707.0600 | 30.04            | -3.45             | 26.59            | 46.00  | -19.41 | QP       |                   |                 |         |
| 5   | *  | 787.5700 | 33.09            | -2.13             | 30.96            | 46.00  | -15.04 | QP       |                   |                 |         |
| 6   |    | 902.0300 | 29.11            | -0.28             | 28.83            | 46.00  | -17.17 | QP       |                   |                 |         |

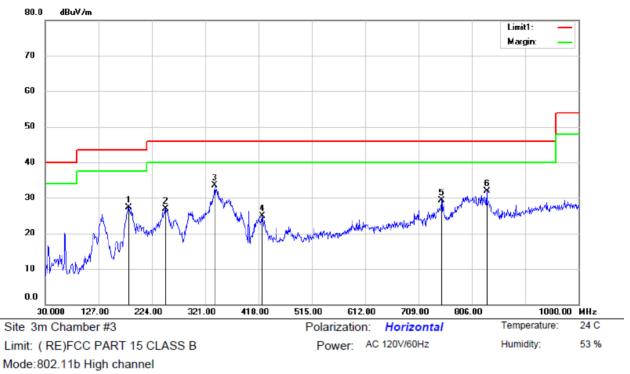
\*:Maximum data x:Over limit !:over margin






| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | cm                | degree          | Comment |
| 1   | *  | 36.7900  | 44.22            | -16.17            | 28.05            | 40.00  | -11.95 | QP       |                   |                 |         |
| 2   |    | 130.8800 | 48.60            | -19.08            | 29.52            | 43.50  | -13.98 | QP       |                   |                 |         |
| 3   |    | 359.8000 | 39.01            | -10.64            | 28.37            | 46.00  | -17.63 | QP       |                   |                 |         |
| 4   |    | 587.7500 | 30.24            | -5.41             | 24.83            | 46.00  | -21.17 | QP       |                   |                 |         |
| 5   |    | 748.7700 | 31.45            | -2.72             | 28.73            | 46.00  | -17.27 | QP       |                   |                 |         |
| 6   |    | 952.4700 | 28.45            | 0.59              | 29.04            | 46.00  | -16.96 | QP       |                   |                 |         |

\*:Maximum data x:Over limit !:over margin






| No. | Mł | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | cm                | degree          | Comment |
| 1   | *  | 37.7600  | 43.94            | -15.73            | 28.21            | 40.00  | -11.79 | QP       |                   |                 |         |
| 2   |    | 134.7600 | 48.46            | -19.30            | 29.16            | 43.50  | -14.34 | QP       |                   |                 |         |
| 3   |    | 341.3700 | 37.24            | -10.74            | 26.50            | 46.00  | -19.50 | QP       |                   |                 |         |
| 4   |    | 534.4000 | 33.68            | -6.74             | 26.94            | 46.00  | -19.06 | QP       |                   |                 |         |
| 5   |    | 706.0900 | 29.21            | -3.48             | 25.73            | 46.00  | -20.27 | QP       |                   |                 |         |
| 6   |    | 908.8200 | 27.80            | -0.06             | 27.74            | 46.00  | -18.26 | QP       |                   |                 |         |

\*:Maximum data x:Over limit !:over margin





| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | cm                | degree          | Comment |
| 1   |    | 181.3200 | 44.48            | -17.11            | 27.37            | 43.50  | -16.13 | QP       |                   |                 |         |
| 2   |    | 249.2200 | 40.62            | -13.78            | 26.84            | 46.00  | -19.16 | QP       |                   |                 |         |
| 3   | *  | 338.4600 | 44.27            | -10.86            | 33.41            | 46.00  | -12.59 | QP       |                   |                 |         |
| 4   |    | 424.7900 | 33.82            | -8.90             | 24.92            | 46.00  | -21.08 | QP       |                   |                 |         |
| 5   |    | 750.7100 | 32.08            | -2.71             | 29.37            | 46.00  | -16.63 | QP       |                   |                 |         |
| 6   |    | 833.1600 | 33.54            | -1.65             | 31.89            | 46.00  | -14.11 | QP       |                   |                 |         |

\*:Maximum data x:Over limit !:over margin



# 8.6 CONDUCTED EMISSIONS TEST

## 8.6.1 Applicable Standard

According to FCC Part 15.207(a)

# 8.6.2 Conformance Limit

|                | Conducted Emission Limit |         |
|----------------|--------------------------|---------|
| Frequency(MHz) | Quasi-peak               | Average |
| 0.15-0.5       | 66-56                    | 56-46   |
| 0.5-5.0        | 56                       | 46      |
| 5.0-30.0       | 60                       | 50      |

Note: 1. The lower limit shall apply at the transition frequencies

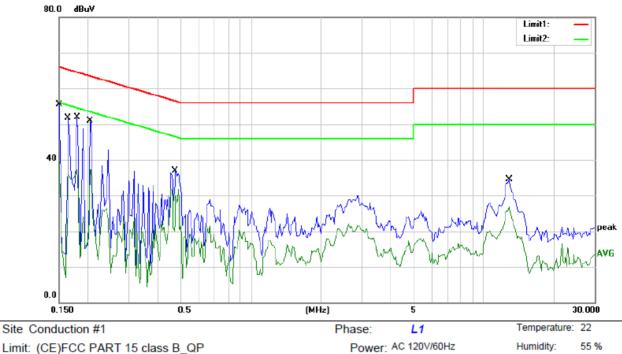
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

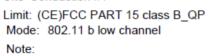
## 8.6.3 Test Configuration

Test according to clause 7.3 conducted emission test setup

## 8.6.4 Test Procedure

The EUT was placed on a table which is 0.8m above ground plane.


Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.


## 8.6.5 Test Results

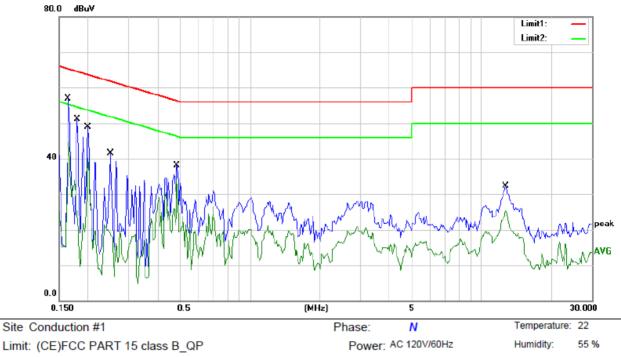
Pass

All modes 2.4G 802.11b/g/n with AC 120V/240V have been tested, and the worst result recorded was report as below:








| No. Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |         |
|---------|---------|------------------|-------------------|------------------|-------|--------|----------|---------|
|         | MHz     | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector | Comment |
| 1 *     | 0.1500  | 55.53            | 0.00              | 55.53            | 66.00 | -10.47 | QP       |         |
| 2       | 0.1500  | 39.67            | 0.00              | 39.67            | 56.00 | -16.33 | AVG      |         |
| 3       | 0.1650  | 51.68            | 0.00              | 51.68            | 65.21 | -13.53 | QP       |         |
| 4       | 0.1650  | 35.84            | 0.00              | 35.84            | 55.21 | -19.37 | AVG      |         |
| 5       | 0.1800  | 51.97            | 0.00              | 51.97            | 64.49 | -12.52 | QP       |         |
| 6       | 0.1800  | 37.20            | 0.00              | 37.20            | 54.49 | -17.29 | AVG      |         |
| 7       | 0.2050  | 50.81            | 0.00              | 50.81            | 63.41 | -12.60 | QP       |         |
| 8       | 0.2050  | 37.38            | 0.00              | 37.38            | 53.41 | -16.03 | AVG      |         |
| 9       | 0.4750  | 36.89            | 0.00              | 36.89            | 56.43 | -19.54 | QP       |         |
| 10      | 0.4750  | 31.84            | 0.00              | 31.84            | 46.43 | -14.59 | AVG      |         |
| 11      | 12.8900 | 34.49            | 0.00              | 34.49            | 60.00 | -25.51 | QP       |         |
| 12      | 12.8900 | 26.84            | 0.00              | 26.84            | 50.00 | -23.16 | AVG      |         |

\*:Maximum data x:Over limit !:over margin

Comment: Factor build in receiver.

Operator: CSL





Limit: (CE)FCC PART 15 class B\_QP Mode: 802.11 b low channel Note:

| MHz         dBuV         dB         dBuV         dBuV         dB         Detector         Comment           1         *         0.1650         56.89         0.00         56.89         65.21         -8.32         QP           2         0.1650         44.82         0.00         44.82         55.21         -10.39         AVG           3         0.1800         51.09         0.00         51.09         64.49         -13.40         QP           4         0.1800         33.85         0.00         33.85         54.49         -20.64         AVG |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2         0.1650         44.82         0.00         44.82         55.21         -10.39         AVG           3         0.1800         51.09         0.00         51.09         64.49         -13.40         QP                                                                                                                                                                                                                                                                                                                                               |  |
| 3 0.1800 51.09 0.00 51.09 64.49 -13.40 QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 4 0,1000 22,95 0,00 22,95 54,40 20,64 AV/G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 4 0.1600 55.65 0.00 55.65 54.49 -20.04 AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 5 0.2000 48.97 0.00 48.97 63.61 -14.64 QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 6 0.2000 40.16 0.00 40.16 53.61 -13.45 AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 7 0.2500 41.52 0.00 41.52 61.76 -20.24 QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 8 0.2500 21.22 0.00 21.22 51.76 -30.54 AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 9 0.4850 38.13 0.00 38.13 56.25 -18.12 QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 10 0.4850 34.10 0.00 34.10 46.25 -12.15 AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 11 12.7200 32.31 0.00 32.31 60.00 -27.69 QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 12 12.7200 25.33 0.00 25.33 50.00 -24.67 AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |

\*:Maximum data x:Over limit !:over margin

Comment: Factor build in receiver.

Operator: CSL



# 8.7 ANTENNA APPLICATION

### 8.7.1 Antenna Requirement

| Standard           | Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCC CRF Part15.203 | An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217,§15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded. |

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

## 8.7.2 Result

The EUT'S with WIFI function has two FPC antennas. The antenna1's gain is 3.21dBi, The antenna2's gain is 3.46dBi, and the two antennas can't be replaced by the user which in accordance to section 15.203, please refer to the photos.