TEST REPORT Test Report No.: UL-RPT-RP13754225-2816A **Customer** : VEGA Grieshaber KG Model No. : VEGAPULS 6X FCC ID : O6QPS6XW **Technology** : Tank Level Probing Radar **Test Standard(s)** : FCC Parts 15.31(q) & 15.209(a) **Test Laboratory** : UL International (UK) Ltd, Basingstoke, Hampshire, RG24 8AH, United Kingdom 1. This test report shall not be reproduced except in full, without the written approval of UL International (UK) Ltd. 2. The results in this report apply only to the sample(s) tested. 3. The sample tested is in compliance with the above standard(s). 4. The test results in this report are traceable to the national or international standards. 5. Version 2.0 supersedes all previous versions. Date of Issue: 04 March 2022 Checked by: Sarah Williams RF Operations Leader, Radio Laboratory **Company Signatory:** Ben Mercer Lead Project Engineer, Radio Laboratory Telephone: +44 (0)1256 312000 Facsimile: +44 (0)1256 312001 ISSUE DATE: 04 MARCH 2022 VERSION 2.0 # **Customer Information** | Company Name: | VEGA Grieshaber KG | | |---------------|--|--| | Address: | Am Hohenstein 113
D-77761 Schiltach | | | | Germany | | # **Report Revision History** | Version
Number | Issue Date | Revision Details | Revised By | |-------------------|------------|--------------------------|----------------| | 1.0 | 23/02/2022 | Initial Version | Sarah Williams | | 2.0 | 04/03/2022 | Updated SW & HW Versions | Sarah Williams | Page 2 of 24 # **Table of Contents** | Customer Information | 2 | |--|-------------| | Report Revision History | 2 | | Table of Contents | | | 1 Attestation of Test Results | | | 1.4 Deviations from the Test Specification | 2 | | 2 Summary of Testing | 5
5
6 | | 3 Equipment Under Test (EUT) | | | 4 Radiated Test Results | | # **1 Attestation of Test Results** # 1.1 Description of EUT The equipment under test was a radar sensor for the continuous level measurement of liquids. # **1.2 General Information** | Specification Reference: | 47CFR15.31 | | |--------------------------|---|--| | Specification Title: | Code of Federal Regulations Volume 47 (Telecommunications):
Part 15 Subpart A (General) – Section 15.31 | | | Specification Reference: | 47CFR15.209 | | | Specification Title: | Code of Federal Regulations Volume 47 (Telecommunications):
Part 15 Subpart C (Intentional Radiators) – Section 15.209 | | | Site Registration: | 685609 | | | Lab Designation No.: | UK2011 | | | Location of Testing: | Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom | | | Test Dates: | 07 January 2022 to 19 January 2022 | | # 1.3 Summary of Test Results | FCC Reference (47CFR) | Measurement | Result | | |---------------------------|--------------------------------|----------|--| | Part 15.31(q) & 15.209(a) | Transmitter Radiated Emissions | ② | | | Key to Results | | | | | | | | | # 1.4 Deviations from the Test Specification For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above. # **2 Summary of Testing** #### 2.1 Facilities and Accreditation The test site and measurement facilities used to collect data are located at Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom. The following table identifies which facilities were utilised for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections. | Site 1 | X | |---------|---| | Site 2 | 1 | | Site 17 | X | UL International (UK) Ltd is accredited by the United Kingdom Accreditation Service (UKAS). UKAS is one of the signatories to the International Laboratory Accreditation Co-operation (ILAC) Arrangement for the mutual recognition of test reports. The tests reported herein have been performed in accordance with its terms of accreditation. #### 2.2 Methods and Procedures | Reference: | ANSI C63.10-2013 | |------------|--| | Title: | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices | ISSUE DATE: 04 MARCH 2022 #### 2.3 Calibration and Uncertainty #### **Measuring Instrument Calibration** In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing. #### **Measurement Uncertainty & Decision Rule** #### **Overview** No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation. The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards. #### **Decision Rule** The decision rule applied is based upon the accuracy method criteria. The measurement uncertainty is met and the result is considered in conformance with the requirement criteria if the observed value is within the prescribed limit. #### **Measurement Uncertainty** The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes". | Measurement Type | Range | Confidence
Level (%) | Calculated
Uncertainty | |--------------------|-------------------|-------------------------|---------------------------| | Radiated Emissions | 9 kHz to 30 MHz | 95% | ±5.32 dB | | Radiated Emissions | 30 MHz to 1 GHz | 95% | ±3.30 dB | | Radiated Emissions | 1 GHz to 40 GHz | 95% | ±2.94 dB | | Radiated Emissions | 40 GHz to 200 GHz | 95% | ±5.12 dB | The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed. # 2.4 Test and Measurement Equipment ## <u>Test Equipment Used for Transmitter Radiated Emissions Tests</u> | Asset
No. | Instrument | Manufacturer | Type No. | Serial No. | Date
Calibration
Due | Cal.
Interval
(Months) | |--------------|------------------|-----------------|------------------------|------------|----------------------------|------------------------------| | M2003 | Thermohygrometer | Testo | 608-H1 | 45046641 | 09 Dec 2022 | 12 | | K0017 | 3m RSE Chamber | Rainford EMC | N/A | N/A | 26 Oct 2022 | 12 | | M1995 | Test Receiver | Rohde & Schwarz | ESU40 | 100428 | 12 Oct 2022 | 12 | | A3167 | Pre-Amplifier | Com-Power | PAM-103 | 18020010 | 20 Oct 2022 | 12 | | A2148 | Attenuator | AtlanTecRF | AN18-06 | 090202-06 | Calibrated before use | - | | A2948 | Pre-Amplifier | Com-Power | PAM-118A | 551087 | 20 Oct 2022 | 12 | | A2889 | Antenna | Schwarzbeck | BBHA 9120 B | 653 | 26 Oct 2022 | 12 | | A2892 | Antenna | Schwarzbeck | BBHA 9170 | 9170-727 | 02 Nov 2022 | 12 | | M2041 | Thermohygrometer | Testo | 608-H1 | 45119912 | 09 Dec 2022 | 12 | | M1832 | Signal Analyzer | Keysight | N9010A | MY53470303 | 09 May 2022 | 12 | | A2963 | Antenna | Link Microtek | AM19HA-ULV1 | 14929 | 04 Feb 2023 | 12 | | A3212 | Low Pass Filter | Sage Millimeter | SWF-50354340-
22-L1 | B10754-01 | Calibrated before use | - | | M1621 | Harmonic Mixer | Keysight | 11970U | 3003A01631 | 27 May 2024 | 36 | | M2066 | Downconverter | Virginia Diodes | WR6.5SAX | SAX 392 | 17 Feb 2022 | 24 | | M2067 | Downconverter | Virginia Diodes | WR4.3SAX | SAX 391 | 17 Feb 2022 | 24 | | M2069 | Downconverter | Virginia Diodes | WR15.0 SAX | SAX 394 | 17 Feb 2022 | 24 | | M2065 | Downconverter | Virginia Diodes | WR10SAX | SAX 393 | 17 Feb 2022 | 24 | | A2967 | Antenna | Link Microtek | AM10HA-ULV1 | 14933 | 04 Feb 2023 | 12 | | A2964 | Antenna | Link Microtek | AM15HA-ULV1 | 14930 | 04 Feb 2023 | 12 | | M2040 | Thermohygrometer | Testo | 608-H1 | 45124934 | 09 Dec 2022 | 12 | | K0001 | 3m RSE Chamber | Rainford EMC | N/A | N/A | 06 Sep 2022 | 12 | | M2044 | Test Receiver | Rohde & Schwarz | ESU26 | 100122 | 29 Apr 2022 | 12 | | A553 | Antenna | Chase | CBL6111A | 1593 | 23 Nov 2022 | 12 | | A3154 | Pre-Amplifier | Com-Power | PAM-103 | 18020012 | 24 Aug 2022 | 12 | | A3165 | Loop Antenna | ETS-Lindgren | 6502 | 00224383 | 12 Oct 2022 | 12 | # 3 Equipment Under Test (EUT) # 3.1 Identification of Equipment Under Test (EUT) | Brand Name: | VEGAPULS | |----------------------------|-------------| | Model No.: | VEGAPULS 6X | | Test Sample Serial Number: | 55822749 | | Hardware Version: | 1.0.0 | | Software Version: | 1.00.00 | | FCC ID: | O6QPS6XW | ## 3.2 Modifications Incorporated in the EUT No modifications were applied to the EUT during testing. ## 3.3 Additional Information Related to Testing | Technology Tested: | Tank Level Pro | Tank Level Probing Radar | | | | |------------------------------|----------------|--|--------|--|--| | Type of Unit: | Transceiver | Transceiver | | | | | Modulation: | FMCW | FMCW | | | | | Power Supply Requirement(s): | Nominal | Nominal 24.0 VDC | | | | | Transmit Frequency Range: | 75 GHz to 85 G | 75 GHz to 85 GHz | | | | | Transmit Channels Tested: | | Channel Bandwidth Channel Frequenc (GHz) (GHz) | | | | | | 2 | 2 | 79.500 | | | | | 4 | ļ | 80.000 | | | | | 8 | 3 | 80.000 | | | ## 3.4 Description of Available Antennas The radio utilizes various external antennas, with the following maximum gains: | Model Number | Туре | Frequency Range
(MHz) | Antenna Gain
(dBi) | |----------------|--|--------------------------|-----------------------| | VEGAZW-6-74539 | Thread with Integrated
Horn Antenna | 75000 to 85000 | 25.3 | | VEGAZW-6-74538 | Flange with Lens
Antenna | 75000 to 85000 | 30.7 | ISSUE DATE: 04 MARCH 2022 #### 3.5 Description of Test Setup #### **Support Equipment** The following support equipment was used to exercise the EUT during testing: | Description: | Round Nose Pliers | |-----------------------|-------------------| | Brand Name: | Belzer | | Model Name or Number: | 2464-A19 | | Serial Number: | 2051 | | Description: | 240 Litre Tank | |-----------------------|----------------------| | Brand Name: Speidel | | | Model Name or Number: | Not marked or stated | | Serial Number: | Not marked or stated | | Description: | DC Power Supply | |-----------------------|-----------------| | Brand Name: | ISO-Tech | | Model Name or Number: | IPS2302A | | Serial Number: | 504E005G2 | #### **Operating Modes** The EUT was tested in the following operating mode(s): • Transmitting at maximum power with an 8 GHz chirp bandwidth and FMCW modulation. #### **Configuration and Peripherals** The EUT was tested in the following configuration(s): - The EUT was configured using the built-in user interface. The chirp bandwidth was set by varying the maximum measurement distance setting. - The EUT was powered via a 24 VDC bench power supply connected to a 120 VAC 60 Hz mains supply. - Testing was performed with the EUT installed in a representative metal tank. No accessories/peripherals were employed during test as there were no ports on the EUT to populate. - Testing was performed with the EUT transmitting an 8 GHz chirp bandwidth, as preliminary investigation showed this to be the worst case with respect to emissions. - The EUT can be supplied with a range of antennas. Testing was performed on the highest gain antenna of each type. #### **Test Setup Diagrams** #### **Radiated Tests:** #### **Test Setup for Transmitter Radiated Emissions** # **Test Setup Diagrams (continued)** # **Test Setup for Transmitter Radiated Emissions (continued)** ## **4 Radiated Test Results** #### 4.1 Transmitter Radiated Emissions <1 GHz #### **Test Summary:** | Test Engineers: | Nick Tye &
Vi Van | Test Dates: | 07 January 2022 &
19 January 2022 | |----------------------------|----------------------|-------------|--------------------------------------| | Test Sample Serial Number: | 55822749 | | | | FCC Reference: Part 15.31(q) & 15.209(a) | | |---|-------------------| | Test Method Used: ANSI C63.10 Sections 6.3, 6.4 and 6.5 | | | Frequency Range | 9 kHz to 1000 MHz | #### **Environmental Conditions:** | Temperature (°C): | 20 to 22 | |------------------------|----------| | Relative Humidity (%): | 36 to 39 | #### Note(s): - 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss. - 2. All other emissions shown on the pre-scans were investigated and found to be ambient, or > 20 dB below the appropriate limit or below the noise floor of the measurement system. - 3. Measurements below 1 GHz were performed in semi-anechoic chambers (Asset Numbers K0001 & K0017) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Between 30 MHz and 1 GHz, maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres. - 4. Pre-scans were performed and markers placed on the highest measured levels. The test receiver was configured as follows: For 9 kHz to 150 kHz, the resolution bandwidth was set to 300 Hz and video bandwidth 1 kHz. A peak detector was used and trace mode was Max Hold. For 150 kHz to 30 MHz, the resolution bandwidth was set to 10 kHz and video bandwidth 30 kHz, trace mode was Max Hold. For 30 MHz to 1 GHz, the resolution bandwidth was set to 120 kHz and video bandwidth 500 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. - 5. Pre-scans were performed with each antenna. Emission frequencies and amplitudes did not vary between antennas, therefore final measurements were performed on the Plastic Horn Antenna. - 6. Final measurements were performed on the marker frequencies and the results entered into the table below. The test receiver resolution bandwidth was set to 120 kHz, using a CISPR quasi-peak detector and span wide enough to see the whole emission. ## Results: Quasi-Peak | Frequency
(MHz) | Antenna
Polarity | Level
(dBμV/m) | Limit
(dBμV/m) | Margin
(dB) | Result | |--------------------|---------------------|-------------------|-------------------|----------------|----------| | 34.9 | Vertical | 24.9 | 40.0 | 15.1 | Complied | | 280.0 | Vertical | 33.7 | 47.0 | 13.3 | Complied | | 296.0 | Vertical | 36.2 | 47.0 | 10.8 | Complied | | 312.0 | Vertical | 30.0 | 47.0 | 17.0 | Complied | Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying table. #### 4.2 Transmitter Radiated Emissions >1 GHz #### **Test Summary:** | Test Engineer: | Vi Van | Test Dates: | 07 January 2022 to
14 January 2022 | |----------------------------|----------|-------------|---------------------------------------| | Test Sample Serial Number: | 55822749 | | | | FCC Reference: | Part 15.31(q) & 15.209(a) | | |---|---------------------------|--| | Test Method Used: ANSI C63.10 Sections 6.3, 6.6, 9.8 and 9.12 | | | | Frequency Range | 1 GHz to 200 GHz | | #### **Environmental Conditions:** | Temperature (°C): | 20 to 24 | |------------------------|----------| | Relative Humidity (%): | 35 to 40 | #### Note(s): - 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss. - All other emissions shown on the pre-scans were investigated and found to be ambient, or > 20 dB below the appropriate limit or below the noise floor of the measurement system. Where no emissions < 20 dB from the applicable limit were identified, the highest noise floor reading was reported in the tables below. - 3. Pre-scans above 1 GHz were performed in fully anechoic chambers (Asset Numbers K0002 & K0017) at a distance of 3 metres. The EUT was placed at a height of 1.5 metres above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 metres above the test chamber floor, in line with the EUT. - 4. Final measurements between 1 GHz and 40 GHz were performed in a fully anechoic chamber (Asset Number K0017) at a distance of 3 metres. The EUT was placed at a height of 1.5 m above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres. - 5. Measurements above 40 GHz were performed in accordance with ANSI C63.10 Clause 9.12. - 6. Measurement distances above 40 GHz were determined according to ANSI C63.10 Clause 9.8. Measurement distances were reduced until 6 dB noise floor clearance was achieved: 40-50 GHz – 0.05 metres 50-75 GHz – 0.2 metres 75-110 GHz – 0.1 metres 110-170 GHz – 0.2 metres 170-200 GHz – 0.2 metres Results: VEGAZW-6-74539 / Peak | Frequency
(MHz) | Antenna
Polarity | Level
(dBμV/m) | Limit
(dBμV/m) | Margin
(dB) | Result | |--------------------|---------------------|-------------------|-------------------|----------------|----------| | 5029.500 | Horizontal | 57.3 | 74.0 | 16.7 | Complied | | 15044.400 | Horizontal | 62.6 | 74.0 | 11.4 | Complied | | 76099.152 | Horizontal | 63.7 | 74.0 | 10.3 | Complied | #### Results: VEGAZW-6-74539 / Average | Frequency
(MHz) | Antenna
Polarity | Level
(dBμV/m) | Limit
(dBμV/m) | Margin
(dB) | Result | |--------------------|---------------------|-------------------|-------------------|----------------|----------| | 4749.857 | Horizontal | 43.5 | 54.0 | 10.5 | Complied | | 14250.102 | Horizontal | 42.8 | 54.0 | 11.2 | Complied | | 15750.948 | Horizontal | 36.1 | 54.0 | 17.9 | Complied | | 78912.098 | Horizontal | 43.7 | 54.0 | 10.3 | Complied | ISSUE DATE: 04 MARCH 2022 # **Transmitter Radiated Emissions (continued)** Results: VEGAZW-6-74538 / Peak | Frequency
(MHz) | Antenna
Polarity | Level
(dBμV/m) | Limit
(dBμV/m) | Margin
(dB) | Result | |--------------------|---------------------|-------------------|-------------------|----------------|----------| | 4990.357 | Horizontal | 58.6 | 74.0 | 15.4 | Complied | | 14426.400 | Horizontal | 60.0 | 74.0 | 14.0 | Complied | | 76861.922 | Horizontal | 70.6 | 74.0 | 3.4 | Complied | ## Results: VEGAZW-6-74538 / Average | Frequency
(MHz) | Antenna
Polarity | Level
(dBμV/m) | Limit
(dBμV/m) | Margin
(dB) | Result | |--------------------|---------------------|-------------------|-------------------|----------------|----------| | 4750.094 | Horizontal | 39.5 | 54.0 | 14.5 | Complied | | 14250.024 | Horizontal | 45.5 | 54.0 | 8.5 | Complied | | 15750.212 | Horizontal | 37.8 | 54.0 | 16.2 | Complied | | 84011.100 | Horizontal | 47.3 | 54.0 | 6.7 | Complied | --- END OF REPORT ---