

RF TEST REPORT

For

BESING TECHNOLOGY (SHENZHEN) CO., LTD

Product Name: Wireless Earphone

Test Model(s).: S72

Report Reference No. : DACE241112011RL001

FCC ID : 2ATU8-S72

Applicant's Name : BESING TECHNOLOGY (SHENZHEN) CO., LTD

Address 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu

Community, Shiyan Street, Baoan District, Shenzhen, China

Testing Laboratory : Shenzhen DACE Testing Technology Co., Ltd.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park,

Address : Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen,

Guangdong, China

Test Specification Standard : 47 CFR Part 15.247

Date of Receipt : November 12, 2024

Date of Test : November 12, 2024 to November 20, 2024

Data of Issue : November 20, 2024

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 1 of 91

V1.0

Apply for company information

Applicant's Name	:	ESING TECHNOLOGY (SHENZHEN) CO., LTD			
Address	:	F, Block 1, Tianxin Resident Group Industrial Park, Shangwu community, Shiyan Street, Baoan District, Shenzhen, China			
Product Name	:	Wireless Earphone			
Test Model(s)	į	S72			
Series Model(s)	•	N17,N18			
Test Specification Standard(s)	:	47 CFR Part 15.247			

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by: Keren Huang

Keren Huang / Test Engineer

November 20, 2024

Supervised by:

Ban Tang

Ben Tang / Project Engineer

November 20, 2024

Approved by:

Machael Mã

Machael Mo / Manager

November 20, 2024

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 2 of 91

DAG

Report No.: DACE241112011RL001

Revision History Of Report

Version Description		on Description REPORT No.	
V1.0	Original	DACE241112011RL001	November 20, 2024
	1	21	(

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 3 of 91

DAG

V1.0

CONTENTS

	1 TEST SUMMARY	6
	1.1 TEST STANDARDS	
,	2 GENERAL INFORMATION	
	2.1 CLIENT INFORMATION	7
	2.2 DESCRIPTION OF DEVICE (EUT)	7
	2.3 DESCRIPTION OF TEST MODES	
	2.4 DESCRIPTION OF SUPPORT UNITS	
	2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
	2.7 IDENTIFICATION OF TESTING LABORATORY	
	2.8 ANNOUNCEMENT	
;	3 EVALUATION RESULTS (EVALUATION)	
	3.1 ANTENNA REQUIREMENT	12
	3.1.1 Conclusion:	12
1	4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	13
	4.1 CONDUCTED EMISSION AT AC POWER LINE	
	4.1.1 E.U.T. Operation:	
	4.1.2 Test Setup Diagram:	
	4.1.3 Test Data:	
	4.2 MAXIMUM CONDUCTED OUTPUT POWER	
	4.2.1 E.U.T. Operation:	
	4.2.2 Test Setup Diagram:	
	4.2.3 Test Data:	
	4.3 CHANNEL SEPARATION	
	4.3.1 E.U.T. Operation:	
	4.3.2 Test Setup Diagram:	
	4.3.3 Test Data:	
	4.4 NUMBER OF HOPPING FREQUENCIES	
	4.4.1 E.U.T. Operation:	
	4.4.2 Test Setup Diagram:	
	4.4.3 Test Data:	
	4.5 DWELL TIME	_
	4.5.1 E.U.T. Operation:	
	4.5.2 Test Setup Diagram:	
	4.5.3 Test Data:	
	4.6 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
	4.6.1 E.U.T. Operation:	21
	4.6.2 Test Setup Diagram:	
	4.6.3 Test Data:	
	4.7 BAND EDGE EMISSIONS (RADIATED)	
	4.7.1 E.U.T. Operation:	
	4.7.2 Test Setup Diagram:	
	4.7.3 Test Data:	
	4.8 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz)	
	4.8.1 E.U.T. Operation:	
		-

DAG

4.8.2 Test Data:	
4.9 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz)	31
4.9.1 E.U.T. Operation:	32
4.9.2 Test Data:	32
5 TEST SETUP PHOTOS	38
6 PHOTOS OF THE EUT	40
APPENDIX	49
1. Duty Cycle	50
220DB BANDWIDTH	54
3. 99% OCCUPIED BANDWIDTH	58
4. PEAK OUTPUT POWER	62
5. Spurious Emissions	
6. BANDEDGE	69
7. CARRIER FREQUENCIES SEPARATION (HOPPING)	78
8. NUMBER OF HOPPING CHANNEL (HOPPING)	82
9. DWELL TIME (HOPPING)	86

ME

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 5 of 91

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(1)	Pass
Channel Separation	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 6 of 91

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name : BESING TECHNOLOGY (SHENZHEN) CO., LTD

Address : 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community,

Shiyan Street, Baoan District, Shenzhen, China

Report No.: DACE241112011RL001

Manufacturer : BESING TECHNOLOGY (SHENZHEN) CO., LTD

Address : 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community,

Shiyan Street, Baoan District, Shenzhen, China

2.2 Description of Device (EUT)

Product Name:	Wireless Earphone
Model/Type reference:	S72
Series Model:	N17,N18
Model Difference:	The product has many models, only the model name is different, and the other parts such as the circuit principle, pcb and electrical structure are the same.
Trade Mark:	N/A
Power Supply:	DC 5V/1A from adapter Battery:DC3.7V 65mAh
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	79
Modulation Type:	GFSK, π/4 DQPSK
Antenna Type:	Chip antenna
Antenna Gain:	1.9dBi
Hardware Version:	V1.0
Software Version:	V1.0

(Remark:The Antenna Gain is supplied by the customer.DACE is not responsible for This data and the related calculations associated with it)

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz	
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz	
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz	
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz	
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz	
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz	
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz	
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz	
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz	
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz	
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz	
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz	
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 7 of 91

14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
	BDR/EDR
Lowest channel	2402MHz
Middle channel	2441MHz
Highest channel	2480MHz

2.3 Description of Test Modes

No	Title	Description
TM1	TX-GFSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.
TM2	TX-Pi/4DQPSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with Pi/4DQPSK modulation.
ТМ3	TX-GFSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.
TM4	TX-Pi/4DQPSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with Pi/4DQPSK modulation.
Remark	c:Only the data of the worst	mode would be recorded in this report.

2.4 Description of Support Units

Title	Title Manufacturer Model No.		Serial No.
AC-DC adapter	HUAWEI TECHNOLOGY	HW100400C01	

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 8 of 91

2.5 Equipments Used During The Test

Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	1	2024-03-25	2025-03-24		
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	1	/		
Cable	SCHWARZ BECK	101	1	2024-03-20	2025-03-19		
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Attenuation	561-G071	2023-12-12	2024-12-11		
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	/		
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2024-06-12	2025-06-11		
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11		
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13		
Pulse Limiter	CYBERTEK	EM5010A	1	2024-09-27	2025-09-26		
EMI test software	EZ -EMC	EZ	V1.1.42	1	/		

Emissions in non-restricted frequency bands Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies Dwell Time

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	TACHOY	RTS-01	V1.0.0	/	/
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	0,000
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Signal Generator	Keysight	N5181A	MY48180415	2023-12-11	2024-12-10
Signal Generator	Keysight	N5182A	MY50143455	2023-12-12	2024-12-11
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11
	, ,			. (0	

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 9 of 91

Band edge emissions (Radiated)
Emissions in frequency bands (below 1GHz)
Emissions in frequency bands (above 1GHz)

Lillissions in frequenc	y banas (above it	3112)			
Equipment	Manufacturer Model No I		Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	1	/
Positioning Controller	<u> </u>	MF-7802	61	1	1
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13
Cable(LF)#2	Schwarzbeck	1	1	2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	1	1	2024-02-19	2025-02-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19
Cable(HF)#1	Schwarzbeck	SYV-50-3-1		2024-03-20	2025-03-19
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2024-06-13	2025-06-12
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 10 of 91

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
RF conducted power	±0.733dB
Occupied Bandwidth	±3.63%
Duty cycle	±3.1%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252

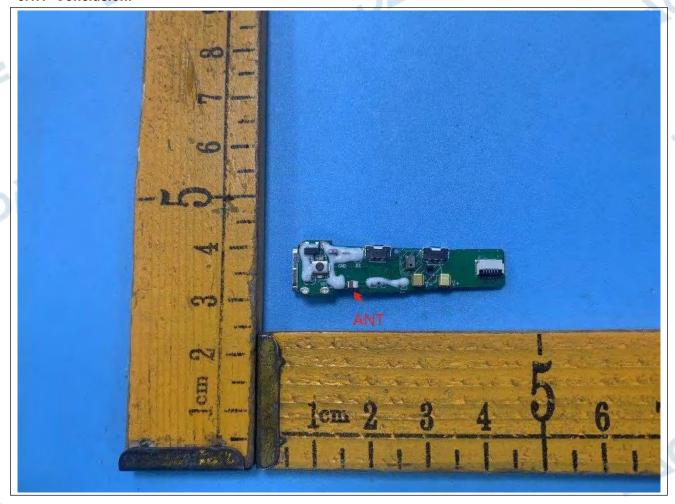
Identification of the Responsible Testing Location

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.				
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China				
Phone Number:	+86-13267178997				
Fax Number:	86-755-29113252				
FCC Registration Number:	0032847402				
Designation Number:	CN1342				
Test Firm Registration Number:	778666				
A2LA Certificate Number:	6270.01				

2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 91


3 Evaluation Results (Evaluation)

3.1 Antenna requirement

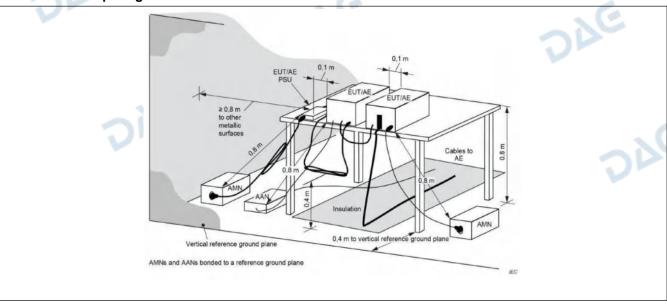
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 12 of 91

4 Radio Spectrum Matter Test Results (RF)


4.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz)						
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2013 section 6.2						
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						

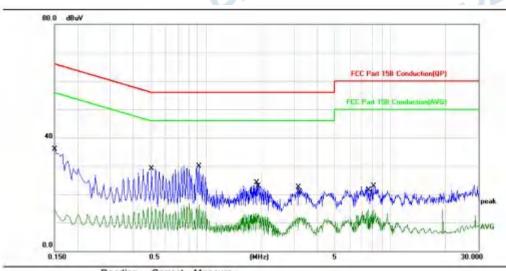
4.1.1 E.U.T. Operation:

Operating Environment:							
Temperature:	23.6 °C		Humidity:	54 %	Atn	nospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2				
Final test mode:		TM1					

4.1.2 Test Setup Diagram:

Web: http://www.dace-lab.com

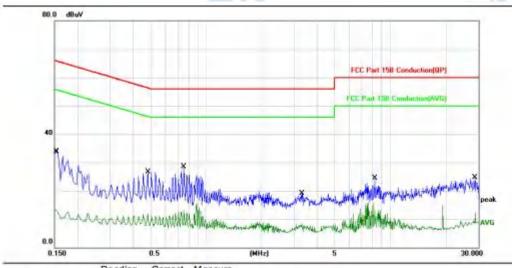
Tel: +86-755-23010613


E-mail: service@dace-lab.com

Page 13 of 91

4.1.3 Test Data:

TM1 / Line: Line / Band: 2400-2483.5 MHz / BW: 1 / CH: L


Report No.: DACE241112011RL001

			Level	Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector .	Comment
1		0.1500	25.70	10.10	35.80	65.99	-30.19	QP	
2	т	0.1500	4.73	10.10	14.83	55.99	-41.16	AVG	
3		0.5060	19.11	10.08	29.19	56.00	-26.81	QP	
4		0.5060	5.34	10.08	15.42	46.00	-30.58	AVG	
5		0.9100	19.86	10.08	29.94	56.00	-26.06	QP	
6		0.9100	6.31	10.08	16.39	46.00	-29.61	AVG	
7		1.8700	14.08	10.01	24.09	56.00	-31.91	QP	
8		1.9220	3.38	10.00	13.38	46.00	-32.62	AVG	
9		3.1580	12.46	10.08	22.54	56.00	-33.46	QP	
10		3.2100	1.90	10.08	11.98	46.00	-34.02	AVG	
11		7.6260	4.55	10.25	14.80	50.00	-35.20	AVG	
12		8.0820	12.59	10.28	22.87	60.00	-37.13	QP	

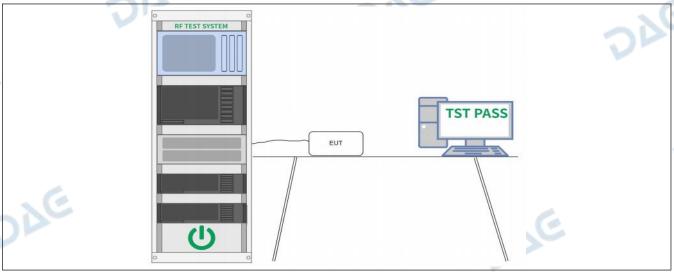
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 14 of 91

TM1 / Line: Neutral / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Mk.	Freq.	Reading Level	Correct	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	3.27	10.10	13.37	55.99	-42.62	AVG	
2		0.1539	23.73	10.10	33.83	65.78	-31.95	QP	
3		0.4820	16.58	10.08	26.66	56.30	-29.64	QP	
4		0.4820	1.74	10.08	11.82	46.30	-34.48	AVG	
5		0.7580	18.47	10.08	28.55	56.00	-27.45	QP	
6		0.7580	3.10	10.08	13.18	46.00	-32.82	AVG	
7		3.3100	9.02	10.10	19.12	56.00	-36.88	QP	
8		3.3100	-1.89	10.10	8.21	46.00	-37.79	AVG	
9		8.0980	5.67	10.28	15.95	50.00	-34.05	AVG	
10		8.2140	14.16	10.28	24.44	60.00	-35.56	QP	
11		28.6860	13.70	11.06	24.76	60.00	-35.24	QP	
12		28.8060	1.28	11.07	12.35	50.00	-37.65	AVG	

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 15 of 91

4.2 Maximum Conducted Output Power


	austra Gatpat i Giroi
Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:
	 a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured.
.e	 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize.
	c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables.
C	e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.
4.2.1 E.U.T. Operation:	, E

Report No.: DACE241112011RL001

4.2.1 E.U.T. Operation:

Operating Environment:						
Temperature:	23.6 °C		Humidity:	54 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2			
Final test mode:		TM1,	TM2			

4.2.2 Test Setup Diagram:

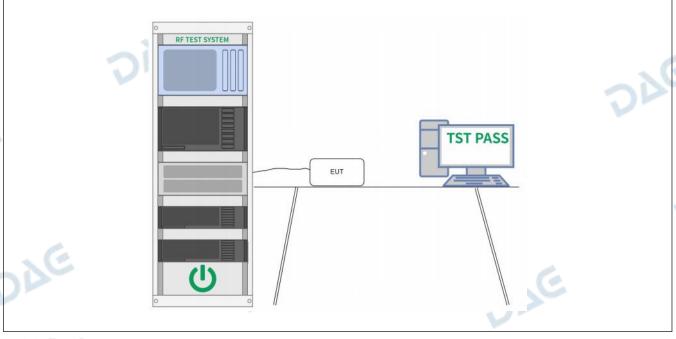
4.2.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 Page 16 of 91 E-mail: service@dace-lab.com

4.3 Channel Separation


Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW.
DE	d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

Report No.: DACE241112011RL001

4.3.1 E.U.T. Operation:

Operating Environment:							
Temperature: 23.6 °C			Humidity:	54 %		Atmospheric Pressure:	102 kPa
Pretest mode: TM3			TM4	- 3	C		. 6
Final test mode: TM3,			TM4	JI			270

4.3.2 Test Setup Diagram:

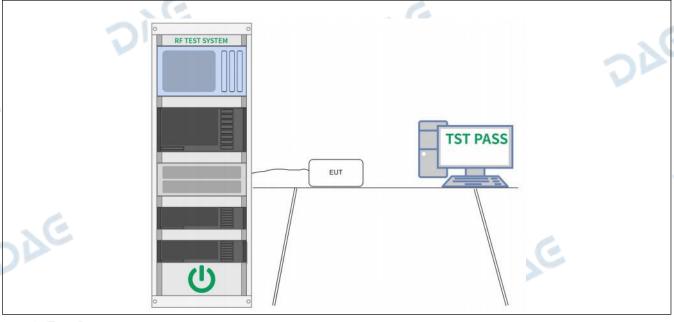
4.3.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 17 of 91

4.4 Number of Hopping Frequencies


	philig i reductions
Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

Report No.: DACE241112011RL001

4.4.1 E.U.T. Operation:

Operating Environment:							
Temperature:	perature: 23.6 °C		Humidity:	54 %	70	Atmospheric Pressure:	102 kPa
Pretest mode: TM3, TM4			TM4	V			200
Final test mode: TM3			TM4				

4.4.2 Test Setup Diagram:

4.4.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 18 of 91

4.5 Dwell Time

4.5 Dwell Time	. (0	
Test Requirement:	47 CFR 15.247(a)(1)(iii)	2/6
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping system MHz band shall use at least 15 channels. The average time channel shall not be greater than 0.4 seconds within a period multiplied by the number of hopping channels employed. Fre systems may avoid or suppress transmissions on a particulal provided that a minimum of 15 channels are used.	of occupancy on any d of 0.4 seconds equency hopping
Test Method:	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	276
Procedure:	The EUT shall have its hopping function enabled. Use the for analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RET, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per where possible use a video trigger and trigger delay so that starts a little to the right of the start of the plot. The trigger leadjustment to prevent triggering when the system hops on a second plot might be needed with a longer sweep time to sh hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time varies with different modes of operation (data rate, modulation hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to dete hops over the period specified in the requirements. The swe to, or less than, the period specified in the requirements. Determine the number of hops over the sweet total number of hops in the period specified in the requirements (number of hops on spectrum analyzer) × (period specified in analyzer sweep time) The average time of occupancy is calculated from the transmultiplied by the number of hops in the period specified in the number of hops in a specific time varies with different modes rate, modulation format, number of hopping channels, etc.),	hopping channel; the transmitted signal vel might need slight n adjacent channel; a low two successive e per hop. If this value on format, number of ep time shall be equal p time and calculate the ents, using the following e) = n the requirements / mit time per hop he requirements. If the sof operation (data
	each variation. The measured transmit time and time between hops shall be values described in the operational description for the EUT.	e consistent with the

Report No.: DACE241112011RL001

4.5.1 E.U.T. Operation:

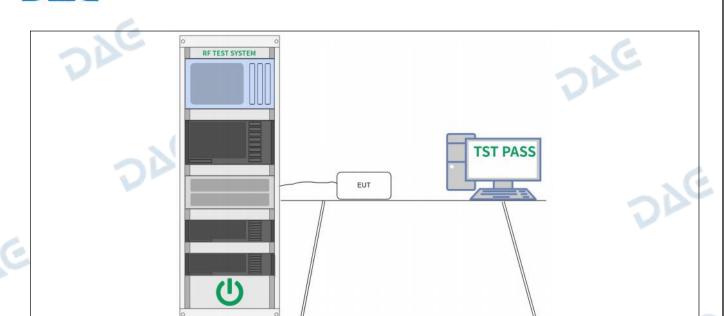
Operating Envir	onment:	U			DIA.	
Temperature:	23.6 °C		Humidity:	54 %	Atmospheric Pressure:	102 kPa
Pretest mode: TM3		TM3,	TM4			
Final test mode: TM3,		TM4	6			

4.5.2 Test Setup Diagram:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613


E-mail: service@dace-lab.com

Page 19 of 91

DIE

DAG

DAG

DAG

4.5.3 Test Data:

DAG

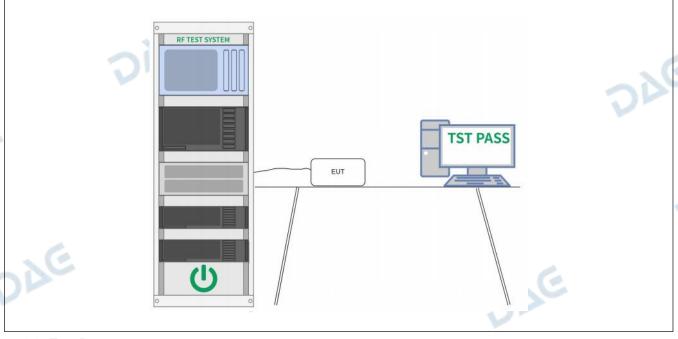
DAG

Please Refer to Appendix for Details.

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 20 of 91

4.6 Emissions in non-restricted frequency bands


Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

Report No.: DACE241112011RL001

4.6.1 E.U.T. Operation:

Operating Environment:						
Temperature: 23.6 °C	Humidity:	54 %	Atmospheric Pressure:	102 kPa		
Pretest mode:	TM1, TM2, TM3,	TM4		. 6		
Final test mode:	TM1, TM2, TM3,	TM4				

4.6.2 Test Setup Diagram:

4.6.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 21 of 91

DAG

4.7 Band edge emissions (Radiated)

Test Requirement:	restricted bands, as de	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
1E	radiators operating und 54-72 MHz, 76-88 MHz these frequency bands and 15.241. In the emission table al The emission limits sho employing a CISPR qu 110–490 kHz and abov	n paragraph (g), fundamental em ler this section shall not be located, 174-216 MHz or 470-806 MHz. is permitted under other sections bove, the tighter limit applies at thown in the above table are based asi-peak detector except for the fee 1000 MHz. Radiated emission ments employing an average detector except detector except for the fee 1000 MHz.	ed in the frequency bands However, operation within s of this part, e.g., §§ 15.231 ne band edges. on measurements frequency bands 9–90 kHz, limits in these three bands					
Test Method:		ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02						
Procedure:	ANSI C63.10-2013 sec	ANSI C63.10-2013 section 6.10.5.2						

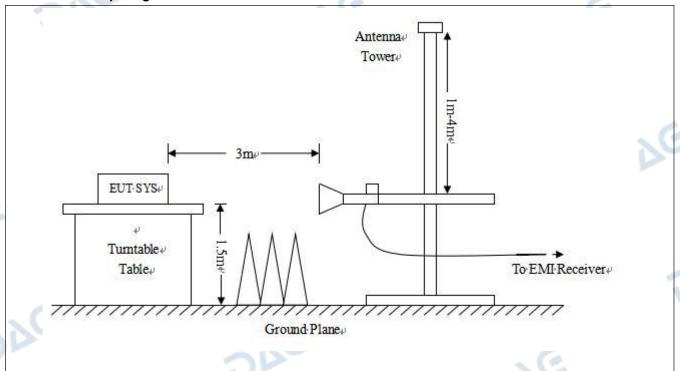
Report No.: DACE241112011RL001

4.7.1 E.U.T. Operation:

Operating Environment:								
Temperature: 23.6 °C Humidity: 54 % Atmospheric Pressure: 102 kPa								
Pretest mode: TM1, TM2					. (
Final test mode: TM1								

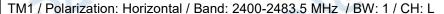
Web: http://www.dace-lab.com

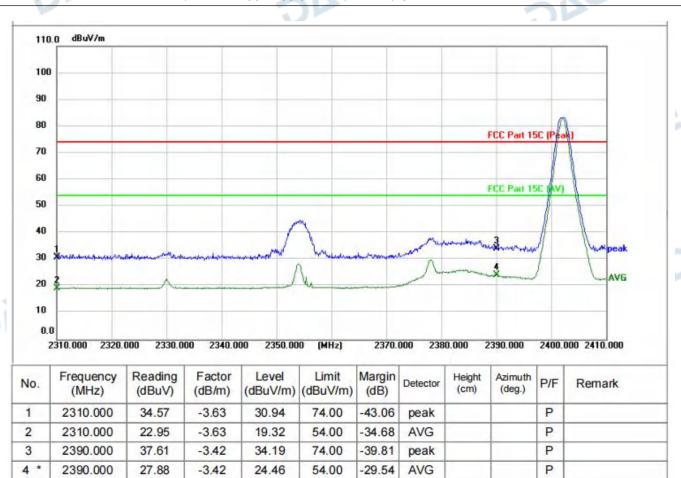
Tel: +86-755-23010613


E-mail: service@dace-lab.com

Page 22 of 91

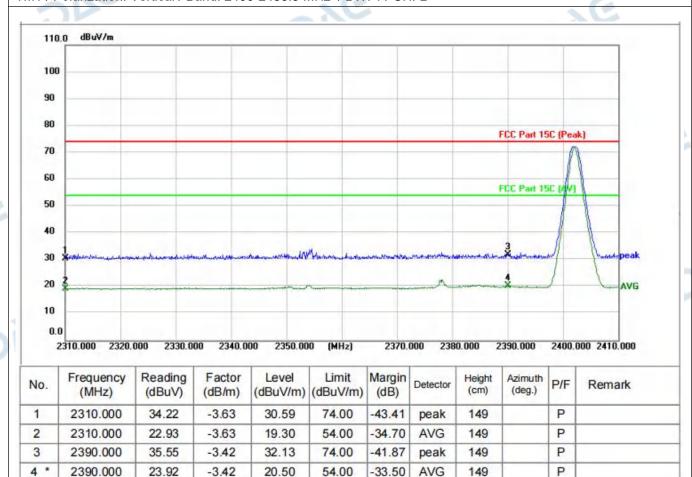
4.7.2 Test Setup Diagram:




Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 23 of 91

DAG

4.7.3 Test Data:


Report No.: DACE241112011RL001

DAG

Report No.: DACE241112011RL001

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

28.77

-3.13

25.64

54.00

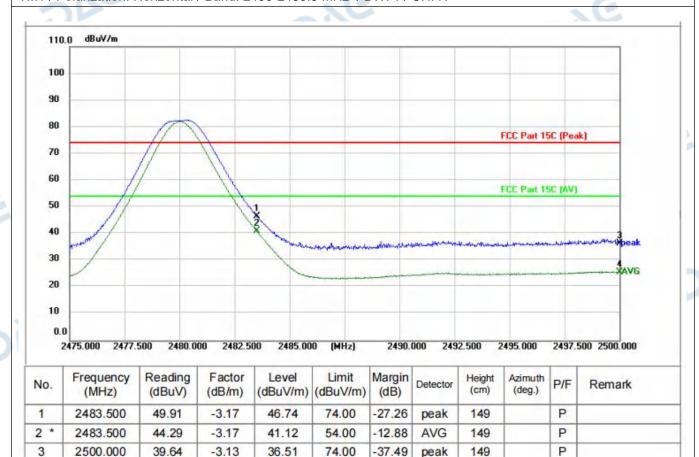
-28.36

AVG

149

2500.000

4


DAG

Report No.: DACE241112011RL001

P

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

3

4

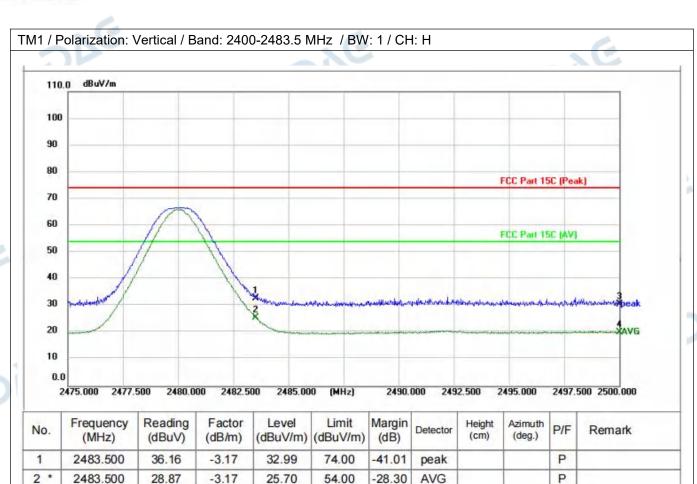
DAG

2500.000

2500.000

33.91

23.32


-3.13

-3.13

30.78

20.19

Report No.: DACE241112011RL001

The test software will only record the worst test angle and height, and only the worst case will be recorded in the test report.

74.00

54.00

-43.22

-33.81

peak

AVG

P

P

4.8 Emissions in frequency bands (below 1GHz)

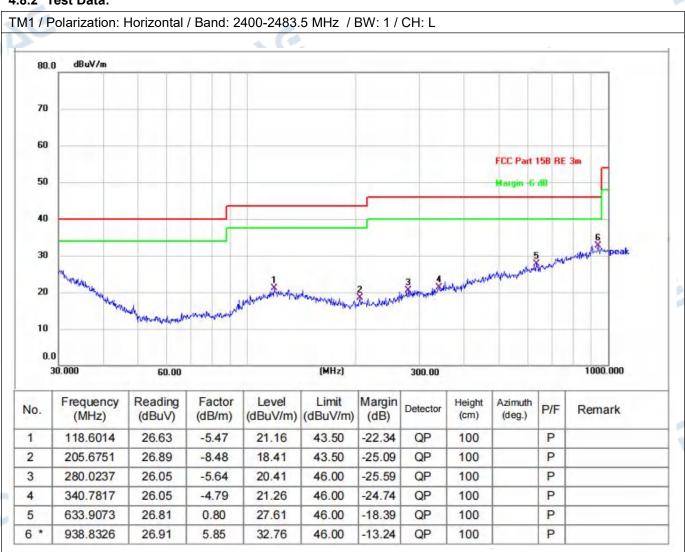
Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	and 15.241. In the emission table about the emission limits show employing a CISPR quart 110–490 kHz and above	s permitted under other sections of ove, the tighter limit applies at the vn in the above table are based or si-peak detector except for the free 1000 MHz. Radiated emission limiter that is a property and a superage detections.	band edges. In measurements quency bands 9–90 kHz, hits in these three bands				
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02						
Procedure:	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to 						
	determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-						
	reported in a data sheet. h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedu Remark:	peak, quasi-peak or average methods west channel, the middle channel, ments are performed in X, Y, Z ax found the X axis positioning which are until all frequencies measured GHz, through pre-scan found the N	the Highest channel. is positioning for it is the worst case. I was complete.				

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 28 of 91

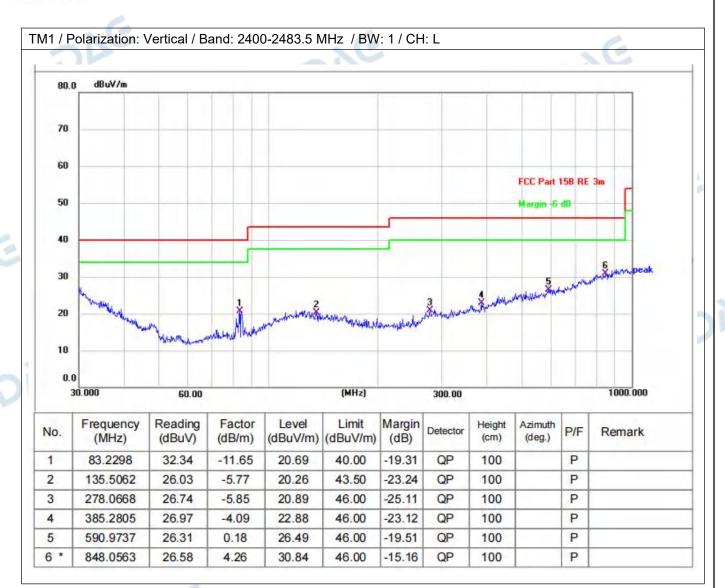
channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor


Report No.: DACE241112011RL001

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.8.1 E.U.T. Operation:


Operating Environment:							
Temperature:	23.6 °C	Atmospheric Pressure:	102 kPa				
Pretest mode: TM1			TM2		. 6		
Final test mode: TM1					270		

4.8.2 Test Data:

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 29 of 91

The test software will only record the worst test angle and height, and only the worst case will be recorded in the test report.

4.9 Emissions in frequency bands (above 1GHz)

	requency bands (abo		anda oo dafiraadii. C					
Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`							
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.							
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02							
Procedure:	above the ground at a 3 360 degrees to determin b. For above 1GHz, the labove the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on t d. The antenna height is determine the maximum polarizations of the antenee. For each suspected e the antenna was tuned to below 30MHz, the antenwas turned from 0 degree f. The test-receiver system Bandwidth with Maximur g. If the emission level of specified, then testing correported. Otherwise the tested one by one using reported in a data sheet.	f the EUT in peak mode was 10dB ould be stopped and the peak valu emissions that did not have 10dB peak, quasi-peak or average meth	per. The table was rotated tion. Itating table 1.5 meters to tating table 1.5 meters to table was rotated 360 ence-receiving antenna, a tower. Iters above the ground to orizontal and vertical ment. It its worst case and then its (for the test frequency of and the rotatable table imum reading. Item and Specified Item and Specified Item and Specified Item and Specified Item and Specified and then the limit to the second as specified and then the limit as specified and the limit as specifi					
	h. Test the EUT in the lowest channel, the middle channel, the Highest channel. i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Remark: 1) For emission below 1GHz, through pre-scan found the worst case is the lowest							

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 31 of 91

channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.9.1 E.U.T. Operation:

Operating Environment:							
Temperature:	23.6 °C		Humidity:	54 %	Atmospheric Pressure:	102 kPa	
Pretest mode:			TM1, TM2				
Final test mode: TM1		TM1			270		

4.9.2 Test Data:

7204,000

4

25.87

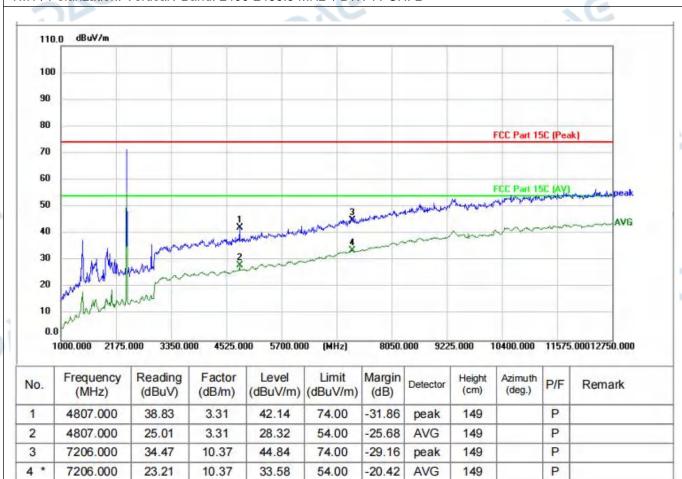
10.37

36.24

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

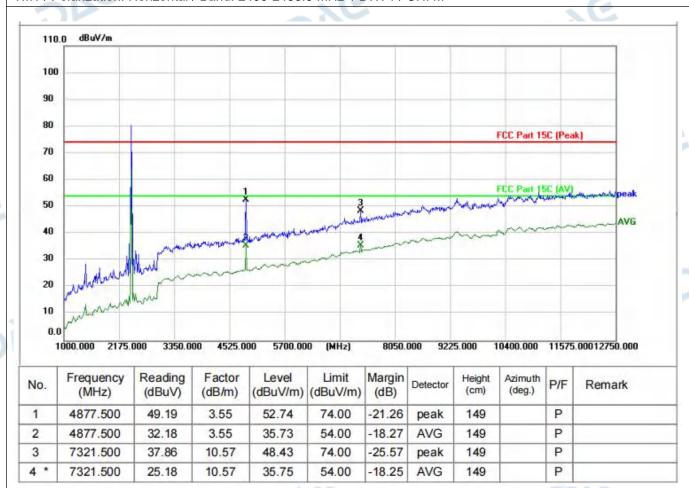
54.00

-17.76

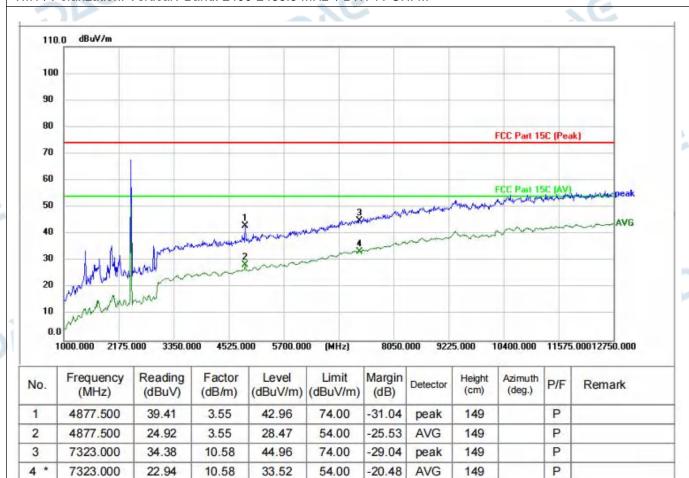

AVG

149

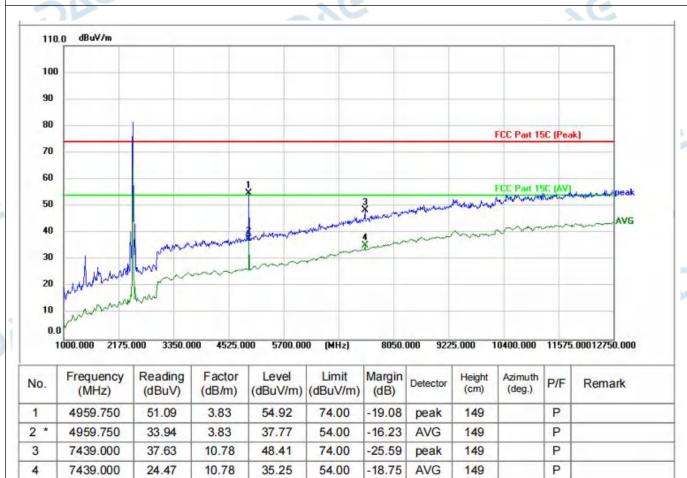
P



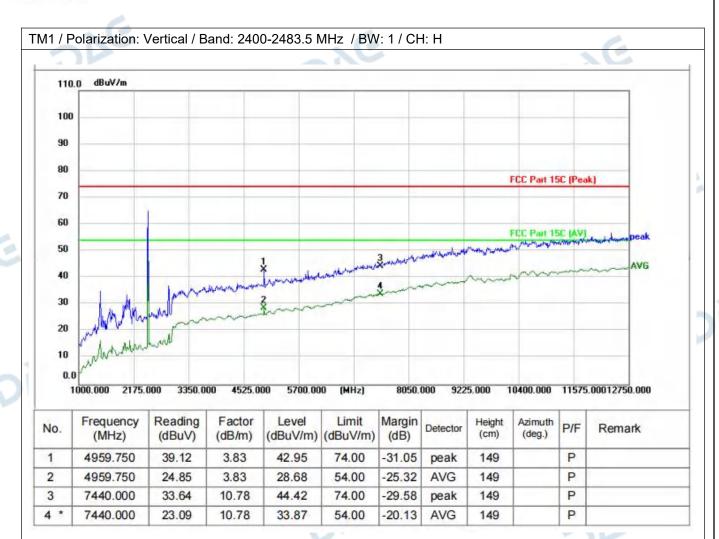
TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L



TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: M



TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: M

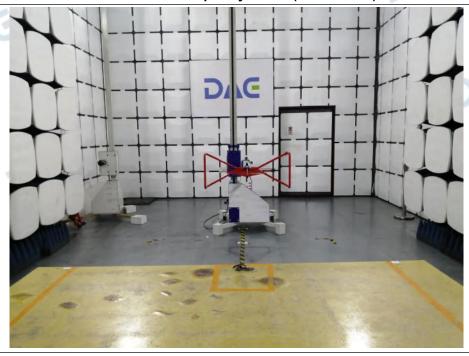


TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

Report No.: DACE241112011RL001

The test software will only record the worst test angle and height, and only the worst case will be recorded in the test report.

Report No.: DACE241112011RL001



5 TEST SETUP PHOTOS

Conducted Emission at AC power line

Emissions in frequency bands (below 1GHz)

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 38 of 91

DAG

DAG

DAG

DAG

Report No.: DACE241112011RL001

6 PHOTOS OF THE EUT

V1.0

External

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 40 of 91

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 41 of 91

Report No.: DACE241112011RL001

V1.0

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 42 of 91

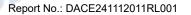
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 43 of 91



Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 44 of 91

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

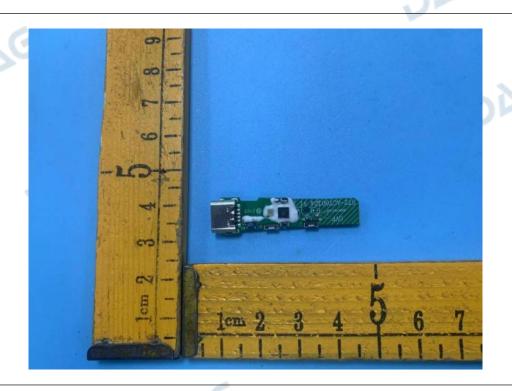
Page 45 of 91

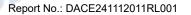
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

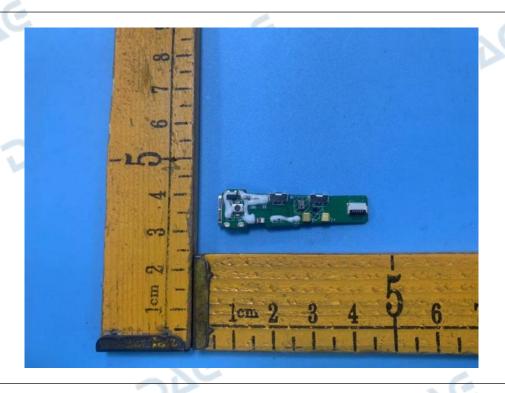
Web: http://www.dace-lab.com

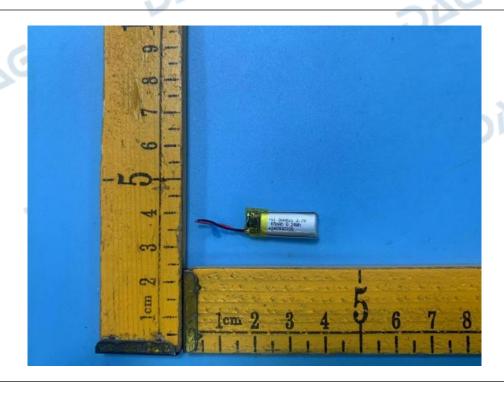
Tel: +86-755-23010613

E-mail: service@dace-lab.com


Page 46 of 91




Internal



Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

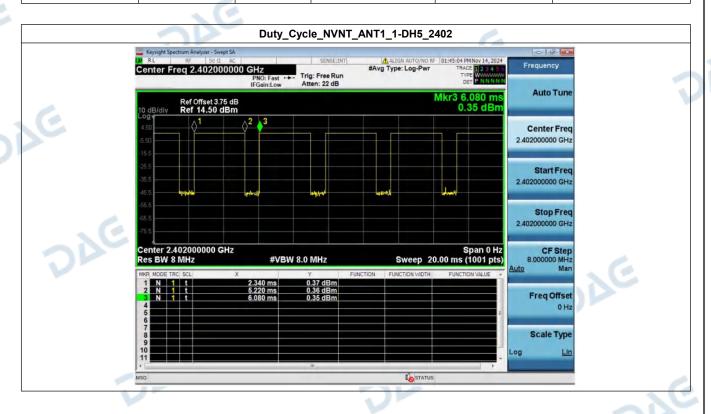
Page 48 of 91

DAG

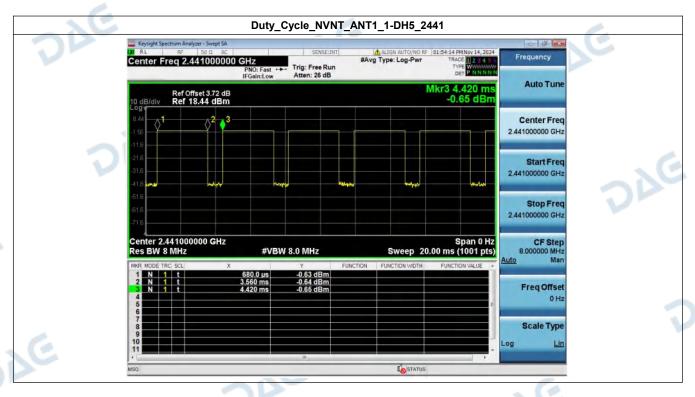
DAG

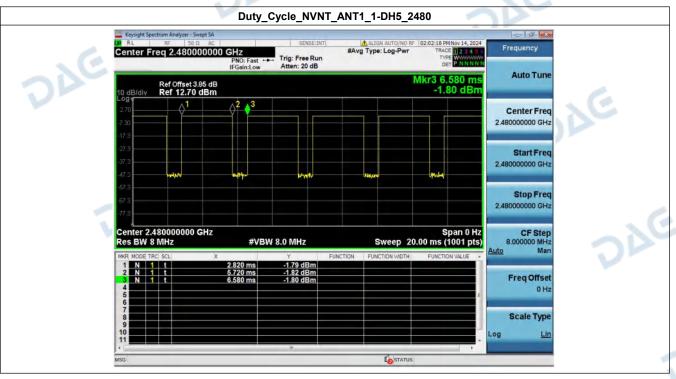
Report No.: DACE241112011RL001

Appendix

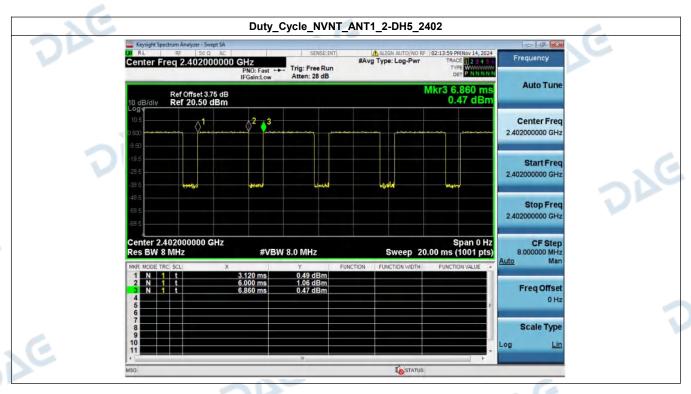

DAG

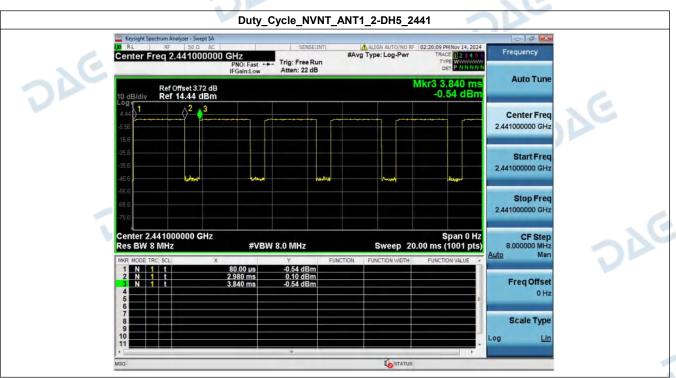
HT241111015--S27--EDR--FCC FCC_BT (Part15.247) Test Data


1. Duty Cycle


Condition	Antenna	Rate	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	1-DH5	2402.00	77.54	1.10
NVNT	ANT1	1-DH5	2441.00	77.01	1.13
NVNT	ANT1	1-DH5	2480.00	77.66	1.10
NVNT	ANT1	2-DH5	2402.00	77.54	1.10
NVNT	ANT1	2-DH5	2441.00	77.13	1.13
NVNT	ANT1	2-DH5	2480.00	77.13	1.13

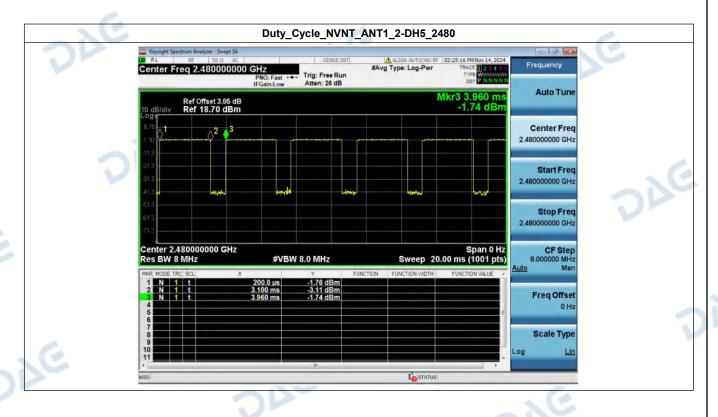
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 50 of 91




DAG

DAG

V1.0



DAG

DAG

DAG

V1.0

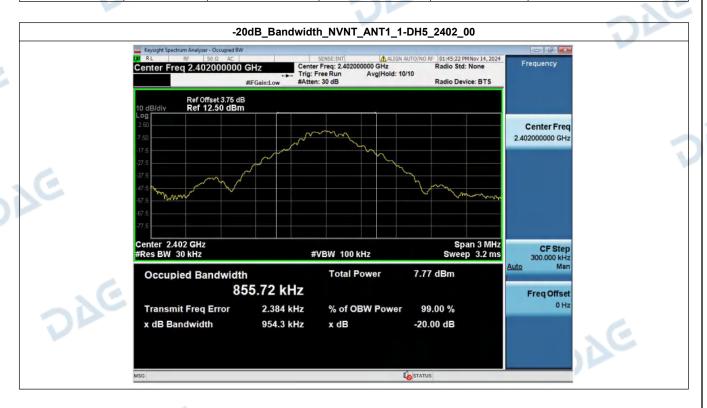
DAG

DAG

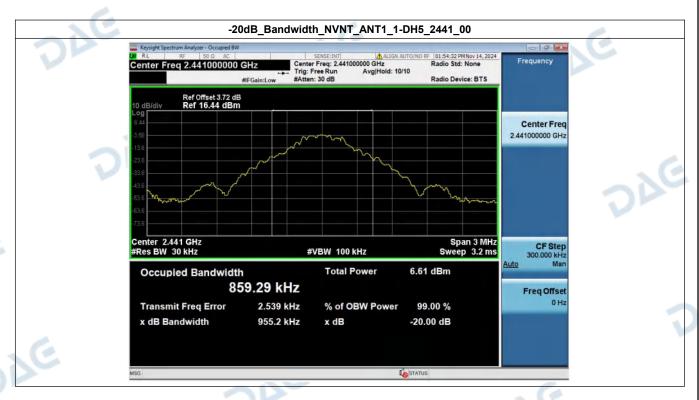
DAG

DAG

DAG


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 53 of 91

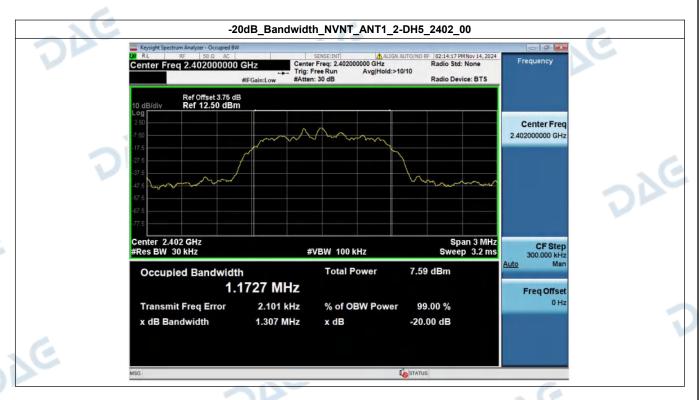
2. -20dB Bandwidth

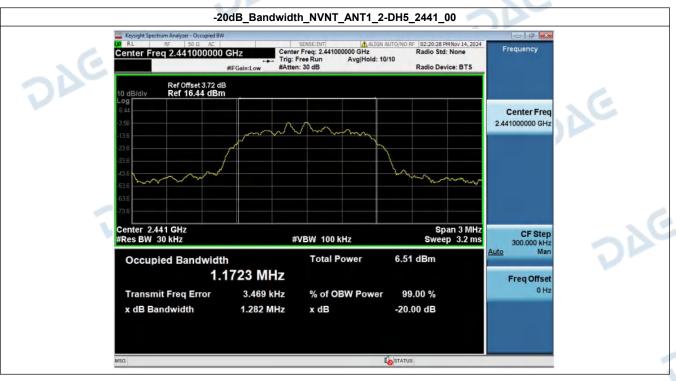

Condition	Antenna	Modulation	Frequency (MHz)	-20dB BW(MHz)	if larger than CFS			
NVNT	ANT1	1-DH5	2402.00	0.954	No			
NVNT	ANT1	1-DH5	2441.00	0.955	No			
NVNT	ANT1	1-DH5	2480.00	0.954	No			
NVNT	ANT1	2-DH5	2402.00	1.307	Yes			
NVNT	ANT1	2-DH5	2441.00	1.282	Yes			
NVNT	ANT1	2-DH5	2480.00	1.282	Yes			

Report No.: DACE241112011RL001

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 54 of 91

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

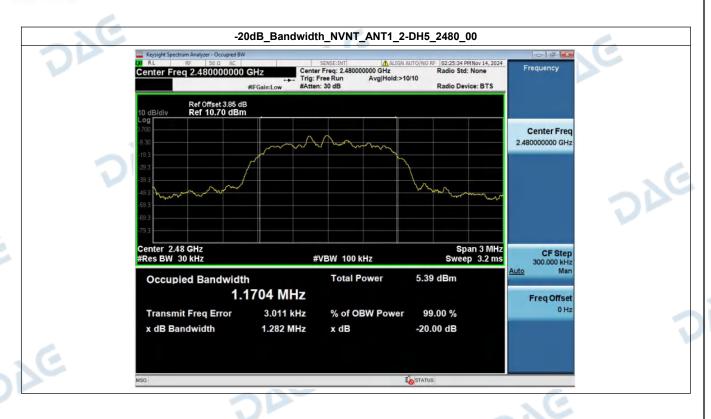

Web: http://www.dace-lab.com


Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 55 of 91

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 56 of 91



DAG

DAG

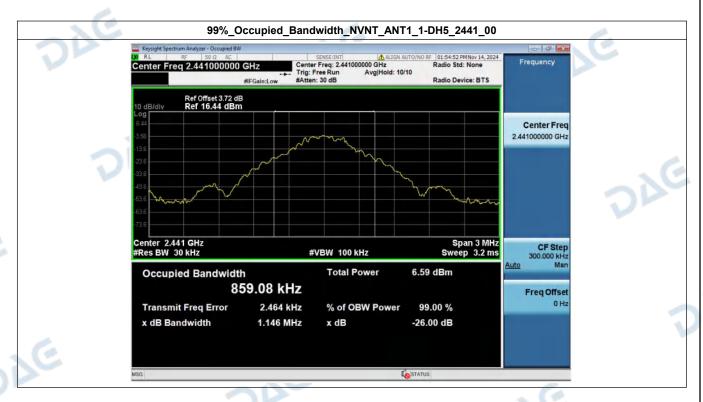
DAG

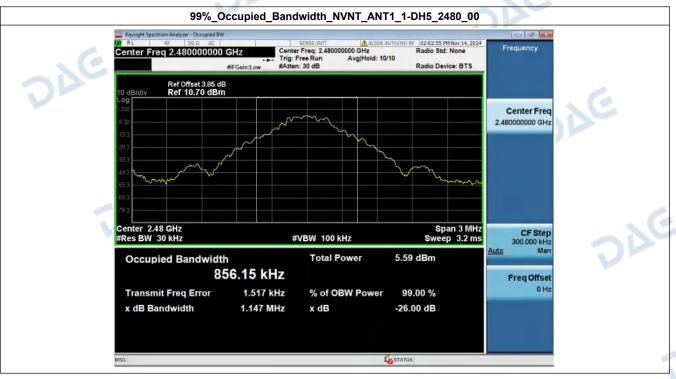
V1.0

DAG

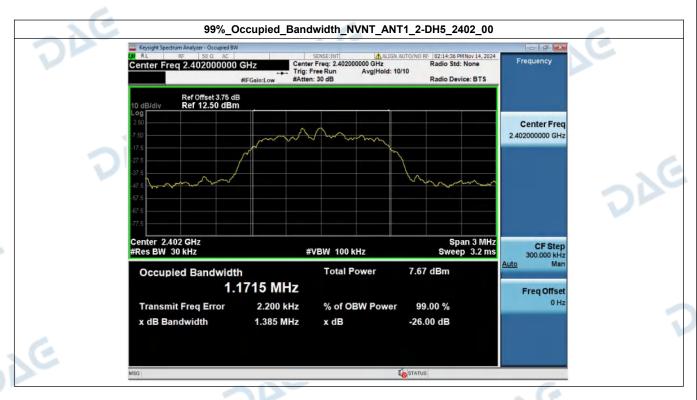
DAG

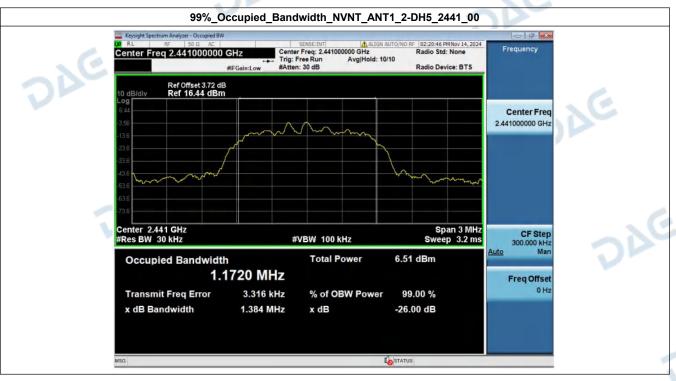

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 57 of 91


3. 99% Occupied Bandwidth

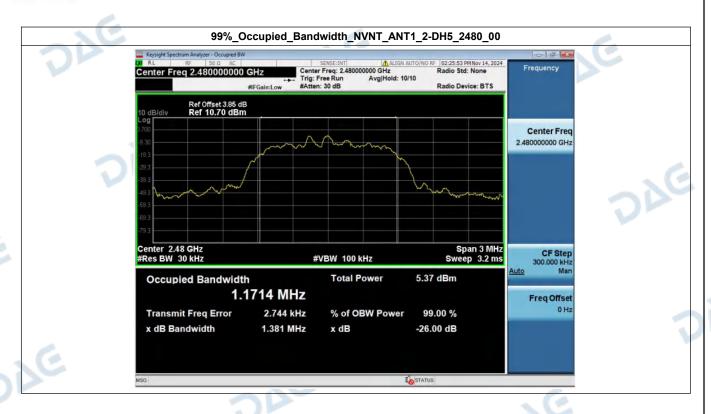

Condition	Antenna	Modulation	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1-DH5	2402.00	0.856
NVNT	ANT1	1-DH5	2441.00	0.859
NVNT	ANT1	1-DH5	2480.00	0.856
NVNT	ANT1	2-DH5	2402.00	1.171
NVNT	ANT1	2-DH5	2441.00	1.172
NVNT	ANT1	2-DH5	2480.00	1.171

Report No.: DACE241112011RL001




Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 58 of 91

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 59 of 91



DAG

DAG

DAG

V1.0

DAG

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 61 of 91

Report No.: DACE241112011RL001

4. Peak Output Power

DAG

Condition	Antenna	Modulation	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1-DH5	2402.00	0.35	1.08	1000	Pass
NVNT	ANT1	1-DH5	2441.00	-0.65	0.86	1000	Pass
NVNT	ANT1	1-DH5	2480.00	-1.83	0.66	1000	Pass
NVNT	ANT1	2-DH5	2402.00	1.33	1.36	125	Pass
NVNT	ANT1	2-DH5	2441.00	0.34	1.08	125	Pass
NVNT	ANT1	2-DH5	2480.00	-0.86	0.82	125	Pass

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 62 of 91

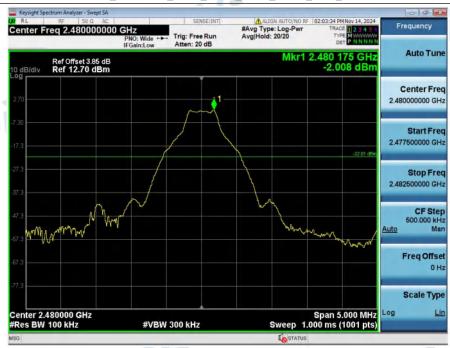
5. Spurious Emissions

Condition	Antenna	Modulation	TX Mode	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-48.204	-19.799	Pass
NVNT	ANT1	1-DH5	2441.00	-46.367	-20.803	Pass
NVNT	ANT1	1-DH5	2480.00	-45.388	-22.008	Pass
NVNT	ANT1	2-DH5	2402.00	-49.520	-19.585	Pass
NVNT	ANT1	2-DH5	2441.00	-46.437	-20.639	Pass
NVNT	ANT1	2-DH5	2480.00	-48.369	-21.890	Pass

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 63 of 91

DAG

V1.0


2_Spurious_Emissions_NVNT_ANT1_1-DH5_2441_00

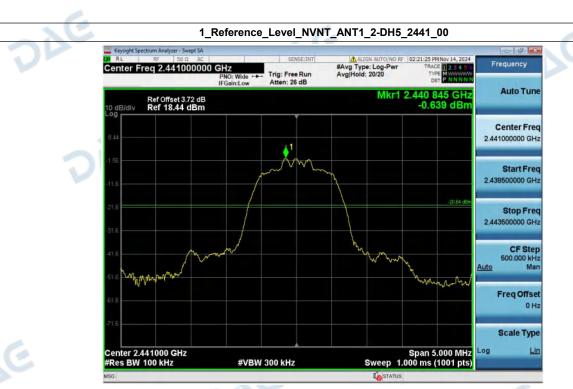
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 64 of 91

V1.0


2_Spurious_Emissions_NVNT_ANT1_1-DH5_2480_00

DAG

V1.0



2_Spurious_Emissions_NVNT_ANT1_2-DH5_2402_00

DAG

2_Spurious_Emissions_NVNT_ANT1_2-DH5_2441_00

1_Reference_Level_NVNT_ANT1_2-DH5_2480_00

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 67 of 91

V1.0

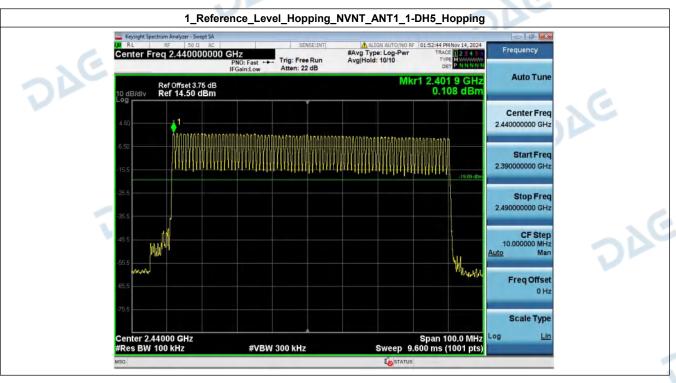
2_Spurious_Emissions_NVNT_ANT1_2-DH5_2480_00

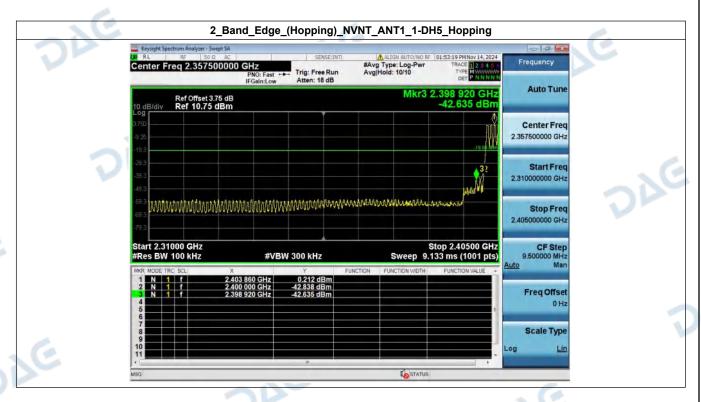
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 68 of 91

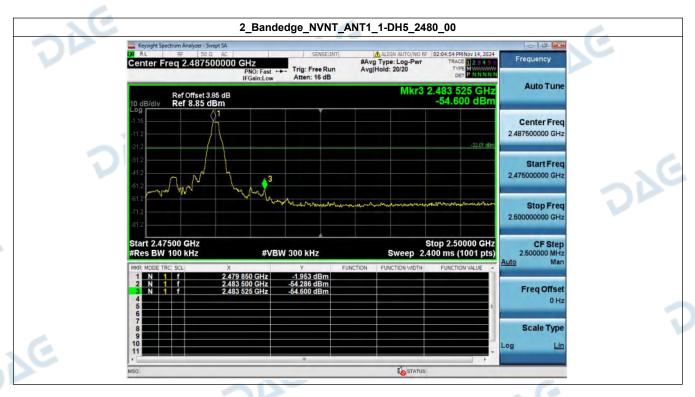
DAG

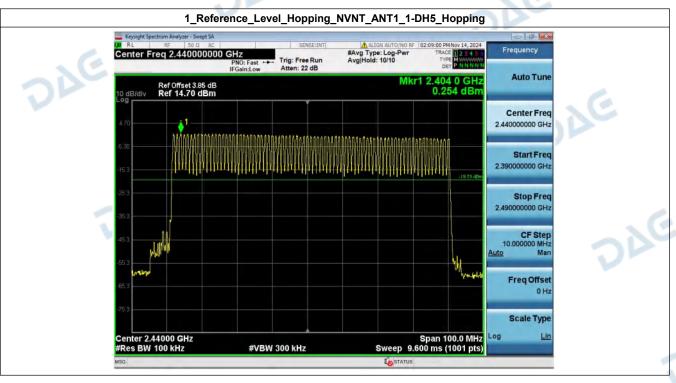
6. Bandedge

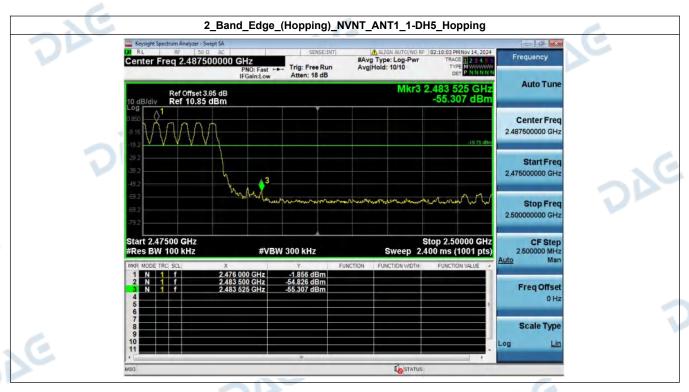
Condition	Antenna	Modulation	TX Mode	Bandedge MAX.Value	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-42.262	-19.799	Pass
NVNT	ANT1	1-DH5	Hopping_LCH	-42.635	-19.892	Pass
NVNT	ANT1	1-DH5	2480.00	-54.600	-22.008	Pass
NVNT	ANT1	1-DH5	Hopping_HCH	-55.307	-19.746	Pass
NVNT	ANT1	2-DH5	2402.00	-41.923	-19.585	Pass
NVNT	ANT1	2-DH5	Hopping_LCH	-45.200	-19.950	Pass
NVNT	ANT1	2-DH5	2480.00	-55.282	-21.890	Pass
NVNT	ANT1	2-DH5	Hopping_HCH	-57.488	-19.682	Pass


Report No.: DACE241112011RL001

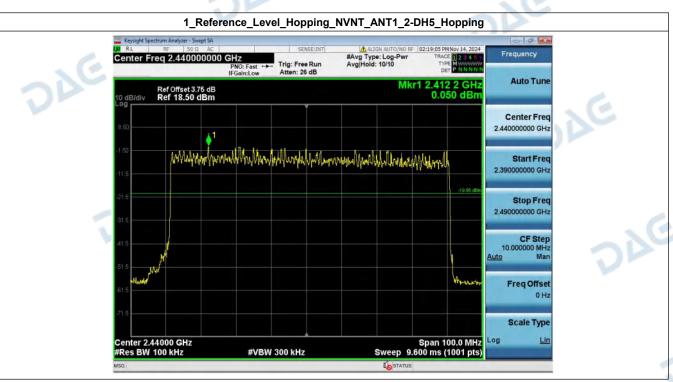

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 69 of 91

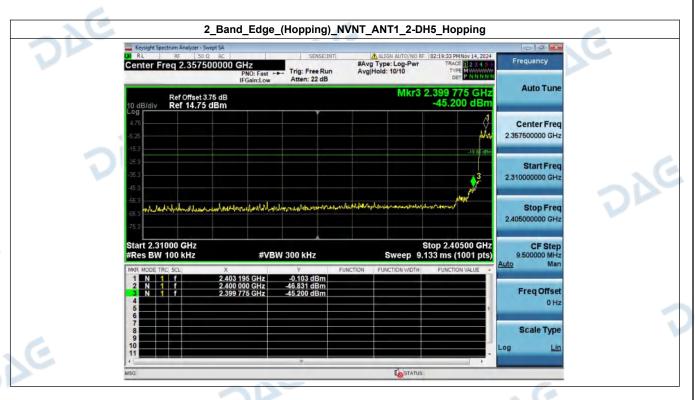


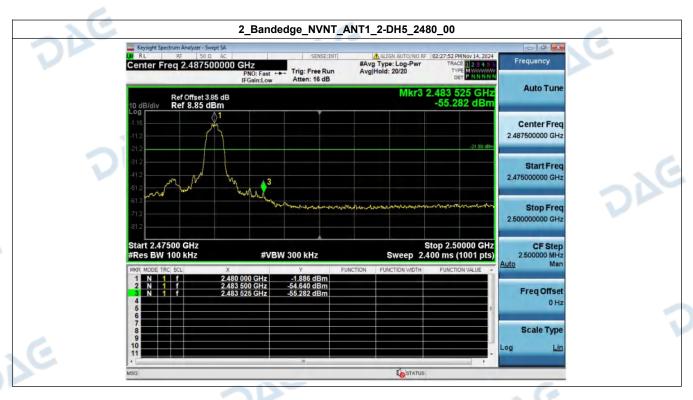

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 71 of 91

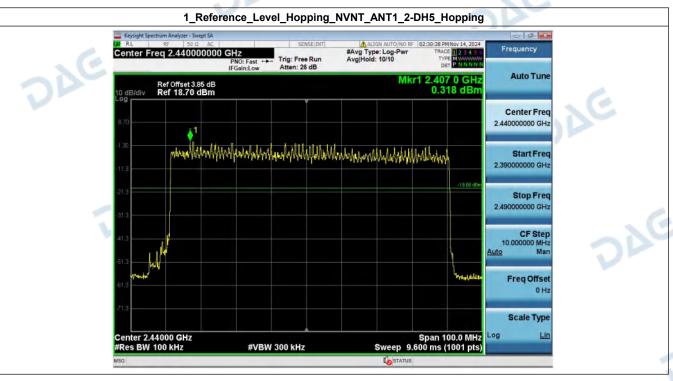

DAG

V1.0




V1.0




V1.0

DAG

DAG

DAG

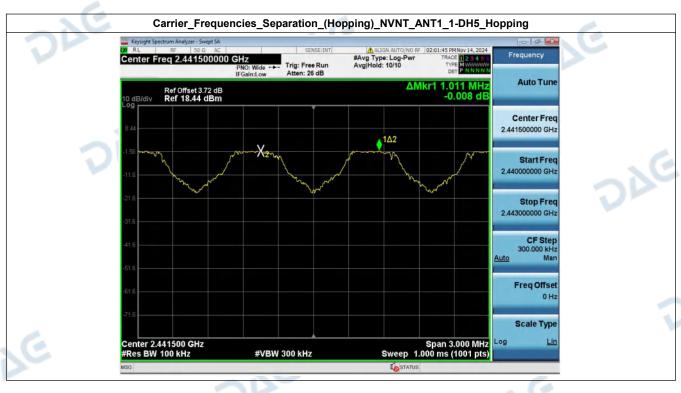
Report No.: DACE241112011RL001

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 77 of 91

DAG

DAG

Report No.: DACE241112011RL001


7. Carrier Frequencies Separation (Hopping)

Condition	Antenna	Modulation	Frequency(MHz)	Hopping NO.0 (MHz)	Hopping NO.1 (MHz)	Carrier Frequencies Separation(MHz)	Limit(MHz)	Result
NVNT	ANT1	1-DH5	2402.00	2402.062	2403.154	1.09	0.954	Pass
NVNT	ANT1	1-DH5	2441.00	2441.050	2442.061	1.01	0.955	Pass
NVNT	ANT1	1-DH5	2480.00	2479.155	2480.178	1.02	0.954	Pass
NVNT	ANT1	2-DH5	2402.00	2401.867	2403.154	1.29	0.871	Pass
NVNT	ANT1	2-DH5	2441.00	2440.843	2441.878	1.03	0.855	Pass
NVNT	ANT1	2-DH5	2480.00	2478.999	2479.872	0.87	0.855	Pass

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 78 of 91

4

DΛC

DAG

DAG

DAG

DAG

Report No.: DACE241112011RL001

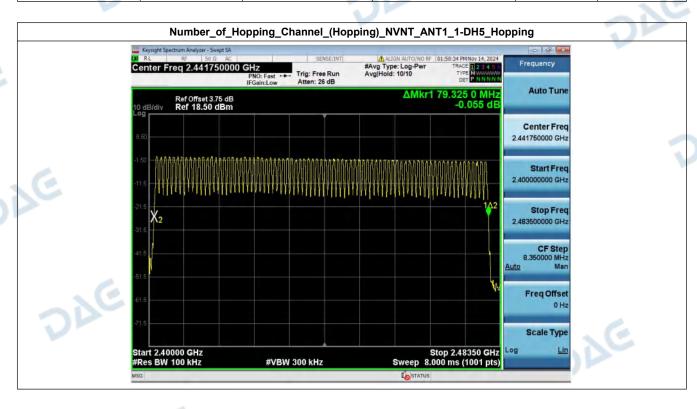
DAG

DAG

DAG

DAG

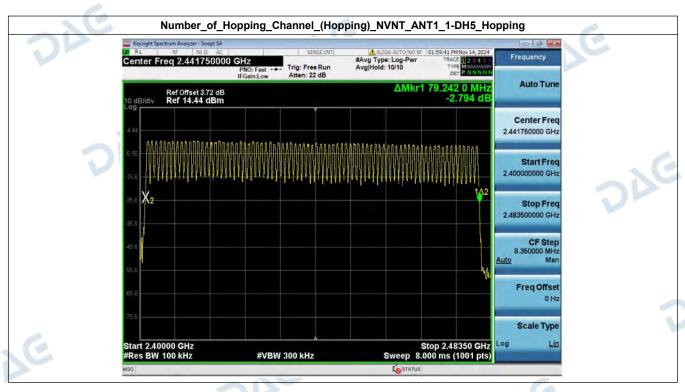
DAG


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 81 of 91

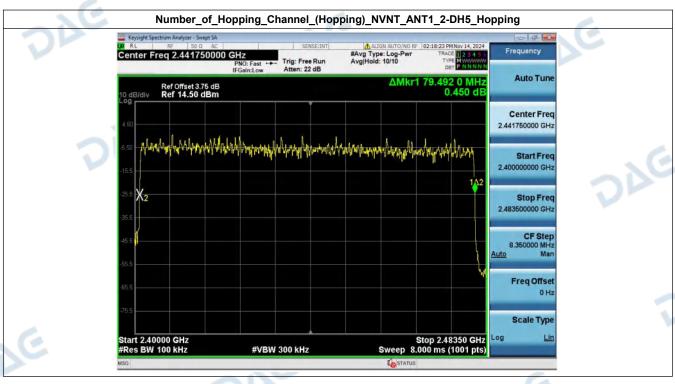
8. Number of Hopping Channel (Hopping)

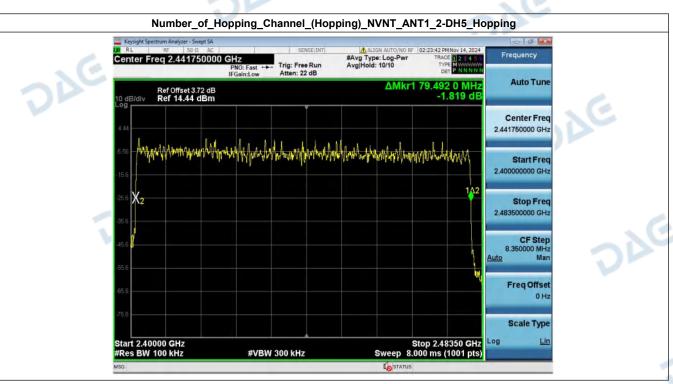
Condition	Antenna	Modulation	Hopping Num	Limit	Result
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass

Report No.: DACE241112011RL001

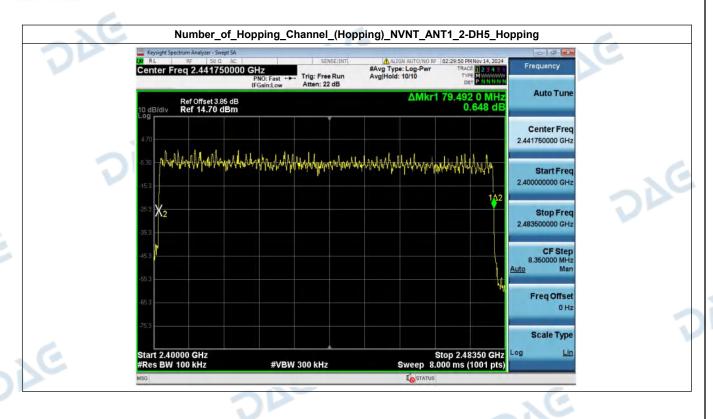


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 82 of 91


DIE


V1.0

Web: http://www.dace-lab.com


DAC

DAG

DAG

DAG

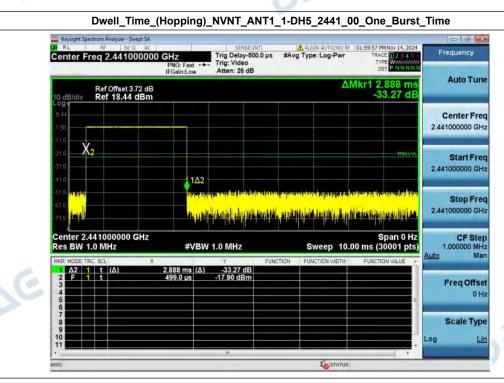
Report No.: DACE241112011RL001

DAG

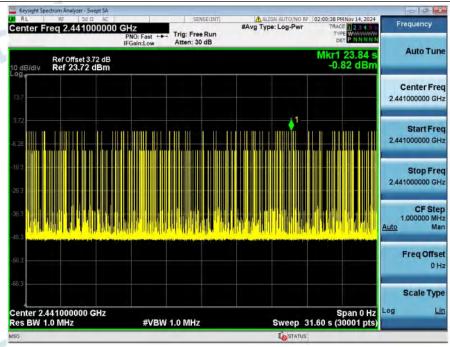
DAG

DAG

DAG

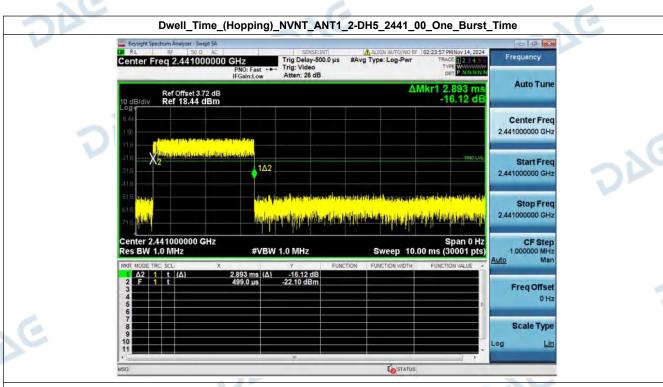

DAG

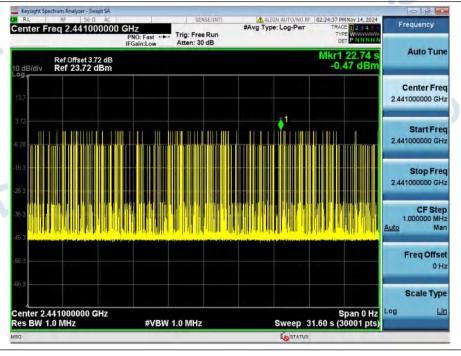
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 85 of 91



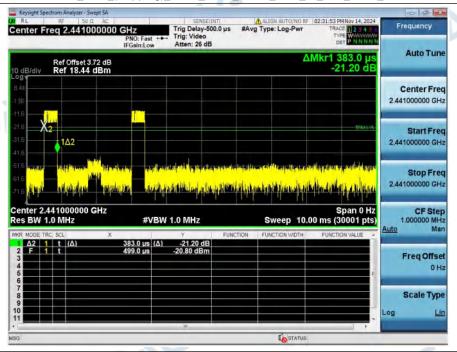
9. Dwell Time (Hopping)

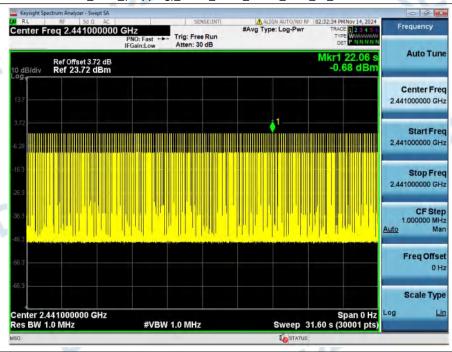
Condition	Antenna	Packet Type	Pulse Time(ms)	Hops	Dwell Time(ms)	Limit(s)	Result
NVNT	ANT1	1-DH5	2.888	110.00	317.680	0.40	Pass
NVNT	ANT1	2-DH5	2.893	102.00	295.086	0.40	Pass
NVNT	ANT1	1-DH1	0.383	318.00	121.794	0.40	Pass
NVNT	ANT1	1-DH3	1.640	160.00	262.400	0.40	Pass
NVNT	ANT1	2-DH1	0.393	320.00	125.760	0.40	Pass
NVNT	ANT1	2-DH3	1.645	156.00	256.620	0.40	Pass




Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 86 of 91

V1.0


Dwell_Time_(Hopping)_NVNT_ANT1_2-DH5_2441_00_Accumulated

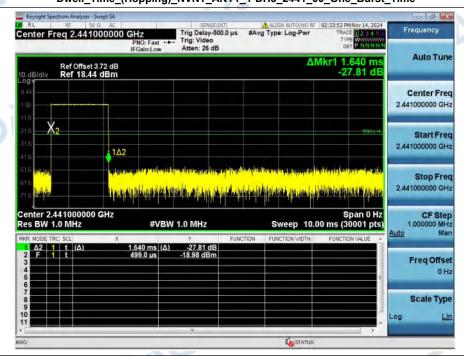


V1.0

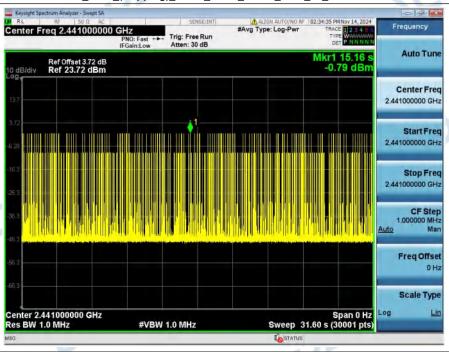
Dwell_Time_(Hopping)_NVNT_ANT1_1-DH1_2441_00_One_Burst_Time

Dwell_Time_(Hopping)_NVNT_ANT1_1-DH1_2441_00_Accumulated

Web: http://www.dace-lab.com


Tel: +86-755-23010613

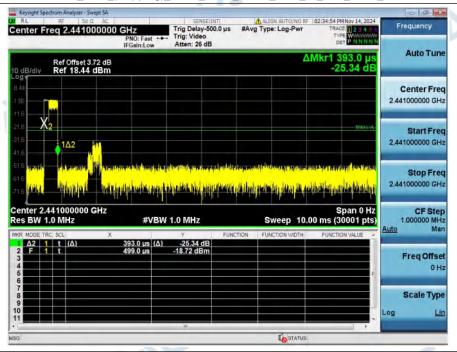
E-mail: service@dace-lab.com


Page 88 of 91

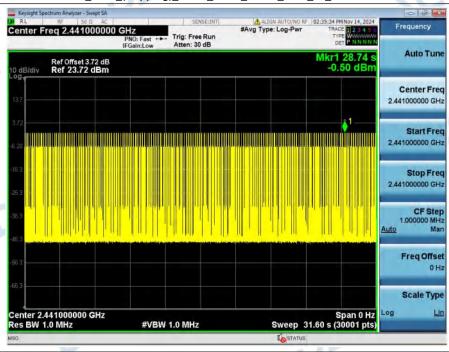
V1.0

Dwell_Time_(Hopping)_NVNT_ANT1_1-DH3_2441_00_One_Burst_Time

Dwell_Time_(Hopping)_NVNT_ANT1_1-DH3_2441_00_Accumulated



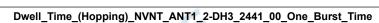
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 89 of 91

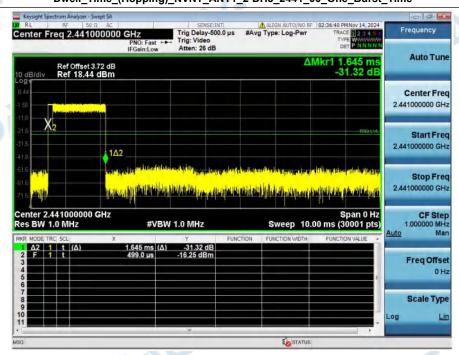


V1.0

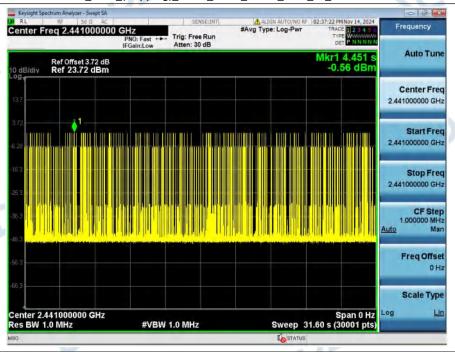
Dwell_Time_(Hopping)_NVNT_ANT1_2-DH1_2441_00_One_Burst_Time

Dwell_Time_(Hopping)_NVNT_ANT1_2-DH1_2441_00_Accumulated




Web: http://www.dace-lab.com

Tel: +86-755-23010613


E-mail: service@dace-lab.com

Page 90 of 91

Dwell_Time_(Hopping)_NVNT_ANT1_2-DH3_2441_00_Accumulated

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 91 of 91