

TEST REPORT

Report No.:	BCTC2503695117-2E
Applicant:	DP AUDIO VIDEO LLC
Product Name:	10.1 " Wi-Fi [®] Smart Touchscreen Digital Photo Frame
Test Model:	CDF100
Tested Date:	2025-03-15 to 2025-03-21
Issued Date:	2025-03-24
	enzhen BCTC Testing Co., Ltd.
No.: BCTC/RF-EMC-005	Page: 1 of 68 Edition: B.2

FCC ID: 2AVRVCDF100

Product Name:	10.1" Wi-Fi [®] Smart Touchscreen Digital Photo Frame
Trademark:	Core Innovations
Model/Type Reference:	CDF100 CDF100BL, CDF100BU, CDF100PN, 492034
Prepared For:	DP AUDIO VIDEO LLC
Address:	1001 Gayley Avenue P.O. Box 24857,Los Angeles, CA,USA 90024
Manufacturer:	Huizhou Kejinming Electronics Co., Ltd
Address:	Buiding 1, Kejinming Industrial Park, No. 4, Yingshan Second Road, Shanbei Village, Lilin Town, Zhongkai Hi tech Zone, Huizhou, Guangdong Sheng, China
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2025-03-11
Sample Tested Date:	2025-03-15 to 2025-03-21
Issue Date:	2025-03-24
Report No.:	BCTC2503695117-2E
Test Standards:	FCC Part15.247 ANSI C63.10-2013
Test Results:	PASS
Remark:	This is WIFI-2.4GHz band radio test report.

Tested by:

kelsey Ton

Kelsey Tan/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Page: 2 of 68

,TC 3C

PR

ероі

Table Of Content

Test	Report Declaration Pa	age
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	
4.3	Support Equipment	
4.4	Channel List	
4.5	Test Mode	
4.6	Table Of Parameters Of Text Software Setting	-
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	
5.2	Test Instrument Used	12
6.	Conducted Emissions	
6.1	Block Diagram Of Test Setup	
6.2	Limit	
6.3	Test procedure	
6.4	EUT operating Conditions	
6.5	Test Result	
0.5 7.	Radiated Emissions	
7.1	Block Diagram Of Test Setup	
7.1	Limit	
7.2 7.3		
7.3 7.4	Test procedure	
7.4 7.5	EUT Operating Conditions	
-		
8.	Radiated Band Emission Measurement And Restricted Bands Of Operation	
8.1	Block Diagram Of Test Setup	
8.2		
8.3	Test procedure	
8.4	EUT Operating Conditions	
8.5	Test Result	
9.	Power Spectral Density Test	
9.1	Block Diagram Of Test Setup	
9.2	Limit	
9.3	Test procedure	29
9.4	EUT Operating Conditions	29
9.5	EUT Operating Conditions Test Result Bandwidth Test Block Diagram Of Test Setup	
10.	Bandwidth Test	
10.1	Block Diagram Of Test Setup	
10.2		36
10.3	I est procedure	36
10.4	EUT Operating Conditions	36
10.5	Test Result	
11.	Peak Output Power Test	43
11.1	Block Diagram Of Test Setup	
11.2	Limit	43

Test Procedure	.43
EUT Operating Conditions	.43
Test Result	.44
100 kHz Bandwidth Of Frequency Band Edge	.45
Block Diagram Of Test Setup	.45
Limit	.45
Test Procedure	.45
EUT Operating Conditions	.45
Test Result	.45
Duty Cycle Of Test Signal	.61
Standard Requirement	.61
Formula	.61
Test Procedure	.61
Test Result	.61
Antenna Requirement	.64
Limit	.64
Test Result	
EUT Photographs	.65
EUT Test Setup Photographs	.66
	EUT Operating Conditions Test Result

(Note: N/A Means Not Applicable)

No.: BCTC/RF-EMC-005

Page: 4 of 68

1. Version

Report No.	Issue Date	Description	Approved
BCTC2503695117-2E	2025-03-24	Original	Valid

No.: BCTC/RF-EMC-005

Page: 5 of 68

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No.	Results
1	Conducted Emission	15.207	PASS
2	6dB Bandwidth	15.247 (a)(2)	PASS
3	Peak Output Power	15.247 (b)	PASS
4	Radiated Spurious Emission	15.247 (d)	PASS
5	Power Spectral Density	15.247 (e)	PASS
6	Restricted Band of Operation	15.205	PASS
7	Band Edge (Out of Band Emissions)	15.247 (d)	PASS
8	Antenna Requirement	15.203	PASS

Page: 6 of 68

3. Measurement Uncertainty

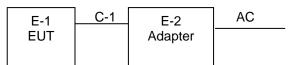
Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-200MHz)	U=4.60dB
2	3m chamber Radiated spurious emission(200MHz-1GHz)	U=5.20dB
3	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.70dB
4	3m chamber Radiated spurious emission(1GHz-6GHz)	U=5.20dB
5	3m chamber Radiated spurious emission(6GHz-18GHz)	U=5.50dB
7	Conducted Emission (9kHz-150kHz)	U=3.50dB
8	Conducted Emission (150kHz-30MHz)	U=3.10dB
9	Conducted Adjacent channel power	U=1.38dB
10	Conducted output power uncertainty Above 1G	U=1.576dB
11	Conducted output power uncertainty below 1G	U=1.28dB
12	humidity uncertainty	U=5.3%
13	Temperature uncertainty	U=0.59°C

4. Product Information And Test Setup

4.1 Product Information

Model/Type Reference:	CDF100 CDF100BL, CDF100BU, CDF100PN, 492034
Model Differences:	All the model are the same circuit and RF module, except model names and appearance of the color.
Hardware Version:	N/A
Software Version:	N/A
Operation Frequency:	802.11b/g/n20MHz:2412~2462 MHz
Bit Rate of Transmitter:	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6Mbps 802.11n Up to 150Mbps
Type of Modulation:	WIFI: OFDM/DSSS
Number Of Channel:	802.11b/g/n20MHz:11 CH
Antenna installation:	Internal antenna
Antenna Gain:	 1.31 dBi Remark: ☑ The antenna gain of the product comes from the antenna report provided by the customer, and the test data is affected by the customer information. ☐ The antenna gain of the product is provided by the customer, and the test data is affected by the customer information.
Ratings:	DC 5.0V 2.0A
Adapter Information:	Manufacture: SHENZHEN TEKA TECHNOLOGY CO., LTD Model No.: TEKA-TB050200US Input: 100-240~ 50/60Hz 0.35A MAX Output: DC 5.0V 2.0A


Page: 8 of 68

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission and Radiated Spurious Emission:

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	10.1 " Wi-Fi® Smart Touchscreen Digital Photo Frame	Core Innovations	CDF100		EUT
E-2	Adapter		TEKA-TB05020 0US		EUT

Item	Shielded Type	Ferrite Core	Length	Note
C-1	N/A	N/A	1m	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

ТC PR

Page: 9 of 68

4.4 Channel List

	Channel List for 802.11b/g/n(20)				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	02	2417	03	2422
04	2427	05	2432	06	2437
07	2442	08	2447	09	2452
10	2457	11	2462		

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

For All Mode	Description	Modulation Type	
Mode 1	CH 01		
Mode 2	CH 06	802.11b	
Mode 3	CH 11		
Mode 4	CH 01		
Mode 5	CH 06	802.11g	
Mode 6	CH 11		
Mode 7	CH 01		
Mode 8	CH 06	802.11n20	
Mode 9	CH 11		
Mode 10	Link mode (Conducted Emission & Radiated emission)		

Notes:

1. The measurements are performed at the highest, middle, lowest available channels.

2. The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

3. According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup"

11Mbps for 802.11b,6Mbps for 802.11g,13Mbps for 802.11n(H20), 54Mbps for 802.11n(H40)

No.: BCTC/RF-EMC-005

Page: 10 of 68

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	SecureCRT				
Frequency	2412 MHz	2437 MHz	2462 MHz		
Parameters	DEF	DEF	DEF		

No.: BCTC/RF-EMC-005

Page: 11 of 68

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address:1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

FCC Test Firm Registration Number: 712850

A2LA certificate registration number is: CN1212

ISED Registered No.: 23583

ISED CAB identifier: CN0017

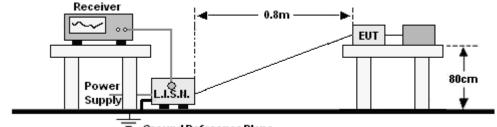
5.2 Test Instrument Used

	Conducted Emissions Test						
Equipment	Manufacturer	er Model# Serial# Last Cal.		Next Cal.			
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025		
LISN	R&S	ENV216	101375	May 16, 2024	May 15, 2025		
Software	Frad	EZ-EMC	EMC-CON 3A1	١	\		
Pulse limiter	Schwarzbeck	VTSD9561-F	01323	May 16, 2024	May 15, 2025		

	RF Conducted Test					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Power Metter	Keysight	E4419		May 16, 2024	May 15, 2025	
Power Sensor (AV)	Keysight	E9300A		May 16, 2024	May 15, 2025	
Signal Analyzer20kH z-26.5GHz	Keysight	N9020Å	MY49100060	May 16, 2024	May 15, 2025	
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025	
Radio frequency control box	MAIWEI	MW100-RFC B	· · · · · · · · · · · · · · · · · · ·			
Software	MAIWEI	MTS 8310				

Radiated Emissions Test (966 Chamber01)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
966 chamber	ChengYu	966 Room	966	May 15, 2023	May 14, 2026
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025
Receiver	R&S	ESRP	101154	May 16, 2024	May 15, 2025
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 16, 2024	May 15, 2025
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 21, 2024	May 20, 2025
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 21, 2024	May 20, 2025
Amplifier	SKET	LAPA_01G18 G-45dB	SK2021040901	May 16, 2024	May 15, 2025
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 21, 2024	May 20, 2025
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 16, 2024	May 15, 2025
Horn Antenn(18GH z-40GHz)	Schwarzbeck	BBHA9170	00822	May 21, 2024	May 20, 2025
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025
Software	Frad	EZ-EMC	FA-03A2 RE	\	\

CHENZHER


No.: BCTC/RF-EMC-005

Page: 13 of 68

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

Ground Reference Plane

6.2 Limit

	Limit (d	dBuV)		
Frequency (MHz)	Quas-peak	Average		
0.15 -0.5	66 - 56 *	56 - 46 *		
0.50 -5.0	56.00	46.00		
5.0 - 30.0 60.00 50.00				

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

6.3 Test procedure

Setting
10 dB
0.15 MHz
30 MHz
9 kHz

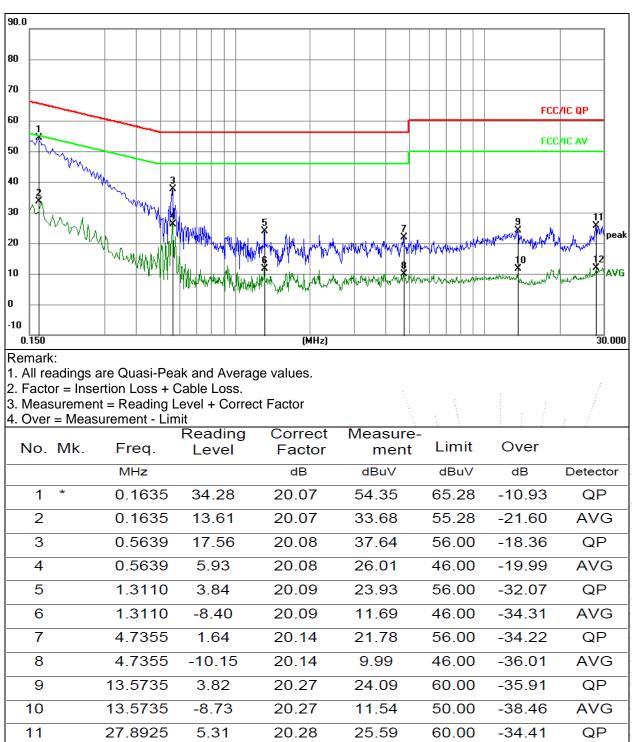
a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

6.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.



,TC 3C

Por

6.5 Test Result

Temperature:	24.3 ℃	Relative Humidity:	52%RH
Pressure:	101KPa	Test Voltage:	AC 120V/60Hz
Test Mode:	Mode 10	Polarization:	L

No.: BCTC/RF-EMC-005

27.8925

-8.39

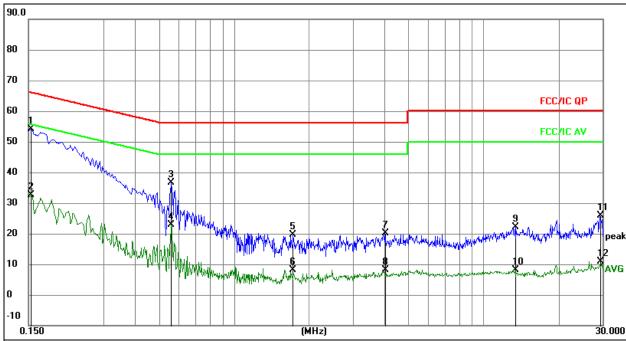
12

Page: 15 of 68

20.28

Edition: B.2

AVG


-38.11

50.00

11.89

Temperature:	24.3 ℃	Relative Humidity:	52%RH
Pressure:	101KPa	Test Voltage:	AC 120V/60Hz
Test Mode:	Mode 10	Polarization:	N

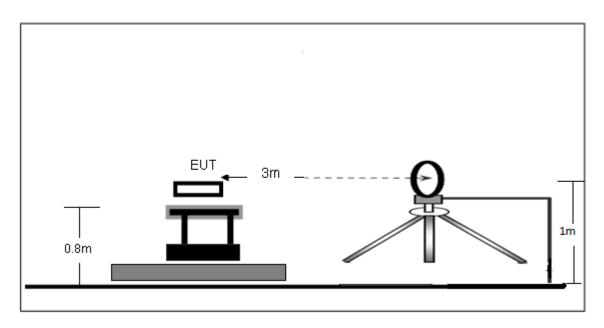
Remark:

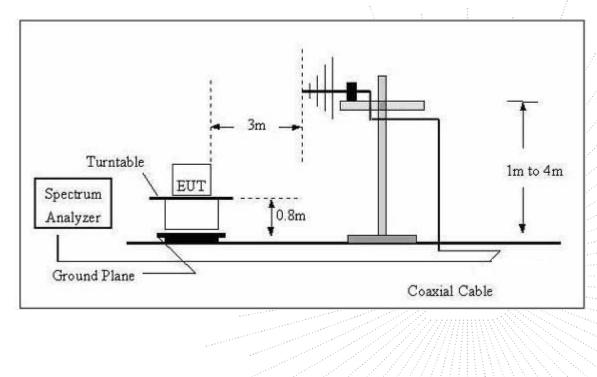
1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

3. Measurement = Reading Level + Correct Factor

4. Over	r = Meas	urement - Lii	mit			1	-	1
		_	Reading	Correct	Measure-		0	
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1	*	0.1539	34.15	20.07	54.22	65.79	-11.57	QP
2		0.1539	12.64	20.07	32.71	55.79	-23.08	AVG
3		0.5611	16.62	20.08	36.70	56.00	-19.30	QP
4		0.5611	2.76	20.08	22.84	46.00	-23.16	AVG
5		1.7253	-0.55	20.10	19.55	56.00	-36.45	QP
6		1.7253	-11.89	20.10	8.21	46.00	-37.79	AVG
7		4.0275	0.03	20.14	20.17	56.00	-35.83	QP
8		4.0275	-11.94	20.14	8.20	46.00	-37.80	AVG
9		13.4080	1.77	20.27	22.04	60.00	-37.96	QP
10		13.4080	-12.08	20.27	8.19	50.00	-41.81	AVG
11		29.2157	5.71	20.27	25.98	60.00	-34.02	QP
12		29.2157	-9.47	20.27	10.80	50.00	-39.20	AVG
								and the state of t

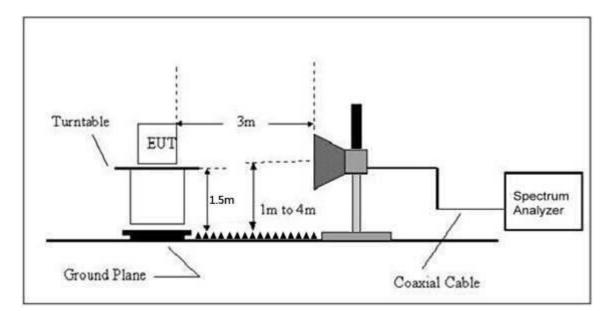

Page: 16 of 68


7. Radiated Emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz



No.: BCTC/RF-EMC-005

Edition: B.2

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

Limits Of Radiated Emission Measurement (Above 1000MHz)

	Limit (dBuV/m) (at 3M)	a a construction and a construction of the second
Frequency (MHz)	Peak	erage
Above 1000	74	54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Frequency Range Of Radiated Measurement

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

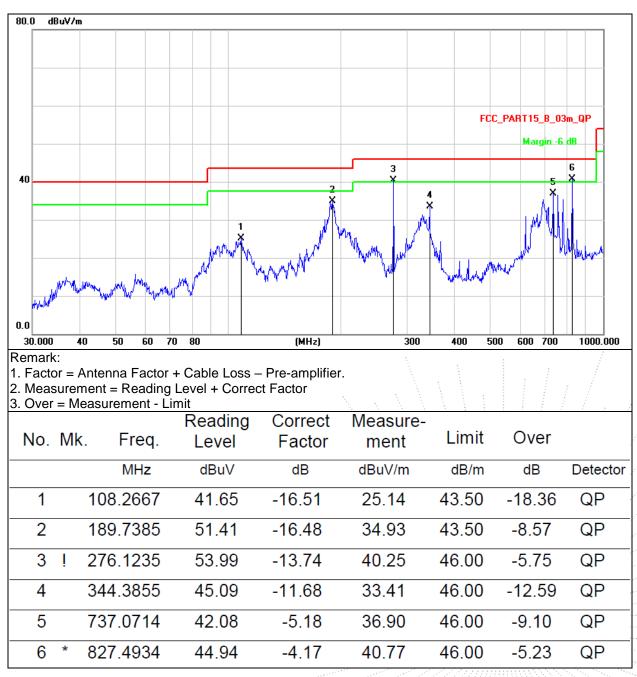
Below 30MHz

Temperature:26 °CRelative Humidity:54%RHPressure:101KPaTest Voltage:AC 120V/60HzTest Mode:Mode 10Test Voltage:AC 120V/60Hz				
Test Voltage: AC 120V/60Hz	Temperature:	26 ℃	Relative Humidity:	54%RH
Test Mode: Mode 10	Pressure:	101KPa		
	Test Mode:	Mode 10	Test voltage.	

Freq.	Reading	Limit Margin	State
(MHz)	(dBuV/m)	(dBuV/m) (dB)	P/F
			PASS
			PASS

Note:

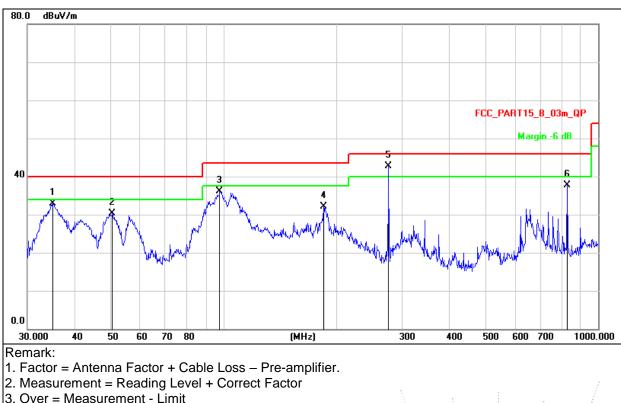
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Between 30MHz - 1GHz

Temperature:	25.2 ℃	Relative Humidity:	54%RH
Pressure:	101KPa	Test Voltage:	AC 120V/60Hz
Test Mode:	Mode 10	Polarization:	Horizontal



Temperature:	25.2 ℃	Relative Humidity:	54%RH
Pressure:	101KPa	Test Voltage:	AC 120V/60Hz
Test Mode:	Mode 10	Polarization:	Vertical

3. Ove	r = ivie	asurement - L	Imit					
No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	Witt.	1109.	Level	1 40101	mem			
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		35.1278	48.61	-15.66	32.95	40.00	-7.05	QP
2		50.5860	44.21	-13.98	30.23	40.00	-9.77	QP
3		97.7983	52.42	-16.25	36.17	43.50	-7.33	QP
4		185.1379	48.91	-16.82	32.09	43.50	-11.41	QP
5	*	276.1235	56.35	-13.74	42.61	46.00	-3.39	QP
6		827.4934	41.83	-4.17	37.66	46.00	-8.34	QP

TE OVE t See

Between 1GHz – 25GHz

802.11b

Polar (H/V)		Reading Correct Level Factor	Measure- ment	Limits	Over	Detector	
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
		Lo	ow channel:24	412MHz			
V	4824.00	71.88	-19.95	51.93	74.00	-22.07	PK
V	4824.00	61.68	-19.95	41.73	54.00	-12.27	AV
V	7236.00	62.89	-14.14	48.75	74.00	-25.25	PK
V	7236.00	52.20	-14.14	38.06	54.00	-15.94	AV
Н	4824.00	67.31	-19.95	47.36	74.00	-26.64	PK
Н	4824.00	57.73	-19.95	37.78	54.00	-16.22	AV
Н	7236.00	60.35	-14.14	46.21	74.00	-27.79	PK
Н	7236.00	53.29	-14.14	39.15	54.00	-14.85	AV
		Mic	dle channel:	2437MHz			
V	4874.00	69.24	-19.85	49.39	74.00	-24.61	PK
V	4874.00	62.87	-19.85	43.02	54.00	-10.98	AV
V	7311.00	58.92	-13.93	44.99	74.00	-29.01	PK
V	7311.00	50.09	-13.93	36.16	54.00	-17.84	AV
Н	4874.00	65.86	-19.85	46.01	74.00	-27.99	PK
Н	4874.00	55.68	-19.85	35.83	54.00	-18.17	AV
Н	7311.00	56.67	-13.93	42.74	74.00	-31.26	PK
Н	7311.00	48.90	-13.93	34.97	54.00	-19.03	AV
		Hi	gh channel:24	462MHz			
V	4924.00	70.75	-19.75	51.00	74.00	-23.00	PK
V	4924.00	60.92	-19.75	41.17	54.00	-12.83	AV
V	7386.00	64.44	-13.72	50.72	74.00	-23.28	PK
V	7386.00	54.84	-13.72	41.12	54.00	-12.88	AV
Н	4924.00	68.08	-19.75	48.33	74.00	-25.67	PK
Н	4924.00	58.94	-19.75	39.19	54.00	-14.81	AV
Н	7386.00	62.98	-13.72	49.26	74.00	-24.74	PK
Н	7386.00	54.69	-13.72	40.97	54.00	-13.03	AV

Remark:

1. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Measurement - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

			802.11g				
Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
		Lo	ow channel:24	412MHz			
V	4824.00	70.29	-19.95	50.34	74.00	-23.66	PK
V	4824.00	62.28	-19.95	42.33	54.00	-11.67	AV
V	7236.00	62.53	-14.14	48.39	74.00	-25.61	PK
V	7236.00	53.52	-14.14	39.38	54.00	-14.62	AV
Н	4824.00	68.29	-19.95	48.34	74.00	-25.66	PK
Н	4824.00	58.30	-19.95	38.35	54.00	-15.65	AV
Н	7236.00	60.25	-14.14	46.11	74.00	-27.89	PK
Н	7236.00	52.38	-14.14	38.24	54.00	-15.76	AV
		Mic	dle channel:	2437MHz			
V	4874.00	69.16	-19.85	49.31	74.00	-24.69	PK
V	4874.00	62.67	-19.85	42.82	54.00	-11.18	AV
V	7311.00	61.01	-13.93	47.08	74.00	-26.92	PK
V	7311.00	52.00	-13.93	38.07	54.00	-15.93	AV
Н	4874.00	65.13	-19.85	45.28	74.00	-28.72	PK
Н	4874.00	55.64	-19.85	35.79	54.00	-18.21	AV
Н	7311.00	58.78	-13.93	44.85	74.00	-29.15	PK
Н	7311.00	50.61	-13.93	36.68	54.00	-17.32	AV
		Hi	gh channel:2	462MHz			
V	4924.00	71.70	-19.75	51.95	74.00	-22.05	PK
V	4924.00	62.70	-19.75	42.95	54.00	-11.05	AV
V	7386.00	65.25	-13.72	51.53	74.00	-22.47	PK
V	7386.00	56.09	-13.72	42.37	54.00	-11.63	AV
Н	4924.00	70.50	-19.75	50.75	74.00	-23.25	PK
Н	4924.00	60.53	-19.75	40.78	54.00	-13.22	AV
Н	7386.00	62.63	-13.72	48.91	74.00	-25.09	PK
Н	7386.00	54.19	-13.72	40.47	54.00	-13.53	AV

802 11a

Remark:

1. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Measurement - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Page: 24 of 68

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
		Lo	ow channel:24	12MHz			
V	4824.00	71.22	-19.95	51.27	74.00	-22.73	PK
V	4824.00	60.57	-19.95	40.62	54.00	-13.38	AV
V	7236.00	60.81	-14.14	46.67	74.00	-27.33	PK
V	7236.00	50.99	-14.14	36.85	54.00	-17.15	AV
Н	4824.00	68.78	-19.95	48.83	74.00	-25.17	PK
Н	4824.00	58.28	-19.95	38.33	54.00	-15.67	AV
Н	7236.00	59.79	-14.14	45.65	74.00	-28.35	PK
Н	7236.00	51.38	-14.14	37.24	54.00	-16.76	AV
		Mic	dle channel:	2437MHz			
V	4874.00	70.07	-19.85	50.22	74.00	-23.78	PK
V	4874.00	61.24	-19.85	41.39	54.00	-12.61	AV
V	7311.00	61.70	-13.93	47.77	74.00	-26.23	PK
V	7311.00	52.68	-13.93	38.75	54.00	-15.25	AV
Н	4874.00	66.93	-19.85	47.08	74.00	-26.92	PK
Н	4874.00	56.71	-19.85	36.86	54.00	-17.14	AV
Н	7311.00	59.91	-13.93	45.98	74.00	-28.02	PK
Н	7311.00	50.91	-13.93	36.98	54.00	-17.02	AV
		Hi	gh channel:24	462MHz			
V	4924.00	72.36	-19.75	52.61	74.00	-21.39	PK
V	4924.00	64.27	-19.75	44.52	54.00	-9.48	AV
V	7386.00	63.58	-13.72	49.86	74.00	-24.14	PK
V	7386.00	53.41	-13.72	39.69	54.00	-14.31	AV
Н	4924.00	70.85	-19.75	51.10	74.00	-22.90	PK
Н	4924.00	61.75	-19.75	42.00	54.00	-12.00	AV
Н	7386.00	62.25	-13.72	48.53	74.00	-25.47	PK
Н	7386.00	54.25	-13.72	40.53	54.00	-13.47	AV

802 11n20

Remark:

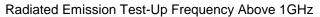
1. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Measurement - Limit

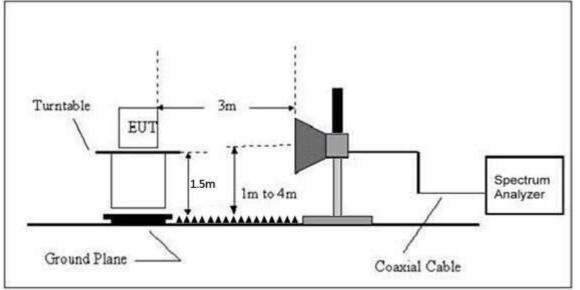
2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible

value has no need to be reported.

5.All the Modulation are test, the worst mode is 802.11g, the data recording in the report.


No.: BCTC/RF-EMC-005


Page: 25 of 68

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (dBuV	/m) (at 3M)
	Peak	Average
Above 1000	74	54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

PR

Por

TE,

OVI

8.5 Test Result

Test mode	Polar (H/V)	Frequency (MHz)	Reading Level (dBu)//m)	Correct Factor	Measure- ment (dBuV/m)	Meas ment (d	sure- BuV/m)	Over	Result
			(dBuV/m)	(dB)	PK	PK	AV	PK	
				Low Chan	nel 2412MHz	1			
802.11b	Н	2390.00	72.05	-25.43	46.62	74.00	54.00	-27.38	PASS
	Н	2400.00	73.59	-25.40	48.19	74.00	54.00	-25.81	PASS
	V	2390.00	72.51	-25.43	47.08	74.00	54.00	-26.92	PASS
	V	2400.00	73.57	-25.40	48.17	74.00	54.00	-25.83	PASS
	High Channel 2462MHz								
	Н	2483.50	72.09	-25.15	46.94	74.00	54.00	-27.06	PASS
	Н	2500.00	68.99	-25.10	43.89	74.00	54.00	-30.11	PASS
	V	2483.50	72.98	-25.15	47.83	74.00	54.00	-26.17	PASS
	V	2500.00	68.66	-25.10	43.56	74.00	54.00	-30.44	PASS
		Low Channel 2412MHz							
	Н	2390.00	72.30	-25.43	46.87	74.00	54.00	-27.13	PASS
	Н	2400.00	74.82	-25.40	49.42	74.00	54.00	-24.58	PASS
	V	2390.00	72.87	-25.43	47.44	74.00	54.00	-26.56	PASS
902 44 ~	V	2400.00	73.07	-25.40	47.67	74.00	54.00	-26.33	PASS
802.11g		High Channel 2462MHz							
	Н	2483.50	71.85	-25.15	46.70	74.00	54.00	-27.30	PASS
	Н	2500.00	69.21	-25.10	44.11	74.00	54.00	-29.89	PASS
	V	2483.50	72.08	-25.15	46.93	74.00	54.00	-27.07	PASS
	V	2500.00	68.81	-25.10	43.71	74.00	54.00	-30.29	PASS
802.11	Low Channel 2412MHz								
	Н	2390.00	72.24	-25.43	46.81	74.00	54.00	-27.19	PASS
	Н	2400.00	73.59	-25.40	48.19	74.00	54.00	-25.81	PASS
	V	2390.00	71.90	-25.43	46.47	74.00	54.00	-27.53	PASS
	V	2400.00	72.94	-25.40	47.54	74.00	54.00	-26.46	PASS
n20	High Channel 2462MHz								
	Н	2483.50	70.45	-25.15	45.30	74.00	54.00	-28.70	PASS
	Н	2500.00	68.58	-25.10	43.48	74.00	54.00	-30.52	PASS
	V	2483.50	70.53	-25.15	45.38	74.00	54.00	-28.62	PASS
	V	2500.00	65.95	-25.10	40.85	74.00	54.00	-33.15	PASS

Remark:

1. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Cable Loss - Pre-amplifier. 2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

No.: BCTC/RF-EMC-005

Page: 28 of 68

9. Power Spectral Density Test

9.1 Block Diagram Of Test Setup

9.2 Limit

FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS			

Limits Of Radiated Emission Measurement (Above 1000MHz)

9.3 Test procedure

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.

10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

9.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

Page: 29 of 68

Edition: B.2

) ≡D

9.5 Test Result

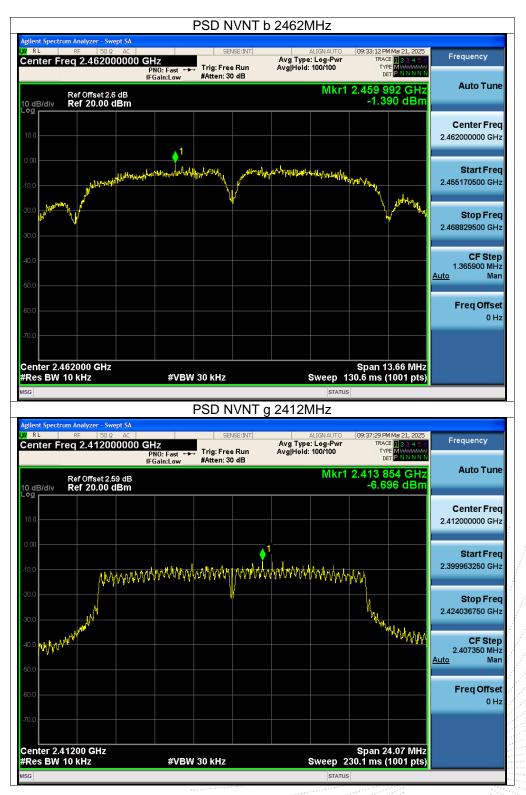
Temperature:	26 ℃	Relative Humidity:	54%RH
Pressure:	101KPa	Test Voltage :	DC 5V

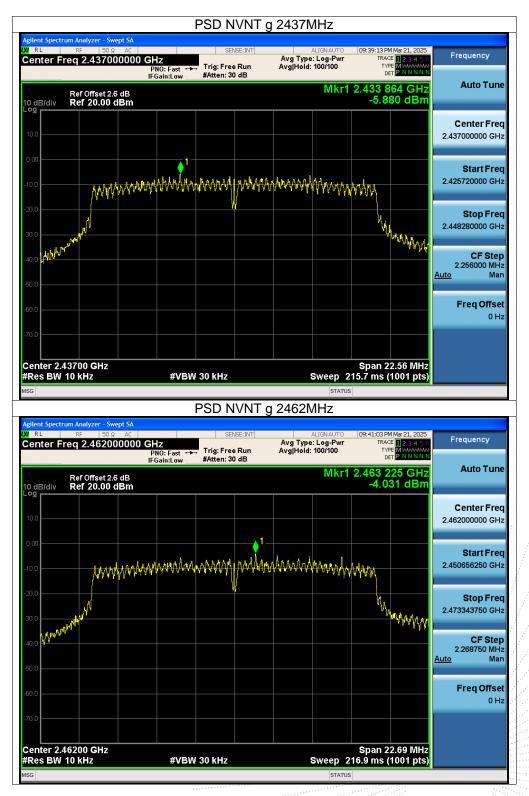
Test Mode	Frequency	Power Spectral Density (dBm/10kHz)	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
	2412 MHz	-2.76	-7.99	8	PASS
TX b Mode	2437 MHz	-1.14	-6.37	8	PASS
	2462 MHz	-1.39	-6.62	8	PASS
	2412 MHz	-6.70	-11.93	-11.93 8	PASS
TX g Mode	2437 MHz	-5.88	-11.11	8	PASS
	2462 MHz	-4.03	-9.26	8	PASS
	2412 MHz	-11.06	-16.29	8	PASS
TX n Mode(20M)	2437 MHz	-1.46	-6.69	8	PASS
	2462 MHz	-8.35	-13.58	8 8 8 8	PASS
Note: Correctio	ractor = 10k	og(3KHz/RBW in measu	rement =-5.23		

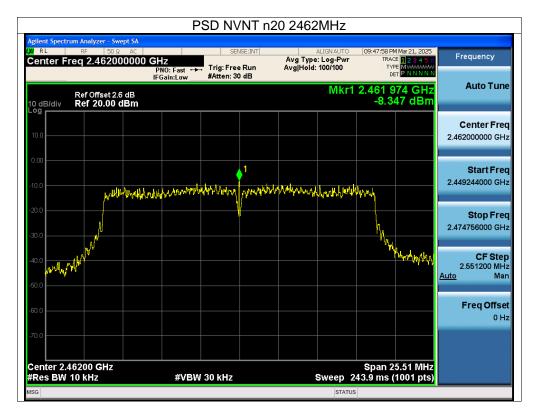
Note: Correction Factor = 10log(3KHz/RBW in measurement) =-5.23 Power Spectral Density (dBm/3kHz= Power Spectral Density (dBm/10kHz)-5.23 2 CO., LTA

No.: BCTC/RF-EMC-005

Page: 30 of 68







ероі

No.: BCTC/RF-EMC-005

Page: 35 of 68

10. Bandwidth Test

10.1 Block Diagram Of Test Setup

10.2 Limit

FCC Part15 (15.247), Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(a)(2)	Bandwidth	>= 500KHz (-6dB bandwidth)	2400-2483.5	PASS		

10.3 Test procedure

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

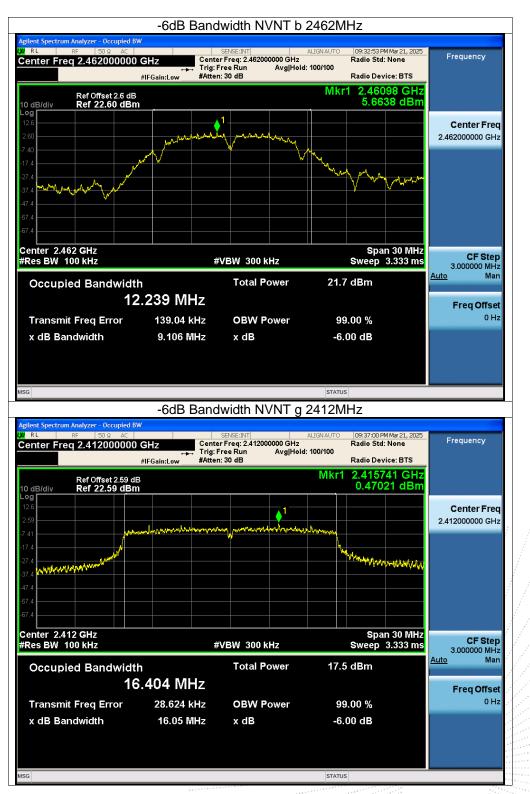
Page: 36 of 68

10.5 Test Result

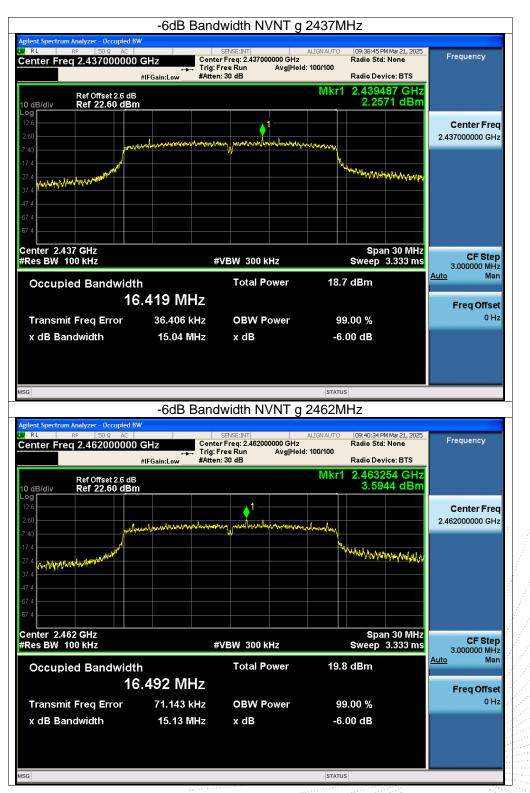
Temperature:	26 ℃	Relative Humidity:	54%RH
Pressure:	101KPa	Test Voltage :	DC 5V

Test Mode	Frequency (MHz)	-6dB bandwidth (MHz)	Limit (kHz)	Result
	2412	9.100	500	Pass
TX b Mode	2437	9.523	500	Pass
	2462	9.106	500	Pass
	2412	16.049	500	Pass
TX g Mode	2437	15.040	500	Pass
	2462	15.125	500	Pass
	2412	17.272	500	Pass
TX n Mode(20M)	2437	17.096	500	Pass
	2462	17.008	500	Pass

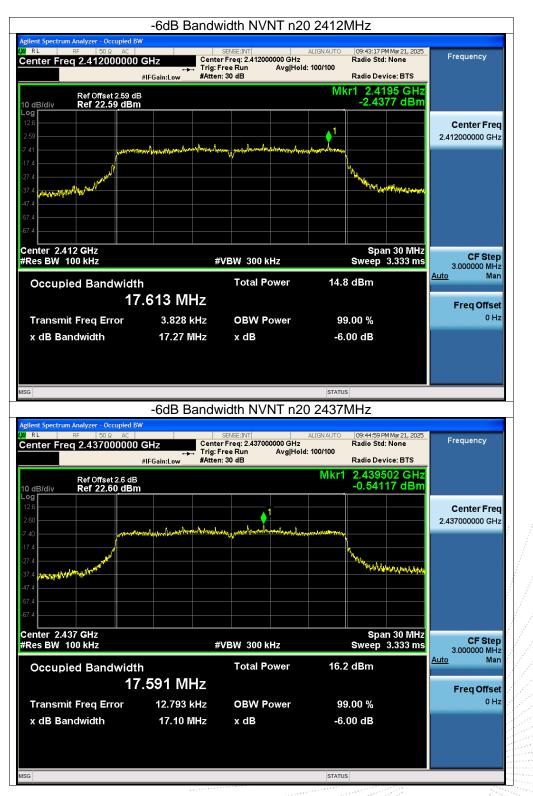
CHENZHE.


No.: BCTC/RF-EMC-005

Page: 37 of 68



epoi



t Sea

No.: BCTC/RF-EMC-005

	-6dB Bandw	idth NVNT n2	0 2462	MHz		
Agilent Spectrum Analyzer - Occupied B 04 RL RF 50 Ω AC Center Freq 2.462000000	GHz Center		ALIGN AUTO	09:47:28 F Radio Std Radio Dev		Frequency
Ref Offset 2.6 dB 10 dB/div Ref 22.60 dBm			Mkr1		257 GHz 15 dBm	
12.60	man Annal war ward ward ward	1	with warman and the second second			Center Freq 2.462000000 GHz
-17.4 -27.4 -37.4 when the state of a state				The second second	mar and	
-47.4						
Center 2.462 GHz #Res BW 100 kHz	#\	/BW 300 kHz			ın 30 MHz 3.333 ms	CF Step 3.000000 MHz
Occupied Bandwidtl	1 .612 MHz	Total Power	17.	1 dBm		<u>Auto</u> Man Freq Offset
Transmit Freq Error	20.461 kHz	OBW Power	9	9.00 %		0 Hz
x dB Bandwidth	17.01 MHz	x dB	-6.	00 dB		
MSG			STATU	s		

No.: BCTC/RF-EMC-005

Page: 42 of 68

11. Peak Output Power Test

11.1 Block Diagram Of Test Setup

11.2 Limit

FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS			

11.3 Test Procedure

a. The EUT was directly connected to the Power meter

11.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

No.: BCTC/RF-EMC-005

Page: 43 of 68

11.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%RH
Pressure:	101KPa	Test Voltage :	DC 5V

Test Mode	Frequency(MHz)	Maximum Conducted Output Power(PK) (dBm)	Limit (dBm)
	2412	16.11	30
802.11b	2437	17.57	30
	2462	17.72	30
	2412	14.31	30
802.11g	2437	15.58	30
	2462	16.58	30
	2412	11.24	30
802.11n20	2437	12.66	30
	2462	13.66	30

R C AI

No.: BCTC/RF-EMC-005

Page: 44 of 68

12. 100 kHz Bandwidth Of Frequency Band Edge

12.1 Block Diagram Of Test Setup

12.2 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

12.3 Test Procedure

Using the following spectrum analyzer setting:

- a) Set the RBW = 100KHz.
- b) Set the VBW = 300KHz.
- c) Sweep time = auto couple.
- d) Detector function = peak.
- e) Trace mode = max hold.
- f) Allow trace to fully stabilize..

12.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

12.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%RH
Pressure:	101KPa	Test Voltage :	DC 5V
No.: BCTC/RF-EMC-0	05 I	Page: 45 of 68	Edition: B:2

epoi

Edition: B.2

No.: BCTC/RF-EMC-005

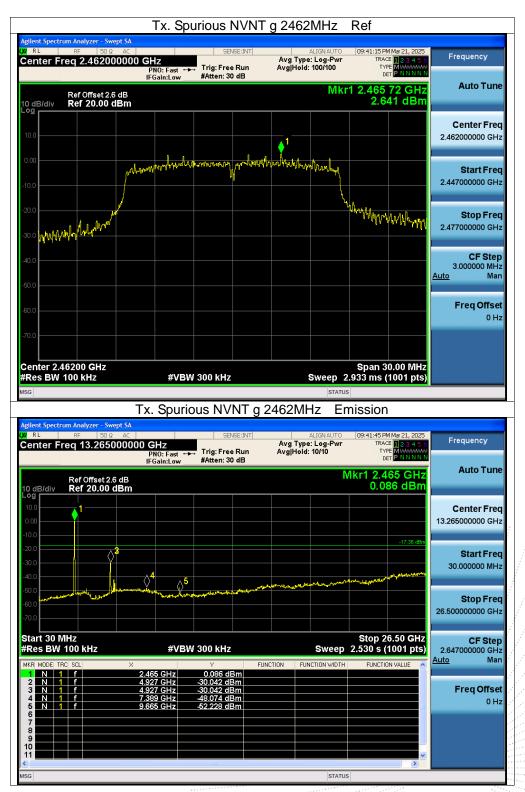
Conducted Emission Measurement

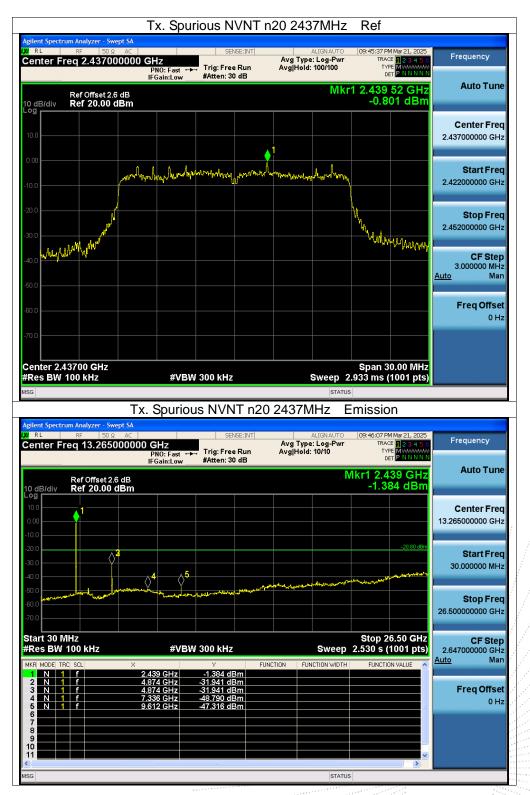
TE. TC

OVI

t Sea

No.: BCTC/RF-EMC-005





C 00.,LT

13. Duty Cycle Of Test Signal

13.1 Standard Requirement

Pre-analysis Check: While conducting average power measurement, duty cycle of each mode shall be checked to ensure its duty cycle in order to compensate for the loss due to insufficient ratio of duty cycle. All duty cycle is pre-scanned, and result as obtained below shows only the most representative ones where duty cycle is conducted as the given transmission with given virtual operation that expresses the percentage.

13.2 Formula

Duty Cycle = Ton / (Ton+Toff)

13.3 Test Procedure

- 1.Set span = Zero 2. RBW = 10MHz
- 2. RBW = 10MHz3. VBW = 10MHz,
- 3. VBW = 10MHZ, 4. Detector = Peak
- 13.4 Test Result

Test mode	Frequency (MHz)	Duty Cycle(%)	Duty Fator(dB)
802.11b	2412	100	0
802.11g	2412	100	0
802.11n(HT20)	2412	100	0

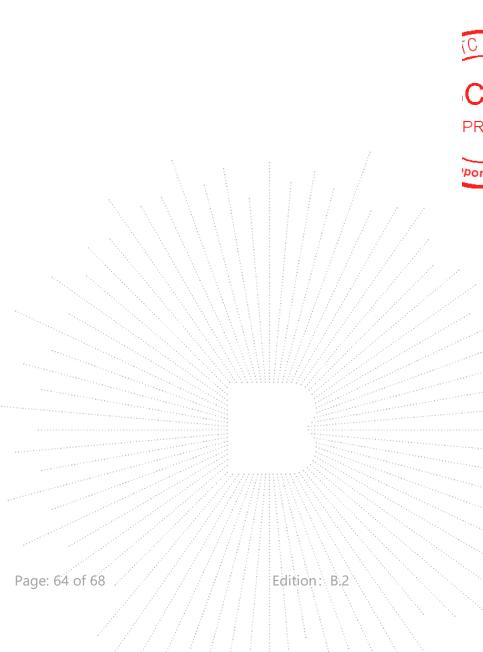
Page: 61 of 68

	Du	Test G uty Cycle NVN	raphs NT b 2412MHz		
Agilent Spectrum Analyzer - 1 GRL RF 50	Swept SA				
Center Freq 2.412		SENSE:INT → Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr	09:54:37 PM Mar 21, 2025 TRACE 1 2 3 4 5 6 TYPE WWWWWWW DET P N N N N N	Frequency
Ref Offset 10 dB/div Ref 22.5	2.59 dB 9 dBm			Mkr1 50.00 ms 14.40 dBm	Auto Tune
Log 12.6 2.59					Center Fred 2.412000000 GH;
-17.4					Start Free 2.412000000 GH:
-47.4 -57.4 -67.4					Stop Fre 2.412000000 GH
Center 2.412000000 Res BW 8 MHz		W 8.0 MHz	Sweep 100	Span 0 Hz 0.0 ms (10001 pts)	CF Step 8.000000 MH: <u>Auto</u> Mar
1 N 1 t 2 3 4 5 6	50.00 ms	14.40 dBm			Freq Offse 0 H;
7 8 9 10 11					
· .		Ш		>	
s <mark>gilent Spectrum Analyzer - 1</mark> (<mark>7</mark> R L RF 50	Swept SA D Ω AC	SENSE:INT	status NT g 2412MHz Alignauto Avg Type: Log-Pwr	09:55:15 PM Mar 21, 2025	Frequency
Agilent Spectrum Analyzer - Sc RL RF Sc Center Freq 2.412	Swept SA DΩ AC D OOOOOOO GHz PNO: Fast ← IFGain:Low	SENSE:INT	NT g 2412MHz Alignauto Avg Type: Log-Pwr	09:55:15 PM Mar 21, 2025 TRACE 2 3 4 5 6 TYPE WARMAN DET P N N N N	
Agilent Spectrum Analyzer - 3 RL RF Sc Center Freq 2.412 Ref Offset 10 dB/d/v Ref 22.59	Swept SA D Q AC 0000000 GHz PN0: Fast ~ IFGain:Low 2.59 dB	SENSE:INT Trig: Free Run #Atten: 30 dB	NT g 2412MHz Alignauto Avg Type: Log-Pwr	09:55:15 PM Mar 21, 2025 TRACE 123 4 5 6 TYPE	
Aglient Spectrum Analyzer - 3 X RL RF Sc Center Freq 2.412 Ref Offset 10 dB/div Ref 22.55 12 6 14 Mittaneour or would Hut 2.59 -7.41	Swept SA D Q AC 0000000 GHz PN0: Fast ~ IFGain:Low 2.59 dB	SENSE:INT	NT g 2412MHz Alignauto Avg Type: Log-Pwr	09:55:15 PM Mar 21, 2025 TRACE 2 2 3 4 5 6 TYPE WWWWW DET P NNNN Mkr1 50.00 ms	Auto Tune Center Free
Ref Offset 10 dB/div Ref 02.51 12.6 Ref 02.51 12.6 Ref 0.41 12.7.4	Swept SA D Q AC 0000000 GHz PN0: Fast ~ IFGain:Low 2.59 dB	SENSE:INT Trig: Free Run #Atten: 30 dB	NT g 2412MHz Alignauto Avg Type: Log-Pwr	09:55:15 PM Mar 21, 2025 TRACE 2 2 3 4 5 6 TYPE WWWWW DET P NNNN Mkr1 50.00 ms	Auto Tune Center Free 2.41200000 GH: Start Free
Agilent Spectrum Analyzer - 3 X Rf SC Center Freq 2.412 Ref Offset SC	Swept SA 20 AC PNO: Fast - IFGain:Low 2.59 dB 9 dBm	SENSE:INT Trig: Free Run #Atten: 30 dB	NT g 2412MHz Alignauto Avg Type: Log-Pwr	09:55:15 PM Mar 21, 2025 TRACE 2 2 3 4 5 6 TYPE WWWWW DET P NNNN Mkr1 50.00 ms	Auto Tune Center Free 2.41200000 GH Start Free 2.41200000 GH Stop Free
Agilent Spectrum Analyzer Spectrum Analyzer <td>Swept SA 000000 GHz 20: AC 90:0000 GHz PN0: Fast - IFGain:Low 2:59 dB 9 dBm 9 dBm 4000000000000000000000000000000000000</td> <td>SENSE:INT Trig: Free Run #Atten: 30 dB</td> <td>NT g 2412MHz</td> <td>09:55:15 PM Mar 21, 2025 TRACE 2 34 5 G TYPE WARMANN Mkr1 50.00 ms 11.92 dBm 11.92 dBm 11.92</td> <td>Auto Tune Center Free 2.41200000 GH Start Free 2.41200000 GH Stop Free 2.41200000 GH</td>	Swept SA 000000 GHz 20: AC 90:0000 GHz PN0: Fast - IFGain:Low 2:59 dB 9 dBm 9 dBm 4000000000000000000000000000000000000	SENSE:INT Trig: Free Run #Atten: 30 dB	NT g 2412MHz	09:55:15 PM Mar 21, 2025 TRACE 2 34 5 G TYPE WARMANN Mkr1 50.00 ms 11.92 dBm 11.92	Auto Tune Center Free 2.41200000 GH Start Free 2.41200000 GH Stop Free 2.41200000 GH
Agilent Spectrum Analyzer - 1 X R SC Center Freq 2.412 Ref Offset 10 BJ/div Ref 22.51 10 BJ/div Ref 22.51 12 BJ/div Ref 22.51 13 BJ/div Ref 22.51 14 Center 2.412000000 Ref 22.51 1 N A A 2 BJ/div BJ/div BJ/div 1 1 1 2 2 A A 3 3 3 A 3 4 3	Swept SA 20 AC DOUBLE OF ACTION PNO: Fast - IFGain:Low 2.59 dB 9 dBm 2.59 dB 2.59 dB 2.5	SENSE:INT Trig: Free Run #Atten: 30 dB	NT g 2412MHz	09:55:15 PM Mar 21, 2025 TRACE 2 3 4 5 6 TYPE WWWWWW OF F N N N N Mkr1 50.00 ms 11.92 dBm 11.92 dBm 11.92 dBm 11.92 dBm 11.92 dBm 11.92 dBm 11.92 dBm	Auto Tune Center Free 2.412000000 GH Start Free 2.412000000 GH Stop Free 2.412000000 GH CF Step 8.000000 MH Auto Mar
Agilent Spectrum Analyzer - 3 X Rf SC Center Freq 2.412i Ref Offset SC SC 10 dB/div Ref Offset Ref Offset SC 12.6 Human and an	Swept SA D2 AC D000000 GHz PNO: Fast - IFGain:Low 2.59 dB 9 dBm 000000 000000 9 dBm 000000 00000 000000 000000 000000 000000 000000 000000 X	SENSE:INT Trig: Free Run #Atten: 30 dB	NT g 2412MHz	09:55:15 PM Mar 21, 2025 TRACE 2 34 5 G TYPE WARMANN Mkr1 50.00 ms 11.92 dBm 11.92	Auto Tune Center Frec 2.41200000 GH: Start Frec 2.41200000 GH: Stop Frec 2.41200000 GH: CF Step 8.00000 MH:

	Dut	y Cycle N	/NT n20) 2412MH	Z	
Agilent Spectrum Analyzer - Swe W RL RF 50 Ω Center Freq 2.41200	AC 0000 GHz PN0: Fast ←	SENSE:IN	Avg	ALIGNAUTO Type: Log-Pwr	09:55:36 PM Mar 21, 2025 TRACE 1 2 3 4 5 6 TYPE WMMMMM DET P N N N N N	Frequency
Ref Offset 2.5 10 dB/div Ref 22.59 d		#Atten: 30 dB			Mkr1 50.00 ms 8.95 dBm	Auto Tune
Log 12.6 2.59 -7.41	unungi ti ti tiga ti tangga kalangga sa sangga sa Alan tan ingga tingga sa	1				Center Freq 2.412000000 GHz
-17.4 -27.4 -37.4						Start Freq 2.412000000 GHz
-47.4 -57.4 -67.4						Stop Freq 2.412000000 GHz
Center 2.412000000 G Res BW 8 MHz		W 8.0 MHz		Sweep 10	Span 0 Hz 0.0 ms (10001 pts)	CF Step 8.000000 MHz
MKR MODE TRC SCL 1 N 1 t 2	× 50.00 ms	Υ 8.95 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto Man Freq Offset 0 Hz
10 11 MSG		III.		STATUS	×	

No.: BCTC/RF-EMC-005

Page: 63 of 68


14. Antenna Requirement

14.1 Limit

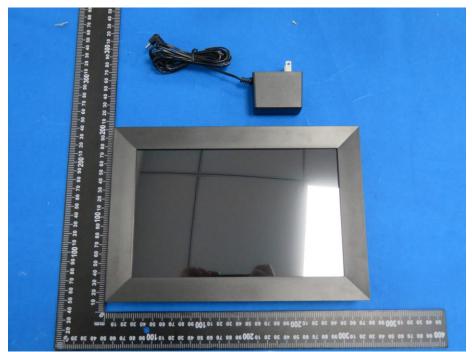
15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

14.1 Test Result

The EUT antenna is Internal antenna, fulfill the requirement of this section.

No.: BCTC/RF-EMC-005

TŁ


Т

0\

t Se

15. EUT Photographs

EUT Photo

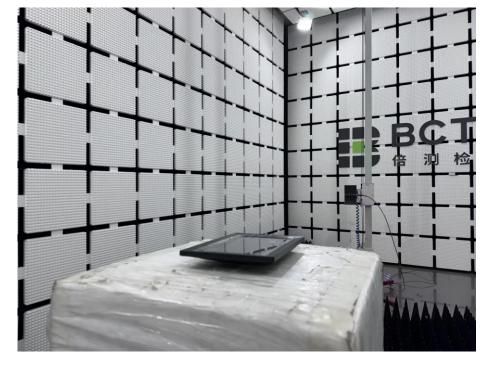
NOTE: Appendix-Photographs Of EUT Constructional Details

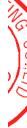
Page: 65 of 68

16. EUT Test Setup Photographs

Conducted Emission

Radiated Emission


No.: BCTC/RF-EMC-005


Edition: B.2

S/C E/M

Spurious emissions

No.: BCTC/RF-EMC-005

Page: 67 of 68

STATEMENT

- 1. The equipment lists are traceable to the national reference standards.
- 2. The test report can not be partially copied unless prior written approval is issued from our lab.
- 3. The test report is invalid without the "special seal for inspection and testing".
- 4. The test report is invalid without the signature of the approver.
- 5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The quality system of our laboratory is in accordance with ISO/IEC17025.

8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

Consultation E-mail: bctc@bctc-lab.com.cn

Complaint/Advice E-mail: advice@bctc-lab.com.cn

***** END *****

No.: BCTC/RF-EMC-005

Page: 68 of 68