TEST REPORT

Report No.....: CHTEW22080295

Report vertification:

Project No. SHT2207063501EW

FCC ID: 2AGRS-50M

Applicant's name Quanzhou Risen Electronics Co., Ltd

Quanzhou, Fujian, China 362000

Test item description: VHF Marine Radio

Trade Mark.....: -

Model/Type reference: RS-50M

Listed Model(s)...... MR-50M, Sealine MK16

Standard...... FCC CFR Title 47 Part 2

FCC CFR Title 47 Part 80

Date of receipt of test sample........ Jul.27, 2022

Date of issue...... Aug.25, 2022

Result PASS

Compiled by

(position+printed name+signature) .: File administrators: Fanghui Zhu

Jang Mir Zhu

Supervised by

(position+printed name+signature) .: Project Engineer Caspar Chen

Caspar Chen

Approved by

(position+printed name+signature) .: RF Manager Hans Hu

Testing Laboratory Name.....: Shenzhen Huatongwei International Inspection Co., Ltd.

Address 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao,

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No : CHTEW22080295 Page 2 of 38 Issued: 2022-08-25

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version information	3
<u>2 .</u>	TEST DESCRIPTION	4
_	0.1144 A.D.V	_
<u>3 . </u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Test frequency list	6
3.4.	EUT operation mode	7
3. 5 .	EUT configuration	7
	· ·	
<u>4 .</u>	TEST ENVIRONMENT	8
4.1.	Address of the test laboratory	8
4.2.	Test Facility	8
4.3.	Environmental conditions	9
4.4.	Statement of the measurement uncertainty	9
4.5.	Equipments Used during the Test	10
<u>5 .</u>	TEST CONDITIONS AND RESULTS	12
5.1.	Conducted Carrier Output Power	12
5.2.	99% Occupied Bandwidth & 26dB Bandwidth	13
5.3.	Emission Mask	15
5.4.	Modulation Limit	16
5.5.	Audio Frequency Response	17
5.6.	Audio Low Pass Filter Response	19
5.7.	Frequency stability VS Temperature	20
5.8.	Frequency stability VS Voltage	22
5.9.	Transmit Conducted Spurious Emission	24
5.10.	Transmitter Radiated Spurious Emission	25
<u>6 .</u>	TEST SETUP PHOTOS OF THE EUT	31
<u>7.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	32
8.	APPENDIX REPORT	38

Report No: CHTEW22080295 Page 3 of 38 Issued: 2022-08-25

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 2: Frequency allocations and radio treaty matters; General rules and regulations

FCC Rules Part 80: Stations In The Maritime Services.

ANSI C63.26-2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

ANSI/TIA-603-E(2016): Land Mobile FM or PM Communications Equipment and Performance Standards

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2022-08-25	Original

Report No : CHTEW22080295 Page 4 of 38 Issued: 2022-08-25

2. Test Description

Transmitter Requirement							
Test item	Standards requirement	Result	Test Engineer				
Conducted Carrier Output Power	FCC Part 80.215,FCC Part 2.1046	Pass	Chunshui Gu				
99% Occupied Bandwidth&26dB bandwidth	FCC Part 80.205,FCC Part 2.1049	Pass	Chunshui Gu				
Modulation Limit	FCC Part 80.213,FCC Part 2.1047(b)	Pass	Chunshui Gu				
Audio Frequency Response	FCC Part 2.1047(a)	Pass	Chunshui Gu				
Audio Low Pass Filter Response	FCC Part 80.213,Part 2.1047(a)	Pass	Chunshui Gu				
Emission Mask	FCC Part 80.211(f),FCC Part 2.1049	Pass	Chunshui Gu				
Frequency Stability V.S. Temperature	FCC Part 80.209,Part 2.1055	Pass	Chunshui Gu				
Frequency Stability V.S. Voltage	FCC Part 80.209,Part 2.1055	Pass	Chunshui Gu				
Transmit Conducted Spurious Emission	FCC Part 80. 211(f)(3),FCC Part 2.1051	Pass	Chunshui Gu				
Transmitter Radiated Spurious Emission	FCC Part 80. 211(f)(3),FCC Part 2.1053	Pass	Yifan Wang				

Report No: CHTEW22080295 Page 5 of 38 Issued: 2022-08-25

3. **SUMMARY**

3.1. Client Information

Applicant:	Quanzhou Risen Electronics Co., Ltd
Address:	No.26, Zishan Rd, Jiangnan High-tech Zone, Licheng District, Quanzhou, Fujian, China 362000
Manufacturer:	Quanzhou Risen Electronics Co., Ltd
Address:	No.26, Zishan Rd, Jiangnan High-tech Zone, Licheng District, Quanzhou, Fujian, China 362000

3.2. Product Description

Main unit	Main unit						
Name of EUT:	VHF Marine Radio	VHF Marine Radio					
Trade mark:	-						
Model/Type reference:	RS-50M						
Listed mode(s):	MR-50M, Sealine MK16						
Power supply:	DC3.7V from li-ion battery						
Hardware version:	6SS3-5869-AA						
Software version:	5869-01						
RF Specification							
Operation Frequency Range:	TX:156.025MHz to 157.425MHz RX:156.050MHz to 162.025MHz						
Rated Output Power:	☐ High Power: 5W		1W				
Modulation Type:	FM						
Channel Separation:	25kHz						
Emission Designator*1:	16K0G3E						
Antenna Type:	Rubber spiral antenna						

Note:

(1) *1 According to FCC Part 2.202 requirements, the Necessary Bandwidth is calculated as follows:

- For PM Voice Modulation

Channel Spacing = 25 KHz, D = 5 KHz max, K = 1, M = 3 KHz

Bn = 2M + 2DK = 2*3 + 2*5*1 = **16 KHz**

Emission designation: 16K0G3E

Report No : CHTEW22080295 Page 6 of 38 Issued: 2022-08-25

3.3. Test frequency list

According to ANSI C63.26 section 5.1.2.1:

Measurements of transmitters shall be performed and, if required, reported for each frequency band in which the EUT can be operated with the device transmitting at the number of frequencies in each band specified in Table 2.

Frequency range over which EUT operates	Number of frequencies	Location in frequency range of operation		
1 MHz or less	1	Middle		
1 MHz to 10 MHz	2	1 near top and 1 near bottom		
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom		

Fraguency Panda (MUz)	Test Channel	Test Frequency (MHz)			
Frequency Bands (MHz)	rest Chamilei	TX	RX		
TX:156.025MHz~157.425MHz	CH _L (CH60)	156.025	160.625		
RX:156.050MHz~162.025MHz	CH _M (CH16)	156.800	156.800		
KA. 130.030WIFIZ~162.023WIFIZ	CH _H (CH88)	157.425	157.425		

Note: The Product channel frequency table: USA Marine VHF Channels and Frequencies:

■ VHF Marine Channel List

USA-USA Channel, INT-International Channel, CAN-Canadian Channel

	USA-OSA Channel, INT-International Channel, CAN-Canadian Channel							lalliel											
Char	nel Nu	ımber	Frequen	cy (MHz)	Char	nnel Nu	ımber	Frequen	cy (MHz)	Char	nel Nu	ımber	Frequency (MHz)) Channel Number		ımber	Frequency (MHz)	
USA	INT	CAN	Transmit	Receive	USA	INT	CAN	Transmit	Receive	USA	INT	CAN	Transmit	Receive	USA	INT	CAN	Transmit	Receive
	01	01	156.050	160.650	20A			157.000	157.000	66A	66A	66A*1	156.325	156.325	85	85	85	157.275	161.875
01A			156.050	156.050		21	21	157.050	161.650	67	67	67	156.375	156.375	85A			157.275	157.275
	02	02	156.100	160.700	21A		21A	157.050	157.050	68	68	68	156.425	156.425	86	86	86	157.175	161.925
	03	03	156.150	160.750			21b	RX Only	161.650	69	69	69	156.475	156.475	86A			157.325	157.325
03A			156.150	156.150		22		157.100	161.700	70	70	70	RX Only	156.525	87	87	87	157.375	161.975
	04		156.200	160.800	22A		22A	157.100	157.100	71	71	71	156.575	156.575	87A			157.375	157.375
		04A	156.200	156.200		23	23	157.150	161.750	72	72	72	156.625	156.625	88	88	88	157.425	162.025
	05		156.250	160.850	23A			157.150	157.150	73	73	73	156.675		88A			157.425	157.425
05A		05A	156.250	156.250	24	24	24	157.200	161.800	74	74	74	156.725	156.725	1019*3			156.950	156.950
06	06	06	156.300	156.300	25	25	25	157.250	161.850	75* ¹	75* ¹	75* ¹	156.775	156.775	1020*3			157.000	157.000
	07		156.350	160.950			25b	RX Only	161.850	76*1	76*1	76* ¹	156.825	156.825	1078*3			156.925	156.925
07A		07A	156.350	156.350	26	26	26	157.300	161.900	77* ¹	77	77* ¹	156.875	156.875	1079*3			156.975	156.975
80	80	80	156.400	156.400	27	27	27	157.350	161.950		78		156.925	156.525		A1*2		161.975	161.975
09	09	09	156.450	156.450	28	28	28	157.400	162.000	78A		78A	156.925	156.925		A2*2		162.025	162.025
10	10	10	156.500	156.500			28b	RX Only	162.000		79		156.975	161.575					
11	11	11	156.550	156.550		60	60	156.025	160.625	79A		79A	156.975	156.975	wy	Chan	mal	Frequency (MHz)	
12	12	12	156.600	156.600		61		156.075	160.675		80		157.025	161.625	W A	Chan	inei	Transmit	Receive
13*1	13	13* ¹	156.650	156.650	61A		61A	156.075	156.075	80A		80A	156.025	157.025		1		RX Only	162.550
14	14	14	156.700	156.700		62		156.125	160.725		81		157.075	161.675		2		RX Only	162.400
15*1	15*1	15* ¹	156.750	156.750			62A	156.125	156.125	81A		81A	157.075	157.075		3		RX Only	162.475
16	16	16	156.800	156.800		63		156.175	160.775		82		157.125	161.725		4		RX Only	162.425
17* ¹	17	17* ¹	156.850	156.850	63A			156.175	156.175	82A		82A	157.125	157.125		5		RX Only	162.450
	18		156.900	161.500		64	64	156.225	160.825		83	83	157.175	161.775		6		RX Only	162.500
18A		18A	156.900	156.900	64A		64A	156.225	156.225	83A		83A	157.175	157.175		7		RX Only	162.525
	19		156.950	161.550		65		156.275	160.875			83b	RX Only	161.775		8		RX Only	161.650
19A		19A	156.950	156.950	65A	65A	65A	156.275	156.275	84	84	84	157.225	161.825		9		RX Only	161.775
20	20	20*1	157.000	161.600		66		156.325	160.925	84A			157.225	157.225		10		RX Only	163.275

^{*1} Low power only. *2 For only the AUS version. *3 For only the USA version.

Report No : CHTEW22080295 Page 7 of 38 Issued: 2022-08-25

3.4. EUT operation mode

Toot mode	Transmitting	Desciving	Powe	r level	Analog Voice/PM
Test mode	Transmitting	Receiving	High	Low	25kHz
TX-AWH	√		√		√
TX-AWL	√			√	√

Note:

 $[\]sqrt{\ }$: is operation mode.

Modulation Type	Description
UM	Un-modulation
AM2	Apply a 1000 Hz tone and adjust the audio frequency generator to produce 20% of the rated system deviation.
AM6	Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation, then increase the level from the audio generator by 20 dB
AM5	Modulate the transmitter with a 2500 Hz sine wave at an input level 16 dB greater than that necessary to produce 50% of rated system deviation.

Pre-scan above all test mode, found below test mode which it was worse case mode, so only show the test data for worse case mode on the test report.

Test item	Modulation Type	Test mode (Worse case mode)
Conducted Output Power	UM	TX-AWH, TX-AWL
99% Occupied Bandwidth & 26dB bandwidth	AM6	TX-AWH, TX-AWL
Emission Mask	AM5	TX-AWH, TX-AWL
Modulation Limit	AM6	TX-AWH
Audio Frequency Response	AM2	TX-AWH
Audio Frequency Response	AM2	TX-AWH
Frequency Stability VS Temperature	UM	TX-AWH, TX-AWL
Frequency Stability VS Voltage	UM	TX-AWH, TX-AWL
Transmit Conducted Spurious Emission	AM5	TX-AWH
Transmit Radiated Spurious Emission	AM5	TX-AWH

3.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- \bigcirc supplied by the lab

•	Power Cable	Length (m):	1
		Shield :	Unshielded
		Detachable :	Undetachable
0	Multimeter	Manufacturer:	1
		Model No. :	1

Report No : CHTEW22080295 Page 8 of 38 Issued: 2022-08-25

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.			
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China			
Connect information:	Tel: 86-755-26715499 E-mail: cs@szhtw.com.cn http://www.szhtw.com.cn			
Qualifications	Туре	Accreditation Number		
Qualifications	FCC	762235		

Report No: CHTEW22080295 Page 9 of 38 Issued: 2022-08-25

4.3. Environmental conditions

Atmospheric Contions						
Temperature:	21°C to 25°C					
Relative Humidity:	20 % to 75 %.					
Atmospheric Pressure:	860 mbar to 1060 mbar					
Norminal Test Voltage:	V _N = DC 3.7V					
Extrem Test Voltage @115%V _N :	V _H = DC 4.3V					
Extrem Test Voltage @85%V _N :	V _L = DC 3.1V					

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements—and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Frequency stability & Occupied Bandwidth	15Hz for <1GHz 70Hz for >1GHz	(1)
Conducted Output Power	0.51dB	(1)
ERP / EIRP / RSE	2.66dB for <1GHz 3.44dB for >1GHz	(1)
Conducted Emission 9KHz-30MHz	3.02dB	(1)
Radiated Emission 30~1000MHz	4.90dB	(1)
Radiated Emission 1~18GHz	4.96dB	(1)
FM deviation	25 Hz	(1)
Audio level	0.62 dB	(1)
Low Pass Filter Response	0.76 dB	(1)
Modulation Limiting	0.42 %	(1)
Transient Frequency Behavior	6.8 %	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No : CHTEW22080295 Page 10 of 38 Issued: 2022-08-25

4.5. Equipments Used during the Test

•	TS8613 Test system							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
•	Spectrum Analyzer	Agilent	HTWE0286	N9020A	MY50510187	2021/09/13	2022/09/12	
•	Signal & Spectrum Analyzer	R&S	HTWE0262	FSW26	103440	2021/09/13	2022/09/12	
•	RF Communication Test Set	HP	HTWE0038	8920A	3813A10206	2021/09/13	2022/09/12	
•	Digital intercom communication tester	Aeroflex	HTWE0255	3920B	1001682041	2021/09/13	2022/09/12	
•	Signal Generator	R&S	HTWE0191	SML02	100507	2021/09/13	2022/09/12	
•	Signal Generator	R&S	HTWE0337	SMC100A	107268	2021/09/13	2022/09/12	
•	RF Control Unit	Tonscend	HTWE0294	JS0806-2	N/A	N/A	N/A	
•	Filter-VHF	Microwave	HTWE0309	N26460M1	498702	N/A	N/A	
•	Filter-UHF	Microwave	HTWE0311	N25155M2	498704	N/A	N/A	
•	Power Divider	Microwave	HTWE0043	OPD1040-N-4	N/A	2022/05/16	2023/05/15	
•	Attenuator	JFW	HTWE0292	50FH-030-100	N/A	2022/05/16	2023/05/15	
•	Attenuator	JFW	HTWE0293	50-A-MFN-20	0322	2022/05/16	2023/05/15	
•	Test software	HTW	N/A	Radio ATE	N/A	N/A	N/A	

•	Auxiliary Equi	pment					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Climate chamber	ESPEC	HTWE0254	GPL-2	N/A	2021/09/14	2022/09/13
•	DC Power Supply	Gwinstek	HTWE0274	SPS-2415	GER835793	N/A	N/A

Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Signal and spectrum Analyzer	R&S	HTWE0242	FSV40	100048	2021/09/13	2022/09/12
•	Signal & Spectrum Analyzer	R&S	HTWE0262	FSW26	103440	2021/09/13	2022/09/12
•	Spectrum Analyzer	Agilent	HTWE0286	N9020A	MY50510187	2021/09/13	2022/09/12
•	Radio communication tester	R&S	HTWE0287	CMW500	137688-Lv	2021/09/13	2022/09/12
•	Test software	Tonscend	N/A	JS1120	N/A	N/A	N/A

Radiated Spurious Emission							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	C11121	2018/09/27	2022/09/26
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2021/09/13	2022/09/12

Report No : CHTEW22080295 Page 11 of 38 Issued: 2022-08-25

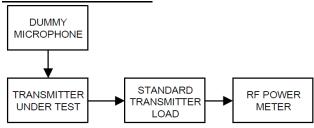
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2021/04/06	2024/04/05
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2020/04/27	2023/04/26
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2021/04/06	2024/04/05
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2021/11/05	2022/11/04
•	Broadband Preamplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2022/02/28	2023/02/27
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0119-05	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24
•	EMI Test Software	Audix	N/A	E3	N/A	N/A	N/A

•	Radiated emission-6th test site							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2022/09/29	
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2021/09/14	2022/09/13	
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2021/04/06	2024/04/05	
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2021/04/06	2024/04/05	
•	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	2021/11/05	2022/11/04	
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-01	N/A	N/A	2022/02/25	2023/02/24	
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-02	SUCOFLEX104	501184/4	2022/02/25	2023/02/24	
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A	

•	Radiated emission-7th test site							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	C11121	2018/09/27	2022/09/26	
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2021/09/13	2022/09/12	
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31	
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2020/04/27	2023/04/26	
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2021/11/05	2022/11/04	
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2022/02/28	2023/02/27	
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2022/02/25	2023/02/24	
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24	
•	RF Connection Cable	HUBER+SUHNER	HTWE0119-05	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24	
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24	
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A	

Report No : CHTEW22080295 Page 12 of 38 Issued: 2022-08-25

5. TEST CONDITIONS AND RESULTS


5.1. Conducted Carrier Output Power

LIMIT

FCC Part 80.215(c)

- (c) Coast station frequencies above 27500kHz. The maximum power must not exceed the values listed below. Maximum authorized power at the input terminals of the station antenna
- (1) Coast stations:
- 156-162MHz-50W
- (2) Marine utility stations:
- 156-162MHz-10W

TEST CONFIGURATION

TEST PROCEDURE

- (1) Connect the equipment as illustrated
- (2) Correct for all losses in the RF path
- (3) Measure the transmitter output power
- (4) If the power output is adjustable, measurements shall be made for the highest and lowest power levels.

TEST MODE:

Please reference to the section 3.4

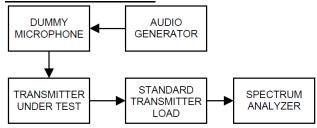
TEST RESULTS

Please refer to appendix A on the appendix report

Report No : CHTEW22080295 Page 13 of 38 Issued: 2022-08-25

5.2. 99% Occupied Bandwidth & 26dB Bandwidth

LIMIT


FCC Part 80.205

(a) An emission designator shows the necessary bandwidth for each class of emission of a station except that in ship earth stations it shows the occupied or necessary bandwidth, whichever is greater. The following table gives the class of emission and corresponding emission designator and authorized bandwidth:

Class of emission	Emission designator	Authorized bandwidth (kHz)
A1A	160HA1A	0.4
A1B ¹	160HA1B	0.4
A1D ¹²	16K0A1D	20.0
A2A	2K66A2A	2.8
A2B ¹	2K66A2B	2.8
A2D ¹²	16K0A2D	20.0
A3E	6K00A3E	8.0
A3N ²	2K66A3N	2.8
A3X ³	3K20A3X	25.0
F1B ⁴	280HF1B	0.3
F1B ⁵	300HF1B	0.5
F1B ⁶	16KOF1B	
F1C	2K80F1C	
F1D ¹²	16K0F1D	
F2B ⁶	16KOF2B	20.0
F2C ⁷	16KOF2C	
F2D ¹²	16K0F2D	
F3C	2K80F3C	
F3C ⁷	16KOF3C	
F3E ⁸	16KOF3E	
F3N ⁹	20MOF3N	
G1D ¹²	16K0G1D	
G2D ¹²	16K0G2D	
	16KOG3D	
G3D ¹⁰	16KOG3E	
G3E ⁸		
G3N ^{3 13}	16KOG3N	
H2A	1K40H2A	
H2B ¹	1K40H2B	
H3E ¹¹	2K80H3E	
H3N J2A	2K66H3N	
J2B ⁴	160HJ2A 280HJ2B	
	300HJ2B	
J2B ⁵	2K80J2B	
J2B J2C	2K80J2C	
J2D ¹⁴	2K80J2D	
J3C	2K80J3C	
J3E ¹¹	2K80J3E	
J3N		
y= · ·	Intinisiv	
NON	160HJ3N NON	
NON PON	NON (12)	0.4

Report No : CHTEW22080295 Page 14 of 38 Issued: 2022-08-25

TEST CONFIGURATION

TEST PROCEDURE

- (1) Connect the equipment as illustrated
- (2) Spectrum set as follow:

Centre frequency = the nominal EUT channel center frequency,

The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of 1.5 × OBW is sufficient)

RBW = 1% to 5% of the anticipated OBW, VBW ≥ 3 × RBW, Sweep = auto,

Detector function = peak, Trace = max hold

- (3) Set 99% Occupied Bandwidth and 26dB Bandwidth
- (4) Measure and record the results in the test report.

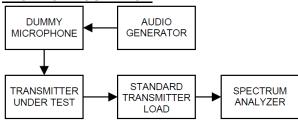
TEST MODE:

Please reference to the section 3.4

TEST RESULTS

Please refer to appendix B on the appendix report

Report No: CHTEW22080295 Page 15 of 38 Issued: 2022-08-25


5.3. Emission Mask

LIMIT

FCC Part 80.211

- (f) The mean power when using emissions other than those in paragraphs (a), (b), (c) and (d) of this section:
- (1) On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 dB;
- (2) On any frequency removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: At least 35 dB; and
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus 10log10 (mean power in watts) dB.

TEST CONFIGURATION

TEST PROCEDURE

- 1) Connect the equipment as illustrated.
- Spectrum set as follow: Centre frequency= fundamental frequency,span=120kHz ,RBW=300Hz,VBW=1000Hz,Sweep= auto, Detector function=peak,Trace=max hold.
- 3) Key the transmitter, and set the level of the unmodulated carrier to a full scale reference line. This is the 0dB reference for the measurement.
- 4) Apply Input Modulation Signal to EUT according to Section 3.4
- 5) Measure and record the results in the test report.

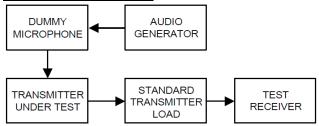
TEST MODE:

Please reference to the section 3.4

TEST RESULTS

Please refer to appendix C on the appendix report

Report No: CHTEW22080295 Page 16 of 38 Issued: 2022-08-25


5.4. Modulation Limit

LIMIT

FCC Part 2.1047(b),FCC Part 80.213(d)

Ship and coast station transmitters operating in the 156-162 MHz and 216-220 bands must be capable of proper operation with a frequency deviation that does not exceed ±5 kHz when using any emission authorized by §80.207.

TEST CONFIGURATION

TEST PROCEDURE

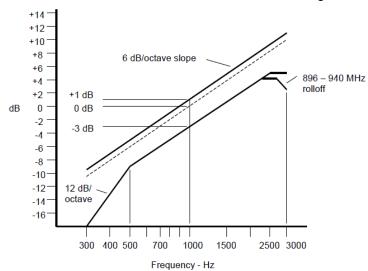
- 1) Connect the equipment as illustrated.
- 2) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- 3) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for ≤0.25 Hz to ≥15,000 Hz. Turn the de-emphasis function off.
- 4) Apply Input Modulation Signal to EUT according to Section 3.4 and vary the input level from –20 to +20dB.
- 5) Measure both the instantaneous and steady-state deviation at and after the time of increasing the audio input level
- 6) Repeat step 4-5 with input frequency changing to 300Hz,1004Hz,1500Hz and 2500Hz in sequence.

TEST MODE

Please reference to the section 3.4

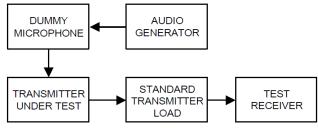
TEST RESULTS

Please refer to appendix D on the appendix report


Report No: CHTEW22080295 Page 17 of 38 Issued: 2022-08-25

5.5. Audio Frequency Response

LIMIT


FCC Part 2.1047(a):

Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

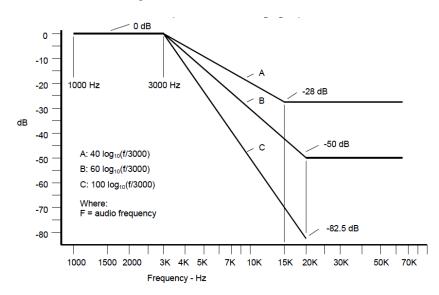
An additional 6 dB per octave attenuation is allowed from 2500 Hz to 3000 Hz in equipment operating in the 25 MHz to 869 MHz range.

TEST CONFIGURATION

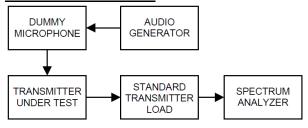
TEST PROCEDURE

- 1) Connect the equipment as illustrated.
- Set the test receiver to measure peak positive deviation. Set the audio bandwidth for 50 Hz to 15,000 Hz.
 Turn the de-emphasis function off.
- 3) Set the DMM to measure rms voltage.
- 4) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- 5) Apply Input Modulation Signal to EUT according to Section 3.4
- 6) Set the test receiver to measure rms deviation and record the deviation reading.
- 7) Record the DMM reading as V_{REF}.
- 8) Set the audio frequency generator to the desired test frequency between 300 Hz and 3000 Hz.
- Vary the audio frequency generator output level until the deviation reading that was recorded in step 6) is obtained.
- 10) Record the DMM reading as V_{FREQ}
- 11) Calculate the audio frequency response at the present frequency as: audio frequency response=20log₁₀ (V_{FREQ}/V_{REF}).
- 12) Repeat steps 8) through 11) for all the desired test frequencies

Report No: CHTEW22080295 Page 18 of 38 Issued: 2022-08-25 TEST MODE Please reference to the section 3.4 **TEST RESULTS ⊠** Passed ■ Not Applicable Please refer to appendix E on the appendix report


Report No: CHTEW22080295 Page 19 of 38 Issued: 2022-08-25

5.6. Audio Low Pass Filter Response


LIMIT

FCC Part 2.1047(b),FCC Part 80.213(e)

Coast station transmitters operated in the 156-162 MHz band must be equipped with an audio low-pass filter. The filter must be installed between the modulation limiter and the modulated radio frequency stage. At frequencies between 3 kHz and 20 kHz it must have an attenuation greater than at 1 kHz by at least 60log10(f/3) dB where + is the audio frequency in kilohertz. At frequencies above 20 kHz the attenuation must be at least 50 dB greater than at 1 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1) Configure the EUT as shown in figure .
- 2) Apply a 1000 Hz tone from the audio signal generator and adjust the level per manufacturer's specifications. Record the dB level of the 1000 Hz tone as LEV_{REF}.
- Set the audio signal generator to the desired test frequency between 3000 Hz and the upper low pass filter limit. Record the dB level at the test frequency as LEV_{FREQ}.
- 4) Calculate the audio frequency response at the test frequency as: low pass filter response = LEV_{FREQ} LEV_{REF}

TEST MODE:

Please reference to the section 3.4

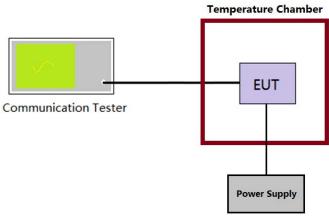
TEST RESULTS

Please refer to appendix F on the appendix report

Report No: CHTEW22080295 Page 20 of 38 Issued: 2022-08-25

5.7. Frequency stability VS Temperature

LIMIT


FCC Part 80.209(a):

The frequency tolerance requirements applicable to transmitters in the maritime services are shown in the following table. Tolerances are given as parts in 10⁶ unless shown in Hz.

Frequency bands and categories of stations	Tolerances ¹
(5) Band 156-162 MHz:	
(i) Coast stations:	
For carriers licensed to operate with a carrier power:	
Below 3 watts	10.
3 to 100 watts	5.7
(ii) Ship stations	10.4
(iii) Survival craft stations operating on 121.500 MHz	50.
(iv) EPIRBs:	
Operating on 121.500 and 243.000 MHz	50.
Operating on 156.750 and 156.800 MHz. ⁶	10.
(6) Band 216-220 MHz:	
(i) Coast stations:	
For all emissions	5.
(ii) Ship stations:	
For all emissions	5.
(7) Band 400-466 MHz:	
(i) EPIRBs operating on 406-406.1 MHz	5.
(ii) On-board stations	5.
(iii) Radiolocation and telecommand stations.	5.
(8) Band 1626.5-1646.5 MHz:	
(i) Ship earth stations	5.

⁴For transmitters in the radiolocation and associated telecommand service operating on 154.584 MHz, 159.480 MHz, 160.725 MHz and 160.785 MHz the frequency tolerance is 15 parts in 10⁶.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT output port was connected to communication tester.
- 2. The EUT was placed inside the temperature chamber.
- 3. Turn EUT off and set the chamber temperature to –30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency as MCF_{MHz}.
- 4. Calculate the ppm frequency error by the following: ppm error=(MCF_{MHZ}/ACF_{MHZ}-1)*10⁶ where MCF_{MHz} is the Measured Carrier Frequency in MHz ACF_{MHz} is the Assigned Carrier Frequency in MHz
- Repeat step 3 measure with 10°C increased per stage until the highest temperature of +50°C reached.

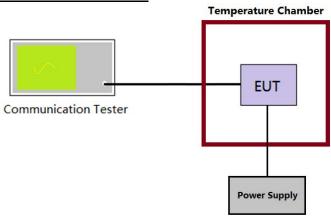
⁷For transmitters operated at private coast stations with antenna heights less than 6 meters (20 feet) above ground and output power of 25 watts or less the frequency tolerance is 10 parts in 10⁶.

Report No: CHTEW22080295 Page 21 of 38 Issued: 2022-08-25 TEST MODE Please reference to the section 3.4 **TEST RESULTS ⊠** Passed ☐ Not Applicable Please refer to appendix G on the appendix report

Report No: CHTEW22080295 Page 22 of 38 Issued: 2022-08-25

5.8. Frequency stability VS Voltage

LIMIT


FCC Part 80.209(a):

The frequency tolerance requirements applicable to transmitters in the maritime services are shown in the following table. Tolerances are given as parts in 10⁶ unless shown in Hz.

Frequency bands and categories of stations	Tolerances ¹
5) Band 156-162 MHz:	
(i) Coast stations:	
For carriers licensed to operate with a carrier power:	
Below 3 watts	10.
3 to 100 watts	5.7
(ii) Ship stations	10.4
(iii) Survival craft stations operating on 121.500 MHz	50.
(iv) EPIRBs:	
Operating on 121.500 and 243.000 MHz	50.
Operating on 156.750 and 156.800 MHz. ⁶	10.
(6) Band 216-220 MHz:	
(i) Coast stations:	
For all emissions	5.
(ii) Ship stations:	
For all emissions	5.
(7) Band 400-466 MHz:	
(i) EPIRBs operating on 406-406.1 MHz	5.
(ii) On-board stations	5.
(iii) Radiolocation and telecommand stations.	5.
(8) Band 1626.5-1646.5 MHz:	
(i) Ship earth stations	5.

⁴For transmitters in the radiolocation and associated telecommand service operating on 154.584 MHz, 159.480 MHz, 160.725 MHz and 160.785 MHz the frequency tolerance is 15 parts in 10⁶.

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT output port was connected to communication tester.
- The EUT was placed inside the temperature chamber at 25°C
- 3) Record the carrier frequency of the transmitter as MCF_{MHZ}
- Calculate the ppm frequency error by the following: ppm error=(MCF_{MHZ}/ACF_{MHZ}-1)*10⁶ where
 MCF_{MM} is the Measured Carrier Frequency in MHZ
 - MCF_{MHz} is the Measured Carrier Frequency in MHz ACF_{MHz} is the Assigned Carrier Frequency in MHz
- Repeat step 3 measure with varied ±15% of the nominal value measured at the input to the EUT

⁷For transmitters operated at private coast stations with antenna heights less than 6 meters (20 feet) above ground and output power of 25 watts or less the frequency tolerance is 10 parts in 10⁶.

Report No: CHTEW22080295 Page 23 of 38 Issued: 2022-08-25 TEST MODE Please reference to the section 3.4 **TEST RESULTS** ⊠ Passed ☐ Not Applicable Please refer to appendix H on the appendix report

Report No: CHTEW22080295 Page 24 of 38 Issued: 2022-08-25

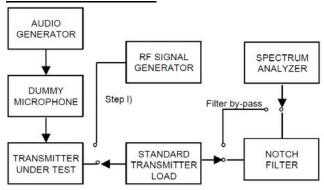
5.9. Transmit Conducted Spurious Emission

LIMIT

FCC Part 80.211(f)(3)

On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus 10log10 (mean power in watts) dB.

Note: In general, the worse case attenuation requirement shown above was applied.


Calculation: Limit (dBm) =EL-43-10log10 (TP)

EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is P(dBm)

Limit (dBm) = $P(dBm)-43-10 \log (Pwatts) = -13dBm$

TEST CONFIGURATION

TEST PROCEDURE

- 1) Connect the equipment as illustrated, with the notch filter by-passed.
- 2) Apply Input Modulation Signal to EUT according to Section 3.4
- Adjust the spectrum analyzer for the following settings:
 Below 1GHz: RBW=100kHz, VBW=300kHz, Above 1GHz: RBW=1MHz, VBW=3MHz
 Detector=Peak, Sweep time=Auto, Trace=Max hold
- 4) Scan frequency range up to 10th harmonic.
- 5) Record the frequencies and levels of spurious emissions.

TEST MODE:

Please reference to the section 3.4

TEST RESULTS

Please refer to appendix I on the appendix report

Report No : CHTEW22080295 Page 25 of 38 Issued: 2022-08-25

5.10. Transmitter Radiated Spurious Emission

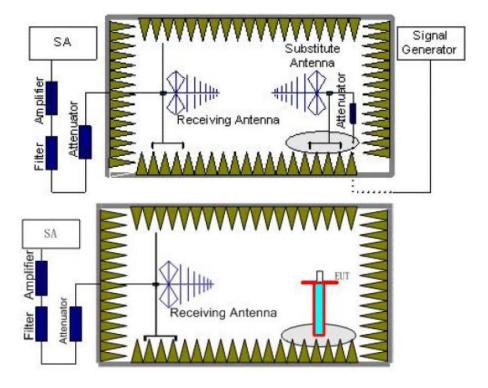
LIMIT

FCC Part 80.211(f)(3)

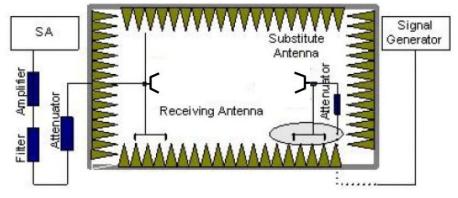
On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus 10log10 (mean power in watts) dB.

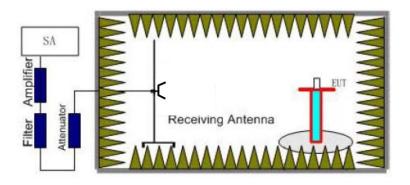
Note: In general, the worse case attenuation requirement shown above was applied.

Calculation: Limit (dBm) =EL-43-10log10 (TP)


EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is P(dBm)


Limit (dBm) = P(dBm)-43-10 log (Pwatts) = -13dBm


TEST CONFIGURATION

Below 1GHz:

Above 1GHz:

TEST PROCEDURE

- Place the EUT in the center of the turntable.
 - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
 - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
- 2. Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
- 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
- 4. Receiver or Spectrum set as follow:
 - Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto
- 5. Each emission under consideration shall be evaluated:
 - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - c) Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
 - e) Record the measured emission amplitude level and frequency
- 6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
- Set-up the substitution measurement with the reference point of the substitution antenna located as near
 as possible to where the center of the EUT radiating element was located during the initial EUT
 measurement.
- 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- 10. For each emission that was detected and measured in the initial test
 - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
 - c) Record the output power level of the signal generator when equivalence is achieved in step b).
- 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
- 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

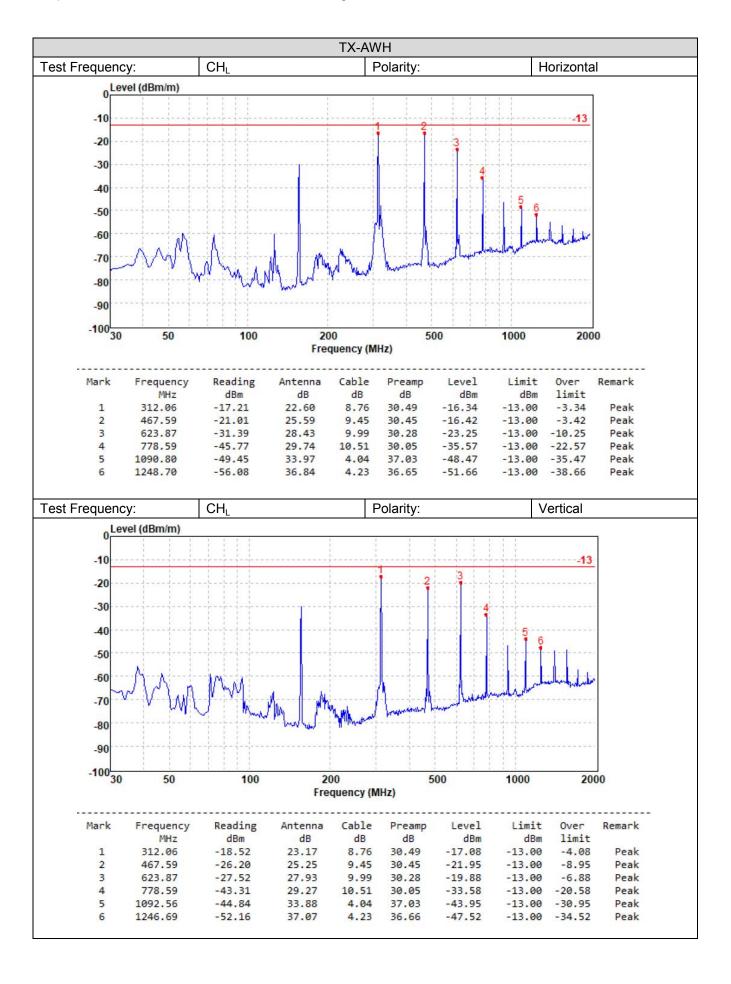
 Pe = Ps(dBm) cable loss (dB) + antenna gain (dBd)

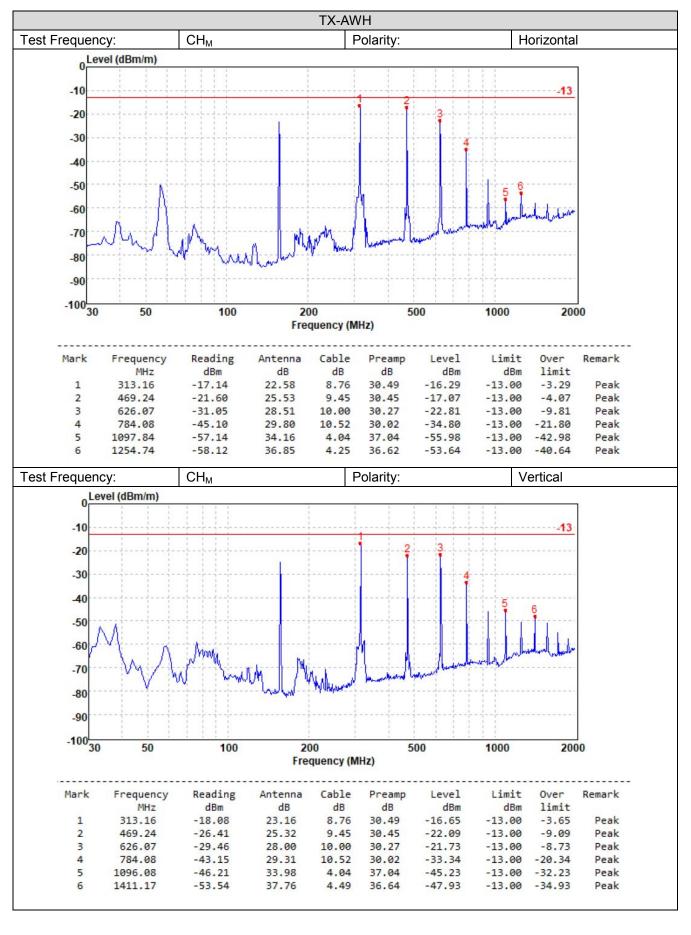
 where
 - Pe = equivalent emission power in dBm
 - Ps = source (signal generator) power in dBm
 - NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.
- 13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from:

Report No : CHTEW22080295 Page 27 of 38 Issued: 2022-08-25

gain (dBd) = gain (dBi) - 2.15 dB.

If necessary, the antenna gain can be calculated from calibrated antenna factor information

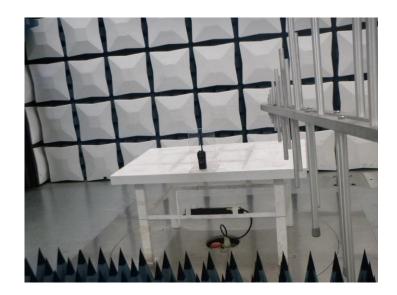

14. Provide the complete measurement results as a part of the test report.

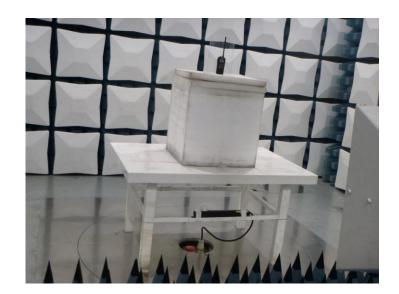

TEST	MOD	E:
-------------	-----	----

Please reference to the section 3.4

TEST RESULTS

⊠ Passed	☐ Not Applicable



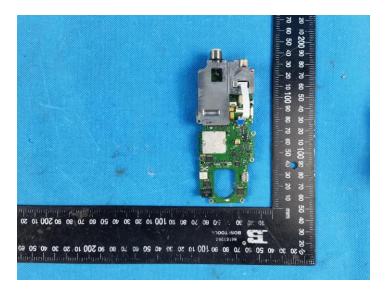


Issued: 2022-08-25

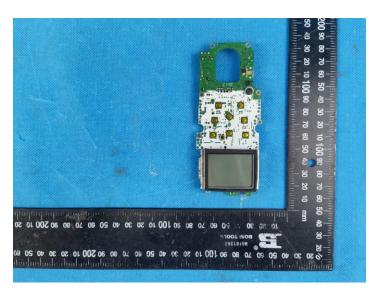
Report No : CHTEW22080295 Page 31 of 38 Issued: 2022-08-25

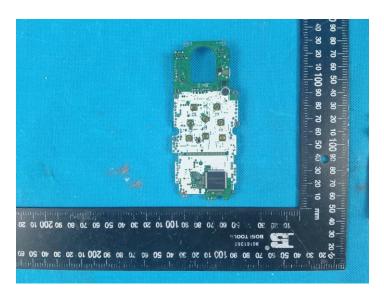

6. Test Setup Photos of the EUT

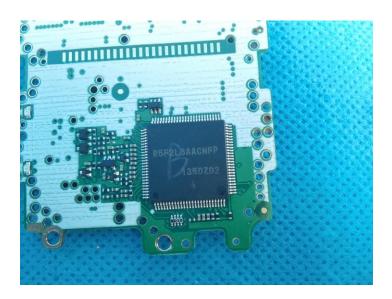
7. External and Internal Photos of the EUT External Photos of the EUT

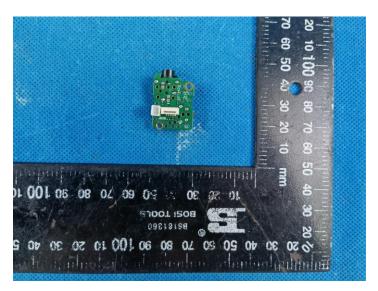

Report No : CHTEW22080295 Page 34 of 38 Issued: 2022-08-25

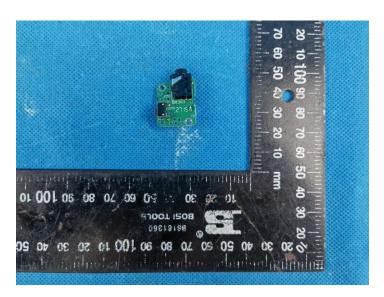
Internal Photos of the EUT


Issued: 2022-08-25









Report No : CHTEW22080295 Page 38 of 38 Issued: 2022-08-25

8.	APPENDIX	Report
----	-----------------	--------

-----End of Report-----

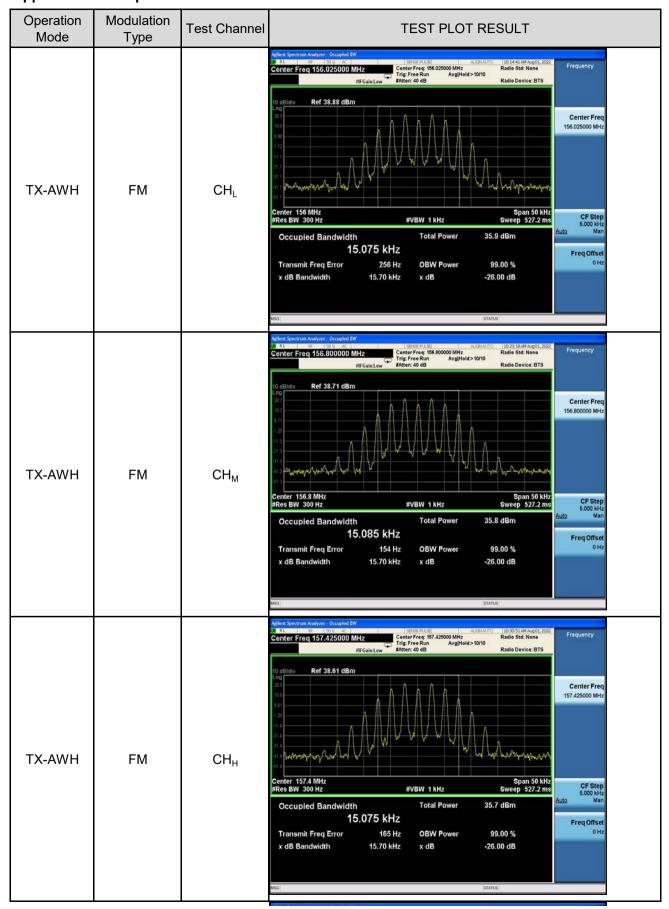
Appendix Report FCC PART 80 Test Form QRE320 V 2.1 (2019-11)

Project No.	SHT2207063501EW						
Test sample No.	YPHT22070635001	Model No.	RS-50M				
Start test date	2022/7/28	Finish date	2022/8/1				
Temperature	24.9℃	Humidity	48%				
Test Engineer	Churshii Gu	Auditor	Xiaodomy Zheo				

Appendix clause	Test Item	Test Result (PASS/FAIL)
А	Maximum Transmitter Power	PASS
В	Occupied Bandwidth	PASS
С	Emission Mask	PASS
D	Modulation Limit	PASS
E	Audio Frequency Response	PASS
F	Audio Low Pass Filter Response	PASS
G	Frequency Stability Test & Temperature	PASS
Н	Frequency Stability Test & Voltage	PASS
I	Spurious Emission On Antenna Port	PASS

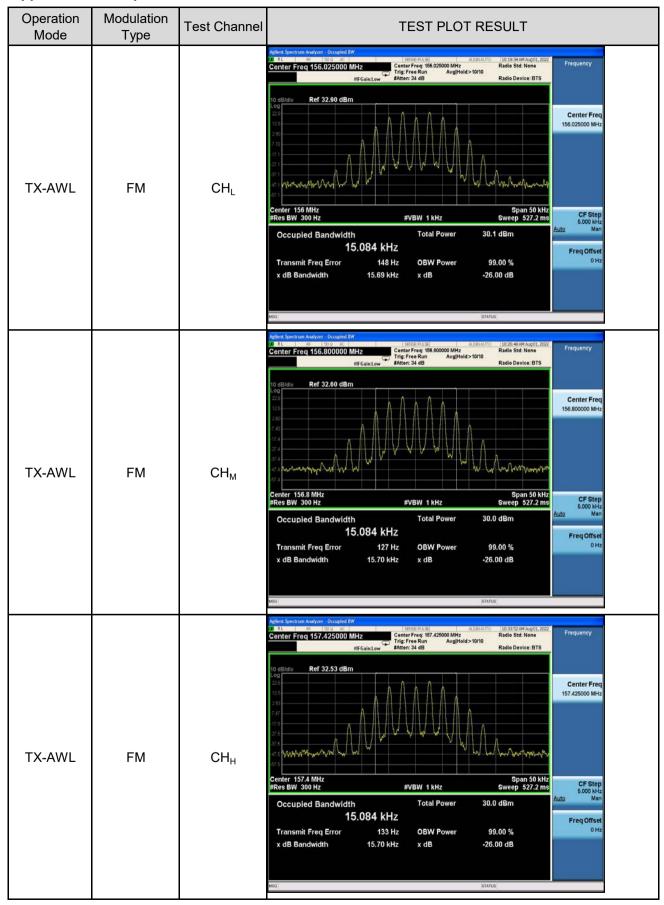
Appendix A:Maximum Transmitter Power

Operation Mode	Modulation Type	Test Channel	Measured Power(dBm)	Measured Power(W)	Limit	Result
TX-AWH	FM	CH _L	35.12	3.25	10	PASS
TX-AWH	FM	CH _M	35.08	3.22	10	PASS
TX-AWH	FM	CH _H	35.09	3.23	10	PASS
TX-AWL	FM	CH _L	29.30	0.85	1	PASS
TX-AWL	FM	CH _M	29.27	0.85	1	PASS
TX-AWL	FM	CH _H	29.32	0.86	1	PASS

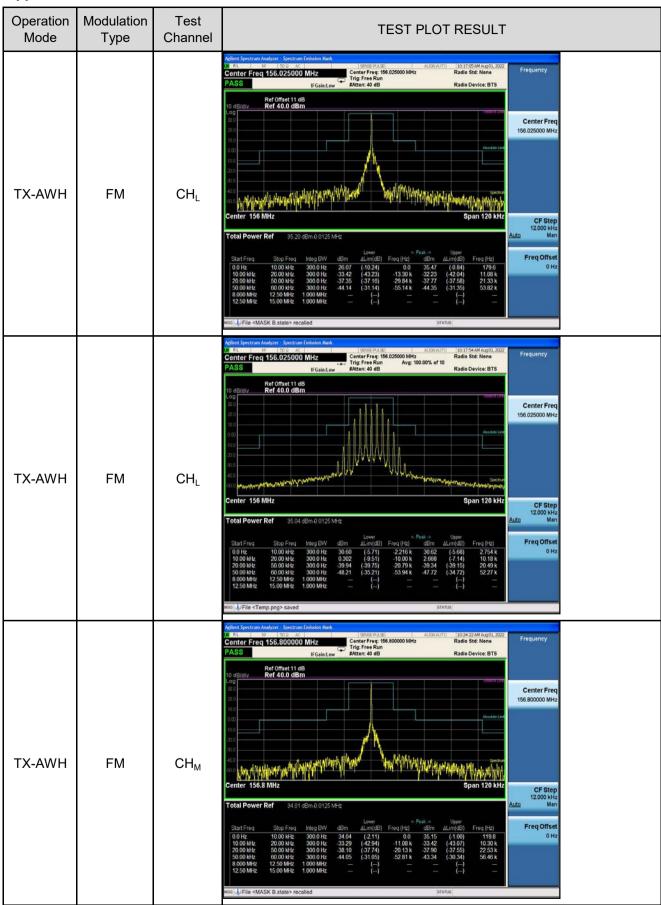


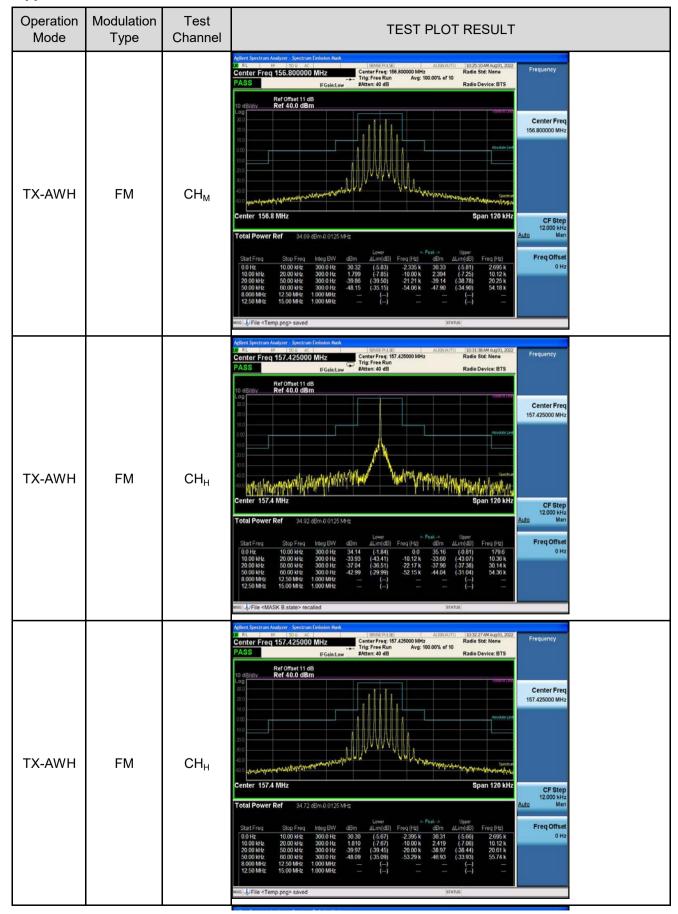
Appendix B:Occupied Bandwidth

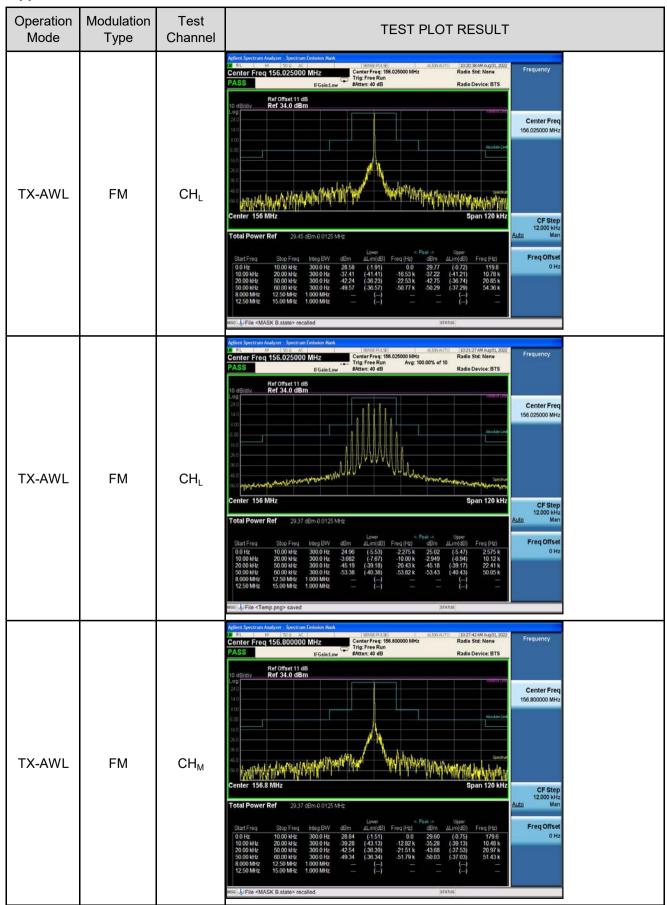
Operation	Modulation	Test Channel	Occupied Bandwidth		99%	Result
Mode	Туре	Test Chamilei	99%(kHz)	26dB(kHz)	Limit(kHz)	Result
TX-AWH	FM	CH _L	15.075	15.70	≤20	PASS
TX-AWH	FM	CH _M	15.085	15.70	≤20	PASS
TX-AWH	FM	CH _H	15.075	15.70	≤20	PASS
TX-AWL	FM	CH _L	15.084	15.69	≤20	PASS
TX-AWL	FM	CH _M	15.084	15.70	≤20	PASS
TX-AWL	FM	CH _H	15.084	15.70	≤20	PASS

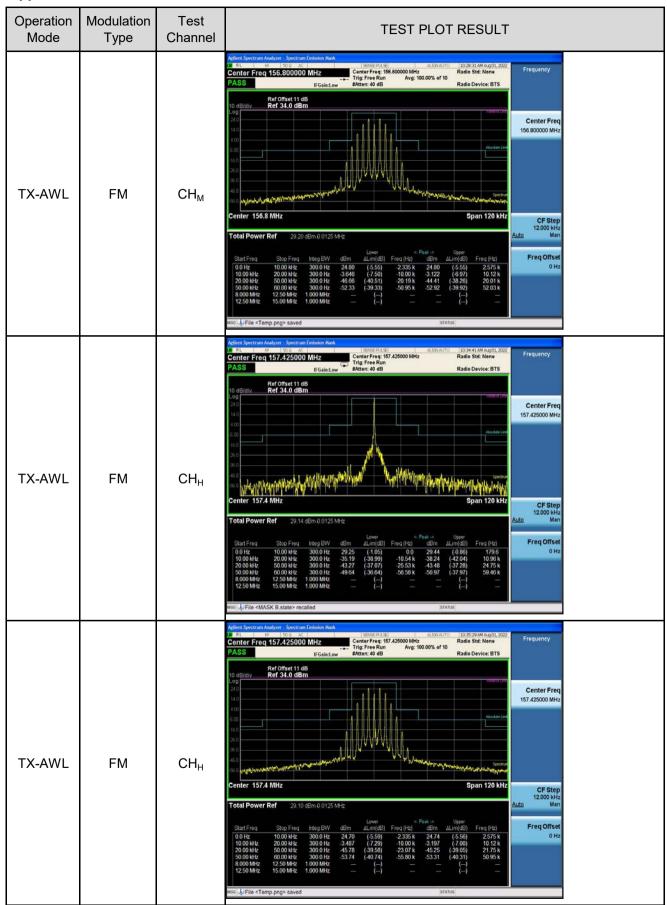


Appendix B:Occupied Bandwidth




Appendix B:Occupied Bandwidth





Appendix D:Modulation Limit

Operation Modulation		Test Modulation		Peak frequency deviation (kHz)				Limit	
Mode	·	Channel	Level (dB)	300Hz	1004Hz	1500Hz	2500 Hz	(kHz)	Result
TX-AWH	FM	CH _M	-20	0.136	0.361	0.525	0.760	5	PASS
TX-AWH	FM	CH _M	-15	0.176	0.597	0.857	1.294	5	PASS
TX-AWH	FM	CH _M	-10	0.262	0.988	1.484	2.232	5	PASS
TX-AWH	FM	CH _M	-5	0.390	1.727	2.588	3.843	5	PASS
TX-AWH	FM	CH _M	0	0.589	3.020	4.387	4.604	5	PASS
TX-AWH	FM	CH _M	5	1.029	4.445	4.819	4.657	5	PASS
TX-AWH	FM	CH _M	10	1.755	4.967	4.837	4.670	5	PASS
TX-AWH	FM	CH _M	15	3.563	4.967	4.848	4.680	5	PASS
TX-AWH	FM	CH _M	20	4.912	4.985	4.858	4.688	5	PASS

Appendix D:Modulation Limit

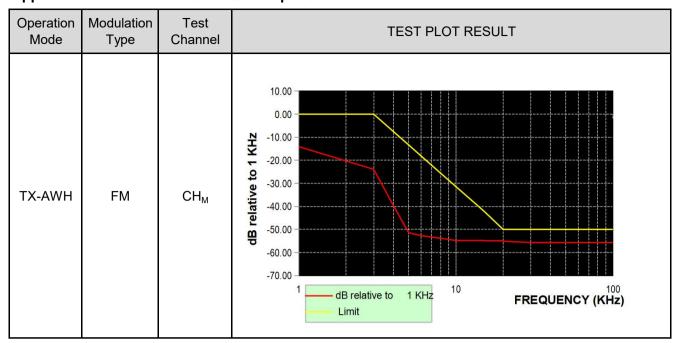
TEST PLOT RESULT

Appendix E:Audio Frequency Response

Operation Mode	Modulation Type	Test Channel	Frequency (Hz)	Audio Frequency Response (dB)	Lower Limit	Upper Limit	Result
TX-AWH	FM	CH _M	100	-30.29			PASS
TX-AWH	FM	CH _M	200	-21.17			PASS
TX-AWH	FM	CH _M	300	-14.75	-17.84	-9.42	PASS
TX-AWH	FM	CH _M	400	-10.70	-12.86	-6.93	PASS
TX-AWH	FM	CH _M	500	-7.88	-9.00	-5.00	PASS
TX-AWH	FM	CH _M	600	-5.48	-7.42	-3.42	PASS
TX-AWH	FM	CH _M	700	-3.81	-6.09	-2.09	PASS
TX-AWH	FM	CH _M	800	-2.31	-4.93	-0.93	PASS
TX-AWH	FM	CH _M	900	-0.98	-3.91	0.09	PASS
TX-AWH	FM	CH _M	1000	0.02	-3.00	1.00	PASS
TX-AWH	FM	CH _M	1200	1.83	-1.42	2.58	PASS
TX-AWH	FM	CH _M	1400	3.18	-0.09	3.91	PASS
TX-AWH	FM	CH _M	1600	4.27	1.07	5.07	PASS
TX-AWH	FM	CH _M	1800	5.22	2.09	6.09	PASS
TX-AWH	FM	CH _M	2000	5.93	3.00	7.00	PASS
TX-AWH	FM	CH _M	2100	6.31	3.42	7.42	PASS
TX-AWH	FM	CH _M	2200	6.60	3.83	7.83	PASS
TX-AWH	FM	CH _M	2300	6.85	4.21	8.21	PASS
TX-AWH	FM	CH _M	2400	7.07	4.58	8.58	PASS
TX-AWH	FM	CH _M	2500	7.29	4.93	8.93	PASS
TX-AWH	FM	CH_M	2600	7.45	4.59	9.27	PASS
TX-AWH	FM	CH _M	2700	7.59	4.27	9.60	PASS
TX-AWH	FM	CH _M	2800	7.66	3.95	9.91	PASS
TX-AWH	FM	CH _M	2900	7.72	3.65	10.22	PASS
TX-AWH	FM	CH _M	3000	7.70	3.35	10.51	PASS
TX-AWH	FM	CH _M	3500	6.74			PASS
TX-AWH	FM	CH _M	4000	4.13			PASS
TX-AWH	FM	CH _M	4500	0.82			PASS
TX-AWH	FM	CH _M	5000	-2.63			PASS

Appendix E:Audio Frequency Response

TEST PLOT RESULT



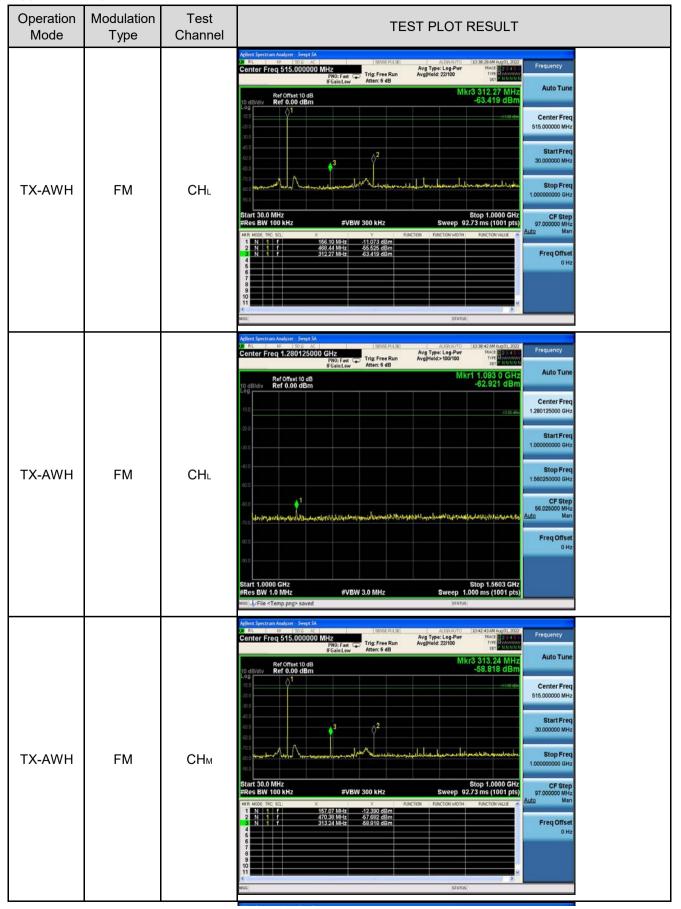
Appendix F:Audio Low Pass Filter Response

Operation Mode	Modulation Type	Test Channel	Frequency (KHz)	dB relative to 1 KHz	Limit	Result
TX-AWH	FM	CH _M	1	-14.10	0.00	PASS
TX-AWH	FM	CH _M	3	-23.92	0.00	PASS
TX-AWH	FM	CH _M	4	-39.60	-7.50	PASS
TX-AWH	FM	CH _M	5	-51.36	-13.30	PASS
TX-AWH	FM	CH _M	6	-52.70	-18.10	PASS
TX-AWH	FM	CH _M	8	-53.83	-25.60	PASS
TX-AWH	FM	CH _M	10	-54.81	-31.40	PASS
TX-AWH	FM	CH _M	15	-54.93	-41.90	PASS
TX-AWH	FM	CH _M	20	-55.09	-50.00	PASS
TX-AWH	FM	CH _M	30	-55.71	-50.00	PASS
TX-AWH	FM	CH _M	40	-55.73	-50.00	PASS
TX-AWH	FM	CH _M	50	-55.73	-50.00	PASS
TX-AWH	FM	CH _M	60	-55.74	-50.00	PASS
TX-AWH	FM	CH _M	70	-55.73	-50.00	PASS
TX-AWH	FM	CH _M	80	-55.72	-50.00	PASS
TX-AWH	FM	CH _M	90	-55.73	-50.00	PASS
TX-AWH	FM	CH _M	100	-55.74	-50.00	PASS

Appendix F:Audio Low Pass Filter Response

Appendix G:Frequency Stability Test & Temperature

Operation Modulation		Test Conditions		Fre	om)	Limit	D 14	
Mode	Туре	Voltage	Temperature	CH∟	CH _M	CH _H	(ppm)	Result
TX-AWH	FM	Vn	-30	0.860	0.586	0.592	±10	PASS
TX-AWH	FM	Vn	-20	0.856	0.592	0.580	±10	PASS
TX-AWH	FM	Vn	-10	0.829	0.569	0.599	±10	PASS
TX-AWH	FM	Vn	0	0.863	0.542	0.604	±10	PASS
TX-AWH	FM	Vn	10	0.827	0.545	0.609	±10	PASS
TX-AWH	FM	Vn	20	0.814	0.538	0.568	±10	PASS
TX-AWH	FM	Vn	30	0.818	0.568	0.587	±10	PASS
TX-AWH	FM	Vn	40	0.837	0.572	0.600	±10	PASS
TX-AWH	FM	Vn	50	0.846	0.584	0.611	±10	PASS
TX-AWL	FM	Vn	-30	0.677	0.644	0.624	±10	PASS
TX-AWL	FM	Vn	-20	0.652	0.637	0.628	±10	PASS
TX-AWL	FM	Vn	-10	0.679	0.622	0.660	±10	PASS
TX-AWL	FM	Vn	0	0.685	0.655	0.627	±10	PASS
TX-AWL	FM	Vn	10	0.659	0.667	0.618	±10	PASS
TX-AWL	FM	V_N	20	0.647	0.621	0.604	±10	PASS
TX-AWL	FM	Vn	30	0.672	0.656	0.612	±10	PASS
TX-AWL	FM	Vn	40	0.681	0.665	0.653	±10	PASS
TX-AWL	FM	Vn	50	0.701	0.632	0.640	±10	PASS



Appendix H:Frequency Stability Test & Voltage

Operation Modulation Mode Type	Test Conditions		Fre	Limit	D			
	Voltage	Temperature	CH _L	CH _M	CH _H	(ppm)	Result	
TX-AWH	FM	Vn	Tn	0.814	0.538	0.568	±10	PASS
TX-AWH	FM	V_L	Tn	0.827	0.541	0.578	±10	PASS
TX-AWH	FM	Vн	Tn	0.863	0.564	0.580	±10	PASS
TX-AWL	FM	Vn	Tn	0.647	0.621	0.604	±10	PASS
TX-AWL	FM	VL	Tn	0.657	0.632	0.607	±10	PASS
TX-AWL	FM	VH	Tn	0.675	0.627	0.631	±10	PASS

Appendix I:Spurious Emission On Antenna Port

HTW

Appendix I:Spurious Emission On Antenna Port

----End of Report----

Appendix Page:19 of 19