

Accreditation N°1-1633 Scope available on www.cofrac.fr

Template : May 28th, 2024

TEST REPORT

N°: 23206282-803702-B(FILE#7739604-SRA)

Version: 02

Subject

Radio spectrum tests according to the standards: FCC CFR 47 Part 15.247 & ANSI C63.10 RSS-247 & RSS-Gen

31 rue Pierre Mendes France

PowerTag F160 3P/3P+N SCHNEIDER ELECTRIC

SCHNEIDER ELECTRIC

See Test Program chapter

FR0008 - 918017 (MOI)

November 29, 2024

August 07, 2024 to August 12, 2024

38050 - GRENOBLE

FRANCE

PowerLogic

PLTPPB1253P

2AH7L-PLTPPB3P

21522-PLTPPB3P

LCIE Grenoble

6500A (MOI) August 07, 2024

52 pages

SCHNEIDER ELECTRIC INDUSTRIE SAS

SM2418100400101 / SM2418100400115

Issued to

Apparatus under test

Product
 Trade mark

- S Manufacturer
- Seamily range
- Solution Model under test
- Serial number
 Serial number
 Serial number
- S FCCII S IC

Conclusion

Test date Test location FCC Test site ISED Test site Sample receipt date Composition of document Document issued on

Written by : Akram HAKKARI Tests operator

	100 M	
--	----------	--

Approved by : Majid MOURZAGH Technical manager

Reproduction of this document is only authorized in its complete form. Any partial reproduction or any insertion of results in an accompanying text with a view to their distribution must receive prior and formal agreement from LCIE. This document results from tests carried out on a specimen, sample or test piece. It does not prejudge the conformity of all the products manufactured to the object tested. Unless otherwise indicated or rule specified by the test method, the decision of conformity does not take into account measurement uncertainty. It in no way prejudges a certification decision. The accreditation of the COFRAC Testing Section attests to the technical competence of the laboratories for the tests covered by the accreditation only. If certain tests mentioned in this report were carried out outside the framework of COFRAC accreditation, they are identified by the symbol Pa.

LCIE

Laboratoire Central des Industries Electriques Une société Bureau Veritas Z.I Centr'alp 170, Rue de Chatagnon 38430 Moirans FRANCE

Tél. + 33 4 76 07 36 36 contact@lcie.fr <u>www.lcie.fr</u>

SAS au capital de 15 745 984€ / RCS Nanterre B 408 363 174 / N° TVA intracommunautaire FR01 408 363 174 / N°SIRET 408 363 174 00017

PUBLICATION HISTORY

Version	Date	Author	Modification
01	October 02, 2024	Akram HAKKARI	Creation of the document
02	November 29, 2024	Akram HAKKARI	Correction test setup

Each new edition of this test report replaces and cancels the previous edition. The control of the old editions of report is under responsibility of client.

1.	TEST PROGRAM	4
2.	EQUIPMENT UNDER TEST: CONFIGURATION (DECLARED BY PROVIDER)	5
3.	OCCUPIED BANDWIDTH	12
4.	6DB BANDWIDTH	16
5.	MAXIMUM CONDUCTED OUTPUT POWER	20
6.	POWER SPECTRAL DENSITY	25
7.	UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
8.	UNWANTED EMISSIONS IN RESTRICTED FREQUENCY BANDS	
9.	UNCERTAINTIES CHART	52

1. **TEST PROGRAM**

References

- 47 CFR Part 15.247 (2023) ۶
 - ≻ RSS 247 Issue 3
 - ≻ **RSS Gen Issue 5**
 - ۶ KDB 558074 D01 DTS Meas Guidance v05r02 Pa
 - \triangleright KDB 662911 D01 Multiple Transmitter Output v02r01
 - ANSI C63.10 (2013) \succ

Radio requirement:

Clause - Test Description	Test result - Comments	
Occupied Bandwidth	ISED	PASS
6dB Bandwidth	FCC & ISED	PASS
Maximum Conducted Output Power	FCC & ISED	PASS
Power Spectral Density	FCC & ISED	PASS
Unwanted Emissions in Non-Restricted Frequency Bands	FCC & ISED	PASS
Unwanted Emissions in Restricted Frequency Bands	FCC & ISED	PASS
Receiver Radiated Emissions	ISED	PASS(2)
This table is a summary of test report see conclusion of each	clause of this test report for detail	

This table is a summary of test report, see conclusion of each clause of this test report for detail.

(1)

Limited program Testing covered the receive mode, and receiver spurious emissions are considered to be the same as transmitter. (2)

PASS: EUT complies with standard's requirement

FAIL: EUT does not comply with standard's requirement

NA: Not Applicable

NP: Test Not Performed

2. EQUIPMENT UNDER TEST: CONFIGURATION (DECLARED BY PROVIDER)

2.1. HARDWARE IDENTIFICATION (EUT AND AUXILIARIES):

Model under test:	PLTPPB1253P
Serial Number:	SM2418100400101 / SM2418100400115
Dimensions:	6cm x 9cm x 3cm (Length x Width x Height)
Туре:	Table-Top

Power supply:

Name	Туре	Rating	Reference / Sn	Comments
Supply1	AC	3P+N 173480 V AC (L-L)	-	-
NC: Not communicated by provider				

NC: Not communicated by provider

Inputs/outputs - Cable:

	Access	Туре	Length used (m)	Declared <3m	Shielded	Comments
	Supply1	3P+N 173480 V AC (L-L)	4	No	No	-
-						

NC: Not communicated by provider

Auxiliary equipment used during test:

Туре	Reference	Sn	Comments	
Laptop	LENOVO	-	-	
Zigbee DONGLE	-	-	-	
NC: Not communicated by provider				

NC: Not communicated by provider

Equipment information (declaration of provider):

802.15.4:	ZigBee
Chipset / RF Module	EFR32MG13P732F512IM32
Frequency band:	[2400 – 2483.5] MHz
Spectrum Modulation:	DSSS
Number of Channel:	16
Spacing channel:	5MHz
Channel bandwidth:	2MHz
Antenna Type: Internal	
Antenna connector:	Temporary for tests
Antenna requirements §15.203	The transmitter uses an integral antenna and it permanently connected
Transmit chains:	1
Receiver chains	1

CHANNEL PLAN			
Channel	Frequency (MHz)		
Cmin: 11	2405		
12	2410		
13	2415		
14	2420		
15	2425		
16	2430		
17	2435		
Cmid: 18	2440		
19	2445		
20	2450		
21	2455		
22	2460		
23	2465		
24	2470		
25	2475		
Cmax: 26	2480		

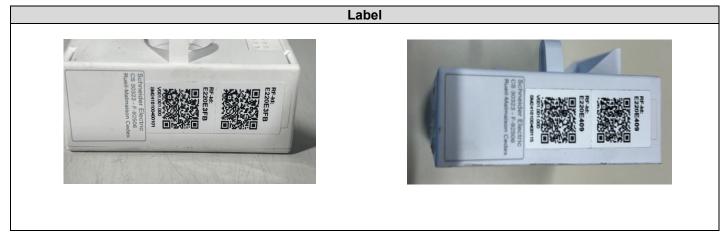
DATA RATE			
Data Rate (Mbps)	Data Rate (Mbps) Modulation Type Worst Case Modulation		
0.25	O-QPSK	\checkmark	

Antenna Characteristic					
Antenna reference Gain (dBi) Frequency Band (MHz) Impedance(Ω)					
Printed Antenna	4.4	2400-2480	50		

Hardware information						
Highest internal frequency (PLL, Quartz, Clock, Microprocessor):			F _{Highest} :	38.4	MHz	
Firmware (if applicable):			V :	Specific FW for RF tests		
Software (if applicable):			V :	NA		
Equipment intended:	Fixed					
Type of equipment:	Stand-alone					
Equipment sample:	Production model					
Duty cycle:	Continuous duty					
	T _{min} : -25 °C					
Operating temperature range:	T _{nom} : 20°C					
T _{max} : 70 °C						
Operating voltage:	Vnom: 400 VAC 50 Hz					

NC: Not communicated by provider

2.2. RUNNING MODE


Test mode	Description of test mode
Test mode 1	Permanent emission with modulation on a fixed channel in the data rate that produced the highest power. Using a companion a device with the EMC ZIGBEE radio Tool 1.5.4 Use T1 test
Test mode 2	Permanent reception Using a companion a device with the EMC ZIGBEE radio Tool 1.5.4 Use T3 and T4

Test	Running mode
Occupied Bandwidth	Test mode 1
6dB Bandwidth	Test mode 1
Maximum Conducted Output Power	Test mode 1
Power Spectral Density	Test mode 1
Conducted Spurious Emission at the Band Edge	Test mode 1
Unwanted Emissions in Non-Restricted Frequency Bands	Test mode 1
AC Power Line Conducted Emission	Test mode 1
Unwanted Emissions in Restricted Frequency Bands	Test mode 1
Receiver Radiated Emissions	Test mode 2 (1)

(1) Testing covered the receive mode, and receiver spurious emissions are considered to be the same as transmitter.

2.3. EQUIPMENT LABELLING

2.4. EQUIPMENT MODIFICATIONS DURING THE TESTS

2.5. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

Where: FS = Field Strength RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain

Example:

Assume a receiver reading of $52.5dB\mu V$ is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 dB $\mu V/m$.

FS = 52.5 + 7.4 + 1.1 – 29 = 32 dBµV/m

The 32 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m. Level in μ V/m = Common Antilogarithm [(32dB μ V/m)/20] = 39.8 μ V/m.

2.6. TEST DISTANCE EXTRAPOLATION – FCC/ISED

The field strength is extrapolated to the new measurement distance using formula from FCC Part15.31 (f) and §6.5-6.6 RSS-GEN:

Below 30MHz,

$$FS_{\text{limit}} = FS_{\text{max}} - 40\log\left(\frac{d_{\text{limit}}}{d_{\text{measure}}}\right)$$

Above 30MHz,

$$FS_{\text{limit}} = FS_{\text{max}} - 20\log\left(\frac{d_{\text{limit}}}{d_{\text{measure}}}\right)$$

Where:

 FS_{limit} is the calculation of field strength at the limit distance, expressed in dBµV/m FS_{max} is the measured field strength, expressed in dBµV/m $d_{measure}$ is the distance of the measurement point from the EUT d_{limit} is the reference limit distance

2.7. CALIBRATION DATE

The calibration intervals are extended at 12+2 months. This extended interval is based on the fact that there is sufficient calibration data to statistically establish a trend or based on experience of use of the test equipment to assure good measurement results for a longer period. The symbol -/- replaces the date for equipment checking before test or that have none impact on the test or that have no calibration required by the standard.

2.8. METHOD TO DETERMINATE THE SPURIOUS RADIATED EMISSION

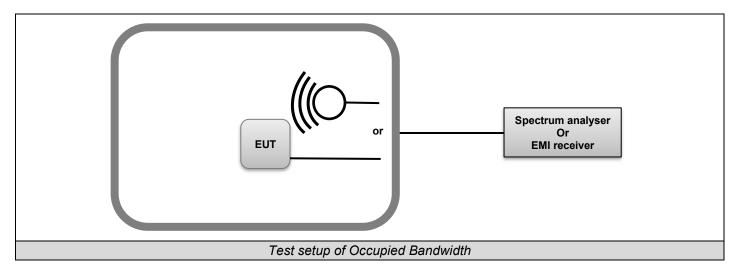
The Normalized Site Attenuation (NSA) is added to the maximum values observed during the azimuth search in order to obtain the spurious radiated emission. For spurious above -6dB from the limit found with the NSA, the Substitution Method is applied.

The substitution antenna replaces the equipment under test (EUT) for Effective Radiated Power (ERP) or Effective Isotropically Radiated Power (EIRP) measurement following the standard. Power is measured for a high level and calculated for the same level of radiated field strength obtained on the measuring antenna and EUT.

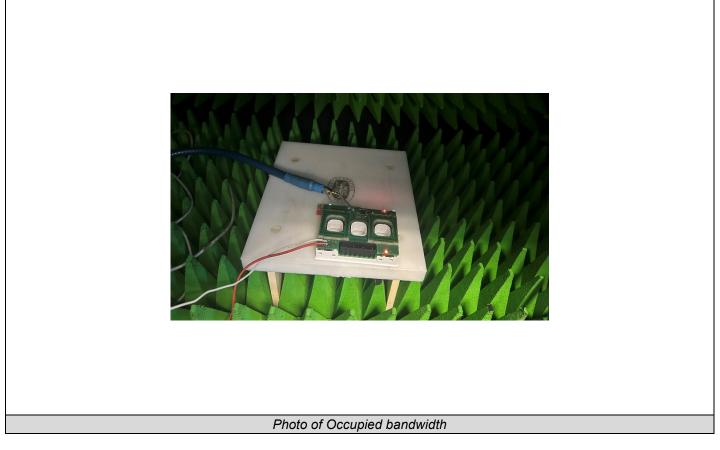
3. OCCUPIED BANDWIDTH

3.1. TEST CONDITIONS

Date of test	: August 09, 2024
Test performed by	: Akram HAKKARI
Relative humidity (%)	: 33
Ambient temperature (°C)	: 21


3.2. TEST SETUP

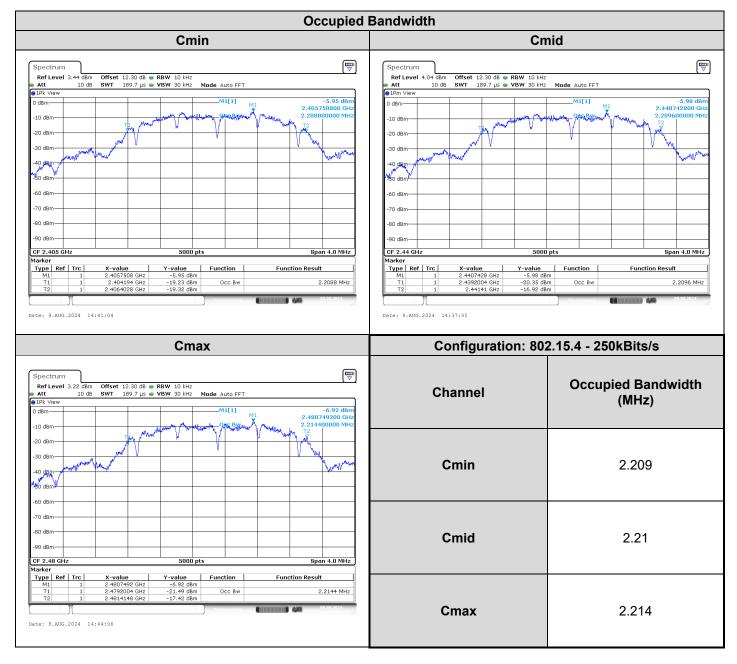
The Equipment Under Test is installed in an anechoic chamber. Measurement is performed with a spectrum analyzer in conducted method.


The EUT is turned ON, the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Test Procedure:

- ANSI C63.10 § 6.9.2 and RSS-Gen Issue 5 § 6.7
 - RBW used in the range of 1% to 5% of the anticipated emission bandwidth
 - Set the video bandwidth (VBW) ≥ $3 \times RBW$.
 - Detector = Peak.
 - Trace mode = Max Hold.
 - Sweep = Auto couple.
 - Allow the trace to stabilize.
 - OBW 99% function of spectrum analyzer used

3.3. *LIMIT*


3.4. TEST EQUIPMENT LIST

TEST EQUIPMENT USED					
Description	Manufacturer	Model	Identifier	Cal_Date	Cal_Due
Attenuator 10dB	AEROFLEX	_	A7122268	07/23	07/25
DC Power Supply	RS PRO	RS3005P	A7042314		
Full Anechoic Room	SIEPEL	_	D3044024		
SMA 1.5m	SUCOFLEX	18GHz	A5329864	10/23	10/24
SMA 1.5m	SUCOFLEX	18GHz	A5329863	08/24	08/25
Spectrum analyzer	ROHDE & SCHWARZ	FSV 40	A4060059	04/24	04/26
Thermo-hygrometer	TESTO	608-H1	B4204120	03/23	03/25

3.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

3.6. RESULTS

3.7. CONCLUSION

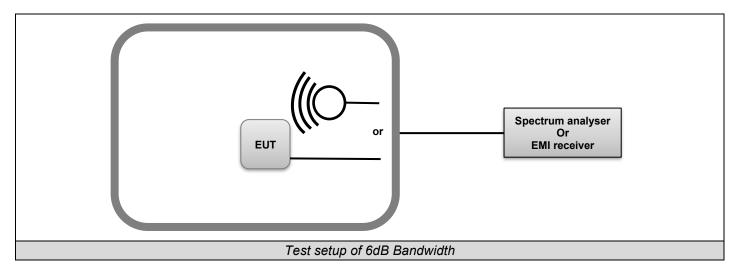
Occupied Channel Bandwidth measurement performed on the sample of the product **PLTPPB1253P**, Sn: **SM2418100400101** / **SM2418100400115**, in configuration and description presented in this test report, show levels **compliant** to the **RSS-GEN** limits.

4. 6dB BANDWIDTH

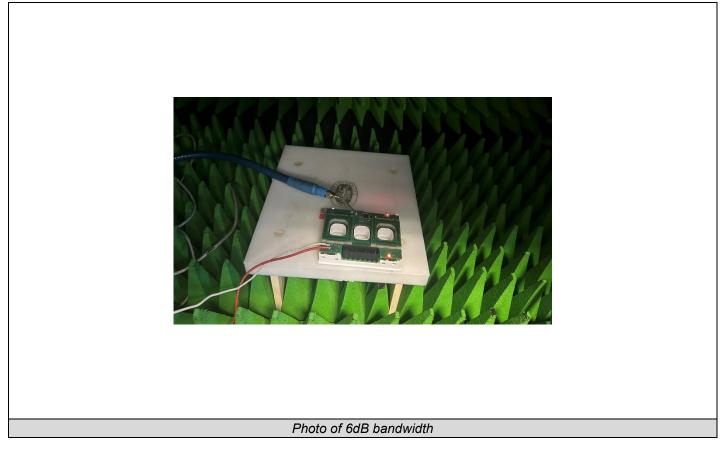
4.1. TEST CONDITIONS

Date of test	: August 09, 2024
Test performed by	: Akram HAKKARI
Relative humidity (%)	: 33
Ambient temperature (°C)	: 21

4.2. TEST SETUP


The Equipment Under Test is installed in an anechoic chamber. Measurement is performed with a spectrum analyzer in conducted method.

The EUT is turned ON, the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

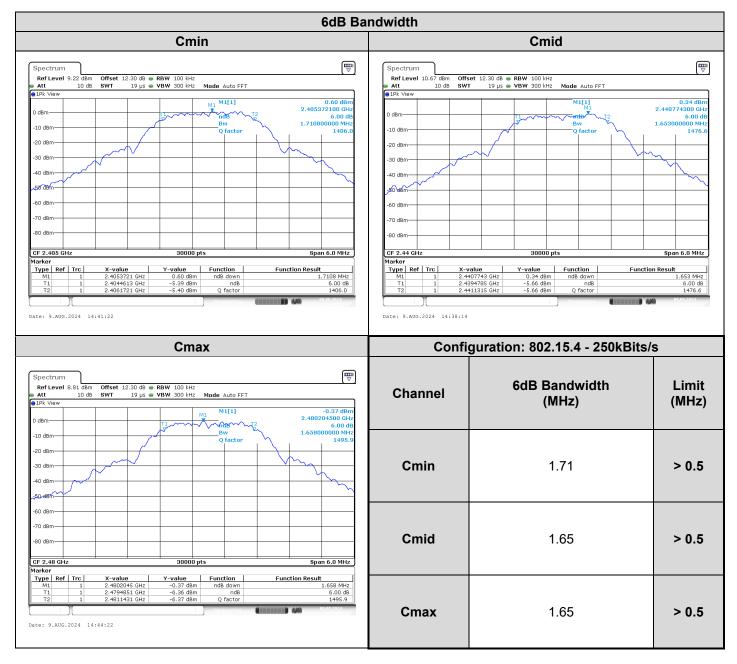

Test Procedure:

KDB 558074 D01 DTS Meas Guidance v05r02 § 8.2

- Set resolution bandwidth (RBW) = 100kHz.
- Set the video bandwidth $(VBW) \ge 3 \times RBW$.
- Detector = Peak.
- Trace mode = max hold.
- Sweep = auto couple.
- Allow the trace to stabilize.
- Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer.

4.3. *LIMIT*

Frequency range	6dB bandwidth		
902-928MHz			
2400MHz to 2483.5MHz	≥500kHz		
5725-5850 MHz			


4.4. TEST EQUIPMENT LIST

TEST EQUIPMENT USED					
Description	Manufacturer	Model	Identifier	Cal_Date	Cal_Due
Attenuator 10dB	AEROFLEX	_	A7122268	07/23	07/25
DC Power Supply	RS PRO	RS3005P	A7042314		
Full Anechoic Room	SIEPEL	_	D3044024		
SMA 1.5m	SUCOFLEX	18GHz	A5329864	10/23	10/24
SMA 1.5m	SUCOFLEX	18GHz	A5329863	08/24	08/25
Spectrum analyzer	ROHDE & SCHWARZ	FSV 40	A4060059	04/24	04/26
Thermo-hygrometer	TESTO	608-H1	B4204120	03/23	03/25

4.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

4.6. RESULTS

4.7. CONCLUSION

6dB Bandwidth measurement performed on the sample of the product PLTPPB1253P, Sn: SM2418100400101 / SM2418100400115, in configuration and description presented in this test report, show levels compliant to the 47 CFR PART 15.247 & RSS 247 limits.

5. MAXIMUM CONDUCTED OUTPUT POWER

5.1. TEST CONDITIONS

Date of test	: August 09, 2024
Test performed by	: Akram HAKKARI
Relative humidity (%)	: 33
Ambient temperature (°C)	: 21

5.2. TEST SETUP

The Equipment Under Test is installed in an anechoic chamber. Measurement is performed with a spectrum analyzer in conducted method.

The EUT is turned ON, the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Test Procedure used: KDB 558074 D01 DTS Meas Guidance v05r02 § 8.3.1.1

KDB 558074 D01 DTS Meas Guidance v05r02 § 8.3.1.1

- This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.
- Set the RBW ≥ DTS bandwidth.
- Set VBW \ge 3 x RBW.
- Set span ≥ 3 x RBW
- Sweep time = auto couple.
- Detector = peak.
- Trace mode = max hold.
- Allow trace to fully stabilize.
- Use peak marker function to determine the peak amplitude level.

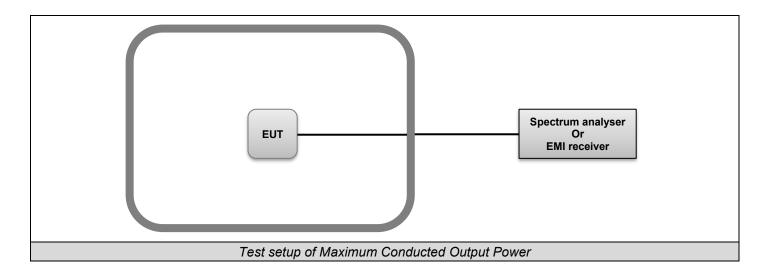
KDB 558074 D01 DTS Meas Guidance v05r02 § 8.3.1.2

- This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.
- \circ Set the RBW = 1 MHz.
- Set the VBW \ge 3 x RBW
- Set the span \geq 1.5 x DTS bandwidth.
- Detector = peak.
- Sweep time = auto couple.
- Trace mode = max hold.
- o Allow trace to fully stabilize.
- o Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges

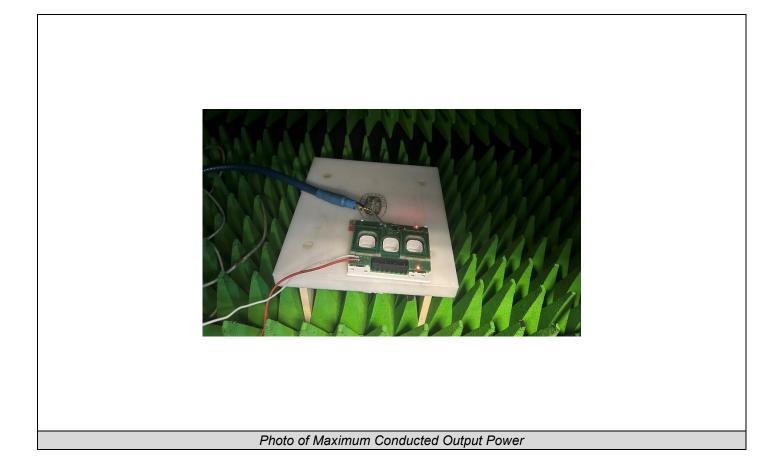
KDB 558074 D01 DTS Meas Guidance v05r02 § 8.3.2.2(Method AVGSA-1)

Subclause 11.9.2.2 of ANSI C63.10 is applicable, Method AVGSA-1 uses trace averaging with the EUT transmitting at full power throughout each sweep.

- a) Set span to at least 1.5 times the OBW.
- \circ b) Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.
- o c) Set VBW ≥ $[3 \times RBW]$.
- o d) Number of points in sweep ≥ [2 × span / RBW]. (This gives bin-to-bin spacing ≤ RBW / 2, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- o f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- o g) If transmit duty cycle < 98%, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at the maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or at duty cycle ≥ 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."</p>
- o h) Trace average at least 100 traces in power averaging (rms) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.



KDB 558074 D01 DTS Meas Guidance v05r02 § 8.3.2.2(Method AVGSA-2)


Subclause 11.9.2.2 of ANSI C63.10 is applicable.

Method AVGSA-2 uses trace averaging across ON and OFF times of the EUT transmissions, followed by duty cycle correction. The procedure for this method is as follows:

- \circ a) Measure the duty cycle D of the transmitter output signal as described in 11.6.
- o b) Set span to at least 1.5 times the OBW.
- \circ c) Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.
- o d) Set VBW ≥ [3 × RBW].
- o e) Number of points in sweep ≥ [2 × span / RBW]. (This gives bin-to-bin spacing ≤ RBW / 2, so that narrowband signals are not lost between frequency bins.)
- o f) Sweep time = auto.
- o g) Detector = RMS (i.e., power averaging), if available. Otherwise, use the sample detector mode.
- h) Do not use sweep triggering. Allow the sweep to "free run."
- i) Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the ON and OFF periods of the transmitter.
- j) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%.

5.3. *LIMIT*

Frequency range	Maximum Conducted Output Power
902-928MHz	
2400MHz to 2483.5MHz	≤30dBm*
5725-5850 MHz	
*Pomark: Limita are reduced by C 6dPi if Overall Antenna Cain above 6dPi	

*Remark: Limits are reduced by G-6dBi if Overall Antenna Gain above 6dBi

5.4. TEST EQUIPMENT LIST

TEST EQUIPMENT USED					
Description	Manufacturer	Model	Identifier	Cal_Date	Cal_Due
Attenuator 10dB	AEROFLEX	_	A7122268	07/23	07/25
DC Power Supply	RS PRO	RS3005P	A7042314		
Full Anechoic Room	SIEPEL	_	D3044024		
SMA 1.5m	SUCOFLEX	18GHz	A5329864	10/23	10/24
SMA 1.5m	SUCOFLEX	18GHz	A5329863	08/24	08/25
Spectrum analyzer	ROHDE & SCHWARZ	FSV 40	A4060059	04/24	04/26
Thermo-hygrometer	TESTO	608-H1	B4204120	03/23	03/25

5.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

5.6. RESULTS

Maximum Cond	ucted Outpu	t Power			
Cmin			Cmid		
Spectrum Image: Constraint of the system of th	Ref Level 12.30 d Att 10		RBW 2 MHz VBW 5 MHz Mode F	=FT	
IPk View M1[1] 2.38 dB M1 2.405504420 Gi 0 dBm	1Pk View		M	M1	2.49 dBm 2.440666920 GHz
-10 dBm	-10 dBm				
-30 dBm					
-50 dBm	-50 dBm -60 dBm				
-70 dBm -80 dBm CF 2.405 CHz 30000 pts Span 5.0 MH	-70 dBm -80 dBm CF 2.44 GHz		30000 pts		Span 5.0 MHz
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.40550442 GHz 2.38 dBm	Marker Type Ref Trc M1 1	X-value 2.44066692 GHz	Y-value Func 2.49 dBm	ction Functi	on Result
Стах		Configuratio	on: 802.15.4	- 250kBits/s	
Spectrum Image: Constraint of the sector of th	Channel	Offset Cable+At t (dB)	Antenna Gain (dBi)	Conducte d Power (dBm)	Limit (dBm)
0 dBm					
-10 dBm	Cmin	12.3	4.4	2.38	30
-20 dBm-	Cmin	12.3	4.4	2.38	30 30

5.7. CONCLUSION

Maximum Output Conducted Power measurement performed on the sample of the product PLTPPB1253P, Sn: SM2418100400101 / SM2418100400115, in configuration and description presented in this test report, show levels compliant to the 47 CFR PART 15.247 & RSS 247 limits.

6. POWER SPECTRAL DENSITY

6.1. TEST CONDITIONS

: August 12, 2024
: Akram HAKKARI
: 33
: 21

6.2. TEST SETUP

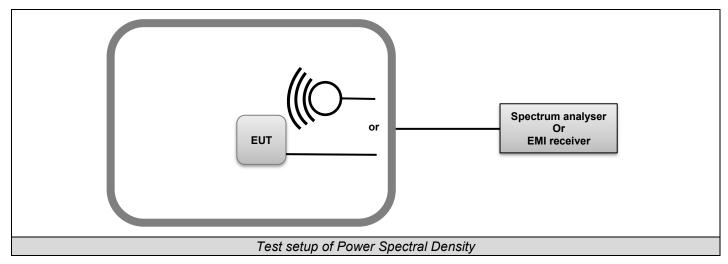
The Equipment Under Test is installed in an anechoic chamber. Measurement is performed with a spectrum analyzer in conducted method.

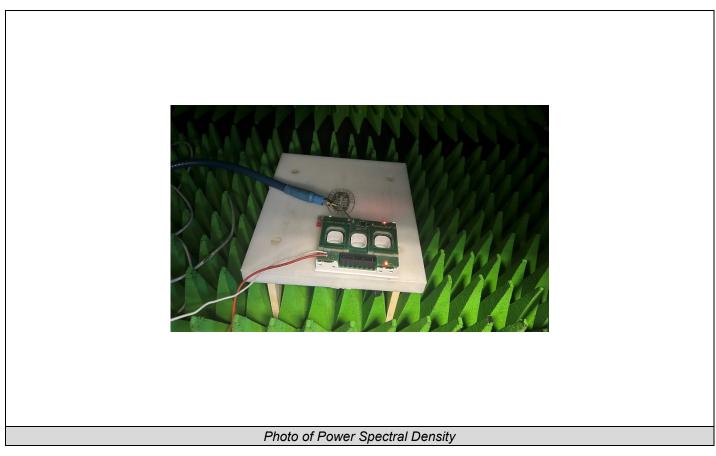
The EUT is turned ON, the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Test Procedure used: KDB 558074 D01 DTS Meas Guidance v05r02 § 8.4 (Method PKPSD)

KDB 558074 D01 DTS Meas Guidance v05r02 § 8.4 (Method PKPSD)

- Subclause 11.10 of ANSI C63.10 is applicable
- o Set analyzer center frequency to DTS channel center frequency.
- \circ $\,$ Set the span to 1.5 times the DTS bandwidth.
- Set the RBW to: 3 kHz.
- Set the VBW \ge 3 x RBW.
- Detector = peak.
- Sweep time = auto couple.
- \circ Trace mode = max hold.
- Allow trace to fully stabilize.
- o Use the peak marker function to determine the maximum amplitude level within the RBW.
- If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.


KDB 558074 D01 DTS Meas Guidance v05r02 § 8.4 (Method AVGPSD-1)


Subclause 11.10 of ANSI C63.10 is applicable

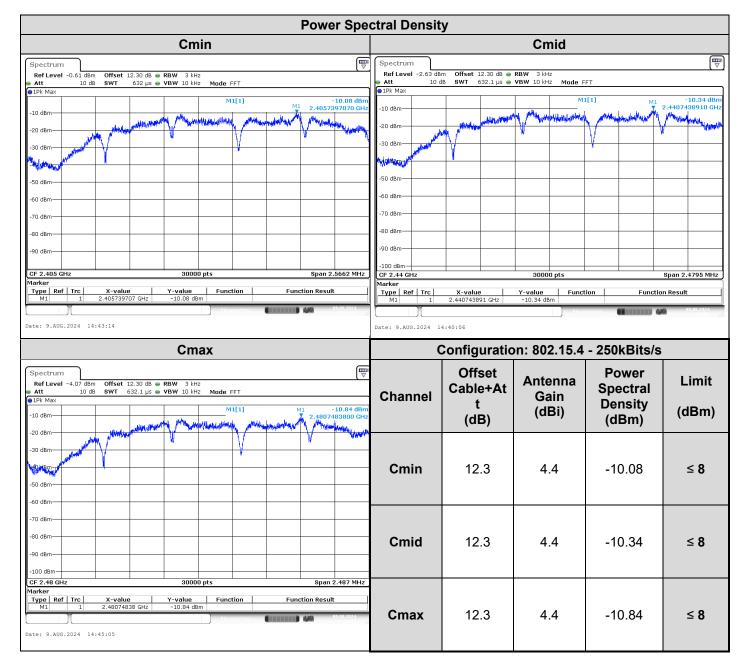
Method AVGPSD-1 uses trace averaging with EUT transmitting at full power throughout each sweep. The following procedure may be used when the maximum (average) conducted output power was used to determine compliance to the fundamental output power limit. This is the baseline method for determining the maximum (average) conducted PSD level. If the instrument has a power averaging (rms) detector, then it must be used; otherwise, use the sample detector. The EUT must be configured to transmit continuously ($D \ge 98\%$), or else sweep triggering/signal gating must be implemented to ensure that measurements are made only when the EUT is transmitting at its maximum power control level (no transmitter OFF time to be considered):

- o a) Set instrument center frequency to DTS channel center frequency.
- b) Set span to at least 1.5 times the OBW.
- o c) Set RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}.$
- o d) Set VBW ≥ [3 × RBW].
- o e) Detector = power averaging (rms) or sample detector (when rms not available).
- o f) Ensure that the number of measurement points in the sweep \geq [2 × span / RBW].
- g) Sweep time = auto couple.
- h) Employ trace averaging (rms) mode over a minimum of 100 traces.
- o i) Use the peak marker function to determine the maximum amplitude level.
- j) If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

6.3. *LIMIT*

Frequency range	Power Spectral Density	
902-928MHz		
2400MHz to 2483.5MHz	≤8dBm / 3kHz *	
5725-5850 MHz		
*Permerk: Limite are reduced by C. 6dPi if Overall Antenne Cain above 6dPi		

*Remark: Limits are reduced by G-6dBi if Overall Antenna Gain above 6dBi


6.4. TEST EQUIPMENT LIST

TEST EQUIPMENT USED					
Description	Manufacturer	Model	Identifier	Cal_Date	Cal_Due
Attenuator 10dB	AEROFLEX	_	A7122268	07/23	07/25
DC Power Supply	RS PRO	RS3005P	A7042314		
Full Anechoic Room	SIEPEL	_	D3044024		
SMA 1.5m	SUCOFLEX	18GHz	A5329864	10/23	10/24
SMA 1.5m	SUCOFLEX	18GHz	A5329863	08/24	08/25
Spectrum analyzer	ROHDE & SCHWARZ	FSV 40	A4060059	04/24	04/26
Thermo-hygrometer	TESTO	608-H1	B4204120	03/23	03/25

6.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

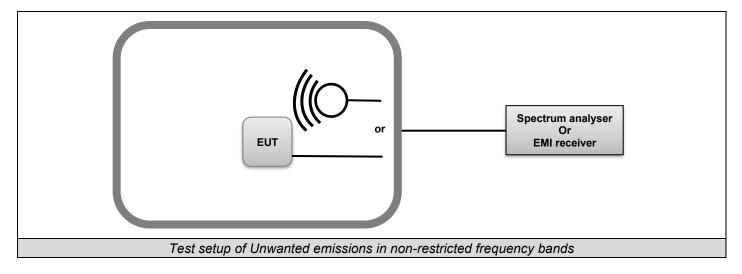
6.6. RESULTS

6.7. CONCLUSION

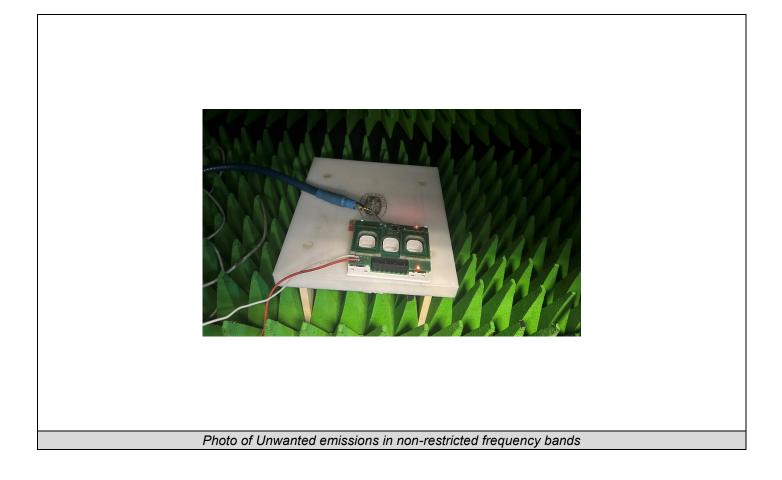
Power Spectral Density measurement performed on the sample of the product PLTPPB1253P, Sn: SM2418100400101 / SM2418100400115, in configuration and description presented in this test report, show levels compliant to the 47 CFR PART 15.247 & RSS 247 limits.

7. UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS

7.1. TEST CONDITIONS


Date of test	: August 12, 2024
Test performed by	: Akram HAKKARI
Relative humidity (%)	: 33
Ambient temperature (°C)	: 21

7.2. TEST SETUP


The Equipment Under Test is installed in an anechoic chamber. Measurement is performed with a spectrum analyzer in conducted method.

The EUT is turned ON, the captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Test Procedure: *KDB 558074 D01 DTS Meas Guidance v05r02* § 8.5

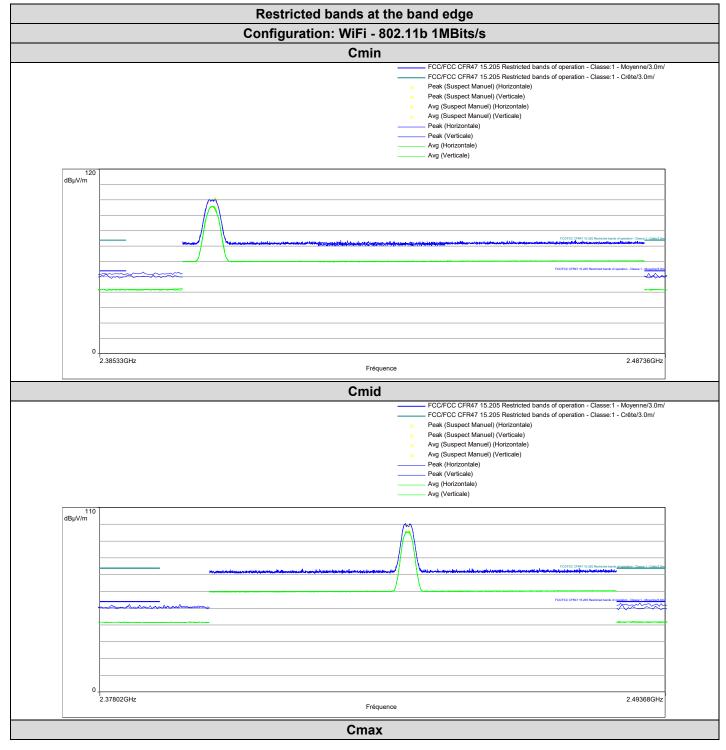
7.3. LIMIT

All Spurious Emissions must be at least 20dB below the Fundamental Radiator Level at the Band Edge of operating frequency band and in non-restricted bands.

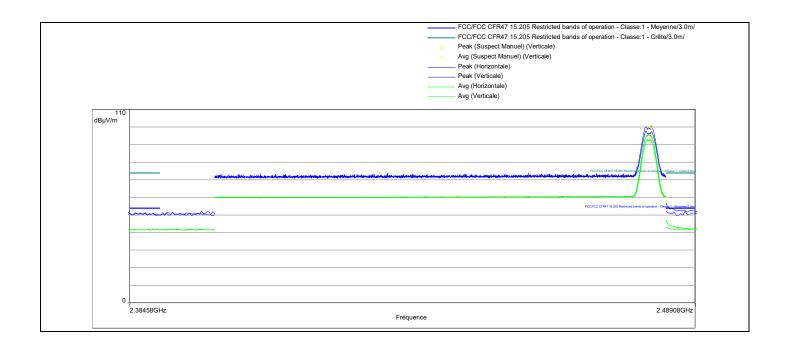
7.4. TEST EQUIPMENT LIST

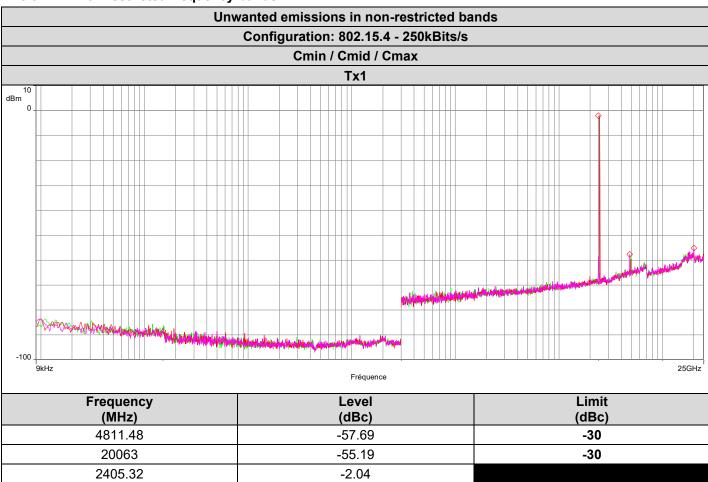
TEST EQUIPMENT USED					
Description	Manufacturer	Model	Identifier	Cal_Date	Cal_Due
Attenuator 10dB	AEROFLEX	_	A7122268	07/23	07/25
DC Power Supply	RS PRO	RS3005P	A7042314		
Full Anechoic Room	SIEPEL	_	D3044024		
SMA 1.5m	SUCOFLEX	18GHz	A5329864	10/23	10/24
SMA 1.5m	SUCOFLEX	18GHz	A5329863	08/24	08/25
Spectrum analyzer	ROHDE & SCHWARZ	FSV 40	A4060059	04/24	04/26
Thermo-hygrometer	TESTO	608-H1	B4204120	03/23	03/25

7.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION


7.6. RESULTS

7.6.1. Operational frequency band


	Unwanted emis	ssions in non-restri	cted bands at t	he band edge
	C	Configuration: 802.1		
		Cmin / Cmid	/ Cmax	
		Delta limit (dBc) de	etermination	
		Tx1		
Spectrum				
Ref Level 8.87 d) dB 🔵 RBW 100 kHz		· · · · ·
		3 µs 👄 VBW 300 kHz	Mode FFT	
●1AP View●2Pk Vi				
Mi V do an	L	115	M1[1]	M <mark>9.60 dBm</mark> 2.405 8/1170 GH z
0 dBm		, Mi	M3[3]	
-10 dBm				2.48082830 GH
00 d0m				
-20 dBm				
-30 dBm 🚽 🥤				
-40 dBm				
-40 0611				
-50 dBm 🚽			u n	
-60 dBm	"Notes		<u> </u>	- Marine Marine
	The state of the s	Less - seattle the starter	M. Marken	In the state of th
	A STATE OF THE OWNER			and the state of the
-80 dBm				
F1				F2
Start 2.39 GHz		i	.s	Stop 2.49 GHz
Marker				
Type Ref Trc	X-value	Y-value	Function	Function Result
M1 1 D2 M1 1	2.4058117 (-5.81167 N			
M3 3	2,4808283 (
D4 M3 3	2.67167 N			
M5 2	2.4407983 (GHz -0.73 dBm		
			Measuring	09.08.2024
Date: 9.AUG.2024	14:47:09			
Frequency		Level		Limit
(MHz)		(dBc)		(dBc)
C _{min}		-58.31		-30
C _{max}		-51.35		-30


7.6.2. At the band edge

7.6.3. Non restricted frequency bands

7.7. CONCLUSION

Unwanted emissions in non-restricted bands and at the band edge measurement performed on the sample of the product **PLTPPB1253P**, Sn: **SM2418100400101** / **SM2418100400115**, in configuration and description presented in this test report, show levels **compliant** to the **47 CFR PART 15.247 & RSS 247** limits.

8. UNWANTED EMISSIONS IN RESTRICTED FREQUENCY BANDS

8.1. TEST CONDITIONS

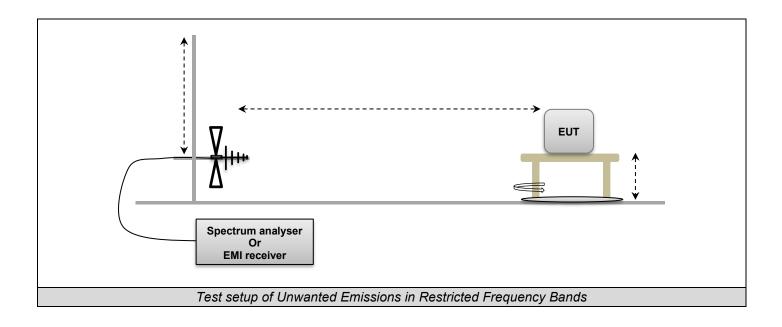
Date of test	: August 08, 2024
Test performed by	: Akram HAKKARI
Relative humidity (%)	: 33
Ambient temperature (°C)	: 21
,	

8.2. TEST SETUP

Test procedure: ANSI C63.10 & FCC Part 15 subpart C

Following frequency ranges, test setup parameters are different and specified in this table:

Frequency range:	9kHz to 30MHz		
Test:	Pre-Characterization Qualification		
Antenna Polarization:	Parallel, Perpendicular and Ground parallel		
Antenna Height:	Centered on EUT (§6.6.5 ANSI C63-10) 1m		
Antenna Type:	Loop		
RBW Filter:	200Hz below 150kHz / 9kHz above 150kHz		
Maximization:	Turntable rotation of 360 degrees range and all axis of EUT used in normal configuration		
EUT height:	1.5m 0.8m		
Test site:	Full Anechoic Chamber	Open Aera Test Site	
Distance EUT - Antenna:	3m	10m	
Detector:	Peak	QPeak	


Frequency range:	30MHz to 1GHz		
Test:	Pre-Characterization Qualification		
Antenna Polarization:	Horizontal and Vertical		
Antenna Height:	Centered on EUT (§6.6.5 ANSI C63-10) Varied from 1m to 4m		
Antenna Type:	Bi-Log		
RBW Filter:	120kHz		
Maximization:	Turntable rotation of 360 degrees range and all axis of EUT used in normal configuration		
EUT height:	1.5m 0.8m		
Test site:	Full Anechoic Chamber Open Aera Test Site		
Distance EUT - Antenna:	3m 10m		
Detector:	Peak QPeak		

Frequency range:	1GHz to) 14GHz			
Test:	Pre-Characterization	Qualification			
Antenna Polarization:	Horizontal a	Horizontal and Vertical			
Antenna Height:	Centered on EUT (§6.6.5 ANSI C63-10)	Centered on EUT (§6.6.5 ANSI C63-10)			
Antenna Type:	Hc	prn			
RBW Filter:	1M	Hz			
Maximization:	Turntable rotation of 360 degrees range and	all axis of EUT used in normal configuration			
EUT height:	1.5m	1.5m			
Test site:	Full Anechoic Chamber	Full Anechoic Chamber			
Distance EUT - Antenna:	3m	3m			
Detector:	Peak & Average	Peak & Average			

Frequency range:	14GHz to	o 25GHz
Test:	Pre-Characterization	Qualification
Antenna Polarization:	Horizontal a	and Vertical
Antenna Height:	Centered on EUT (§6.6.5 ANSI C63-10)	Centered on EUT (§6.6.5 ANSI C63-10)
Antenna Type:	Hc	rn
RBW Filter:	1M	Hz
Maximization:	Turntable rotation of 360 degrees range and	all axis of EUT used in normal configuration
EUT height:	1.5m	1.5m
Test site:	Full Anechoic Chamber	Full Anechoic Chamber
Distance EUT - Antenna:	1m	1m
Detector:	Peak & Average	Peak & Average

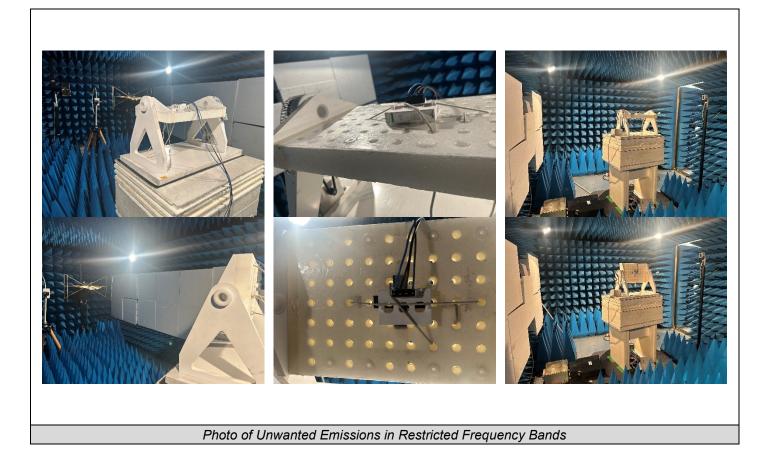


Photo on OATS

8.3. *LIMIT*

	Measure at 300m		
Frequency range	Level	Detector	
9kHz-490kHz	67.6dBµV/m /F(kHz)	QPeak	
	Measure at 30m		
Frequency range	Level	Detector	
490kHz-1.705MHz	87.6dBµV/m /F(kHz)	QPeak	
1.705MHz-30MHz	29.5dBµV/m	QPeak	
	Measure at 10m		
Frequency range	Level	Detector	
30MHz to 88MHz	29.5dBµV/m	QPeak	
88MHz to 216MHz	33dBµV/m	QPeak	
216MHz to 960MHz	35.5BµV/m	QPeak	
960MHz to 1000MHz	43.5dBµV/m	QPeak	
Above 1000MHz	63.5dBµV/m	Peak	
Above TOUOMHZ	43.5dBµV/m	Average	
	Measure at 3m		
Frequency range	Level	Detector	
30MHz to 88MHz	40dBµV/m	QPeak	
88MHz to 216MHz	43.5dBµV/m	QPeak	
216MHz to 960MHz	46BµV/m	QPeak	
960MHz to 1000MHz	54dBµV/m	QPeak	
	74dBµV/m	Peak	
Above 1000MHz	54dBµV/m	Average	

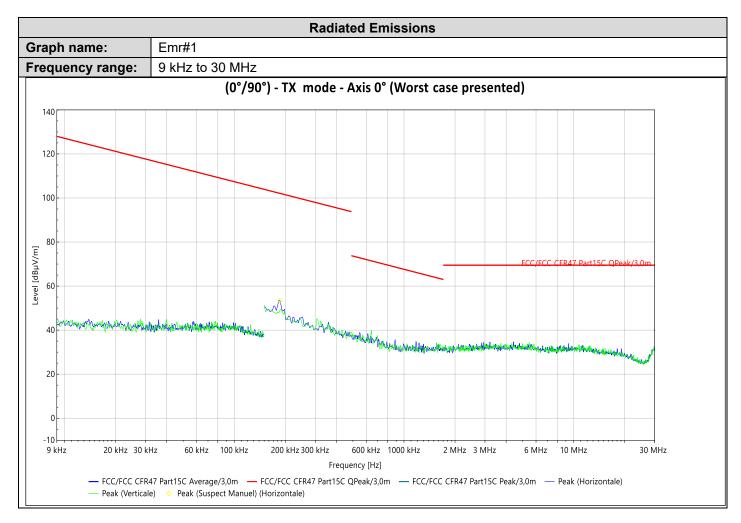
8.4. TEST EQUIPMENT LIST

	TEST EQUI	PMENT USED			
Description	Manufacturer	Model	Identifier	Cal_Date	Cal_Due
Amplifier 10MHz - 18GHz	LCIE SUD EST	_	A7102082	05/22	09/24
Antenna Bi-log	AH System	SAS-521-7	C2040180	05/23	05/25
Antenna horn 18GHz	EMCO	3115	C2042029	03/22	03/25
BAT EMC	NEXIO	v3.21.0.32	L1000115		
CABLE	TELEDYNE	R82-0404-0.5M	A5330010	03/22	03/25
Cable 0.75m	-	18GHz	A5329900	08/24	08/26
Cable SMA 40cm	WITHWAVE	W101-SM1-0.4M	A5329979	10/23	10/26
Comb EMR HF	YORK	CGE01	A3169114		
CONTROLLER	INNCO	CO3000	D3044034		
Emission Cable (SMA 1m)	TELEDYNE	26GHz	A5329874	08/22	08/25
Emission Cable (SMA 3.3m)	TELEDYNE	26GHz	A5329875	08/22	08/25
Filter Matrice	LCIE SUD EST	Combined filters	A7484078	03/23	03/25
Multimeter - CEM	FLUKE	87	A1240251	10/23	10/25
Rehausse Table C3	LCIE	_	F2000511		
Rehausse Table C3	LCIE	_	F2000507		
Semi-Anechoic chamber #3 (BF)	SIEPEL	_	D3044017_BF	04/22	04/25
Semi-Anechoic chamber #3 (VSWR)	SIEPEL	_	D3044017_VSWR	04/22	04/25
Spectrum analyzer	ROHDE & SCHWARZ	FSU 26	A4060058	09/23	09/25
Table C3	LCIE	_	F2000461		
Thermo-hygrometer (PM1/2/3)	KIMO	HQ 210	B4206022	05/23	05/25
TILT	INNCO	TILT	D3044033		
Turntable chamber (Cage#3)	ETS Lingren	Model 2165	F2000371		
Turntable controller (Cage#3)	ETS Lingren	Model 2090	F2000444		

8.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

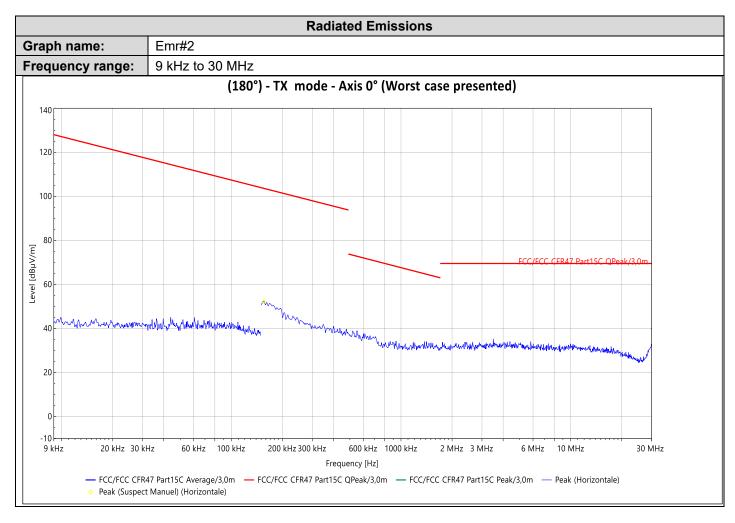
None

8.6. RESULTS

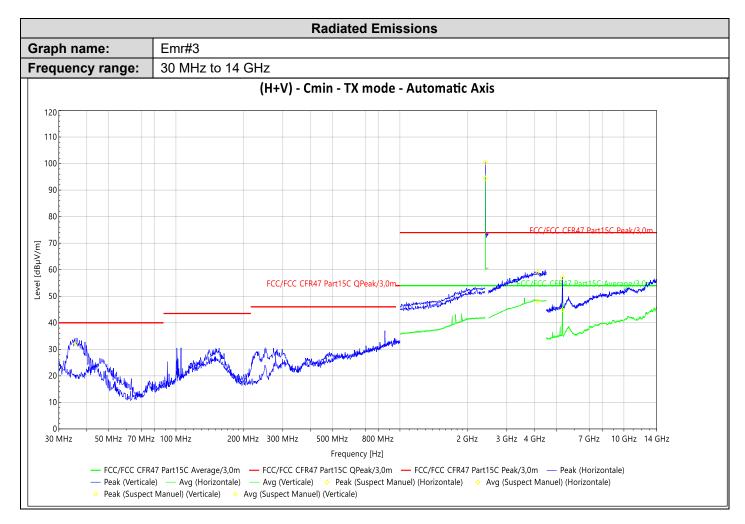

For all following measurements, worst case is presented with different configurations and modulations of EUT.

8.6.1. 9kHz to 30MHz

Graphs – Pre characterization:


Graph identifier	Polarization	Mode	Channel	EUT position	Comments
Emr# 1	0°/90°	TX	Single	Axis XY/Z	See the following results
Emr# 2	180°	TX	Single	Axis XY/Z	See the following results

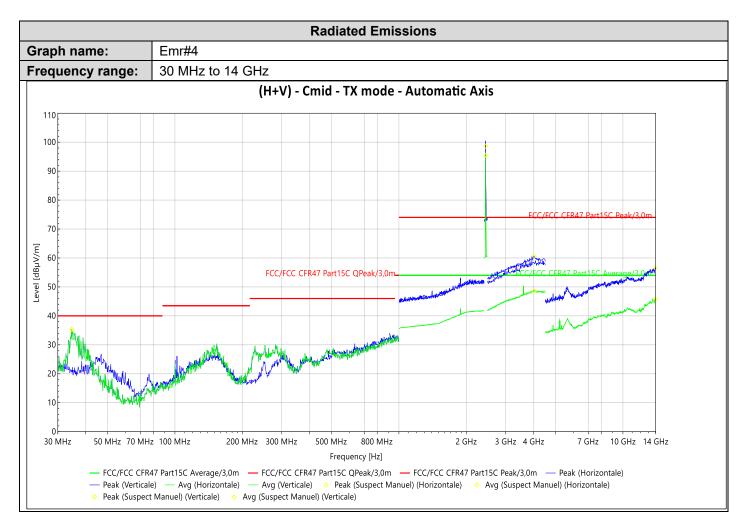
Frequency	PK Level	Lim.PK	Lim.Avg (dBµV/m)	Lim.QP	Angle	Polar.	Correct.
	(dBµV/m)	(dBµV/m)		(dBµV/m)	(°)		(dB)
185.819 kH	z 53.41	/	/	102.10	326	Н	55.04


Frequency	PK Level (dBµV/m)	Lim.PK (dBµV/m)	Lim.Avg (dBµV/m)	Lim.QP (dBµV/m)	Angle (°)	Polar.	Correct. (dB)
155.97 kHz	52.29	/	/	103.59	180	Н	56.43

8.6.2. 30MHz to 1GHz

Graphs – Pre characterization:

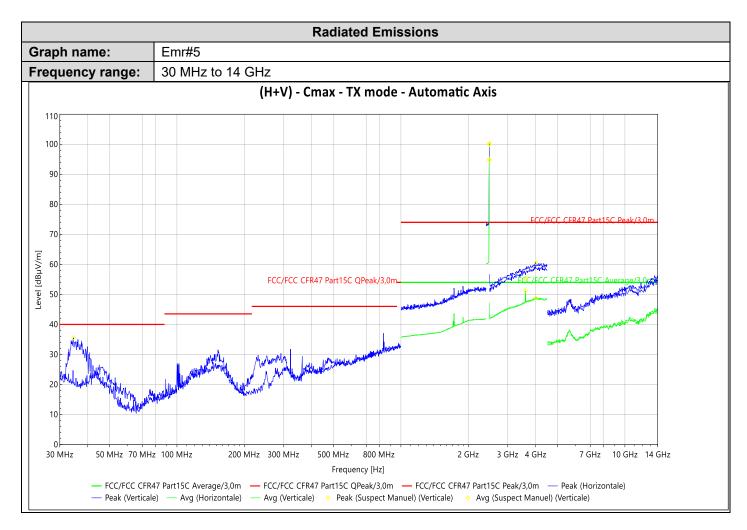
Graph identifier	Polarization	Mode	Channel	EUT position	Comments
Emr# 3	H/V	TX	Cmin	Axis XY/Z	See the following results
Emr# 4	H/V	TX	Cmid	Axis XY/Z	See the following results
Emr# 5	H/V	TX	Cmax	Axis XY/Z	See the following results



Pre-Characterization:

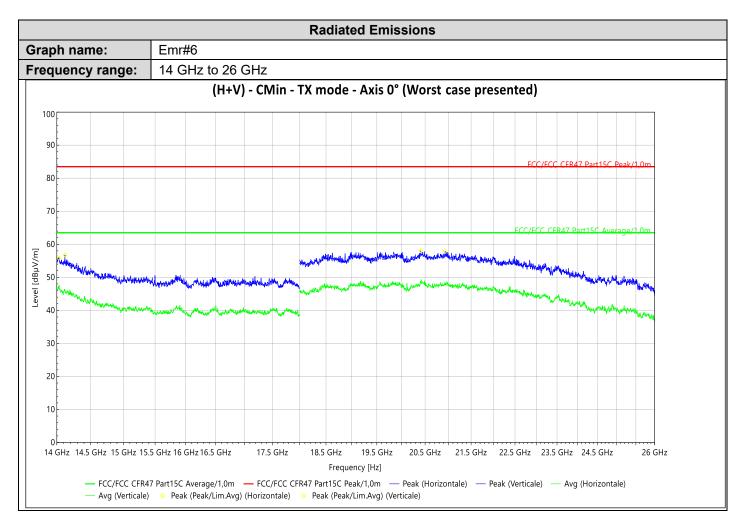
Frequency	PK Level	Lim.PK	Avg (dBµV/m)	Lim.Avg (dBµV/m)	Lim.QP	Angle	Polar.	Correct.
	(dBµV/m)	(dBµV/m)			(dBµV/m)	(°)		(dB)
2.40580325 GHz*	100.61	74.00	94.35	54.00	/	134	Н	35.71
4.124527699 GHz	59.05	74.00	48.03	54.00	/	0	Н	41.54
5.3151 GHz	57.14	74.00	45.00	54.00	/	313	V	-17.56
35.6745 MHz	32.29	/	/	/	40.00	90	V	18.98

*Carrier frequency No significant frequency observed



Frequency	PK Level	Lim.PK	Avg (dBµV/m)	Lim.Avg (dBµV/m)	Lim.QP	Angle	Polar.	Correct.
	(dBµV/m)	(dBµV/m)			(dBµV/m)	(°)		(dB)
2.44053925 GHz*	98.61	74.00	95.50	54.00	/	115	Н	35.77
4.0168466 GHz	60.55	74.00	48.59	54.00	/	356	Н	41.72
13.98575 GHz	56.51	74.00	45.81	54.00	/	347	Н	-4.02
34.6075 MHz	35.38	/	/	/	40.00	3	V	19.54

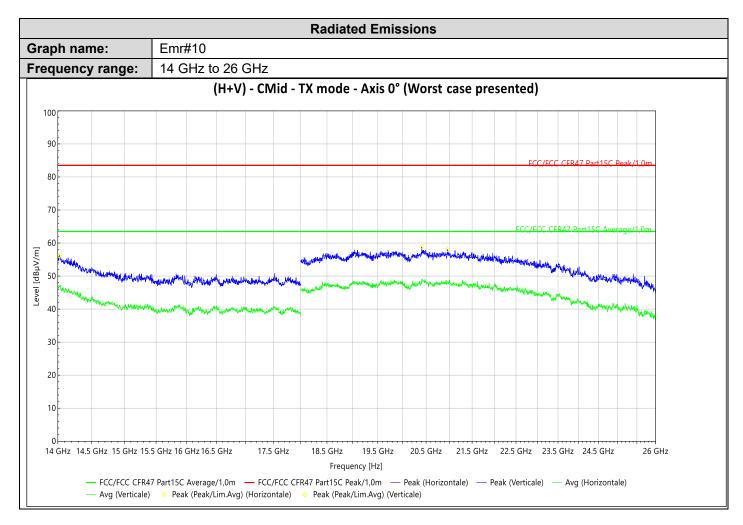
*Carrier frequency No significant frequency observed


Frequency	PK Level	Lim.PK	Avg (dBµV/m)	Lim.Avg (dBµV/m)	Lim.QP	Angle	Polar.	Correct.
	(dBµV/m)	(dBµV/m)			(dBµV/m)	(°)		(dB)
3.599834399 GHz	55.36	74.00	51.21	54.00	/	259	V	40.39
3.9970849 GHz	60.67	74.00	48.82	54.00	/	95	V	41.71
2.48070275 GHz	99.97	74.00	94.93	54.00	/	115	V	35.77
2.48078625 GHz	100.26	74.00	94.72	54.00	/	115	V	35.77
34.559 MHz	35.58	/	/	/	40.00	0	V	19.57

8.6.3. 1GHz to 25GHz

Graphs – Pre characterization:

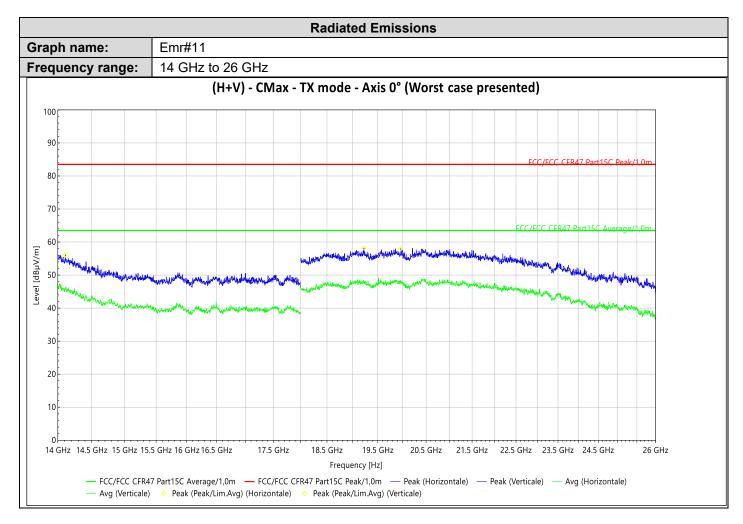
_		enaiae					
	Graph identifier		Polarization	Mode	Channel	EUT position	Comments
	Emr#	6	H/V	ТX	Cmin	Axis XY/Z	See the following results
	Emr# 7		H/V	ΤX	Cmid	Axis XY/Z	See the following results
	Emr# 8		H/V	ΤX	Cmax	Axis XY/Z	See the following results



Pre-Characterization:

Frequency	PK Level	LimM (dBµV/m)	Peak-LimM (dB)	Angle (°)	Polar.	Tilt	Correct.
	(dBµV/m)					(°)	(dB)
14.000 ,1195 GHz	56.79	63.50	-6.71	330	Н	0.30	2.74
20.000 ,929 GHz	57.88	63.50	-5.62	154	Н	0.30	2.92
14.000 ,0305 GHz	55.78	63.50	-7.72	48	V	0.30	3.45
20.000 ,407 GHz	58.11	63.50	-5.39	280	V	0.30	3.64

No significant frequency observed



Frequency	PK Level	LimM (dBµV/m)	Peak-LimM (dB)	Angle (°)	Polar.	Tilt	Correct.
	(dBµV/m)					(°)	(dB)
14.000 ,0255 GHz	56.10	63.50	-7.40	95	Н	0.30	3.48
20.000 ,962 GHz	58.07	63.50	-5.43	228	Н	0.30	3.02
14.000 ,0205 GHz	56.26	63.50	-7.24	173	V	0.30	3.51
20.000 ,409 GHz	58.80	63.50	-4.70	0	V	0.30	3.64

No significant frequency observed

Frequency	PK Level	LimM (dBµV/m)	Peak-LimM (dB)	Angle (°)	Polar.	Tilt	Correct.
	(dBµV/m)					(°)	(dB)
14.000 ,114 GHz	56.20	63.50	-7.30	224	Н	0.30	2.81
19.000 ,223 GHz	58.26	63.50	-5.24	23	Н	0.30	3.32
14.000 ,0845 GHz	55.47	63.50	-8.03	210	V	0.30	3.08
19.000 ,97 GHz	58.09	63.50	-5.41	268	V	0.30	3.00

No significant frequency observed

8.7. CONCLUSION

Unwanted emissions in non-restricted bands measurement performed on the sample of the product PLTPPB1253P, Sn: SM2418100400101 / SM2418100400115, in configuration and description presented in this test report, show levels compliant to the 47 CFR PART 15.247 & RSS 247 limits.

9. UNCERTAINTIES CHART

Kind of measurement	Wide uncertainty laboratory			
Occupied Channel Bandwidth	±2.8 %			
Humidity	±3.2 %			
Power Spectral Density, Conducted	±1.7 dB			
Radio frequency	±0.3 ppm			
RF power, conducted	±1.2 dB			
RF power, radiated (Full anechoic chamber above 1GHz)	±3.7 dB			
RF power, radiated (Semi anechoic chamber & open test site)	±5.6 dB			
Spurious emission, conducted	±2.3 dB			
Spurious emission, radiated (Full anechoic chamber above 1GHz)	±3.8 dB			
Spurious emission, radiated (Semi anechoic chamber & open test site)	±5.7 dB			
Temperature	±0.75 °C			
Time	±2.3 %			
Voltage	±1.7 %			

The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the standard. The conformity of the sample is directly established by the applicable limit values. This table includes all uncertainties maximum feasible for testing in the laboratory, whether or not made in this report.