

Test specification:	Section 90.210, Emission mask				
Test procedure:	47 CFR, Sections 2.1051, 2.104	47 CFR, Sections 2.1051, 2.1047 and 90.210(m)			
Test mode:	Compliance	Verdict:	PASS		
Date(s):	27-Dec-23	verdict:	PASS		
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1014 hPa	Power: 48 VDC		
Remarks:					

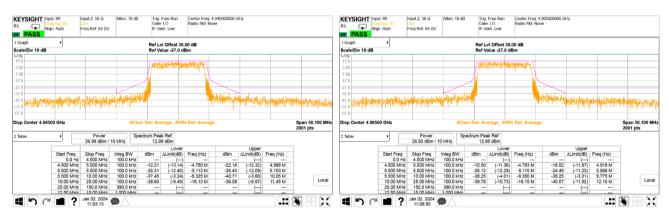
Plot 7.3.3 Emission mask test results at low, mid, high carrier frequency, 10 MHz CBW

Test specification:	Section 90.210, Emission mask					
Test procedure:	47 CFR, Sections 2.1051, 2.104	47 CFR, Sections 2.1051, 2.1047 and 90.210(m)				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	27-Dec-23	verdict:	PA35			
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1014 hPa	Power: 48 VDC			
Remarks:						

Plot 7.3.4 Emission mask test results at low, mid, high carrier frequency, 10 MHz CBW

OPERATING FREQUENCY DETECTOR USED: MODULATION: MODULATING SIGNAL: TRANSMITTER OUTPUT F ANTENA CHAIN		4945.0 – 4985.0 MHz Peak 256QAM PRBS Maximum 1	
DL Coupling DC Corr Ga	z: Free Run Center Freq. 4.945000000 GHz fer LO Radio Stit None 3am: Low	KEYSIGHT Input RF Input Z: 50 Ω Atten. 10 dB RL Couping DC Corr Frog Ref. Int (5) WI PASS Frog Ref. Int (5)	Trig: Fiee Run Center Freq. 4.56500000 GHz Cafer I.O Radio Std None IF Sam: Low
1 Graph Performance Provide Pr	Lvi Offset 30.00 dB Value - 27.0 dBm	1 Graph v Scale/Div 10 dB	Ref Lvi Offset 30.00 dB Ref Value -27.0 dBm
13.0 3.00	Ministran Approximation 1	13.0 3.00	(where the superior of the su
-7.00		-7.00	
-27.0 -37.0 -47.0 toke natalmarka at inducation time arised on Wilferd Wilferd		-27.0 -37.0 -47.0, #1.1.1400.27.00.07.0.07.0.07.00.07.00.00.00.00.00.0	W MARANA CONTRACT TO A CONTRACT OF A CONTRAC
-37.0 -47.0 -57.0 -57.0	and in the second s	57.0 57.0 57.0 57.0	
Disp Center 4.94500 GHz #Chan Det: A	verage, #Offs Det: Average Span 50.100 MHz 2001 pts	Disp Center 4.96500 GHz #Chan I	Det: Average, #Offs Det: Average Span 50.100 MHz 2001 pts
2 Table Power Spectrum Pe 26.97 dBm / 10 MHz 14	57 dBm	2 Table Power 26.80 dBm / 10 MHz Spectr	um Peak Ref 13.89 dBm
Start Preq Stop Preq Integ BW dBm 0.014 4.600 MHz 1000 5 Hz 4.001 MHz 0.000 MHz 5.600 MHz 1000 5 Hz -2411 5.600 MHz 1000 MHz 1000 HHz -2411 5.600 MHz 1000 MHz 1000 HHz -2610 5.600 MHz 1000 MHz 1000 HHz -2614 5.600 MHz 1000 MHz 1000 HHz -4264 25.00 MHz 1000 MHz 1000 MHz -4264 25.00 MHz 1000 MHz 1000 MHz -4264 25.00 MHz 1000 MHz 1000 MHz -4264	9 (-12.28) -5.090 M -2-26.30 (-12.74) 5.228 M 2 (-6.69) -9.900 M -44.457 (-9.445) 9.975 M 5 (-15.23) -11.40 M -43.30 (-15.67) 11.55 M () () () () ()	0.0 Hz; 4 4500 MHz; 1000 Hz; 1000 Hz; 4 5000 MHz; 5 000 MHz; 5 000 MHz; 1000 Hz; 5 000 HHz; 5 000 HHz; 5 000 HHz; 1000 Hz; 1000 Hz; 1000 Hz; 1000 Hz; 2 500 HHz; 2 500 HHz; 2 500 HHz; 2 500 HHz; 1500 HHz; 15	Lower Upper Dubm(db) Freq (+tz) dBm Llm(d6) Freq (+tz) 2-225 (+tz) 4975 bb -21.82 (+tz) 4960 bb 2-727 (+tz) 4205 bb -21.82 (+tz) 4960 bb -0250 (-tz) -32.01 -35.07 (-5.56) (+2.00 bb) -40.77 (+2.65 bb) 1.64.0 M Local -150 (+1.30 bb) -0.63 bb -40.77 (+2.65 bb) -10.60 bb Local
	Scalerby 10 dB Ref Value Log 130 300 700 770 700	Radio Sitz None The 10.00 dB 27.0 dB 2	50.100 MHz
		Lower Upper mit(dB) Freq (Hz) dBm △Limit(dB) Freq (Hz)	

-5.045 M -5.128 M -9.950 M -10.93 M 4.823 M 5.088 M 9.100 M 10.68 M -14.56 -23.23 -38.00 -41.06 (-14.76) (-11.14) (-6.17) (-13.42) Local Image: Second secon



Test specification:	Section 90.210, Emission mask					
Test procedure:	47 CFR, Sections 2.1051, 2.104	47 CFR, Sections 2.1051, 2.1047 and 90.210(m)				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	27-Dec-23	verdict.	PA35			
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1014 hPa	Power: 48 VDC			
Remarks:						

Plot 7.3.5 Emission mask test results at low, mid, high carrier frequency, 10 MHz CBW

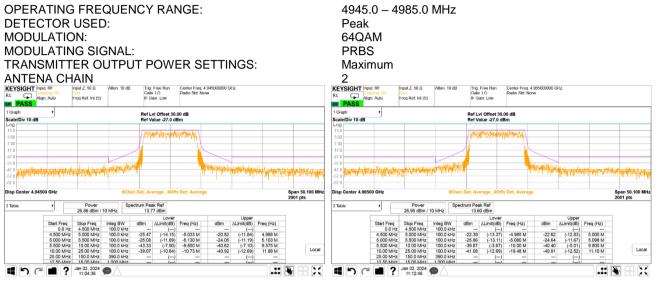
OPERATING FREQUENCY RANGE:	
DETECTOR USED:	
MODULATION:	
MODULATING SIGNAL:	
TRANSMITTER OUTPUT POWER SETTINGS	3:
ANTENA CHAIN	

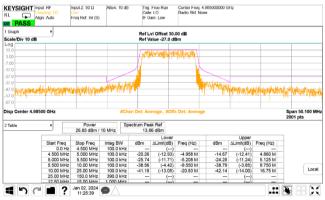
4945.0 – 4985.0 MHz Peak QPSK PRBS Maximum 2

KEYSIGHT IN RL C A	nput: RF Coupling: DC dign: Auto	Input Z: 50 Ω Corr Freq Ref: Int (S)	Alten: 10 dB	Cate	Free Run E LO ain: Low	Center Freq. Radio Std: N	: 4.985000000 G lone	iHz		
1 Graph				RefL	vi Offset 30.	00 dB				
Scale/Div 10 dB				Ref V	alue -27.0 dl	Bm				
Log										
13.0		-		(al at	MULTER INT	Local Redier V				
3.00				/#Y	di kinakashi h	tolder ALCO C				
7.00	_			- 11 -	· ·	11				
17.0				1		\				
27.0				- <u></u>						
37.0							U	1		
	يتماقعينه بالبدي	لحما وبالا مألا مأتانا	us in a label of				a and the balls	a tas data itu	said, tang t	
47.0 411.40		ANIMALIAL	And do the	· · · · ·			all a barra	THE PARTY OF A	National	Performance of the second
-57.0	www.uppert	salar din te		1					1. 1	
-57.0	and the difference	with the s							, . ,	
-67.0		when the A	#Chi	an Det: Av	erage , #Off	s Det: Avera	ge			Span 50.100 MH
-57.0 -67.0 Disp Center 4.98		in the first	#Chi	an Det: Av	erage , #Off	s Det: Avera	ge			Span 50.100 MH 2001 pts
-67 0		Power		an Det: Av		s Det: Avera	ge			
67.0	3500 GHz	- II	Sp	ectrum Pe		s Det: Avera	ge			
-67 0	3500 GHz	Power	Sp	ectrum Pe	ak Ref	s Det: Avera	ge	Upper		
67.0 Disp Center 4.98	3500 GHz	Power	Sp	ectrum Pe	ak Ref 12 dBm	s Det: Avera Freq (Hz)	ge dBm	Upper ALimit(dB)	Freq (Hz)	
67.0	3500 GHz	Power 26.77 dBm / Stop Freq 4.500 MHz	10 MHz Sp Integ BW 100.0 kHz	ectrum Per 14.4 dBm	ak Ref l2 dBm Lower ∆Limit(dB) ()	Freq (Hz)	dBm	∆Limit(dB) ()		
67.0	Start Freq 0.0 Hz	Power 26.77 dBm / Stop Freq 4.500 MHz 5.000 MHz	10 MHz Sp Integ BW 100.0 kHz 100.0 kHz	ectrum Per 14.4 dBm -10.74	ak Ref i2 dBm Lower ∆Limit(dB) () (-12.80)	Freq (Hz) 	dBm 	ΔLimit(dB) () (-14.39)	4.913 M	
67.0	3500 GHz V Start Freq 0.0 Hz 4.500 MHz 5.000 MHz	Power 26.77 dBm / Stop Freq 4.500 MHz 5.500 MHz	10 MHz Integ BW 100.0 kHz 100.0 kHz 100.0 kHz	ectrum Per 14.4 dBm -10.74 -28.43	ak Ref i2 dBm Lower ∆Limit(dB) () (-12.80) (-13.99)	Freq (Hz) 	dBm 	ΔLimit(dB) () (-14.39) (-12.53)	4.913 M 5.095 M	
-67 0	5500 GHz Start Freq 0.0 Hz 5.000 MHz 5.500 MHz	Power 26.77 dBm / Stop Freq 4.500 MHz 5.500 MHz 10.00 MHz	10 MHz Integ BW 100.0 kHz 100.0 kHz 100.0 kHz 100.0 kHz	ectrum Per 14.4 dBm 	ak Ref 12 dBm ∆Limit(dB) (-12.80) (-13.99) (-4.25)	Freq (Hz) 	dBm 	ΔLimit(dB) () (-14.39) (-12.53) (-4.32)	4.913 M 5.095 M 9.225 M	2001 pts
-67.0	5500 GHz Start Freq 0.0 Hz 4.500 MHz 5.000 MHz 5.000 MHz	Power 26.77 dBm / 5.000 MHz 5.000 MHz 10.00 MHz 25.00 MHz 25.00 MHz	Integ BW 100.0 kHz 100.0 kHz 100.0 kHz 100.0 kHz 100.0 kHz	ectrum Per 14.4 dBm -10.74 -28.43	ak Ref i2 dBm Lower ∆Limit(dB) () (-12.80) (-13.99)	Freq (Hz) 	dBm 	ΔLimit(dB) () (-14.39) (-12.53)	4.913 M 5.095 M	2001 pts
-67 0	5500 GHz Start Freq 0.0 Hz 5.000 MHz 5.500 MHz	Power 26.77 dBm / Stop Freq 4.500 MHz 5.500 MHz 5.500 MHz 10.00 MHz 15.00 MHz 150.0 MHz	10 MHz Integ BW 100.0 kHz 100.0 kHz 100.0 kHz 100.0 kHz	ectrum Per 14.4 dBm 	ak Ref 12 dBm ∆Limit(dB) (-12.80) (-13.99) (-4.25)	Freq (Hz) 	dBm 	ΔLimit(dB) () (-14.39) (-12.53) (-4.32)	4.913 M 5.095 M 9.225 M	

Test specification:	Section 90.210, Emission mask					
Test procedure:	47 CFR, Sections 2.1051, 2.104	47 CFR, Sections 2.1051, 2.1047 and 90.210(m)				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	27-Dec-23	verdict:	PASS			
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1014 hPa	Power: 48 VDC			
Remarks:						

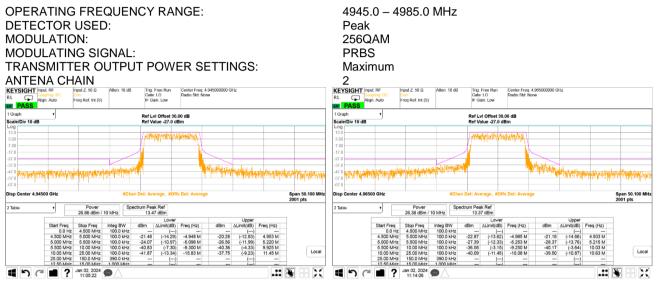
Plot 7.3.6 Emission mask test results at low, mid, high carrier frequency, 10 MHz CBW


OPERATING FREQUENC DETECTOR USED: MODULATION: MODULATING SIGNAL: TRANSMITTER OUTPUT ANTENA CHAIN		4945.0 – 4985.0 MHz Peak 16QAM PRBS Maximum 2
KEYSIGHT Input RF Input Z: 50 Ω Allen. 10 dB RL Coupling DC Corr Freq Ref. Int (S) MIR PASS Freq Ref. Int (S)	Trig: Free Run Center Freq: 4.94500000 GHz Cade: LO Radio Std' None IF Gan: Low	KEYSIGHT Input Rev Input Z s00 Allum. 10 d3 Ting. Fixe Run 2 Center Fixe 4 895000000 GHz Rt C Juggn Auto Fixe Run 10 (S) Fixe Run 2 Center Fixe 4 895000000 GHz Center Fixe A 895000000 GHz Center Fixe A 895000000 GHz Center Fixe A 895000000 GHz Fi Gam. Low
1 Graph v Scale/Div 10 dB	Ref Lvi Offset 30.00 dB Ref Value -27.0 dBm	1 Graph Rof Lvi Offset 30.00 dB Scale/Div 10 dB Ref Value 27.0 dBm
	au van gegener in de staar van de staar van de staar de s	
Disp Center 4.94500 GHz #Chan De	et: Average, #Offs Det: Average Span 50. 2001 pts	IHz Disp Center 4.96500 GHz #Chan Det: Average, #Offs Det: Average Span 50.100 MHz 2001 pts
28.93 dBm / 10 MHz Start Freq Stop Freq Integ BW dB 0.0 Hz 4.500 MHz 1000 kHz 4.000 MHz 5.000 MHz 1000 kHz - 5.000 MHz 1000 kHz - 5.000 MHz 1000 kHz - 5.000 MHz 1000 kHz -	m Peak Ref 13.16 ddm Lower (-) 25.27 (+13.16 ddm (-) 25.27 (+13.16) 25.27 (+13.16) 25	2 Table Power (56 dBm / 10 Hz) Spectrum Peak Ref (13.12 dBm) Start Freq 0.0 Hz Stop Freq (10.0 Hz) Spectrum Peak Ref (13.12 dBm) Upper (13.12 dBm) Start Freq 0.0 Hz Stop Freq (10.0 Hz) Stop Freq (10.0 Hz) Upper (10.0 Hz) Upper (10.0 Hz) A 500 HHz Stop Freq (10.0 Hz) Upper (10.0 Hz) Upper (10.0 Hz) Upper (10.0 Hz) at at at Stop Freq (10.0 Hz) Stop Hz) Upper (10.0 Hz) Upper (10.0 Hz) Upper (10.0 Hz) at Stop Hz Stop Hz) Upper (10.0 Hz) Stop Hz) Upper (10.0 Hz) Upper (10.0 Hz) at Stop Hz Stop Hz) Upper (10.0 Hz) Upper (10.0 Hz) Upper (10.0 Hz) Upper (10.0 Hz) Upper (10.0 Hz) at Stop Hz Stop Hz) Upper (10.0 Hz) Upper (10.0 Hz) Upper (10.0 Hz) Upper (10.0 Hz) Upper (10.0 Hz) at Stop Hz) Stop Hz) Upper (10.0 Hz) Upper (10.0 Hz) Upper (10.0 Hz) Upper (10.0 Hz) at Stop Hz) Stop Hz) Upper (10.0 Hz) Upper (10.0 Hz) Upper (10.0 Hz) Upper (10.0 Hz) </td


REYSIGHT	Input: RF Coupling: DC Align: Auto	C	nput Z: 50 Ω korr req Ref: Int (S)	Atlen: 10 dB	Cab	: Free Run ≊: LO lain: Low	Center Freq: 4. Radio Std: Nor		Hz		
Graph icale/Div 10 dl	•					vi Offset 30. alue -27.0 d					
00 13.0 7.00 17.0 27.0 37.0 47.0 1.1 st 11 std				and the second		ar da ka		West Mout		ter i fan it ster it st	
	6. (1) I I I I I I I I I I I I I I I I I I I		The REPART OF	Wanter to Day.	1 1		1	4	11111月1日日本市	机操作分析	and struggly and
57.0			adaq Mirkaa kal		an Det: Av	erage , #Off	's Det: Average	2	11 . 4.16		1. 1.1.1
57.0 isp Center 4.9			Power 26.80 dBm /	#Ch	ectrum Pe	ak Ref 51 dBm		2	11 - 42.16	141111	Span 50.100 Mi
5p Center 4.9	98500 GHz T		Power 26.80 dBm /	#Ch 10 MHz	ectrum Pe 13.3	ak Ref 51 dBm Lower	's Det: Average		Upper	,1,,,,1	Span 50.100 Mi
5 Center 4.9	98500 GHz T	req	Power 26.80 dBm / Stop Freq	#Ch 10 MHz Sp Integ BW	ectrum Pe 13.3 dBm	ak Ref 51 dBm Lower ∆Limit(dB)		dBm	Upper <u>ALimit(dB)</u>	Freq (Hz)	Span 50.100 Mi
5p Center 4.9	B8500 GHz	req 0 Hz	Power 26.80 dBm / Stop Freq 4.500 MHz	10 MHz Sp Integ BW 100.0 kHz	ectrum Pe 13.3 dBm	ak Ref 51 dBm Lower ∆Limit(dB) ()	S Det: Average	dBm	Upper ΔLimit(dB) ()	Freq (Hz)	Span 50.100 Mi
5p Center 4.9	98500 GHz Start F 0 4.500	req 0 Hz MHz	Power 26.80 dBm / Stop Freq 4.500 MHz 5.000 MHz	#Ch 10 MHz St Integ BW 100.0 kHz 100.0 kHz	ectrum Pe 13.3 dBm 	ak Ref 51 dBm ∆Limit(dB) () (-12.66)	Freq (Hz)	dBm 	Upper ΔLimit(dB) ()	Freq (Hz)	Span 50.100 Mi
5p Center 4.9	98500 GHz V Start F 0 4.500 5.000	req 0 Hz MHz MHz	Power 26.80 dBm / Stop Freq 4.500 MHz 5.000 MHz 5.500 MHz	#Ch 10 MHz Sp Integ BW 100.0 kHz 100.0 kHz 100.0 kHz	ectrum Pe 13.3 dBm -20.35 -25.39	ak Ref 51 dBm ∆Limit(dB) () (-12.66) (-11.03)	5 Det: Average	dBm 	Upper ΔLimit(dB) () (-12.51) (-11.41)	Freq (Hz) 	Span 50.100 Mi
sp Center 4.9	Start F 0. 4.500 5.000 5.500	req 0 Hz MHz MHz MHz	Power 26.80 dBm / Stop Freq 4.500 MHz 5.000 MHz 5.500 MHz 10.00 MHz	#Ch 10 MHz Sp Integ BW 100.0 kHz 100.0 kHz 100.0 kHz 100.0 kHz	ectrum Pe 13.3 dBm 	ak Ref 51 dBm ∆Limit(dB) (-12.66) (-11.03) (-3.66)	5 Det: Average Freq (Hz) 	dBm 	Upper ΔLimit(dB) () (-12.51) (-11.41) (-4.16)	Freq (Hz) 5.048 M 5.128 M 9.375 M	Span 50.100 MH 2001 pts
57.0 isp Center 4.9	Start F 0 4.500 5.500 10.00	req 0 Hz MHz MHz MHz MHz	Power 26.80 dBm / Stop Freq 4.500 MHz 5.000 MHz 5.000 MHz 25.00 MHz	#Ch 10 MHz Integ BW 100.0 kHz 100.0 kHz 100.0 kHz 100.0 kHz	ectrum Pe 13.3 dBm -20.35 -25.39 -37.45 -40.39	ak Ref 51 dBm ∆Limit(dB) (-12.66) (-11.03) (-3.66) (-11.90)	Freq (Hz) 	dBm 	Upper ΔLimit(dB) () (-12.51) (-11.41) (-4.16) (-12.65)	Freq (Hz) 5.048 M 6.128 M 9.375 M 10.93 M	Span 50.100 MH 2001 pts
Table	Start F 0. 4.500 5.000 5.500	req 0 Hz MHz MHz MHz MHz MHz	Power 26.80 dBm / Stop Freq 4.500 MHz 5.000 MHz 5.500 MHz 10.00 MHz	#Ch 10 MHz Sp Integ BW 100.0 kHz 100.0 kHz 100.0 kHz 100.0 kHz	ectrum Pe 13.3 dBm 	ak Ref 51 dBm ∆Limit(dB) (-12.66) (-11.03) (-3.66)	Freq (Hz) 	dBm 	Upper ΔLimit(dB) () (-12.51) (-11.41) (-4.16)	Freq (Hz) 	Span 50.100 MH

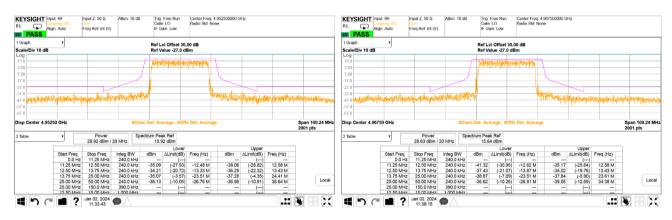
Test specification:	Section 90.210, Emission mask				
Test procedure:	47 CFR, Sections 2.1051, 2.1047 and 90.210(m)				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	27-Dec-23	verdict:	PA33		
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1014 hPa	Power: 48 VDC		
Remarks:	•				

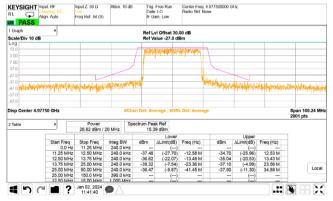
Plot 7.3.7 Emission mask test results at low, mid, high carrier frequency, 10 MHz CBW



Test specification:	Section 90.210, Emission mask					
Test procedure:	47 CFR, Sections 2.1051, 2.10	47 CFR, Sections 2.1051, 2.1047 and 90.210(m)				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	27-Dec-23	verdict:	PASS			
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1014 hPa	Power: 48 VDC			
Remarks:	-					

Plot 7.3.8 Emission mask test results at low, mid, high carrier frequency, 10 MHz CBW

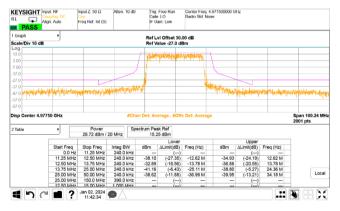



Test specification:	Section 90.210, Emission mask					
Test procedure:	47 CFR, Sections 2.1051, 2.104	47 CFR, Sections 2.1051, 2.1047 and 90.210(m)				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	27-Dec-23	verdict:	PA35			
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1014 hPa	Power: 48 VDC			
Remarks:						

Plot 7.3.9 Emission mask test results at low, mid, high carrier frequency, 25 MHz CBW

OPERATING FREQUENCY RANGE:	
DETECTOR USED:	
MODULATION:	
MODULATING SIGNAL:	
TRANSMITTER OUTPUT POWER SETTING	S:
ANTENA CHAIN	

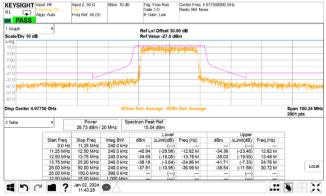
4945.0 – 4985.0 MHz Peak QPSK PRBS Maximum 1



Test specification:	Section 90.210, Emission mask						
Test procedure:	47 CFR, Sections 2.1051, 2.1047 and 90.210(m)						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	27-Dec-23	verdict:	PA35				
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1014 hPa	Power: 48 VDC				
Remarks:							

Plot 7.3.10 Emission mask test results at low, mid, high carrier frequency, 25 MHz CBW

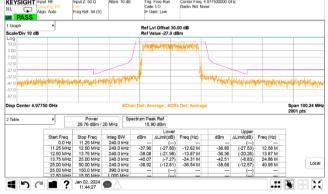
OPERATING FREQUENCY RANGE: DETECTOR USED: MODULATION: MODULATING SIGNAL: TRANSMITTER OUTPUT POWER SETTINGS: ANTENA CHAIN	4945.0 – 4985.0 MHz Peak 16QAM PRBS Maximum 1
KEYSIGHT Insult Rev Insult 2 50 L Attem 10 db Titls Free Ran Content Free, 4922500000 GHz RL Augn Auto Free Ref. tr(5) Generation Free Ref. tr(5) Free Ref. tr(5) Image PASS Free Ref. tr(5) Free Ref. tr(5) Free Ref. tr(5) Free Ref. tr(5)	KEYSIGHT Insels To: Sensing To: Jung Addo Allen: 10 dB Trigs Free Rem Caller Free 4.667/00000 GHz RL Jung Addo Free Rem Caller LO Radio Skt None RL Jung Addo Free Rem Caller LO Radio Skt None Image RARS Free Rem Caller LO Radio Skt None
1 Graph Ref Lvi Offset 30.00 dB Scale/Div 10 dB Ref Value 27.0 dBm	1 Graph • Ref Lvi Offset 30.00 dB Scale/Div 10 dB Ref Value -27.0 dBm
Disp Center 4.95250 GHz #Chan Det: Average #Offs Det: Average Span 100.24 MHz 2001 pts	2001 pts
2 Tuble Power Power Spectrum Peak Ref 15.09 400 million 15.09 400 million 15.09 400 million Upper 0 tart Preq 50p Preq Integ BW dbm / Linoid 0 dbm / Linoid 10.09 40 million 10.09 40 million dbm / Linoid 0 dbm / Linoid 0 dbm / Linoid 10.09 40 million 10.09 40 million 10.09 40 million 0 dbm / Linoid 0 dbm / Linoid 0 dbm / Linoid 10.09 40 million 10.09 40 million 10.09 40 million 0 dbm / Linoid 0 dbm / Linoid	2 Table



Test specification:	Section 90.210, Emission mask						
Test procedure:	47 CFR, Sections 2.1051, 2.1047 and 90.210(m)						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	27-Dec-23	verdict:	PA35				
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1014 hPa	Power: 48 VDC				
Remarks:							

Plot 7.3.11 Emission mask test results at low, mid, high carrier frequency, 25 MHz CBW

OPERA DETEC MODUL MODUL TRANSI ANTEN	TOR ATIC ATIN MITT A CH	USED N: G SIG ER O): GNAL:	-				S:		Peał 64Q PRB Maxi 1	AM S mum	985.0	MHz	Trig. Fr Cate L		Center Freq.	4.967500000 (3112		
RL Align	Auto I	req Ref: Int (S)		IF Gain:						RL C. PASS		Freq Ref: Int (S)		IF Gain						
1 Graph Scale/Div 10 dB	•				ffset 30.00 dB -27.0 dBm					1 Graph Scale/Div 10 dB	•				Offset 30.0 ie -27.0 dB					
Log 13.0 3.00 -7.00		kinivy/ki/kel		1	se, #Offs Det:	Hirtman	and the second	urafia malantarakan	Span 100.24 MHz	Log 13.0 3.00 -7.00	play for for toolly	Antonio						All Lawyork		Span 100.24 MHz
· · · · · · · · · · · · · · · · · · ·						werage			2001 pts		1730 GH2				-	Det. Arena	3.			2001 pts
	Start Freq 0.0 Hz 11.25 MHz 13.75 MHz 25.00 MHz 25.00 MHz 25.00 MHz 12.50 MHz	Power 28.65 dBm / 2 Stop Freq 11.25 MHz 12.50 MHz 13.75 MHz 25.00 MHz 50.00 MHz 15.00 MHz 15.00 MHz 15.00 MHz 15.01 MHz 15.31		-37.84 -35.04 -36.92	Em Lower () (-27.57) -12 (-18.60) -13 (-5.65) -22 (-11.41) -37 () () () ()	58 M - 73 M - 10 M -	(35.04 (-24.77 35.68 (-20.20 36.15 (-7.17 38.89 (-11.80 ((() Freq (Hz))		Radio Std: N	4.977500000 GHz	Power 28.59 dBm / 2 Stop Freq 11.25 MHz 13.75 MHz 25.00 MHz 50.00 MHz 15.00 MHz 15.00 MHz 15.00 MHz 15.00 MHz 15.00 MHz		ctrum Peak 14.86 	dBm Lower	Freq (Hz) 	dBm 	(-28.80) (-17.11)	Freq (Hz) 	



Test specification:	Section 90.210, Emission mask						
Test procedure:	47 CFR, Sections 2.1051, 2.1047 and 90.210(m)						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	27-Dec-23	verdict:	PA35				
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1014 hPa	Power: 48 VDC				
Remarks:							

Plot 7.3.12 Emission mask test results at low, mid, high carrier frequency, 25 MHz CBW

OPERATING FREQUENCY RANGE: DETECTOR USED: MODULATION: MODULATING SIGNAL: TRANSMITTER OUTPUT POWER SETTINGS: ANTENA CHAIN	4945.0 – 4985.0 MHz Peak 256QAM PRBS Maximum 1
KEYSIGHT Input. R* Input. 2 50 Ω Atter. 10 dB Trig. Free Run Cater LO Conter Freq. 4.952500000 GHz RL Control Freq. Key Review Control Freq. 4.952500000 GHz Radio Stdt Nome	KEYSIGHT Input R F Input Z 50 Ω Atten: 10 dB Trig: Frie Run Centre Frie: 4.987500000 GHz RL Casping DC Coas Casping DC Coas Casping DC Casping DC
Image: PASS Image: Pass Pass Pass Pass Pass Pass Pass Pas	Image: PASS
	130 7 00 7 10 7 10 7 10 7 10
Disp Center 4.95250 GHz #Chan Det: Average, #Offs Det: Average Span 100.24 MHz 2001 pts	z Disp Center 4.96750 GHz #Chan Det: Average, #Offs Det: Average Span 100.24 MHz 2001 pts
2 Table 2 Power Spectrum Paek Ref 15.14 dBm 15.14 dBm Upper 0 tast Free, 5 table 7.20 MHz 20.0 MHz 15.14 dBm 0 tast Free, 5 table 7.20 MHz 20.0 MHz 15.14 dBm 12.50 MHz 12.50 MHz 20.0 MHz 15.14 dBm 12.50 MHz 12.50 MHz 20.0 MHz 15.64 dBm 12.50 MHz 12.50 MHz 12.00 MHz 33.00 (-27.44) 12.62 MH 12.50 MHz 12.50 MHz 24.00 MHz -4.17 (-10.2 5.50 MH 37.36 (-4.26.84) 12.50 MHz 25:00 MHz 10.0 MHz 30.0 (+2.74.40) 12.62 MH 12.62 MHz -4.17 (-10.2 5.50 MHz -4.17 (-10.1 5.50 MHz -4.11 (-10.1 MJZ -4.11 (-10.1 MJZ	Data Confer Freq. 4/07/20000 GHz Page 4/06 Mone

