PCTEST ENGINEERING LABORATORY, INC.

6660 - B Dobbin Road · Columbia, MD 21045 · USA Telephone 410.290.6652 / Fax 410.290.6654

http://www.pctestlab.com (email: randy@pctestlab.com)

APPLICANT NAME & ADDRESS:

Panasonic Corporation of North America

One Panasonic Way, 4B-8 Secaucus, NJ 07094

DATE & LOCATION OF TESTING:

Dates of Tests: May 23-25, 2005 Test Report S/N: 0505100365

Test Site: PCTEST Lab, Columbia, MD USA

Project Number: ITPD-05-F003A

FCC ID: ACJ9TGCF-29CA

APPLICANT NAME: Panasonic Corporation of North America

EUT Type: Panasonic Notebook w/ Boomer-II OEM Wireless Radio Modem Module,

Sierra Wireless EVDO Module, also incorporating Intel WLAN

Tx Frequency: 806 ~ 821 MHz, 821 ~ 824 MHz Rx Frequency: 806 ~ 821 MHz, 821 ~ 824 MHz

Max. RF Output Power: Mask G: 1.833 W (32.633 dBm)/ Mask H: 1.711 W (32.333 dBm)

Max. SAR Measurement: 1.11 W/kg CDMA Body SAR

Trade Name/Model(s): CF-29mk2

FCC Rule Part(s): §2.1093; FCC/OET Bulletin 65 Supplement C [July 2001]

Application Type: Certification

Test Device Serial No.: Identical Prototype [S/N: 4KKSA00093]

Installed Options:

WLAN

EVDO
OEM Modem
UNII

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001) and IEEE Std. P1528 D1.2 (April 2003).

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Grant Conditions: Power output listed is ERP for Part 90. SAR compliance for body-worn operating configuration is based on a separation distance of 1.5 cm between the back of the unit and the body of the user. End-users must be informed of the body-worn operating requirements for satisfying RF exposure compliance.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Alfred Cirwithian Vice President Engineering

PCTESTÔ SAR TEST REPORT	-APCT	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename: SAR.241124319.ACJ		EUT Type: Panasonic Notebook PC w/ C Radio, Boomer-II OEM & Intel WLAN	PEM FCC ID: ACJ9TGCF-29C	Page 1 of 24

TABLE OF CONTENTS

1.	INTRODUCTION / SAR DEFINITION	3
2.	SAR MEASUREMENT SETUP	4
3.	ALIDX-500 E-FIELD PROBE SYSTEM	5
4.	PROBE CALIBRATION PROCESS	6
5.	PHANTOM & EQUIVALENT TISSUES	7
6.	TEST SYSTEM SPECIFICATIONS	8
7.	DOSIMETRIC ASSESSMENT & PHANTOM SPECS	9
8.	TEST CONFIGURATION POSITION	10
9.	ANSI/IEEE C95.1 - 1992 RF EXPOSURE LIMITS	11
10.	MEASUREMENT UNCERTAINTIES	12
11.	SAR TEST DATA SUMMARY	13
12.	SAR TEST EQUIPMENT	14
13.	CONCLUSION	15
14.	REFERENCES	16
EXH	HIBIT A. SYSTEM VERIFICATION	17
EXH	IIBIT A. SAR DATA SUMMARY	18
EXH	HIBIT B. MPE DATA20	0
EXH	HIBIT C. SAR TEST DATA2	1
EXH	IIBIT D. SAR TEST SETUP PHOTOGRAPHS	2
EXH	HIBIT E. DIPOLE VALIDATION	3
EXH	IIBIT F. PROBE CALIBRATION2	4

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager	
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 2 of 24	
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	Page 2 01 24	

INTRODUCTION / SAR DEFINITION

The FCC has adopted the guidelines for evaluating the environmental effects of radiofrequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.[1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in *IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.* (c) 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017.[2] The measurement procedure described in *IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave*[3] is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in *Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields,* NCRP Report No. 86 (c) NCRP, 1986, Bethesda, MD 20814.[6] SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (r). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 1.1).

$$S A R = \frac{d}{d t} \left(\frac{d U}{d m} \right) = \frac{d}{d t} \left(\frac{d U}{r d v} \right)$$

Figure 1.1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

SAR = SE²/r

where:

s = conductivity of the tissue-simulant material (S/m)

r = mass density of the tissue-simulant material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename: SAR.241124319.ACJ	Test Dates: Nov. 24, 2004	EUT Type: Panasonic Notebook PC w/ OEM Radio, Boomer-II OEM & Intel WLAN	FCC ID: ACJ9TGCF-29C	Page 3 of 24

2. SAR MEASUREMENT SETUP

Robotic System

Measurements are performed using the ALIDX-500 automated dosimetric assessment system. The ALIDX-500 is made by IDX Robotics, Inc. (IDX) in the United States and consists of high precision robotics system (CRS), robot controller, Pentium 4 computer, near-field probe, probe alignment sensor, and the Left and Right SAM phantoms containing the head/brain equivalent tissue, and the flat phantoms for body/muscle equivalent. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 2.1).

System Hardware

The Robot table consists of the power supply, robot controller, safety computer, teach pendant (Joystick), six-axis robot arm, and the probe. The cell controller consists of DELL Dimension 4300 Pentium-4 1.6 GHz computer with Windows 2000 system and SAR Measurement software, National Instruments analog card, monitor, keyboard, and mouse. The robot controller is connected to the cell controller to communicate between the two computers. The probe data is connected to the cell controller via data acquisition cables.

System Electronics

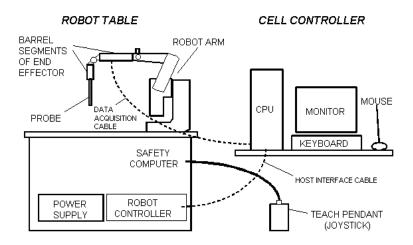


Figure 2.1 SAR Measurement System Setup

When the Robot is in the home position, the Y-axis of the coordinate system parallels the line of intersection between the tabletop and the long axis of the Robot's Large Shoulder. The Teach Pendant may be used to establish the X,Y coordinate directions by depressing the 0-X and 0-Y MOTOR/AXIS switches while in axis mode.

The robot is first taught to position the probe sensor following a specific pattern of points. In the first sweep the sensor enclosure touches the inside of the phantom head. The SAR is measured on a defined grid of points that are concentrated on the surface of the head closest to the antenna of the transmitting device (EUT).

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 4 of 24
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	raye 4 01 24

ALIDX-500 E-FIELD PROBE SYSTEM

Probe Measurement System

Fig 3.1 IDX System

The near-field probe is an implantable isotropic E-field probe that measures the voltages proportional to the $|E|^2$ (electric) or $|H|^2$ (magnetic) fields. The probe is enclosed in a hollow glass protective cylinder 9-mm. outer diameter, 0.5 mm. thickness and 30 cm. in length. The E-probe contains three electrically small array of orthogonal dipoles strategically placed to provide greater accuracy and to compensate for near-field spatial gradients. The probe contains diodes that are placed over the gap of the dipoles to improve RF detection. The electrical signal detected by each diode is amplified by three DC amplifiers and are contained in a shielded container in the robot end effector so its performance is not affected by the presence of incident electromagnetic fields (see Fig. 3.1).

Probe Specifications

Frequency Range: 10 kHz - 6.0 GHz

Calibration: In air from 10 MHz to 6.0 GHz

In brain and muscle simulating tissue at Frequencies from 835

up to 5800MHz

Sensitivity: 3.5 mV/mW/cm² (air – typical)

DC Resistance: 300 kohm Isotropic Response: 0.25 dB

Dynamic Range: 10 mW/kg – 100 W/kg

Resistance to Pull: 25 N
Probe Length: 290 mm
Probe Tip Material: Glass
Probe Tip Length: 40 mm
Probe Tip Diameter: 7 ± 0.2 mm

Application: SAR Dosimetry Testing

HAC (Hearing Aid Compatibility)
Compliance tests of mobile phones

Figure 3.2 Triangular Probe Configuration

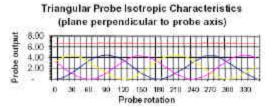


Figure 3.3
Probe Characteristics

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 5 of 24
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	

4. PROBE CALIBRATION PROCESS

Dosimetric Assessment Procedure

Each E-Probe/Probe amplifier combination has unique calibration parameters. A TEM calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the Probe to a known E-field density (1mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter. The SAR measurement software is used for Probe calibration.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or some other methodologies above 1 GHz for free space. For the free space calibration, we place the probe in the volumetric center of the cavity and at the proper orientation with the field. We then rotate the probe 360 degrees until the three channels show the maximum reading. The power density readings equates to 1mW/cm².

Temperature Assessment

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathsf{SAR} = C \frac{\Delta T}{\Delta t}$$

where:

 Δt = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

$$SAR = \frac{\left|E\right|^2 \cdot \mathbf{s}}{r}$$

where:

 σ = simulated tissue conductivity,

 ρ = Tissue density (1.25 g/cm³ for brain tissue)

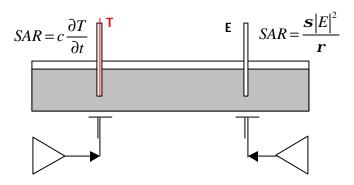


Figure 4.1 Temperature Assessment Test Configuration

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 6 of 24
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	

PHANTOM & EQUIVALENT TISSUES

Figure 5.1 SAM Phantoms

The Left and Right SAM Phantoms are constructed of a vivac composite integrated in a corian stand. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users [7][8]. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 5.1)

Brain & Muscle Simulating Mixture Characterization

Figure 5.2 Head Simulated Tissue

The brain and muscle mixtures consist of a viscous gel using hydroxyethylcellullose (HEC) gelling agent and saline solution (see Table 6.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following table. Other head and body tissue parameters that have not been specified in P1528 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove [9].(see Table 5.1)

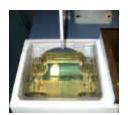


Figure 5.3

Body/Muscle
Simulated Tissue

Ingredients (% by neight)	Frequency (Milz)									
	4	50	- 30	835		15	1900		2450	
Timue Type	Head	Body	Umd:	Body	Hend	Hody	Head	Budy	Head	Both
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	54.	1.35	0.76	0.18	0.5	0.5	0.04
Sogir	56.32	46.78	56.0	45.0	56.5	41.75	0.0	58.0	0.0	0,0
HEC	0.98	0.52	1:0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Hauterteide	0:19	0.05	0,1	0.1	-9.1	0.27	0.0	0.00	0.0	0.0
Trison X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0:0	0.0	8:0	0.0	0.0	0.0	44.92	0.0	0,0	-263

Table 5.1
Composition of the Brain & Muscle Tissue Equivalent Matter

Device Holder

Figure 5.4
Device Positioner

In combination with the SAM Phantom, the EUT Holder (see Fig. 6.2) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. Device positioning is accurate and repeatable according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

* Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations [8]. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 7 of 24
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	Page / 01 24

6. TEST SYSTEM SPECIFICATIONS

Automated Test System Specifications

Positioner

Robot: CRS Robotics, Inc. Robot Model: F3

Repeatability: ± 0.05 mm (0.002 in.)

No. Of axes: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Pentium 4

Clock Speed: 1.6 GHz

Operating System: Windows 2000TM Professional

Data Card: NI DAQ Card (in CPU)

Data Converter

Software: IDX Flexware

Connecting Lines: Data Acquisition Cable

RS-232 Host Interface Cable

Sampling Rate: 6000 samples/sec

Figure 6.1 ALIDX-500 Test System

E-Field Probes

Model: E-010 S/N: PCT003

Construction: Triangular core absolute encoder system

Frequency: 10 MHz to 6.0 GHz

Phantom

Phantom: SAM Phantoms (Left & Right)

Shell Material: Vivac Composite Thickness: $2.0 \pm 0.2 \text{ mm}$

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 8 of 24
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	1 age 0 01 24

7. DOSIMETRIC ASSESSMENT & PHANTOM SPECS

Measurement Procedure

The measurement procedure consists of the process parameters, probe parameters, EUT product data, and measurement scans (teach points). The measurement procedure is a set of predefined points to be scanned and measured by the probe, DC amplified and processed by the cell controller. The corresponding voltages determined by the electric and magnetic fields are extrapolated to determine peak SAR value.

The SAR Measurement System measures field strength by employing two different types of systematic measurement scans; a coarse scan and a fine scan. Coarse and fine scans measure field strength in a rectangular area within the XY plane (a plane parallel to the top of the Robot Table). The measurement area is divided into a grid of small squares defined by equally spaced grid lines. During an actual measurement process, the probe moves along grid lines systematically recording the field strength at grid line intersections. Typically, after a coarse scan is completed, a fine scan is conducted at the peak field strength value (hot spot) that was measured in the coarse scan. The fine scan has a greater resolution (smaller grid squares) than the coarse scan, and covers only a fraction of the measurement area in the coarse scan.

Specific Anthropomorphic Mannequin (SAM) Specifications

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90^{th} percentile adult male head dimensions as tabulated by the US Army. The SAM Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Fig. 7.1). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface. The SAM shell thickness is 2.0 ± 0.2 mm.

Figure 7.1
Left and Right SAM Phantom shells

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 9 of 24
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	Page 9 01 24

8. TEST CONFIGURATION POSITION

Body-Worn Configurations

Body-worn operating configurations are tested with the notebook positioned touching against a flat phantom (lap) in a normal use configuration (see Figure 8.1). Body dielectric parameters are used.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worst-case positioning is then documented and used to perform Body SAR testing.

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and a caution statement must be included in the user's manual.

Figure 8.1 Body SAR Laptop Configurations

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 10 of 24
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	

9. ANSI/IEEE C95.1 - 1992 RF EXPOSURE LIMITS

Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 10.1. Safety Limits for Partial Body Exposure [2]

	HUMAN EXPOSURE LIMITS					
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)				
SPATIAL PEAK SAR 1 Brain	1.60	8.00				
SPATIAL AVERAGE SAR 2 Whole Body	0.08	0.40				
SPATIAL PEAK SAR 3 Hands, Feet, Ankles, Wrists	4.00	20.00				

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 11 of 24
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	raye 11 01 24

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

10. MEASUREMENT UNCERTAINTIES

а	b	С	d	e=	f	g	h =	i =	k
				f(d,k)		, and the second	cxf/e	cxg/e	
Uncertainty		Tol.	Prob.	r(u,rt)	Ci	C _i	1 - g	10 - q	
Component	Sec.	(± %)	Dist.	Div.	(1 - q)	(10 - g)	u _i	u _i	Vi
Component	300.	(= 70)	Dist.	DIV.	(1 9)	(10 9)	(± %)	(± %)	"
Measurement System							()	()	
Probe Calibration	E1.1	4.8	Ν	1	1	1	4.8	4.8	∞
Axial Isotropy	E1.2	4.7	R	√3	0.7	0.7	1.9	1.9	∞
Hemishperical Isotropy	E1.2	9.6	R	$\sqrt{3}$	0.7	0.7	3.9	3.9	∞
Boundary Effect	E1.3	1.0	R	√3	1	1	0.6	0.6	∞
Linearity	E1.4	4.7	R	√3	1	1	2.7	2.7	∞
System Detection Limits	E1.5	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout Electronics	E1.6	1.0	Ν	1	1	1	1.0	1.0	∞
Response Time	E1.7	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Integration Time	E1.8	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF Ambient Conditions	E5.1	3.0	R	√3	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E5.2	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E5.3	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Extrapolation, Interpolation & Integration	E4.2	1.0	R	√3	1	1	0.6	0.6	∞
Algorithms for Max. SAR Evaluation									
Test Sample Related									
Test Sample Positioning	E3.2.1	2.9	Ν	1	1	1	2.9	2.9	145
Device Holder Uncertainty	E3.1.1	3.6	Ν	1	1	1	3.6	3.6	5
Output Power Variation - SAR drift	5.6.2	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
measurement									
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thicknes	E2.1	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
tolerances)									
Liquid Conductivity - deviation from	E2.2	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
target values									
Liquid Conductivity - measurement	E2.2	2.5	Ν	1	0.64	0.43	1.6	1.1	∞
uncertainty									
Liquid Permittivity - deviation from	E2.2	5.0	R	$\sqrt{3}$	0.6	0.5	1.7	1.4	∞
target values									
Liquid Permittivity - measurement	E2.2	2.5	N	1	0.6	0.5	1.5	1.2	∞
uncertainty									
Combined Standard Uncertainty (k=1)			RSS				10.3	10.0	
Expanded Uncertainty (k=2)							20.6	20.1	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003.

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 12 of 24
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	Page 12 01 24

11. SAR TEST DATA SUMMARY

See Measurement Result Data Pages

Procedures Used To Establish Test Signal

The device was placed into continuous transmit mode using a manufacturer test software. The end-user configuration will have a duty cycle of 10% or less, hence the SAR value was normalized. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR [4].

Device Test Conditions

The internal transmitting device is powered through the host computer. The software was used to maintain the maximum output power. If a power deviation of more than 5% occurred, the test was repeated.

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 13 of 24
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	Page 13 01 24

12. SAR TEST EQUIPMENT

Equipment Calibration

Table 12.1 Test Equipment Calibration

EQUIPMENT SPECIFICATIONS							
Туре		Calibration Date	Serial Number				
CRS Robot F3		February 2004	RAF0134133				
CRS C500C Motion Controller		February 2004	RCB0003303				
CRS Teach Pendant (Joystick)		February 2004	STP0132231				
DELL Computer, Pentium 4 1.6 GHz, V	Windows 2000 [™]	February 2004	4PJZ111				
E-Field Probe E-010		January 2004	PCT003				
Right Ear SAM Phantom (P-SAM-R)		June 2004	94X-113				
Left Ear SAM Phantom (P-SAM-L)		June 2004	94X-019				
Flat SAM Phantom (P-SAM-FLAT)		June 2004	94X-097				
IDX Robot End Effector (EE-103-C)		June 2004	07111223				
IDX Probe Amplifier		June 2004	07111113				
Validation Dipole D-835S		October 2004	PCT640				
Validation Dipole D-1900S		October 2004	PCT641				
Brain Equivalent Matter (835MHz)		November 2004	PCTBEM101				
Brain Equivalent Matter (1900MHz)		November 2004	PCTBEM301				
Muscle Equivalent Matter (835MHz)		November 2004	PCTMEM201				
Muscle Equivalent Matter (1900MHz)		November 2004	PCTMEM401				
Amplifier Research 5S1G4 Power Amp)	January 2004	PCT540				
Agilent E8241A (250kHz ~ 20GHz) Si	gnal Generator	January 2004	US42110432				
HP-8753E (30kHz ~ 6GHz) Network A		January 2004	PCT552				
HP85070B Dielectric Probe Kit		January 2004	PCT501				
Ambient Noise/Reflection, etc. <	12mW/kg/<3%of SAR	January 2004	Anechoic Room PCT01				

NOTE:

The brain simulating material is calibrated by PCTEST using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material.

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 14 of 24
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	Page 14 01 24

13. CONCLUSION

Measurement Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.[3]

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 15 of 24
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	Page 15 01 24

14. REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, Aug. 1992.
- [3] ANSI/IEEE C95.3 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, July 2001.
- [5] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, *Draft Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.*
- [6] NCRP, National Council on Radiation Protection and Measurements, *Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields*, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, *The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz*, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [8] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [9] G. Hartsgrove, A. Kraszewski, A. Surowiec, *Simulated Biological Materials for Electromagnetic Radiation Absorption Studies*, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [10] Q. Balzano, O. Garay, T. Manning Jr., *Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones*, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [11] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, *Numerical Recepies in C*, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [12] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [13] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 16 of 24
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	raye 10 01 24

EXHIBIT A. SYSTEM VERIFICATION

Tissue Verification

Table A.1 Simulated Tissue Verification

	835MI	dz Brain	835MHz Muscle		
	Target	Measured	Target	Measured	
Dielectric Constant	41.50	40.64	55.20	41.87	
Conductivity	0.90	0.91	0.97	0.90	

Test System Validation

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at 835MHz by using the system validation kit(s). (Graphic Plots Attached)

Table A.2 System Validation

System Verification TARGET & MEASURED							
Date:	Amb. Temp (°C)	Liquid Temp(°C)	Input Power (W)	Tissue Frequency (Mhz)	Targeted SAR _{1g} (mW)	Measured SAR _{1g} (mW)	Deviation (%)
5/24/2005	23.2	21.1	0.160	835	1.5	1.56	2.63%

Figure A.0 Dipole Validation Test Setup

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename: SAR.241124319.ACJ		EUT Type: Panasonic Notebook PC w/ OEM Radio, Boomer-II OEM & Intel WLAN	FCC ID: ACJ9TGCF-29C	Page 17 of 24

EXHIBIT A. SAR DATA SUMMARY

Mixture Type: 835MHz Muscle

14.1	14.1 MEASUREMENT RESULTS (Body SAR)									
FREQU	IENCY	Maak	POV	NER [‡]	Separation	Antenna	100%	10% D.C.		
MHz	Ch.	Mask	(W)	Battery	Distance (cm)	Position	Duty Cycle SAR	SAR (W/kg)		
806.00	LOW	G	1.688	Standard	TOUCH	FIXED	10.53	1.06		
815.00	MID	G	1.711	Standard	TOUCH	FIXED	11.03	1.10		
821.00	HIGH	G	1.692	Standard	TOUCH	FIXED	11.12	1.11		
821.00	LOW	Н	1.727	Standard	TOUCH	FIXED	7.60	0.76		
822.50	MID	Н	1.833	Standard	TOUCH	FIXED	7.79	0.78		
848.97	HIGH	Н	1.812	Standard	TOUCH	FIXED	6.85	0.69		
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						1.6 W/I	uscle kg (mW/g) d over 1 gram			

NOTES:

- 1. The test data reported are the worst-case SAR value with the antenna-body position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings. Standard batteries are the only options.

	[‡] Power Measured		Conducted	X	ERP		EIRP
4.	SAR Measurement System		DASY3	X	IDX		
	Phantom Configuration		Left Head	X	Flat Phantom		Right Head
5.	SAR Configuration		Head	X	Body		Hand
6.	Test Signal Call Mode	X	Software		Base Station Sin	nulate	or

- 7. Tissue parameters and temperatures are listed on the SAR plots.
- 8. Liquid tissue depth is 15.1 cm. \pm 0.1

Alfred Cirwithian Vice President Engineering

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 18 of 24
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	Page 10 01 24

EXHIBIT A. SAR DATA SUMMARY

Mixture Type: 835MHz Muscle

A.2 N	A.2 MEASUREMENT RESULTS (Bystander SAR)										
FREQU	JENCY		POWER		Separation	Antenna	100%	10% D.C.			
MHz	Ch.	Mask	(W)	Battery	Distance (cm) #	Position	Duty Cycle SAR	SAR (W/kg)			
806.00	LOW	G	1.688	Standard	1.5	FIXED	4.13	0.41			
815.00	MID	G	1.711	Standard	1.5	FIXED	4.75	0.48			
821.00	HIGH	G	1.692	Standard	1.5	FIXED	4.33	0.43			
821.00	LOW	Н	1.727	Standard	1.5	FIXED	4.13	0.41			
822.50	MID	Н	1.833	Standard	1.5	FIXED	4.23	0.42			
824.00	HIGH	Н	1.812	Standard	1.5	FIXED	4.14	0.41			
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population					Musc 1.6 W/kg (averaged ove	mW/g)					

NOTES:

- 1. The test data reported are the worst-case SAR value with the antenna-body position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings. Standard batteries are the only options.

	[‡] Power Measured		Conducted	X	ERP		EIRP
4.	SAR Measurement System		DASY3	X	IDX		
	Phantom Configuration		Left Head	X	Flat Phantom		Right Head
5.	SAR Configuration		Head	X	Body		Hand
6.	Test Signal Call Mode	X	Software		Base Station Sim	ulato	or
_							

- 7. Tissue parameters and temperatures are listed on the SAR plots.
- 8. Liquid tissue depth is 15.1 cm. \pm 0.1

Alfred Cirwithian Vice President Engineering

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 19 of 24
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	1 agc 17 01 24

EXHIBIT B. MPE DATA

PCTESTÔ SAR TEST REPORT	PCTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename: SAR 241124319 ACI	Test Dates: Nov 24 2004	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID: ACI9TGCF-29C	Page 20 of 24

EXHIBIT C. SAR TEST DATA

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 21 of 24
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	1 agc 21 01 24

SAR Data Report 05052410

: 24-May-05 01:45:58 pm End : 24-May-05 01:52:47 pm

Code Version : 4.08 Robot Version: 4.08

Product Data:

: Panasonic Toughbook Type

Model Number : CF-29 Serial Number : 4DKSA00093 Frequency : 821 MHz
Transmit Pwr : 1.692 W
Antenna Type : Helical Antenna Posn. : Fixed

Measurement Data:

Phantom Name : FLATPHANTOM Phantom Type : Uniphantom Tissue Type : Muscle Tissue Dielectric : 52.620 Tissue Conductivity: 0.990 Tissue Density : 1.000 Robot Name : CRS

Probe Data:

Probe Name : PCT005

Probe Type : E Fld Triangle

Frequency : 835 MHz : Muscle Tissue Type Calibrated Dielectric : 53.660 Calibrated Conductivity: 0.980 Calibrated Density : 1.000 Probe Offset : 1.600 mm Conversion Factor : 5.850

Probe Sensitivity : 3.807 3.736 3.821 $mV/(mW/cm^2)$

Amplifier Gains : 20.00 20.00 20.00

Sample:

6000 Samples/Sec Rate: Count: 1000 Samples

NIDAQ Gain: 5

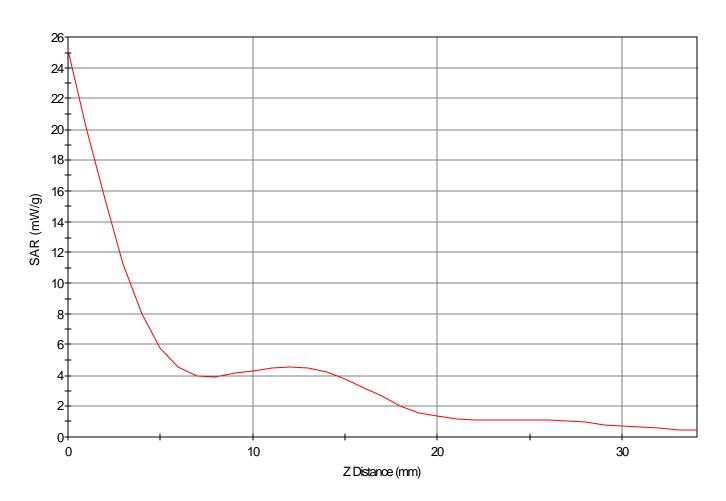
Comments:

821MHz with 100% Duty Cycle

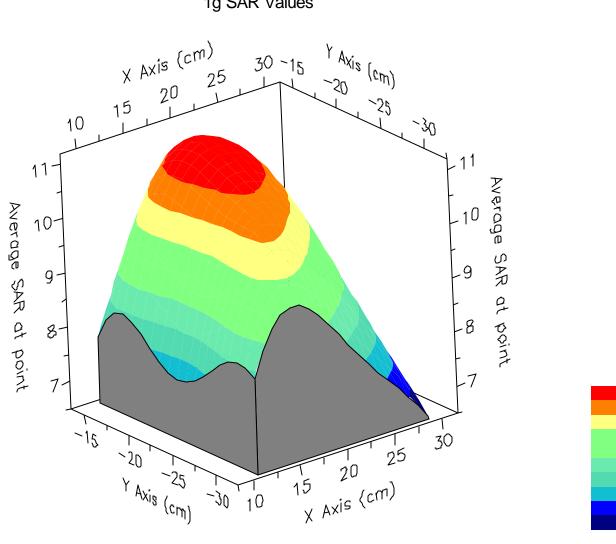
CF=8; Amb. Temp= 22.2 'C; Liq. Temp=21.1 'C

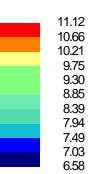
Power Drop Test:

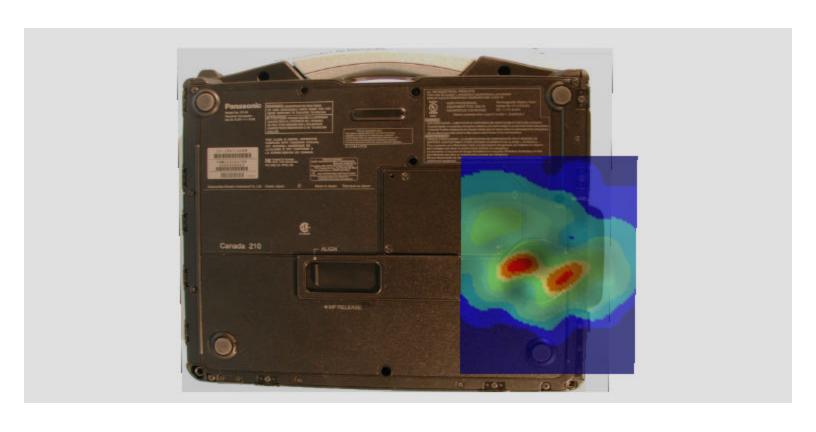
Reading @ start = 5.485 Reading @ End = 5.845Power at End = 106.6%


Area Scan - Max Peak SAR Value at x=20.0 y=-23.0 = 11.46 W/kg

Zoom Scan - Max Peak SAR Value at x=34.0 y=-9.0 z=0.0 = 25.12 W/kg


Max 1g SAR at x=20.0 y=-18.0 z=0.0 = 11.12 W/kg


Max 10g SAR at x=20.0 y=-22.0 z=0.0 = 6.57 W/kg


SAR - Z Axis at Hotspot x:34.0 y:-9.0

1g SAR Values

SAR Data Report 05052424

: 24-May-05 05:10:11 pm : 24-May-05 05:16:50 pm End

Code Version: 4.08 Robot Version: 4.08

Product Data:

: Panasonic Toughbook Type

Model Number : CF-29 Serial Number : 4DKSA00093 Frequency : 815 MHz
Transmit Pwr : 1.711 W
Antenna Type : Helical Antenna Posn. : Fixed

Measurement Data:

Phantom Name : FLATPHANTOM Phantom Type : Uniphantom Tissue Type : Muscle Tissue Dielectric : 52.620 Tissue Conductivity: 0.990 Tissue Density : 1.000 Robot Name : CRS

Probe Data:

Probe Name : PCT005

Probe Type : E Fld Triangle

Frequency : 835 MHz : Muscle Tissue Type Calibrated Dielectric : 53.660 Calibrated Conductivity: 0.980 Calibrated Density : 1.000 Probe Offset : 1.600 mm Conversion Factor : 5.850

Probe Sensitivity : 3.807 3.736 3.821 $mV/(mW/cm^2)$

Amplifier Gains : 20.00 20.00 20.00

Sample:

6000 Samples/Sec Rate: Count: 1000 Samples

NIDAQ Gain: 5

Comments:

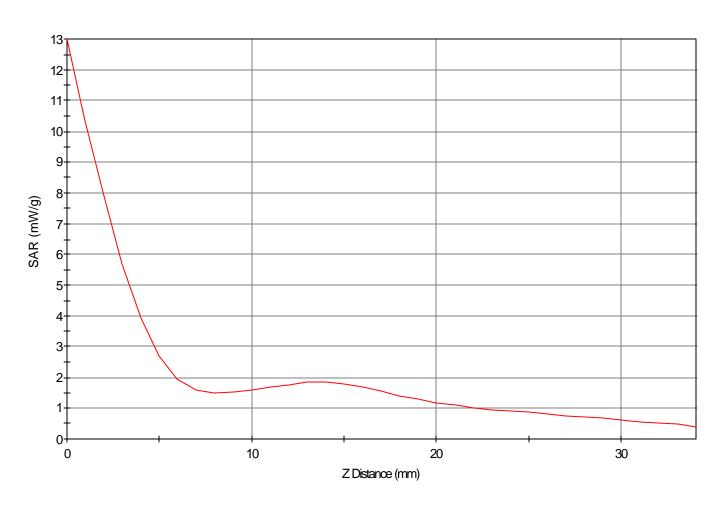
815MHz with 100% Duty Cycle

Bystander (1.5cm)

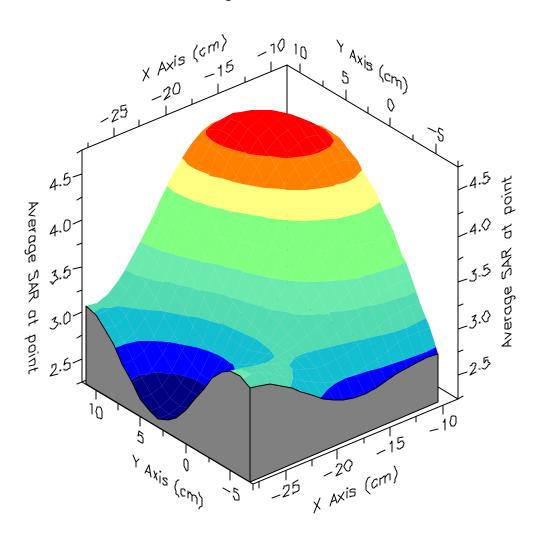
CF=8; Amb. Temp= 22.2 'C; Liq. Temp=21.1 'C

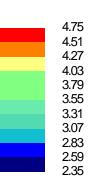
Power Drop Test:

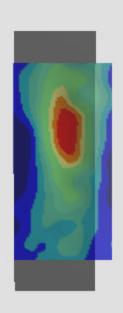
Reading @ start = 5.107 Reading @ End = 5.264Power at End = 103.1%


Area Scan - Max Peak SAR Value at x=-19.0 y=2.0 = 4.29 W/kg

Zoom Scan - Max Peak SAR Value at x=-17.0 y=10.0 z=0.0 = 12.98 W/kg


Max 1g SAR at x=-14.0 y=7.0 z=0.0 = 4.75 W/kg


Max 10g SAR at x=-16.0 y=5.0 z=0.0 = 2.52 W/kg


SAR - Z Axis at Hotspot x:-17.0 y:10.0

1g SAR Values

EXHIBIT D. SAR TEST SETUP PHOTOGRAPHS

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 22 of 24
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	Paye 22 01 24

EXHIBIT E. DIPOLE VALIDATION

PCTESTÔ SAR TEST REPORT	POTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID:	Page 23 of 24
SAR.241124319.ACJ	Nov. 24, 2004	Radio, Boomer-II OEM & Intel WLAN	ACJ9TGCF-29C	Paye 23 01 24

Start : 24-May-05 09:46:49 am End : 24-May-05 09:52:56 am

Code Version: 4.08
Robot Version: 4.08

Product Data:

Type : Verification

Model Number : E-020
Serial Number : PCT005
Frequency : 835 MHz
Transmit Pwr : 0.160 W
Antenna Type : Dipole
Antenna Posn. : Verification

Measurement Data:

Phantom Name : FLATPHANTOM
Phantom Type : Uniphantom
Tissue Type : Brain
Tissue Dielectric : 41.870
Tissue Conductivity : 0.900
Tissue Density : 1.000
Robot Name : CRS

Probe Data:

Probe Name : PCT005

Probe Type : E Fld Triangle

Frequency : 835 MHz
Tissue Type : Brain
Calibrated Dielectric : 40.810
Calibrated Conductivity : 0.870
Calibrated Density : 1.000
Probe Offset : 1.600 mm
Conversion Factor : 5.500

Probe Sensitivity : 3.807 3.736 3.821 $mV/(mW/cm^2)$

Amplifier Gains : 20.00 20.00 20.00

Sample:

Rate: 6000 Samples/Sec Count: 1000 Samples

NIDAQ Gain: 5

Comments:

835MHz Verification

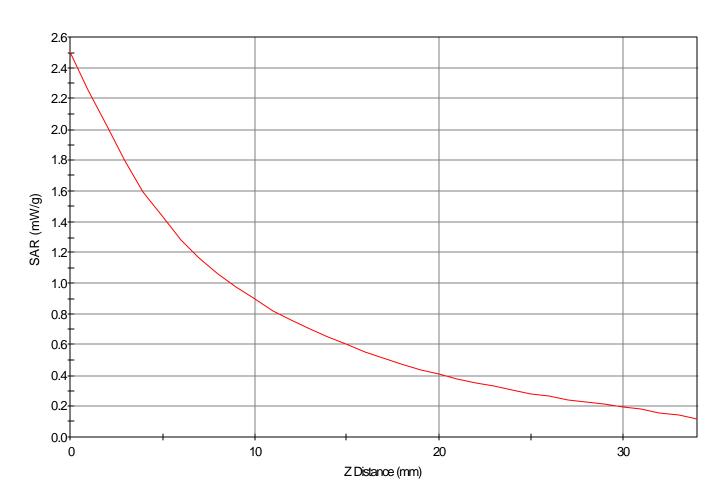
CF=1; Amb. Temp= 22.2 'C; Liq. Temp=21.1 'C

Power Drop Test:

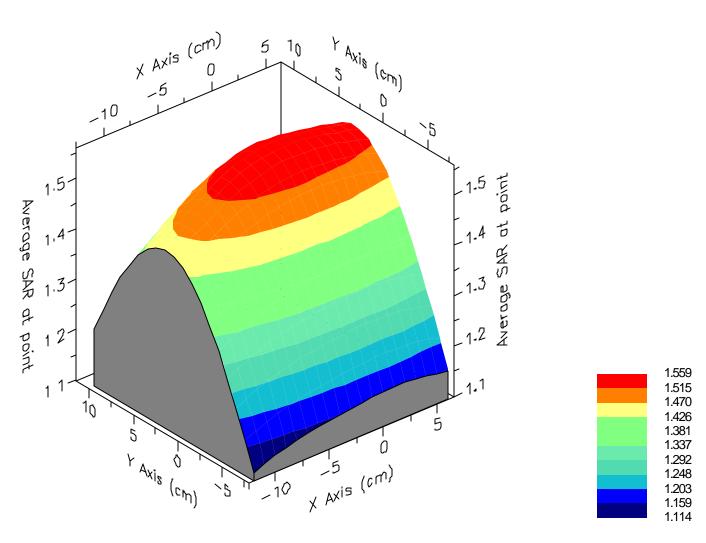
Reading @ start = 2.546 Reading @ End = 2.603 Power at End = 102.2%

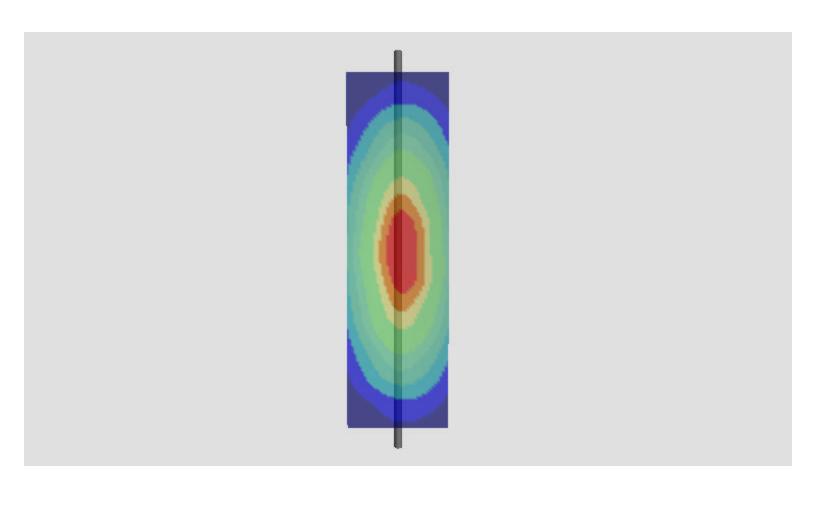
Area Scan - Max Peak SAR Value at x=-3.0 y=1.0 = 1.55 W/kg

Zoom Scan - Max Peak SAR Value at x=-3.0 y=3.0 z=0.0 = 2.50 W/kg


Max 1g SAR at x=-1.0 y=3.0 z=0.0 = 1.56 W/kg

Max 10g SAR at x=0.0 y=2.0 z=0.0 = 0.95 W/kg


Validation Results at 0.16 W:


Peak Nominal = 2.3, Error: 10.97 %
1g Nominal = 1.5, Error: 2.59 %
10g Nominal = 1.0, Error: -4.49 %

SAR - Z Axis at Hotspot x:-3.0 y:3.0

1g SAR Values



EXHIBIT F. PROBE CALIBRATION

PCTESTÔ SAR TEST REPORT	PCTE	FCC CERTIFICATION	Panasonic	Reviewed by: Quality Manager
SAR Filename: SAR 241124319 ACI	Test Dates: Nov 24 2004	EUT Type: Panasonic Notebook PC w/ OEM	FCC ID: ACI9TGCF-29C	Page 24 of 24

6660-B Dobbin Road Columbia, Maryland 21045 USA

Calibration Summary

Model: E-020 S/N: PCT005

Tissue Type	Frequency (MHz)	Dielectric Constant \mathcal{E}_r	Conductivity (S/m)	Conversion Factor $\gamma_x, \gamma_y, \gamma_z$
Brain	450	44.41	0.88	8.8
Brain	835	40.81	0.87	5.5
Brain	1900	39.02	1.37	5.4
Brain	2100	41.11	1.39	5.25
Muscle	450	57.70	0.96	9.24
Muscle	835	53.66	0.98	5.85
Muscle	1900	51.81	1.58	5.5
Muscle	2100	52.23	1.53	5.3

Frequency	Isotropy	
(MHz)	%	dB
450	1.23	0.05
835	2.12	0.09
1900	6.61	0.28
2100	7.61	0.32

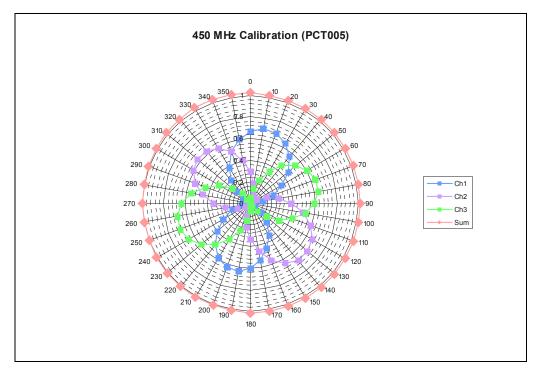
Boundary Effect < 2%, 2.5 mm from probe tip to phantom

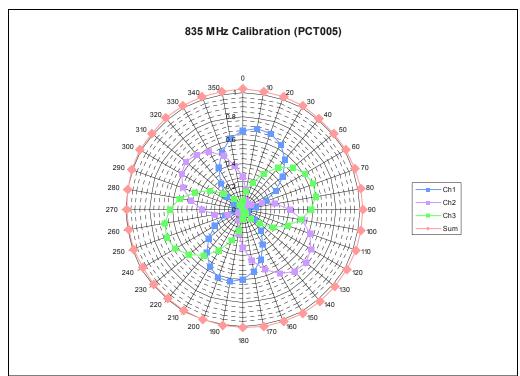
Diode Compression Point: 120 mV

Environmental Conditions:

Temperature: 22.6 °C Relative Humidity: 41% Barometer: 101.2 kPa

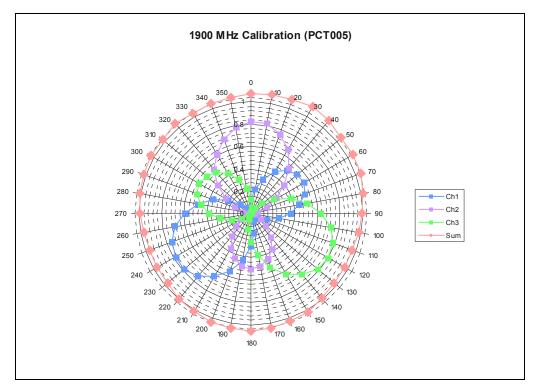
This probe was calibrated under the IEEE Std 1309-1966, *IEEE Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9 kHz to 40 GHz.*

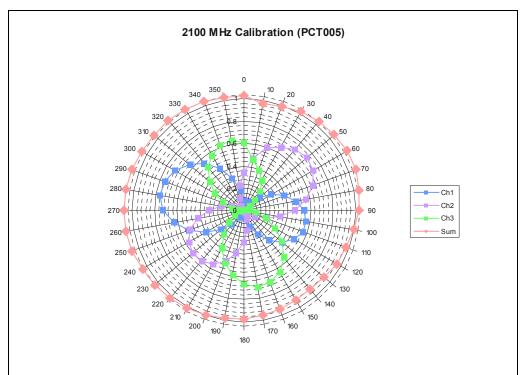

Calibrated By: Date: 1/17/05


© 2005 PCTEST

PCTEST Calibration Laboratory 6660-B Dobbin Road

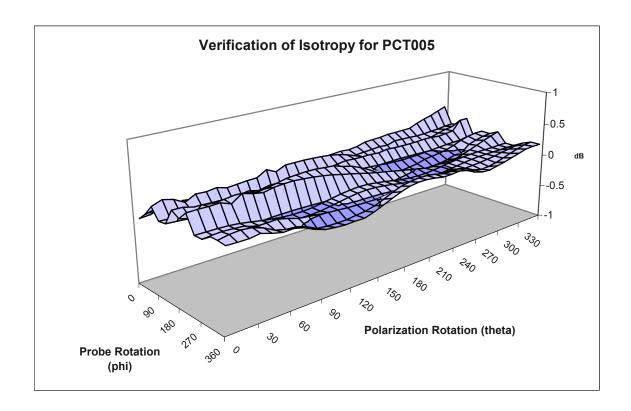
Columbia, Maryland 21045 USA




Calibrated By: ____ Date: ______

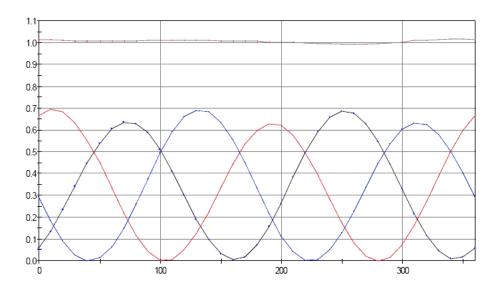
PCTEST Calibration Laboratory 6660-B Dobbin Road

Columbia, Maryland 21045 USA

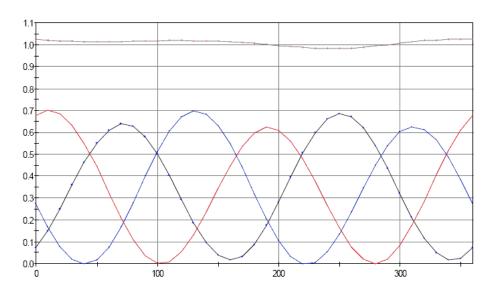


Calibrated By: ____ Date: ________

6660-B Dobbin Road Columbia, Maryland 21045 USA


Calibrated By: ____ Date: ____ a/06/04

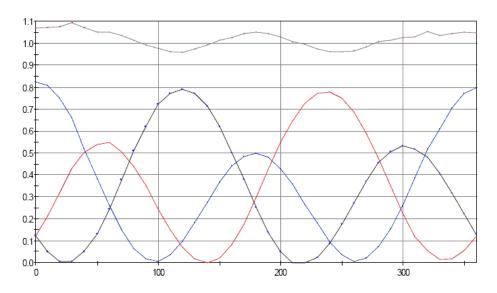
6660-B Dobbin Road Columbia, Maryland 21045 USA


> TEM Calibration Plot Date: 13-Jan-05 04:03:28 pm Probe Name: PCT005 Frequency: 450

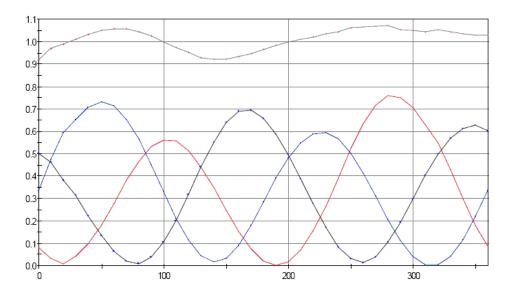
Sensitivity: Ch1: 3.320 Ch2: 3.289 Ch3: 3.267 mV/(mW/cm^2) Isotropicity: 1.23% 0.05 db Min=0.993 Max=1.019

TEM Calibration Plot Date: 13-Jan-05 03:41:45 pm Probe Name: PCT005 Frequency: 835

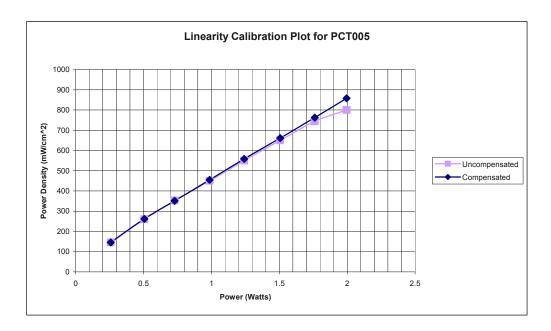
Sensitivity: Ch1: 3.807 Ch2: 3.736 Ch3: 3.821 mV/(mW/cm^2) Isotropicity: 2.12% 0.09 db Min=0.985 Max=1.028


Calibrated By: Date: 0/06/04

6660-B Dobbin Road Columbia, Maryland 21045 USA


> TEM Calibration Plot Date: 14-Jan-05 11:08:15 am Probe Name: PCT005 Frequency: 1900

Sensitivity: Ch1: 5.115 Ch2: 4.969 Ch3: 4.453 mV/(mW/cm^2) Isotropicity: 6.79% 0.29 db Min=0.961 Max=1.097


TEM Calibration Plot Date: 14-Jan-05 11:38:38 am Probe Name: PCT005 Frequency: 2100

Sensitivity: Ch1: 5.496 Ch2: 4.887 Ch3: 5.267 mV/(mW/cm^2) Isotropicity: 7.61% 0.32 db Min=0.921 Max=1.074

Calibrated By: Date: 0/06/04

6660-B Dobbin Road Columbia, Maryland 21045 USA

Probe Physical Characteristics

Serial Number: PCT005 Model: E-020

Sensor Offset: 1.56 mm
Sensor Length: 2.5 mm
Tip Enclosure: Ertalyte
Tip Diameter: 5 mm
Tip Length: 60 mm
Total Length: 290 mm

Calibrated By: Date: 0/06/04

6660-B Dobbin Road Columbia, Maryland 21045 USA

Test Equipment

The test equipment used during the probe calibration are listed as follows:

EQUIPMENT SPECIFICATIONS			
Туре	Calibration Due	Asset Number/ Serial Number	
CRS Robot F3	February 2005	RAF0134133	
CRS C500C Motion Controller	February 2005	RCB0003303	
CRS Teach Pendant (Joystick)	February 2005	STP0132231	
DELL Computer, Pentium 4 1.6 GHz, Windows 2000 TM	February 2005	4PJZ111	
Flat SAM Phantom (P-SAM-FLAT)	February 2005	94X-097	
IDX Robot End Effector (EE-103-C)	February 2005	07111223	
IDX Probe Amplifier	February 2005	07111113	
Validation Dipole D835V2	October 2005	PCT441	
Validation Dipole D1900V2	February 2005	PCT512	
Validation Dipole D2450V2	October 2005	PCT641	
HP-778D Dual-Directional Coupler (0.1 ~ 2.0 GHz)	November 2005	PCT664	
MicroCircuits Directional Coupler (4.0 ~ 8.0 GHz)	November 2005	PE2204-6	
Amplifier Research 5S1G4 Power Amp	January 2005	PCT540	
IFI T184-10 Power Amplifier (4.0 ~ 18.0 GHz)	December 2005	5957	
HP-8241A (250kHz ~ 20 GHz) Signal Generator	December 2005	88934	
HP-8753E (30kHz ~ 6GHz) Network Analyzer	January 2006	PCT552	
Rohde & Schwarz Power Meter NRVS 1020.1809.02	January 2006	835360/079	
Rohde & Schwarz Power Sensor NRV-Z53 858.0500.02	April 2005	846076/007	
HP85070B Dielectric Probe Kit	January 2005	PCT501	
IFI CC110EXX TEM Cell (DC to 2000 MHz)	January 2006	PCT498	
EMCO 3115 Horn Antenna (2.0 ~ 18.0 GHz)	August 2005	PCT496	
Guildline 5150 Precision Dual-Thermometer	November 2005	66145	

Calibrated By: ____ Date: ______

© 2005 PCTEST