

Reference No.: A03021705 Report No.:FCCA03021705

Page:1 of 43 Date: Apr. 14, 2003

Product Name:

Wireless 11b PCI Card

Model No.:

MS-6807

Applicant:

MICRO-STAR INT'L CO., LTD.

No. 69, Li-De St., Jung-He City, Taipei Hsien, Taiwan

Date of Receipt:

Feb. 17, 2003

Finished date of Test:

Mar. 31, 2003

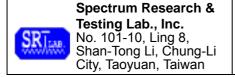
Applicable Standards:

47 CFR Part 15, Subpart C

ANSI C63.4:1992

We, Spectrum Research & Testing Laboratory Inc., hereby certify that one sample of the above was tested in our laboratory with positive results according to the above-mentioned standards. The records in the report are an accurate account of the results. Details of the results are given in the subsequent pages of this report.

Checked By :

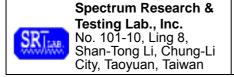

Sunyon then , Date: 4/14/2003 (Sunyou Chen)

Approved By:

_____, Date: <u>4//4/200</u>}

FCC ID:14L-MS6807

Lab Code: 200099-0



Reference No.:A03021705 Report No.:FCCA03021705

Page:2 of 43 Date:Apr. 14, 2003

Table of Contents

1.	DOCUMENT POLICY AND TEST STATEMENT	4
1.1	DOCUMENT POLICY	4
1.2	TEST STATEMENT	4
2.	DESCRIPTION OF EUT AND TEST MODE	4
2.1	GENERAL DESCRIPTION OF EUT	4
2.2	DESCRIPTION OF SUPPORT UNIT	5
2.3	DESCRIPTION OF TEST MODE	5
3.	DESCRIPTION OF APPLIED STANDARDS	6
4 .	TECHNICAL CHARACTERISTICS TEST	7
4.1	CONDUCTED EMISSION TEST	7
4.1.1	LIMIT	7
	TEST EQUIPMENT	
	· TEST PROCEDURE	
	EUT OPERATING CONDITION	
4.1.6 4.2	RADIATED EMISSION TEST	9 .10
4.2.1	LIMIT	. 10
4.2.2	TEST EQUIPMENT	. 11
4.2.3	TEST SET-UP	. 12
4.2.4	TEST PROCEDURE	. 13
4.2.5	EUT OPERATING CONDITION	. 13
4.2.6	TEST RESULT	. 14
4.3	6DBC BANDWIDTH TEST	. 18
4.3.1	LIMIT	. 18
	TEST EQUIPMENT	
	TEST SET-UP	
	EUT OPERATING CONDITION	
	TEST RESULT	
	PEAK POWER TEST	
4.4.1 4 4 2	LIMIT TEST EQUIPMENT	. 22
	TEST SET-UP	

Reference No.:A03021705 Report No.:FCCA03021705

Page:3 of 43 Date:Apr. 14, 2003

4.4.5 EUT OPERATING CONDITION	23
4.4.6 TEST RESULT	24
4.5 BAND EDGE TEST	27
4.5.1 LIMIT4.5.2 TEST EQUIPMENT	
4.5.3 TEST SET-UP	29
4.5.5 EUT OPERATING CONDITION	30
4.5.6 TEST RESULT	31
4.6 POWER DENSITY TEST	34
4.6.1 LIMIT 4.6.2 TEST EQUIPMENT	
4.6.3 TEST SET-UP	34
4.6.5 EUT OPERATING CONDITION	34
4.6.6 TEST RESULT	35
4.7 RF POWER EXPOSURE EVALUATION TEST	38
4.7.1 LIMIT4.7.2 TEST EQUIPMENT	38 39
4.7.3 TEST SET-UP	39
4.7.5 EUT OPERATING CONDITION	40
4.7.6 RESULT	41
5. ANTENNA APPLICATION	42
5.1 ANTENNA REQUIREMENT	
6. TERMS OF ABRIVATION	

Reference No.:A03021705 Report No.:FCCA03021705

Page:4 of 43 Date:Apr. 14, 2003

1. DOCUMENT POLICY AND TEST STATEMENT

1.1 DOCUMENT POLICY

- The report shall not be reproduced except in full, without the written approval of SRT Lab, Inc.

1.2 TEST STATEMENT

- The test results in the report apply only to the unit tested by SRT Lab.
- There was no deviation from the requirements of test standards during the test.
- AC power source, 120 VAC/60 Hz, was used during the test.

2. DESCRIPTION OF EUT AND TEST MODE

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Wireless 11b PCI Card
MODEL NO.	MS-6807
POWER SUPPLY	DC 3.3V, 0.4A
CABLE	N/A
I/O PORT	N/A
FREQUENCY BAND	2400 ~ 2483.5MHz
CARRIER FREQUENCY	CH1: 2412MHz ~ CH11: 2462MHz
NUMBER OF CHANNEL	11
CHANNEL SPACING	5MHz
RATED RF OUTPUT POWER	16dBm
I.F. & L.O.	I.F.: 0MHz, L.O.: 2412~2484MHz
MODULATION TYPE	BPSK/QPSK/CCK
BIT RATE OF TRANSMISSION	1/2/5.5/11Mbps
ANTENNA TYPE	Dipole Antenna

Reference No.:A03021705 Report No.:FCCA03021705

Page:5 of 43 Date:Apr. 14, 2003

2.2 DESCRIPTION OF SUPPORT UNIT

The transmitter part of EUT was tested with a PC system and configured by the requirement of ANSI C63.4. All interface ports were connected to the appropriate support units via specific cables. The support units and cables are listed below:

NO	DEVICE	BRAND	MODEL #	FCC ID/DOC	CABLE
1	PC	MSI	MS-6215	DOC	1.5m unshielded power cord
2	MONITOR	SAMSUNG	PG17IS	DOC	1.5m unshielded power cord 1.2m shielded data cable
3	PRINTER	EPSON	STYLUS C20SX	DOC	1.5m unshielded power cord 1.2m shielded data cable
4	MODEM	ACEEX	DM-1414	DOC	1.5m unshielded DC power cable 1.2m shielded data cable
5	KEYBOARD	ACER	6311-TA	DOC	1.2m unshielded data cable
6	MOUSE	LOGITECH	M-S34	DZL210472	1.2m unshielded data cable
7	WIRELESS HUB	SOHOWARE	NCP600	IOU0650S02	1.5m unshielded power cord

NOTE: For the actual test configuration, please refer to the photos of testing.

2.3 DESCRIPTION OF TEST MODE

11 channels are provided by EUT. The 3 channels of lower, medium and higher were chosen for test. There are three test mode for each test configuration as below:

Test Mode	Frequency (MHz)
CH 1	2412
CH 6	2437
CH 11	2462

- 1. Below 1 GHz, the channel 1, 6, and 11 were pre-tested in chamber. The channel 11, worst case one, was chosen for conducted and radiated emission test.
- 2. Above 1 GHz, the channel 1, 6 and 11 were tested individually

Reference No.:A03021705 Report No.:FCCA03021705

Page:6 of 43 Date:Apr. 14, 2003

3. DESCRIPTION OF APPLIED STANDARDS

The EUT is a kind of wireless product and to be connected with a PC system for normal use. According to the specifications provided by the applicant, it must comply with the requirements of the following standards:

47 CFR Part 15, Subpart C ANSI C63.4:1992

All tests have been performed and recorded as the above standards.

Reference No.:A03021705 Report No.:FCCA03021705

Page:7 of 43 Date:Apr. 14, 2003

4. TECHNICAL CHARACTERISTICS TEST

4.1 CONDUCTED EMISSION TEST

4.1.1 **LIMIT**

Frequency (MHz)	Class A	(dBµV)	Class B (dBµV)		
Frequency (IMF12)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

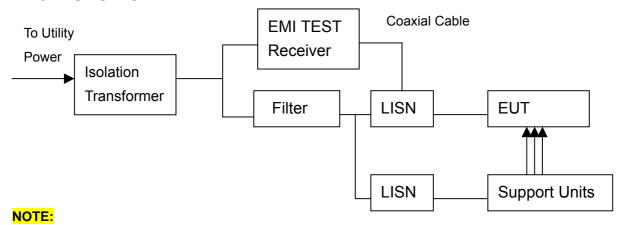
NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

4.1.2 TEST EQUIPMENT

The following test equipment was used for the test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL#/ SERIAL#	DUE DATE OF CAL. & CAL. CENTER
EMI TEST	9 kHz TO 30 MHz	ROHDE &	ESHS30/	JUL. 2003
RECEIVER	9 KHZ TO 30 WHZ	SCHWARZ	826003/008	R&S
LISN	50 50 alam	SOLAR	8012-50-R-24-BNC	JUN. 2003
LISIN	50 μH, 50 ohm	ELECTRONICS	/ 924839	ETC
LISN	FOULL FO ohm	SOLAR	9252-50-R-24-BNC	JUN. 2003
LISIN	50μH, 50 ohm	ELECTRONICS	/ 951318	ETC


NOTE: The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.

Reference No.:A03021705 Report No.:FCCA03021705

Page:8 of 43 Date:Apr. 14, 2003

4.1.3 TEST SETUP

- 1. The EUT was put on a wooden table with 0.8m height above ground plane, and 0.4m away from reference ground plane (> 2mx2m).
- 2. For the actual test configuration, please refer to the photos of testing.

4.1.4 TEST PROCEDURE

The EUT was tested according to the requirement of ANSI C63.4 and CISPR 22. The frequency spectrum from 0.15 MHz to 30 MHz was investigated. The LISN used was 50 ohm/50µH as specified. All readings were quasi-peak and average values with 10 kHz resolution bandwidth of the test receiver. The EUT system was operated in all typical methods by users. Both lines of the power mains of EUT were measured and the cables connected to EUT and support units were moved to find the maximum emission levels for each frequency.

4.1.5 EUT OPERATING CONDITION

- 1. Set the EUT under normal condition continuously at the link mode.
- 2. The EUT used programs to control channels when it was tested for RF power and emission.

Reference No.:A03021705 Report No.:FCCA03021705

Page:9 of 43 Date:Apr. 14, 2003

4.1.6 TEST RESULT

Temperature: 23 °C Humidity: 63 %RH

Ferquency Range: 0.15 – 30 MHz Test Mode N/A

Receiver Detector: Q.P. and AV. Tested By: Anson Lin

Power Line Measured: Line

Freq.	Correct. Factor	Reading Value (dBμV)		Emission Level (dBμV)		Limit (dBμV)		Margin (dB)	
(333332)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
0.236	0.20	43.2	43.5	43.4	43.7	62.2	52.2	-18.8	-8.5
0.310	0.20	33.1	-	33.3	-	60.0	50.0	-26.7	N/A
0.623	0.20	31.2	-	31.4	-	56.0	46.0	-24.6	N/A
1.244	0.20	29.3	-	29.5	-	56.0	46.0	-26.5	N/A
3.857	0.28	30.3	-	30.6	-	56.0	46.0	-25.4	N/A
4.673	0.31	31.8	-	32.1	-	56.0	46.0	-23.9	N/A

Power Line Measured : Neutral

Freq.	(MHz) Factor (dBμV)			n Level μV)	Limit (dBμV)		Margin (dB)		
((dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
0.232	0.20	43.8	43.7	44.0	43.9	62.4	52.4	-18.4	-8.5
0.314	0.20	33.5	-	33.7	-	59.8	49.8	-26.1	N/A
0.736	0.20	23.0	-	23.2	-	56.0	46.0	-32.8	N/A
1.252	0.20	29.1	-	29.3	-	56.0	46.0	-26.7	N/A
4.076	0.30	19.6	_	19.9	-	56.0	46.0	-36.1	N/A
5.002	0.32	11.7	_	12.0	-	60.0	50.0	-48.0	N/A

- 1. Measurement uncertainty is 2dB
- 2. Emission level = Reading valus + Correction factor
- 3. Correction Factor = Cable loss + Insertion loss of LISN
- 4. Margin value = Emission level Limit
- 5. The emission of other frequencies were very low against the limit.
- 6. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.

Reference No.:A03021705 Report No.:FCCA03021705

Page:10 of 43 Date:Apr. 14, 2003

4.2 RADIATED EMISSION TEST

4.2.1 **LIMIT**

FCC Part15, Subpart C Section 15.209 limit of radiated emission for frequency below1000MHz. The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

FREQUENCY (MHz)	DISTANCE (m)	FIELD STRENGTH (dBμV/m)
30 - 88	3	40.0
88 - 216	3	43.5
216 - 960	3	46.0
Above 960	3	54.0

- 1. In the emission tables above , the tighter limit applies at the band edges.
- 2. Distance refers to the distance between measuring instrument, antemma, and the closest point of any part of the device or system.

FCC Part 15, Section15.35(b) limit of radiated emission for frequency above 1000 MHz

FREQUENCY (MHz)	Class A (dBu	uV/m) (at 3m)	Class B (dBuV/m) (at 3m)		
FREQUENCT (WITZ)	PEAK	AVERAGE	PEAK	AVERAGE	
Above 1000	80.0	60.0	74.0	54.0	

Reference No.:A03021705 Report No.:FCCA03021705

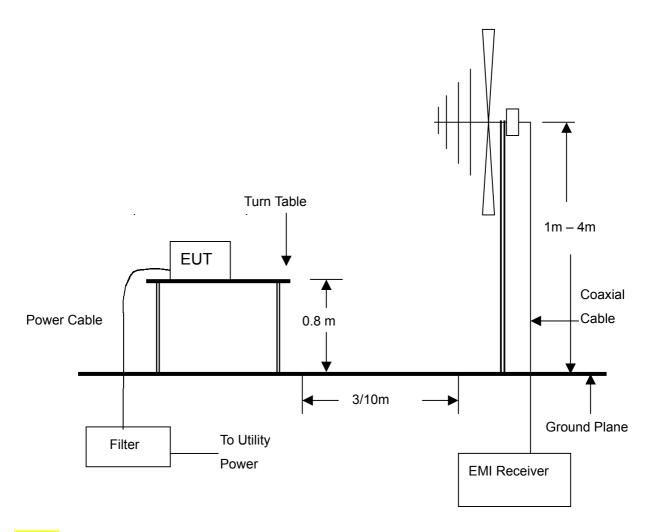
Page:11 of 43 Date:Apr. 14, 2003

4.2.2 TEST EQUIPMENT

The following test equipment was used during the radiated emission test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL#/ SERIAL#	DUE DATE OF CAL. & CAL. CENTER
EMI TEST	9 kHz TO	ROHDE &	ESCS30/	DEC. 2003
RECEIVER	2750 MHz	SCHWARZ	836858/008	R&S
BI-LOG	25 MHz TO	EMCO	3142/	APR. 2003
ANTENNA	2 GHz	EMCO	9701-1124	ETC
DDE AMDUELED	1GHz-26.5GHz	HP	8449B/	NOV. 2003
PRE-AMPLIFIER	Gain:30dB(typ.)	FIP	3008A01019	ETC
SPECTRUM	9KHz TO 26.5GHz	ПD	8953E/	MAY 2003
SPECIRUM	9KHZ TO 20.5GHZ	ПР	3710A03220	ETC
HORN ANTENNA	1GHz TO 18GHz	EMCO	3115/	DEC. 2003
HURN ANTENNA	IGHZ IO IOGHZ	EMICO	9602-4681	ETC
LIODNI ANITENNIA	45CU- TO 40CU-	EMCO	3116/	JUL. 2003
HORN ANTENNA	15GHz TO 40GHz	EMCO	2567	ETC
OATS	3 – 10 M MEASUREMENT	SRT	SRT-1	MAY 2003 SRT

^{1.} The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.


- 2. The Open Area Test Site (SRT-1) is registered by FCC with No. 90957 and VCCI with No. R-1081.
- 3. The Open Area Test Site (SRT-2) is registered by FCC with No. 98458 and VCCI with No. R-1168.

Reference No.:A03021705 Report No.:FCCA03021705

Page:12 of 43 Date:Apr. 14, 2003

4.2.3 TEST SET-UP

- 1. The EUT system was put on a wooden table with 0.8m heights above a ground plane.
- 2. For the actual test configuration, please refer to the photos of testing.

Reference No.:A03021705 Report No.:FCCA03021705

Page:13 of 43 Date:Apr. 14, 2003

4.2.4 TEST PROCEDURE

The EUT was tested according to the requirement of ANSI C63.4 and CISPR 22. The measurements were made at an open area test site with 10 meter measurement distance under 1 GHz and with 3m distance above 1GHz. The frequency spectrum measured started from 30 MHz. Under 1 GHz. All readings were quasi-peak values with 120 kHz resolution bandwidth of the test receiver. Above 1 GHz, the measurements were made at an open area test site with 3 meter measurement distance and all readings were peak and average values with 1 MHz resolution bandwidth of the test receiver. The EUT system was operated in all typical methods by users. The cables connected to EUT and support units were moved to find the maximum emission levels for each frequency.

4.2.5 EUT OPERATING CONDITION

Same as section 4.1.5 of this report.

Reference No.:A03021705 Report No.:FCCA03021705

Page:14 of 43 Date:Apr. 14, 2003

4.2.6 TEST RESULT

Temperature:29 °CHumidity:66 %RHFerquency Range:30 – 1000 MHzMeasured Distance:3mReceiver Detector:Q.P.Tested mode:N/A

Tested by: Anson Lin

Antenna Polarization: Horizontal

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Reading Data (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	AZ(°)	EL(m)
89.3215	1.07	7.73	18.3	27.1	30.0	-2.9	236.0	3.50
99.6813	1.12	8.34	15.7	25.2	30.0	-4.8	40.0	2.00
110.0356	1.26	7.70	15.1	24.1	30.0	-5.9	99.0	1.00
499.6511	2.94	18.57	12.5	34.0	37.0	-3.0	188.0	1.50
599.6312	2.71	20.78	9.6	33.1	37.0	-3.9	279.0	1.00
697.4303	2.78	21.85	8.1	32.7	37.0	-4.3	306.0	1.25

Antenna Polarization: Vertical

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Reading Data (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	AZ(°)	EL(m)
85.1000	1.10	7.45	14.3	22.9	30.0	-7.2	25.0	1.50
263.3152	1.94	12.38	15.4	29.7	37.0	-7.3	18.0	1.00
320.3650	1.94	14.86	11.9	28.7	37.0	-8.3	90.0	1.00
697.4400	2.78	21.85	8.1	32.7	37.0	-4.3	88.0	1.00
747.9800	3.03	22.75	7.1	32.9	37.0	-4.1	193.0	1.25
959.3631	3.10	24.84	6.0	33.9	37.0	-3.1	182.0	1.00

- 1. Measurement uncertainty is 4dB.
- 2. "*": Measurement does not apply for this frequency.
- 3. Emissiom Level = Reading Value + Ant. Factor + Cable Loss.
- 4. The field strength of other emission frequencies were very low against the limit.

Reference No.:A03021705 Report No.:FCCA03021705

Page:15 of 43 Date:Apr. 14, 2003

Temperature: 20 °C Humidity: 55 %RH

Ferquency Range: 1 – 25 GHz Measured Distance: 3m

Receiver Detector: PK. or AV. Tested mode: CH 1

Tested by: Anson Lin

Antenna Polarization: Horizontal

Frequency (MHz)	Correct Ant. Factor Factor (dB) (dB/m)		Reading Emiss Data Lev (dBµV) (dBµV)		vel Limit		Margin (dB)		AZ (°)	EL (m)		
	(42)	(aD/III)	PK.	AV.	PK.	AV.	PK.	AV.	PK.	AV.		
2413.3000(F)	-32.18	28.03	106.3	99.2	102.1	95.0	N/A	N/A	N/A	N/A	25.0	1.0
2055.0000	-32.93	27.31	56.2	45.6	50.6	40.0	74.0	54.0	-23.4	-14.0	127.0	1.2
2352.0000	-32.34	27.90	54.5	41.4	50.1	37.0	74.0	54.0	-23.9	-17.0	320.0	1.4
2612.0000	-32.07	28.83	56.4	45.3	53.2	42.1	74.0	54.0	-20.8	-11.9	72.0	1.3
4827.0000	-30.40	33.66	48.5	*	51.8	*	74.0	54.0	-22.2	*	20.0	1.0
7236.0000	-28.98	36.29	47.1	*	54.4	*	74.0	54.0	-19.6	*	50.0	1.0

Antenna Polarization: Vertical

Frequency (MHz)	Correct Factor (dB)	Ant. Factor (dB/m)	Da	ding ata µV)	Le	ssion vel V/m)		mit V/m)		rgin B)	AZ (°)	EL (m)
	(3.2)	(3.27111)	PK.	AV.	PK.	AV.	PK.	AV.	PK.	AV.		
2412.0000(F)	-32.18	28.02	113.3	105.3	109.1	101.1	N/A	N/A	N/A	N/A	0	1.0
2055.0000	-32.93	27.31	56.3	*	50.7	*	74.0	54.0	-23.3	*	300.0	1.0
2165.0000	-32.30	27.53	55.8	48.3	51.0	43.5	74.0	54.0	-23.0	-10.5	270.0	1.0
4827.0000	-30.40	33.66	49.3	*	52.6	*	74.0	54.0	-21.4	*	300.0	1.0
7236.0000	-28.98	36.29	45.4	*	52.7	*	74.0	54.0	-21.3	*	42.0	1.0

- 1. Measurement uncertainty is 4dB.
- 2. "*": The Peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. Emissiom Level = Reading Value + Ant. Factor + Correct Factor (incl.:Cable Loss and Pre-Amplifier Gain)
- 4. The field strength of other emission frequencies were very low against the limit.
- 5. (F):The field stregth of fundamental frequency.

Reference No.:A03021705 Report No.:FCCA03021705

Page:16 of 43 Date:Apr. 14, 2003

Temperature: 20 °C Humidity: 55 %RH

Ferquency Range: 1 – 25 GHz Measured Distance: 3m

Receiver Detector: PK. or AV. Tested mode: CH 6

Tested by: Anson Lin

Antenna Polarization: Horizontal

Frequency (MHz)	Correct Ant. Factor Factor (dB) (dB/m)		Data Le		Le	Lim evel (dBµV µV/m)				gin B)	AZ (°)	EL (m)
	(32)	(42/111)	PK.	AV.	PK.	AV.	PK.	AV.	PK.	AV.		
2438.0000(F)	-32.22	28.08	113.4	105.5	109.3	101.4	N/A	N/A	N/A	N/A	0	1.1
2054.0000	-32.94	27.31	56.1	49.2	50.5	43.6	74.0	54.0	-23.5	-10.4	111.0	1.1
2161.0000	-32.28	27.52	56.2	49.3	51.4	44.5	74.0	54.0	-22.6	-9.5	280.0	1.1
2309.0000	-32.35	27.82	56.3	49.3	51.8	44.8	74.0	54.0	-22.2	-9.2	50.0	1.3
4874.0000	-30.28	33.70	48.6	*	52.0	*	74.0	54.0	-22.0	*	155.0	1.2
7286.0000	-29.07	36.33	46.0	*	53.3	*	74.0	54.0	-20.7	*	75.0	1.0

Antenna Polarization: Vertical

Frequency (MHz) Correct Factor (dB)		Ant. Factor (dB/m)	Reading Data (dBµV)		Emission Level (dBµV/m)		Limit (dBµV/m)		Margin (dB)		AZ (°)	EL (m)
	(3.2)	(3.27111)	PK.	AV.	PK.	AV.	PK.	AV.	PK.	AV.		
2440.0000(F)	-32.22	28.08	104.4	96.4	100.3	92.3	N/A	N/A	N/A	N/A	353.0	1.0
2229.6000	-32.51	27.66	54.4	46.7	49.5	41.8	74.0	54.0	-24.5	-12.2	123.0	1.0
2401.1000	-32.16	28.00	54.4	46.4	50.2	42.2	74.0	54.0	-23.8	-11.8	78.0	1.1
4874.4400	-30.28	33.70	46.9	*	50.3	*	74.0	54.0	-23.7	*	350.0	1.1
7286.1300	-29.07	36.33	45.1	*	52.4	*	74.0	54.0	-21.6	*	313.0	1.0

- 1. Measurement uncertainty is 4dB.
- 2. "*": The Peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. Emissiom Level = Reading Value + Ant. Factor + Correct Factor (incl.:Cable Loss and Pre-Amplifier Gain)
- 4. The field strength of other emission frequencies were very low against the limit.
- 5. (F):The field stregth of fundamental frequency.

Reference No.:A03021705 Report No.:FCCA03021705

Page:17 of 43 Date:Apr. 14, 2003

Temperature: 20 °C Humidity: 55 %RH

Ferquency Range: 1 – 25 GHz Measured Distance: 3m

Receiver Detector: PK. or AV. Tested mode: CH 11

Tested by: Anson Lin

Antenna Polarization: Horizontal

Frequency (MHz)	Factor F	Ant. Factor	Read Da (dB	_	Le	sion vel V/m)		nit V/m)		rgin B)	AZ (°)	EL (m)
	(ab)	(ab/iii)	PK.	AV.	PK.	AV.	PK.	AV.	PK.	AV.		
2463.2500(F)	-32.22	28.13	106.0	98.4	101.9	94.3	N/A	N/A	N/A	N/A	60.0	1.0
2301.9000	-32.35	27.80	55.8	47.4	51.3	42.9	74.0	54.0	-22.7	-11.1	335.0	1.0
2483.5000	-32.19	28.17	56.0	44.1	52.0	40.1	74.0	54.0	-22.0	-13.9	53.0	1.0
4924.1300	-30.23	33.74	48.8	*	52.3	*	74.0	54.0	-21.7	*	320.0	1.0
7386.2500	-28.94	36.41	45.6	*	53.1	*	74.0	54.0	-20.9	*	266.0	1.0

Antenna Polarization: Vertical

Frequency Factor		Correct Ant. Factor Factor (dB) (dB/m)		Data Lo		Ι ΔΙ/ΔΙ		Limit (dBµV/m)		Margin (dB)		EL (m)
	(GD)	(42 /111)	PK.	AV.	PK.	AV.	PK.	AV.	PK.	AV.		
2460.2500(F)	-32.22	28.12	114.2	106.1	110.1	102.0	N/A	N/A	N/A	N/A	342.0	1.1
2323.5000	-32.35	27.85	55.0	47.2	50.5	42.7	74.0	54.0	-23.5	-11.3	244.0	1.0
2483.5000	-32.19	28.17	57.0	46.1	53.0	42.1	74.0	54.0	-21.0	-11.9	344.0	1.1
4945.6300	-30.25	33.76	48.6	*	52.1	*	74.0	54.0	-21.9	*	26.0	1.0
7385.5000	-28.95	36.41	43.6	*	51.1	*	74.0	54.0	-22.9	*	121.0	1.1

- 1. Measurement uncertainty is 4dB.
- 2. "*": The Peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. Emissiom Level = Reading Value + Ant. Factor + Correct Factor (incl.:Cable Loss and Pre-Amplifier Gain)
- 4. The field strength of other emission frequencies were very low against the limit.
- 5. (F): The field stregth of fundamental frequency.

Reference No.:A03021705 Report No.:FCCA03021705

Page:18 of 43 Date:Apr. 14, 2003

4.3 6dBc BANDWIDTH TEST

4.3.1 LIMIT

FCC Part15, Subpart C Section 15.247(2). The minimum 6 dB bandwidth shall be at least 500 kHz.

4.3.2 TEST EQUIPMENT

The following test equipment was used during the test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL#/ SERIAL#	DUE DATE OF CAL. & CAL. CENTER
SPECTRUM	9kHz-7GHz	ROHDE &	FSP7/	MAR. 2004
or zorrtow	01112 7 0112	SCHWARZ	839511/010	R&S

NOTE: The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.

4.3.3 TEST SET-UP

The EUT was connected to a spectrum through a 50Ω RF cable.

4.3.4 TEST PROCEDURE

The EUT was operating in the transmitter mode and could control its channels. The test result was printed by the hard copy function of the spectrum.

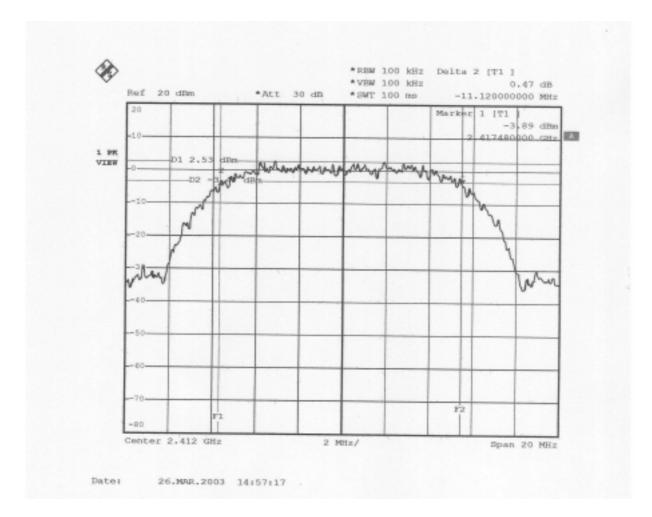
4.3.5 EUT OPERATING CONDITION

Same as section 4.1.5 of this report.

Reference No.:A03021705 Report No.:FCCA03021705

Page:19 of 43 Date:Apr. 14, 2003

4.3.6 TEST RESULT

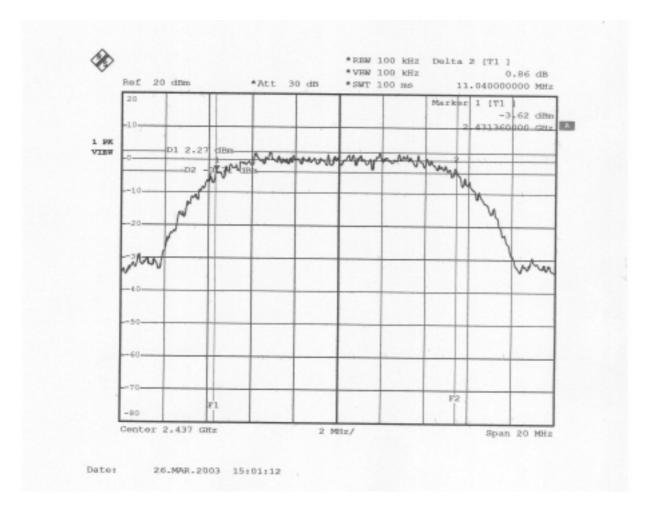

Temperature: 23°C Humidity: 60%RH

Spectrum Detector: PK. Tested by: Chris Hsieh

Test Result: Pass

CHANNEL NUMBER	CHANNEL FREQUENCY (MHz)	6dB DOWN BW (MHz)	MINIMUM LIMIT (MHz)
1	2412	11.12	0.5
6	2437	11.04	0.5
11	2462	11.16	0.5

CH1:

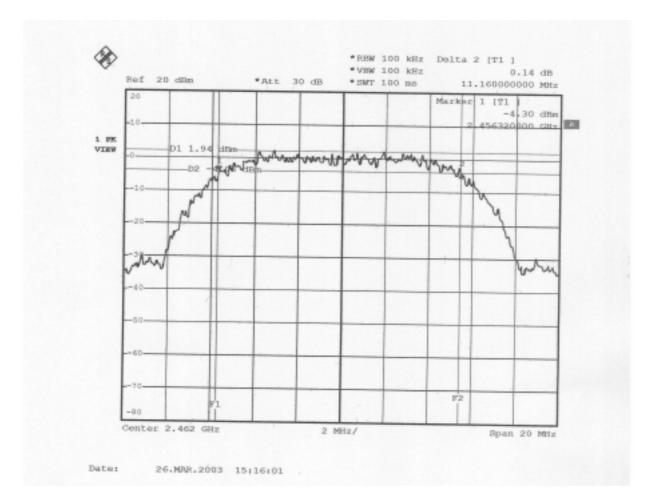




Reference No.:A03021705 Report No.:FCCA03021705

Page:20 of 43 Date:Apr. 14, 2003

CH 6:



Reference No.:A03021705 Report No.:FCCA03021705

Page:21 of 43 Date:Apr. 14, 2003

CH 11:

Reference No.:A03021705 Report No.:FCCA03021705

Page:22 of 43 Date:Apr. 14, 2003

4.4 PEAK POWER TEST

4.4.1 **LIMIT**

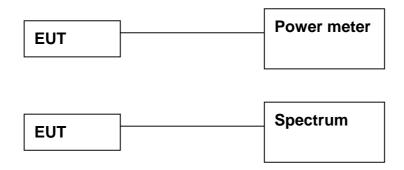
FCC Part15, Subpart C Section 15.247

FREQUENCY RANGE (MHz)	LIMIT (W)
902 - 928	1(30dBm)
2400 - 2483.5	1(30dBm)
5725 - 5850	1(30dBm)

4.4.2 TEST EQUIPMENT

The following test equipment was used during the test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL#/ SERIAL#	DUE DATE OF CAL. & CAL. CENTER
SPECTRUM	9kHz-7GHz	ROHDE &	FSP7/	MAR. 2004
SPECIRUM	9KHZ-7GHZ	SCHWARZ	839511/010	R&S
POWER METER	N/A	BOONTON	4232A/	MAY. 2003
POWER WETER	IN/A	BOONTON	29001	ETC
DOWED SENSOD	DC-8GHz	DOONTON	51011EMC/	MAY. 2003
POWER SENSOR	50	BOONTON	31181	ETC


NOTE: The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.

Reference No.:A03021705 Report No.:FCCA03021705

Page:23 of 43 Date:Apr. 14, 2003

4.4.3 TEST SET-UP

The EUT was connected to a spectrum through a 50Ω RF cable.

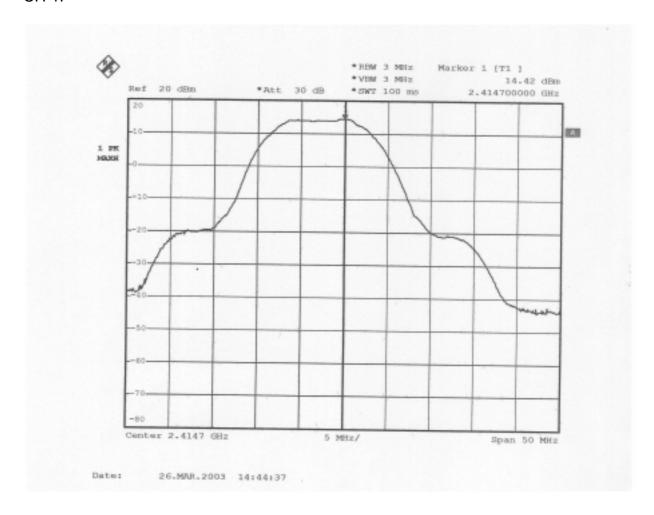
4.4.4 TEST PROCEDURE

The EUT was operating in transmitter mode and could control its channel. Printed out the test result from the spectrum by hard copy function. Recorded the read value of the power meter.

4.4.5 EUT OPERATING CONDITION

Same as section 4.1.5 of this report.

Reference No.:A03021705 Report No.:FCCA03021705

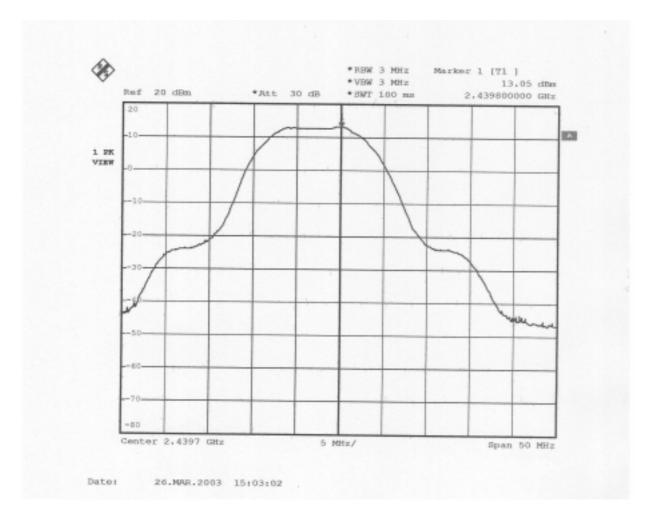

Page:24 of 43 Date:Apr. 14, 2003


4.4.6 TEST RESULT

Temperature:	23°C	Humidity:	65%RH	
Spectrum Detector:	PK.	Tested by:	Chris Hsieh	
Test Result:	Pass			

CHANNEL NUMBER	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (dBm)	PEAK POWER LIMIT (dBm)
1	2414.70	14.42	30
6	2439.81	13.05	30
11	2464.80	12.85	30

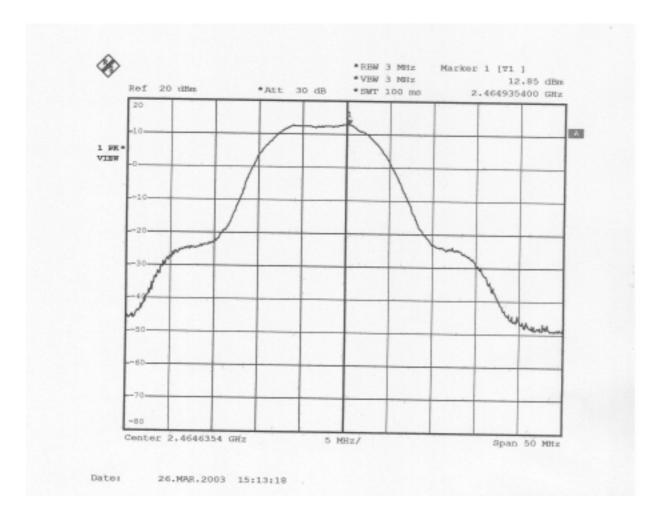
CH 1:



Reference No.:A03021705 Report No.:FCCA03021705

Page:25 of 43 Date:Apr. 14, 2003

CH 6:



Reference No.:A03021705 Report No.:FCCA03021705

Page:26 of 43 Date:Apr. 14, 2003

CH 11:

Reference No.:A03021705 Report No.:FCCA03021705

Page:27 of 43 Date:Apr. 14, 2003

4.5 BAND EDGE TEST

4.5.1 LIMIT

FCC Part15, Subpart C Section 15.247. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

OPERATING PANCE	SPURIOUS EMISSION	LIMIT		
FREQUENCY RANGE (MHz)	FREQUENCY (MHz)	Peak power ration to emission(dBc)	Emission level(dBuV/m)	
902 - 928	<902	>20	NA	
	>928	>20	NA	
	960-1240	NA	54	
2400 - 2483.5	<2400	>20	NA	
	>2483.5-2500	NA	54	
5725 - 5850	<5350-5460	NA	54	
	<5725	>20	NA	
	>5850	>20	NA	

Reference No.:A03021705 Report No.:FCCA03021705

Page:28 of 43 Date:Apr. 14, 2003

4.5.2 TEST EQUIPMENT

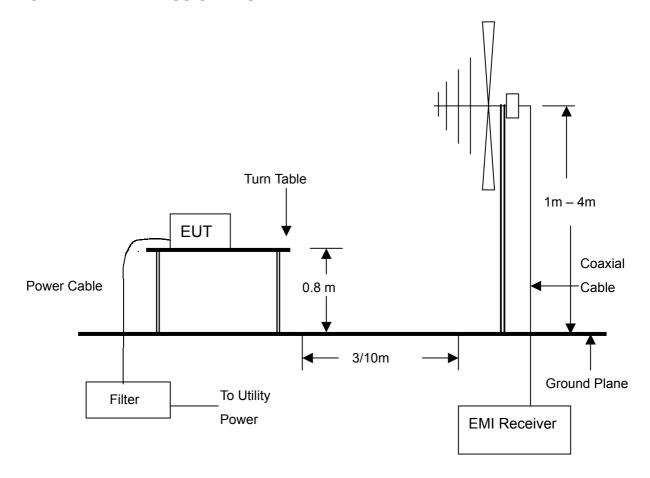
The following test equipment was used during the test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL#/ SERIAL#	DUE DATE OF CAL. & CAL. CENTER	
SPECTRUM	9kHz-7GHz	ROHDE &	FSP7/	MAR. 2004	
SFECIKUM	3KI 12-7 GITZ	SCHWARZ	839511/010	R&S	
SPECTRUM	9KHz-26.5GHz	IHP I	8953E/	MAY 2003	
			3710A03220	ETC	
DDE AMBUEIED	1GHz-26.5GHz	- D	8449B/	NOV. 2003	
PRE-AMPLIFIER	Gain:30dB(typ.)	HP	3008A01019	ETC	
LIODNI ANTENNIA	10Uz to 100Uz	EMCO	3115/	DEC. 2003	
HORN ANTENNA	1GHz to 18GHz	EMCO	9602-4681	ETC	
OATS	3 - 10 M	CDT	SRT-1	MAY 2002	
OATS	measurement	SRT	SK1-1	MAY 2003	

NOTE: The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.

Reference No.:A03021705 Report No.:FCCA03021705

Page:29 of 43 Date:Apr. 14, 2003


4.5.3 TEST SET-UP

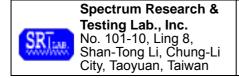
FOR RF CONDUCTED TEST (dBc)

The EUT was connected to a spectrum through a 50Ω RF cable.

FOR RADIATED EMISSION TEST

- 1. The EUT system was put on a wooden table with 0.8m heights above a ground plane.
- 2. For the actual test configuration, please refer to the photos of testing.

Reference No.:A03021705 Report No.:FCCA03021705


Page:30 of 43 Date:Apr. 14, 2003

4.5.4 TEST PROCEDURE

- 1. The EUT was operating in transmitter mode and could be controlled its channel. Printed out the test result from the spectrum by hard copy function.
- 2. The EUT was tested according to the requirement of ANSI C63.4 and CISPR 22. The measurements were made at an open area test site with 10 meter measurement distance under 1 GHz and with 3m distance above 1GHz. The frequency spectrum measured started from 30 MHz. Under 1 GHz. All readings were quasi-peak values with 120 kHz resolution bandwidth of the test receiver. Above 1 GHz, the measurements were made at an open area test site with 3 meter measurement distance and all readings were peak and average values with 1 MHz resolution bandwidth of the test receiver. The EUT system was operated in all typical methods by users. The cables connected to EUT and support units were moved to find the maximum emission levels for each frequency.

4.5.5 EUT OPERATING CONDITION

Same as section 4.1.5 of this report.

Reference No.:A03021705 Report No.:FCCA03021705

Page:31 of 43 Date:Apr. 14, 2003

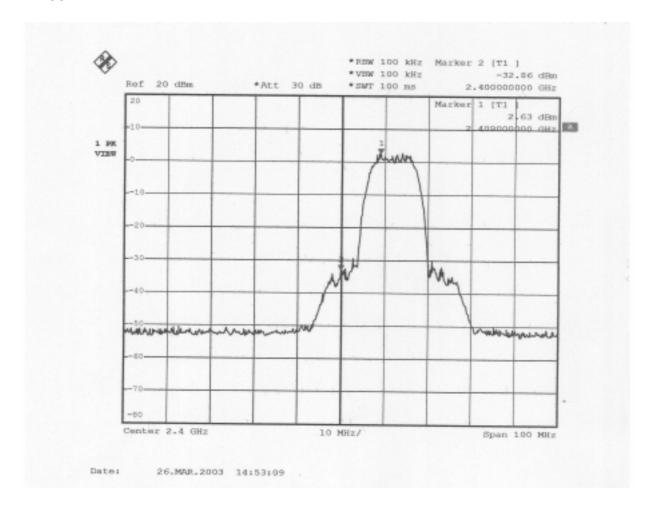
4.5.6 TEST RESULT

Temperature:	23°C	Humidity:	65%RH	
Spectrum Detector:	PK. & AV.	Tested by:	Chris Hsien	
Test Result:	Pass			

1.Conducted test

Frequency (MHz)	PEAK POWER OUTPUT (dBm)	Emission read Value(dBm)	Result of Band edge (dBc)	Band edge LIMIT (dBc)
<2400	2.63	-32.8	35.43	>20dBc
>2483.5	1.79	-50.26	52.05	>20dBc

2.Radiated emision test

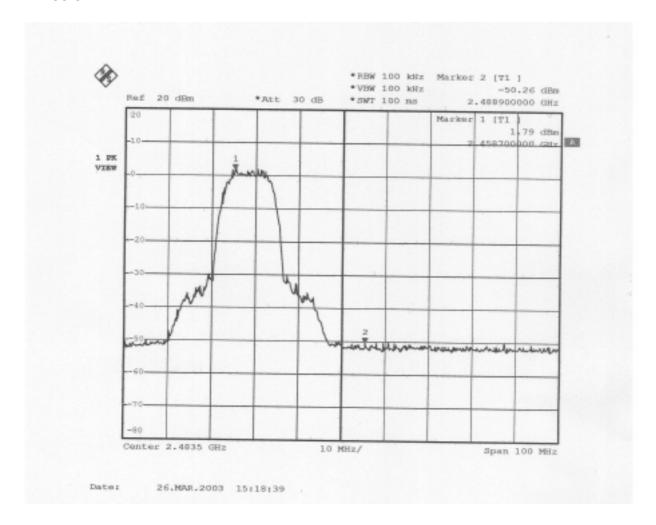

Frequency (MHz)	Antenna polarization (H/V)	PEAK POWER OUTPUT (dBuV/m)	Emission read Value(dBuV/m)	Band edge LIMIT (dBuV/m)
<2400	V	105.3	43.5	54
>2483.5	V	102.0	42.7	54

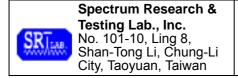


Reference No.:A03021705 Report No.:FCCA03021705

Page:32 of 43 Date:Apr. 14, 2003

<2400MHz





Reference No.:A03021705 Report No.:FCCA03021705

Page:33 of 43 Date:Apr. 14, 2003

>2483.5MHz

Reference No.:A03021705 Report No.:FCCA03021705

Page:34 of 43 Date:Apr. 14, 2003

4.6 POWER DENSITY TEST

4.6.1 LIMIT

FCC Part15, Subpart C Section 15.247

FREQUENCY RANGE (MHz)	Limit(dBm/kHz)
902-928	
2400-2483.5	8dBm/3kHz
5725-5850	

4.6.2 TEST EQUIPMENT

The following test equipment was used during the radiated emission test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL#/ SERIAL#	DUE DATE OF CAL. & CAL. CENTER
SPECTRUM	l9kHz-7GHz			MAR. 2004 R & S

NOTE: The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.

4.6.3 TEST SET-UP

The EUT was connected to a spectrum through a 50Ω RF cable.

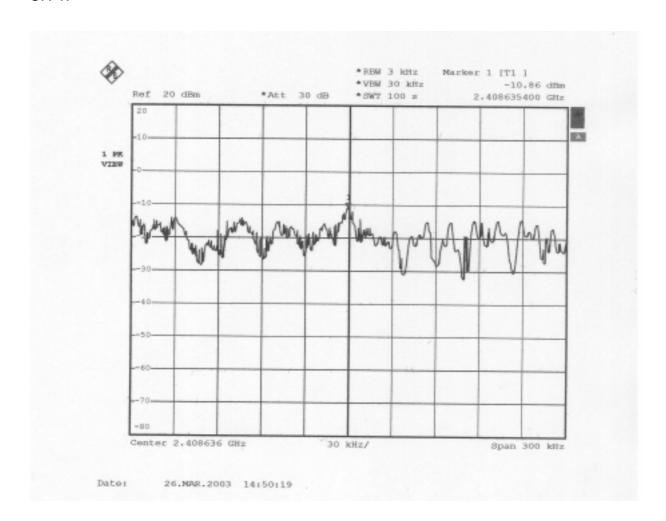
4.6.4 TEST PROCEDURE

The EUT was operating in transmitter mode and could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

4.6.5 EUT OPERATING CONDITION

Same as section 4.1.5 of this report.

Reference No.:A03021705 Report No.:FCCA03021705

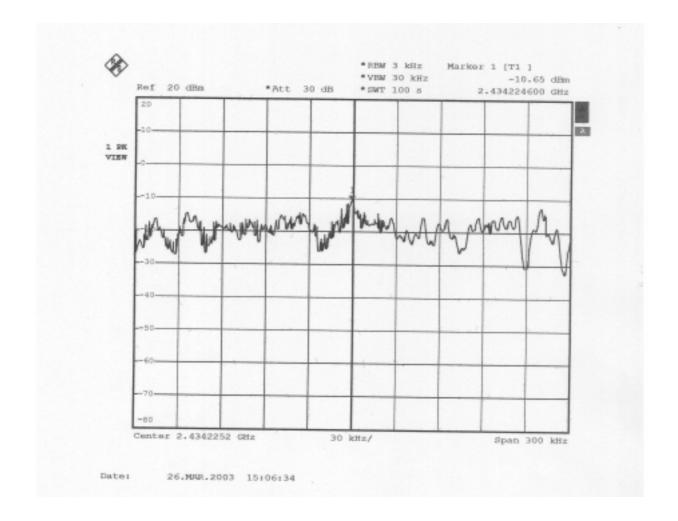

Page:35 of 43 Date:Apr. 14, 2003

4.6.6 TEST RESULT

Temperature:	23°C	Humidity:	65%RH	
Spectrum Detector:	PK.	Tested by:	Chris Hsien	
Test Result:	Pass			

CHANNEL NUMBER	CHANNEL FREQUENCY (MHz)	RF POWER LEVEL IN 3KHz BW (dBm/3kHz)	MAXIMUM LIMIT (dBm/3kHz)
1	2408.15	-10.80	8
6	2433.15	-10.65	8
11	2461.97	-11.58	8

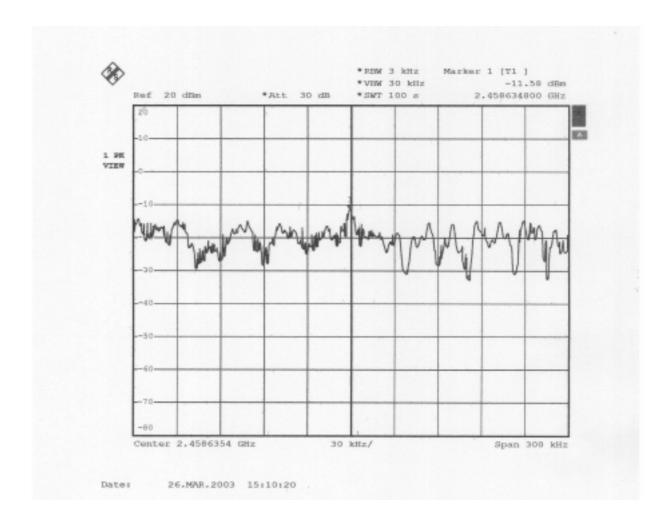
CH 1:



Reference No.:A03021705 Report No.:FCCA03021705

Page:36 of 43 Date:Apr. 14, 2003

CH 6:



Reference No.:A03021705 Report No.:FCCA03021705

Page:37 of 43 Date:Apr. 14, 2003

CH 11:

Reference No.:A03021705 Report No.:FCCA03021705

Page:38 of 43 Date:Apr. 14, 2003

4.7 RF POWER EXPOSURE EVALUATION TEST

4.7.1 LIMIT

According to the requirement of IEEE C95.1 and FCC OET Bulletin 65.

Limits for Occupational/Controlled Exposure

Frequency Range (MHz)	Electric Field Strength(E) (V/m)	Magnetic Field Strength(H) (A/m)	Power density (S) (mW/cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f ²)*	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength(E) (V/m)	Magnetic Field Strength(H) (A/m)	(S) (mW/cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f ²)*	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = frequency in MHz *Plane-wave equivalent power density

NOTE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Reference No.:A03021705 Report No.:FCCA03021705

Page:39 of 43 Date:Apr. 14, 2003

4.7.2 TEST EQUIPMENT

The following test equipment was used during the test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL#/ SERIAL#	DUE DATE OF CAL. & CAL. CENTER
POWER METER	N/A	IBOONTON I		MAY. 2003
			29001	ETC
POWER SENSOR	DC-8GHz	BOONTON	51011EMC/	MAY. 2003
	50		31181	ETC

NOTE: The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.

4.7.3 TEST SET-UP

The EUT was connected to a spectrum through a 50Ω RF cable.

Reference No.:A03021705 Report No.:FCCA03021705

Page:40 of 43 Date:Apr. 14, 2003

4.7.4 TEST PROCEDURE

- 1. The EUT was operating in transmitter mode and could be controlled its channel. The power meter read power value.
- 2. The EUT uses an sleeve dipole antenna and the antenna gain is 2dBi declared by manufacturer.
- 3. As discussed in OET Bulletin 65, calculations can be made to predict RF field strength and power density levels around typical RF sources. For example, in the case of a non-directional antenna, a prediction for power density in the far-field of the antenna can be made by use of the general Equations (1) or (2) below [for conversion to electric or magnetic field strength see Equation (3) above]. These equations are generally accurate in the far-field of an antenna but will over-predict power density in the near field, where it could be used for making a" worst case" or conservative prediction.

S=PG/4 R² (Eq.1) S=EIRP/4 R² (Eq. 2) S=E²/3770=37.7H² (Eq. 3)

where: S = power density (mW/cm2)

E = electric field strength (V/m)

H = magnetic field strength (A/m)

S = power density (in appropriate units, e.g. mW/cm 2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator (dBi)

 $\mbox{\it R}$ = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

where: EIRP = equivalent (or effective) isotropically radiated power

4.7.5 EUT OPERATING CONDITION

Same as section 4.1.5 of this report.

Reference No.:A03021705 Report No.:FCCA03021705

Page:41 of 43 Date:Apr. 14, 2003

4.7.6 RESULT

Temperature:	23°C	Humidity:	65%RH	
Spectrum Detector:	PK.	Tested by:	Chris Hsien	
Test Result:	Pass			

CHANNEL NUMBER	CHANNEL FREQUENCY (MHz)	RF Output Power (mW)	Result calculated when nearby person (cm)	Limit when nearby person (cm)
1	2414.7	31.0	1.57	20
6	2439.8	22.6	1.34	20
11	2462.0	21.6	1.31	20

NOTE: The EUT uses a dipole antenna and the antenna gain is 0.5dBi (1.12 numeric)

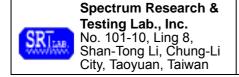
Reference No.:A03021705 Report No.:FCCA03021705

Page:42 of 43 Date:Apr. 14, 2003

5. Antenna application

5.1 Antenna requirement

The EUT's antenna is met the requirement of FCC part15C section15.203 and 15.204.


FCC part15C section15.247 requirement:

Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

5.2 Result

The EUT's antenna used a dipole antenna. The antenna's gain is 0.5dBi and meets the requirement.

This antenna with revesed N-type connector was used only for Micro-Star MS-6807 Wireless 11b PCI Card. The location of the antenna near the mini PC as show in the attached setup photos.

Reference No.:A03021705 Report No.:FCCA03021705

Page:43 of 43 Date:Apr. 14, 2003

6. TERMS OF ABRIVATION

AV.	Average detection	
AZ(°)	Turn table azimuth	
Correct.	Correction	
EL(m)	Antenna height (meter)	
EUT	Equipment Under Test	
Horiz.	Horizontal direction	
LISN	Line Impedance Stabilization Network	
NSA	Normalized Site Attenuation	
PK.	Peak detection	
Q.P.	Quasi-peak detection	
SRT Lab	Spectrum Research & Testing Laboratory, Inc.	
Vert.	Vertical direction	