

FCC PART 15.247 TEST REPORT

For

Wallys Communications Technologies Co.,Ltd

Room 2723, Le Jia building, Jia Rui Xiang No.8, Suzhou Industrial Park, Suzhou, P.R 215000 China

FCC ID: 2AG7VDR4029

Report Type: CIIPC Report		Product Type: WBX
Project Engineer:	Stone Zhang	Stone Zhang
Report Number:	RKSA20121600	02-00B
Report Date:	2021-01-13	
Reviewed By:	Oscar Ye EMC Manager	Oscar. Ye
Prepared By:		-88934268

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S)	3
TEST METHODOLOGY	4
MEASUREMENT UNCERTAINTY	4
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	5
EQUIPMENT MODIFICATIONS	
EUT Exercise Software	
SUPPORT EQUIPMENT LIST AND DETAILS	6
External I/O Cable	6
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	10
TEST EQUIPMENT LIST	11
FCC §1.1310 & §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)	12
FCC §15.203 - ANTENNA REQUIREMENT	15
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS	16
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	22
APPLICABLE STANDARD	
EUT SETUP.	
EMI TEST RECEIVER SETUP.	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	23
TEST RESULTS SUMMARY	
Test Data	

Report No.: RKSA201216002-00B

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant:	Wallys Communications Technologies Co.,Ltd
Tested Model:	WBX-XX-XX
Product Type:	WBX
Power Supply:	DC 24V
RF Function:	Wi-Fi
Operating Band/Frequency:	2412~2462MHz
Channel Number:	11
Channel Separation:	5MHz
Modulation Type	DSSS, OFDM
Antenna Type:	Omni Antenna
*Maximum Antenna Gain:	4.0 dBi

Report No.: RKSA201216002-00B

Note: The antenna gain was provided by the applicant.

Objective

This report is prepared on behalf of *Wallys Communications Technologies Co.,Ltd* in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions' rules.

The tests were performed in order to determine Compliant with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

This is a CIIPC report base on the original report RSHA200217004-00A with FCC ID: 2AG7VDR4029 which was granted on 2020-07-29, the differences between the original device and the current one are as follows:

- 1. Updated the product type to "WBX", and the tested model to "WBX-XX-XX".
- 2. The product integrated into a host and add a 4G module, we performed co-location of conducted emissions radiation spurious and MPE, for other item reference to the original report.

Related Submittal(s)/Grant(s)

FCC Part 15.407 NII submissions with FCC ID: 2AG7VDR4029

FCC Part 15.247 Page 3 of 28

^{*}All measurement and test data in this report was gathered from production sample serial number: RSHA201216002-1 (Assigned by the BACL. The EUT supplied by the applicant was received on 2020-12-16.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliant Testing of Unlicensed Wireless Devices and FCC 558074 D01 15.247 Meas Guidance v05r02.

Report No.: RKSA201216002-00B

All emissions measurement was performed at Bay Area Compliant Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

	Item	Uncertainty
AC Power Line	es Conducted Emissions	3.19dB
RF conducto	ed test with spectrum	0.9dB
RF Output Po	ower with Power meter	0.5dB
	30MHz~1GHz	6.11dB
D. Fata Landinian	1GHz~6GHz	4.45dB
Radiated emission	6GHz~18GHz	5.23dB
	18GHz~40GHz	5.65dB
Оссир	pied Bandwidth	0.5kHz
Te	emperature	1.0℃
	Humidity	6%

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01 and CAB identifier CN0004 under the ISED requirement. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC Part 15.247 Page 4 of 28

SYSTEM TEST CONFIGURATION

Description of Test Configuration

Test channel list is as below:

For 802.11b, 802.11g and 802.11n-HT20 mode, EUT was tested with Channel 1, 6 and 11;

For 802.11n-HT40 mode, EUT was tested with Channel 3, 6 and 9.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

Report No.: RKSA201216002-00B

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

RF test tool: QRCT

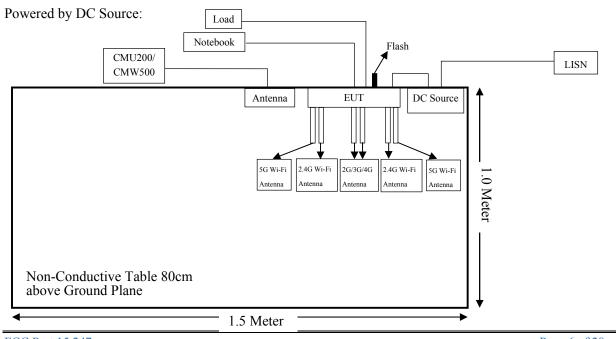
Pre-scan with all the data rates, and the worst case was performed as below:

Mode	Data Rate	Power Setting		
	Data Kate	Chain 0	Chain 1	
802.11b	1Mbps	25	25	
802.11g	6 Mbps	20	20	
802.11n-HT20	MCS0	18	18	
802.11n-HT40	MCS0	17	17	

FCC Part 15.247 Page 5 of 28

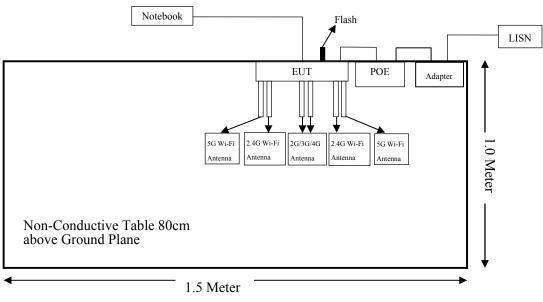
Support Equipment List and Details

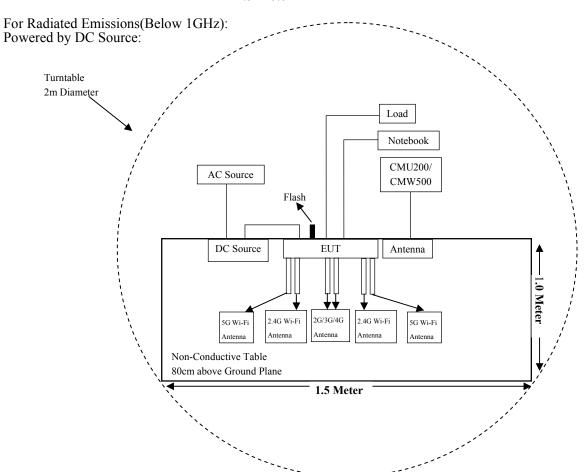
Manufacturer	Description	Model	Serial Number
BEST	DC Power Supply	PS-1502D+	DC001
BACL	Load	/	/
DELL	Notebook	E6410	3094742521
Kingston	Flash	32G	/
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	110605
Rohde & Schwarz	Wideband Radio Communication Tester	CMW500	104478
Aihuaxin technology	Antenna	Unknown	Unknown
RUCKUS	POE	NPE-5818	/
RUCKUS	Adapter	PA1024-4HUB	/

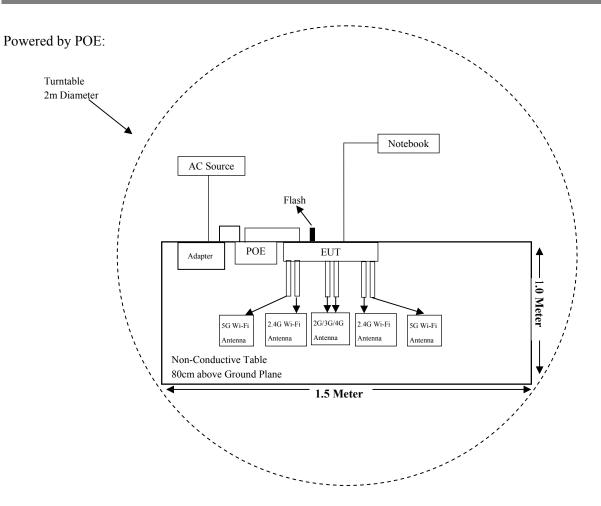

Report No.: RKSA201216002-00B

External I/O Cable

Cable Description	Length (m)	From Port	То
Power Cable	1.0	EUT	DC Source
Power Cable	1.0	DC Source	LISN/AC Source
RJ45	0.8	EUT	POE
RJ45	5	EUT	Notebook

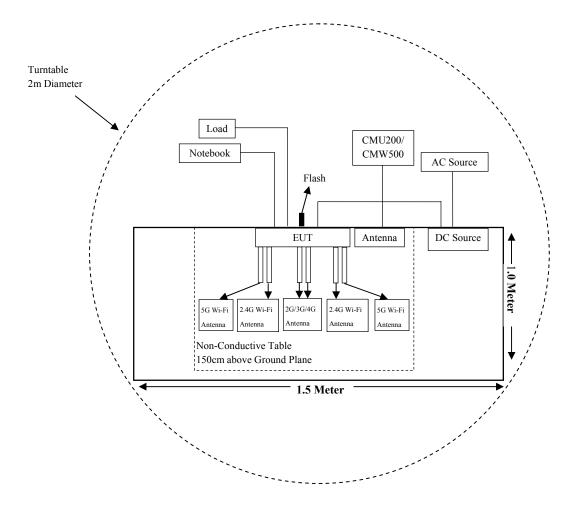

Block Diagram of Test Setup


For Conducted Emissions:


FCC Part 15.247 Page 6 of 28

Powered by POE:

FCC Part 15.247 Page 7 of 28



FCC Part 15.247 Page 8 of 28

Report No.: RKSA201216002-00B

For Radiated Emissions(Above 1GHz):

Powered by DC Source:

FCC Part 15.247 Page 9 of 28

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1310 & §2.1091	Maximum Permissible Exposure (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant

Report No.: RKSA201216002-00B

FCC Part 15.247 Page 10 of 28

TEST EQUIPMENT LIST

Manufacturer	Description	Description Model Serial Number		Calibration Date	Calibration Due Date			
Radiated Emission Test (Chamber 1#)								
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2020-12-14	2021-12-13			
Sunol Sciences	Hybrid Antenna	JB3	A090314-1	2020-08-05	2023-08-04			
Sonoma Instrunent	Pre-amplifier	310N	171205	2020-08-14	2021-08-13			
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/			
MICRO-COAX	Coaxial Cable	Cable-8	008	2020-08-15	2021-08-14			
MICRO-COAX	Coaxial Cable	Cable-9	009	2020-08-15	2021-08-14			
MICRO-COAX	Coaxial Cable	Cable-10	010	2020-08-15	2021-08-14			
	Radiated En	nission Test (Cha	mber 2#)					
Rohde & Schwarz	EMI Test Receiver	ESU40	100207	2020-04-01	2021-03-31			
ETS-LINDGREN	Horn Antenna	3115	9311-4159	2020-07-15	2023-07-14			
ETS-LINDGREN	Horn Antenna	3116	2516	2020-01-17	2023-01-16			
A.H.Systems,inc	Amplifier	PAM-0118P	512	2020-02-20	2021-02-19			
EM Electronics Corporation	Amplifier	EM18G40G	060726	2020-03-22	2021-03-21			
MICRO-TRONICS	Band Reject Filter	BRM50702	G024	2020-08-05	2021-08-04			
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/			
MICRO-COAX	Coaxial Cable	Cable-6	006	2020-12-12	2021-12-11			
MICRO-COAX	Coaxial Cable	Cable-11	011	2020-08-15	2021-08-14			
MICRO-COAX	Coaxial Cable	Cable-12	012	2020-08-15	2021-08-14			
MICRO-COAX	Coaxial Cable	Cable-13	013	2020-08-15	2021-08-14			
	Cond	lucted Emission T	est					
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03- 101746-zn	2020-07-28	2021-07-27			
Rohde & Schwarz	LISN	ENV216	101115	2020-11-27	2021-11-26			
Audix	Test Software	e3	V9	N/A	N/A			
Rohde & Schwarz	Pulse limiter	ESH3-Z2	100552	N/A	N/A			
MICRO-COAX	Coaxial Cable	Cable-15	015	2020-08-15	2021-08-14			

Report No.: RKSA201216002-00B

FCC Part 15.247 Page 11 of 28

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1310 & §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 1.1310, 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure							
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)			
0.3-1.34	614	1.63	*(100)	30			
1.34-30	824/f	2.19/f	*(180/f²)	30			
30-300	27.5	0.073	0.2	30			
300-1500	/		f/1500	30			
1500-100,000	/		1.0	30			

Report No.: RKSA201216002-00B

f = frequency in MHz; * = Plane-wave equivalent power density

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \le 1$$

FCC Part 15.247 Page 12 of 28

Calculated Data:

2.4G Wi-Fi & 5G Wi-Fi & LTE:

Frequency Mode Range		Antenna Gain		Tune-up Conducted Power		Evaluation Distance	Power Density	MPE Limit
1	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm ²)
802.11b		4.0	2.51	26.50	446.68	30	0.0991	1.0
802.11g	2412~2462	4.0	2.51	26.00	398.11	30	0.0883	1.0
802.11n-HT20		4.0	2.51	27.00	501.19	30	0.1112	1.0
802.11n-HT40	2422~2452	4.0	2.51	26.00	398.11	30	0.0883	1.0
802.11a	5150~5250	4.0	2.51	17.00	50.12	30	0.0111	1.0
802.11a	5725~5850	4.0	2.51	17.00	50.12	30	0.0111	1.0
802.11ac20	5150~5250	4.0	2.51	17.00	50.12	30	0.0111	1.0
802.11ac20	5725~5850	4.0	2.51	16.50	44.67	30	0.0099	1.0
802.11n20	5150~5250	4.0	2.51	17.00	50.12	30	0.0111	1.0
802.111120	5725~5850	4.0	2.51	17.00	50.12	30	0.0111	1.0
802.11ac40	5150~5250	4.0	2.51	17.00	50.12	30	0.0111	1.0
802.11ac40	5725~5850	4.0	2.51	17.00	50.12	30	0.0111	1.0
802.11n40	5150~5250	4.0	2.51	17.00	50.12	30	0.0111	1.0
802.111140	5725~5850	4.0	2.51	17.00	50.12	30	0.0111	1.0
802.11ac80	5210	4.0	2.51	17.00	50.12	30	0.0111	1.0
602.11ac60	5775	4.0	2.51	17.00	50.12	30	0.0111	1.0
LTE Band 2	1850~1910	2.3	1.70	22.50	177.83	30	0.0267	1.0
LTE Band 4	1710~1755	2.0	1.58	22.50	177.83	30	0.0249	1.0
LTE Band 5	824~849	1.5	1.41	23.50	223.87	30	0.0279	0.55
LTE Band 7	2500~2570	2.7	1.86	23.00	199.53	30	0.0328	1.0
LTE Band 12	699~716	1.3	1.35	23.50	223.87	30	0.0267	0.47
LTE Band 13	777~787	1.35	1.36	24.00	251.19	30	0.0303	0.52
LTE Band 25	1850~1915	2.3	1.70	24.00	251.19	30	0.0377	1.0
LTE Band 26	814~849	1.5	1.41	23.50	223.87	30	0.0280	0.55
LTE Band 41	2496~2690	2.7	1.86	23.50	223.87	30	0.0369	1.0
LTE Band 66	1710~1780	2.0	1.58	24.00	251.19	30	0.0352	1.0

Report No.: RKSA201216002-00B

FCC Part 15.247 Page 13 of 28

GSM:

Mode	Frequency Range	Maximum Antenna Gain		Tune-up Conducted Power		Evaluation Distance	Power Density	MPE Limit
1/2000	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm ²)
GSM 850	824~849	1.5	1.41	26.74	472.06	30	0.0590	0.55
GSM 1900	1850~1910	2.3	1.70	24.50	281.84	30	0.0423	1.00

Report No.: RKSA201216002-00B

Note:

1. Antenna Gain (numeric): 1.5 dBi (1.41) for GSM 850 Antenna Gain (numeric): 2.3 dBi (1.70) for GSM 1900

GPRS 850: Tune-up maximum output power with 1 slot is 35.0 dBm, 2 slots is 32.5 dBm, 3 slots is 31.0 dBm, 4 slots is 29.5 dBm, so the tune-up time based Ave. power compared to sloted Ave. power is 26.74 dBm. EGPRS 850: Tune-up maximum output power with 1 slot is 31.5 dBm, 2 slots is 30.5 dBm, 3 slots is 28.5 dBm, 4 slots is 27.5 dBm so the tune-up time based Ave. power compared to sloted Ave. power is 24.5 dBm. GPRS 1900: Tune-up maximum output power with 1 slot is 30.5 dBm, 2 slots is 28.5 dBm, 3 slots is 26.5 dBm, 4 slots is 24.0 dBm so the tune-up time based Ave. power compared to sloted Ave. power is 22.5 dBm. EGPRS 1900: Tune-up maximum output power with 1 slot is 29.0 dBm, 2 slots is 27.5 dBm, 3 slots is 26.0 dBm, 4 slots is 24.5 dBm so the tune-up time based Ave. power compared to sloted Ave. power is 21.74 dBm.

Number of Time slot	1	2	3	4
Duty Cycle	1:8	1:4	1:2.66	1:2
Time based Ave. power compared to slotted Ave. power	-9 dB	-6 dB	-4.26 dB	-3 dB

WCDMA:

Mode	Frequency Range		Maximum Antenna Gain		Tune-up Conducted Power		Power Density	MPE Limit
2.20	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	(mW/cm^2)	(mW/cm ²)
Band II	1850~1910	2.3	1.70	23.00	199.53	30	0.0300	1.00
Band IV	1710-1755	2.0	1.58	23.50	223.87	30	0.0314	1.00
Band V	824-849	1.5	1.41	23.50	223.87	30	0.0280	0.55

Note:

1. For the above tune up power were declared by the manufacturer.

2. The LTE module FCC ID: 2AJYU-8PYA003

3. 2.4G Wi-Fi, 5G Wi-Fi and LTE can transmit simultaneously, The worst condition is as below:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} = 0.1112/1.0 + 0.0111/1.0 + 0.059/0.55 = 0.1112 + 0.0111 + 0.107 = 0.2293 < 1.0$$

Result: The device meets FCC MPE at 30cm distance.

FCC Part 15.247 Page 14 of 28

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine Compliant with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RKSA201216002-00B

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

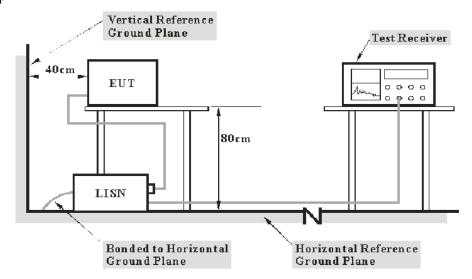
And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has two Omni antennas for Wi-Fi; Antenna uses a unique type of connector to attach to the EUT.

Function	Antenna connector	Model number	manufacturer	Max. Antenna Gain
2.4G Wi-Fi	RP-SMA	DPA1319500SBAB501	Wallystech	4.0dBi

Result: Compliant.


FCC Part 15.247 Page 15 of 28

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Report No.: RKSA201216002-00B

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

ANSI C63.10-2013 clause 6.2

During the conducted emission test, the DC Source/POE was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.247 Page 16 of 28

Corrected Factor & Over Limit Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Report No.: RKSA201216002-00B

Corrected Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit of 7 dB means the emission is 7 dB above the limit. The equation for Over Limit calculation is as follows:

Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

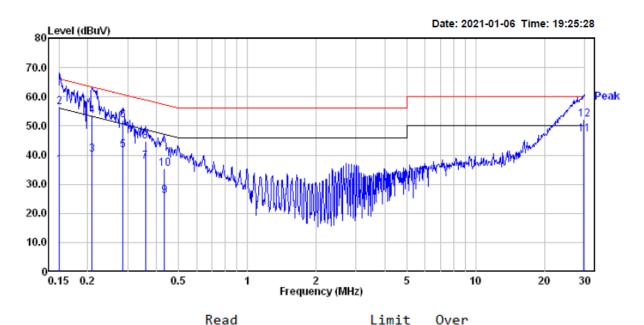
Test Data

Environmental Conditions

Temperature:	24.9 ℃
Relative Humidity:	51 %
ATM Pressure:	101.3 kPa

The testing was performed by Stone Zhang on 2021-01-06.

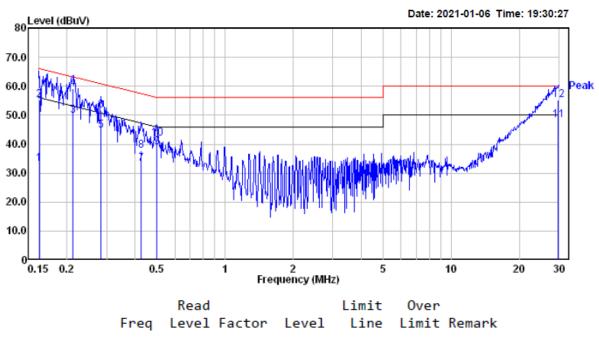
FCC Part 15.247 Page 17 of 28


Transmitting simultaneously test:

Powered by DC source:

(The worst case 2.4G Wi-Fi 802.11 n-HT20 high channel, 5G Wi-Fi Band4 802.11ac20 high channel and GSM 850 transmitting simultaneously was recorded)

Report No.: RKSA201216002-00B


AC 120V/60 Hz, Line

		iveau			LIMIT	over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	——dB	
1	0.150	16.80	19.82	36.62	56.00	-19.38	Average
2	0.150	36.70	19.82	56.52	66.00	-9.48	QP
3	0.209	20.40	19.82	40.22	53.23	-13.01	Average
4	0.209	33.60	19.82	53.42	63.23	-9.81	QP
5	0.285	21.80	19.82	41.62	50.68	-9.06	Average
6	0.285	32.10	19.82	51.92	60.68	-8.76	QP
7	0.358	18.00	19.80	37.80	48.78	-10.98	Average
8	0.358	24.80	19.80	44.60	58.78	-14.18	QP
9	0.433	6.30	19.75	26.05	47.20	-21.15	Average
10	0.433	15.50	19.75	35.25	57.20	-21.95	QP
11	29.841	27.30	19.78	47.08	50.00	-2.92	Average
12	29.841	32.30	19.78	52.08	60.00	-7.92	QP

FCC Part 15.247 Page 18 of 28

AC 120V/60 Hz, Neutral

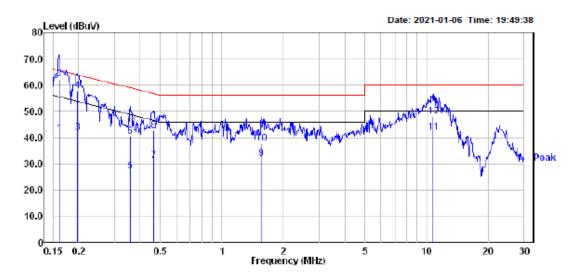
Report No.: RKSA201216002-00B

	Freq	Level	Factor	Level	Line	Limit	Remark
-	MHz	dBuV	dB	dBuV	dBuV	——dB	
1	0.151	13.40	19.82	33.22	55.96	-22.74	Average
2	0.151	35.50	19.82	55.32	65.96	-10.64	QP
3	0.213	30.10	19.82	49.92	53.10	-3.18	Average
4	0.213	39.40	19.82	59.22	63.10	-3.88	QP
5	0.283	25.00	19.82	44.82	50.72	-5.90	Average
6	0.283	31.90	19.82	51.72	60.72	-9.00	QP
7	0.424	13.39	19.75	33.14	47.37	-14.23	Average
8	0.424	17.89	19.75	37.64	57.37	-19.73	QP
9	0.499	19.20	19.76	38.96	46.01	-7.05	Average
10	0.499	22.10	19.76	41.86	56.01	-14.15	QP
11	29.841	28.50	19.78	48.28	50.00	-1.72	Average
12	29.841	35.60	19.78	55.38	60.00	-4.62	OP

Note:

1) Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

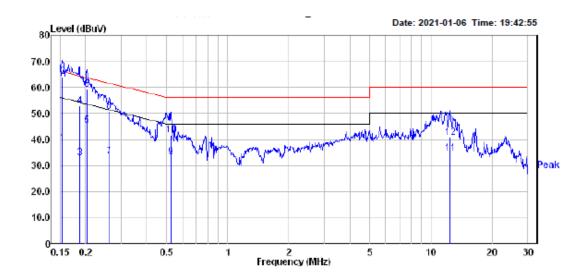
2) Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)


FCC Part 15.247 Page 19 of 28

Powered by POE:

(The worst case 2.4G Wi-Fi 802.11 n-HT20 high channel, 5G Wi-Fi Band4 802.11ac20 high channel and GSM 850 transmitting simultaneously was recorded)

Report No.: RKSA201216002-00B


AC 120V/60 Hz Line:

		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHZ	dBu∨	dB	dBuV	dBuV	dB	
1	0.161	21.60	19.83	41.43	55.43	-14.00	Average
2	0.161	42.40	19.83	62.23	65.43	-3.20	QP
3	0.199	22.00	19.82	41.82	53.67	-11.85	Average
4	0.199	37.70	19.82	57.52	63.67	-6.15	QP
5	0.358	7.50	19.80	27.30	48.78	-21.48	Average
6	0.358	20.70	19.80	40.50	58.78	-18.28	QP
7	0.466	11.40	19.75	31.15	46.58	-15.43	Average
8	0.466	22.70	19.75	42.45	56.58	-14.13	QP
9	1.560	12.29	19.85	32.14	46.00	-13.86	Average
10	1.560	17.89	19.85	37.74	56.00	-18.26	QP
11	10.790	22.40	19.57	41.97	50.00	-8.03	Average
12	10.790	28.30	19.57	47.87	60.00	-12.13	QP

FCC Part 15.247 Page 20 of 28

AC 120V/60 Hz Neutral:

Report No.: RKSA201216002-00B

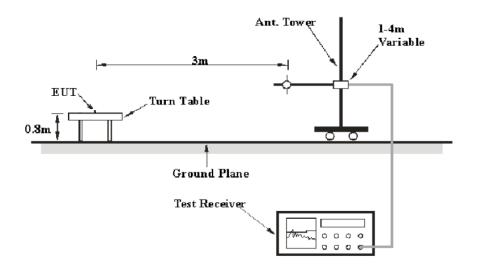
		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	
1	0.154	18.90	19.82	38.72	55.78	-17.06	Average
2	0.154	44.30	19.82	64.12	65.78	-1.66	QP
3	0.187	13.21	19.82	33.03	54.15	-21.12	Average
4	0.187	32.91	19.82	52.73	64.15	-11.42	QP
5	0.204	25.40	19.82	45.22	53.45	-8.23	Average
6	0.204	39.50	19.82	59.32	63.45	-4.13	QP
7	0.262	13.70	19.82	33.52	51.38	-17.86	Average
8	0.262	30.90	19.82	50.72	61.38	-10.66	QP
9	0.527	13.41	19.75	33.16	46.00	-12.84	Average
10	0.527	21.91	19.75	41.66	56.00	-14.34	QP
11	12.384	15.09	19.60	34.69	50.00	-15.31	Average
12	12.384	21.09	19.60	40.69	60.00	-19.31	QP

Note:

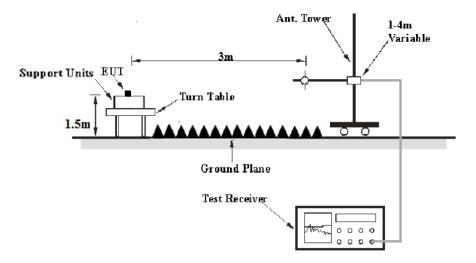
- 1) Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Attenuator (dB)
- 2) Over Limit (dB) = Read level (dB μ V) + Factor (dB) Limit (dB μ V)

FCC Part 15.247 Page 21 of 28

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS


Report No.: RKSA201216002-00B

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

FCC Part 15.247 Page 22 of 28

EMI Test Receiver Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver setup was set with the following configurations:

Report No.: RKSA201216002-00B

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1GHz	1MHz	3 MHz	/	PK
Above IGHZ	1MHz	3 MHz	/	Ave.

Test Procedure

According to ANSI C63.10-2013 clause 6.5, 6.6 and 6.7.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30MHz - 1GHz, peak and Average detection mode for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude (dB μ V /m) = Meter Reading (dB μ V) + Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

The "Margin" column of the following data tables indicates the degree of Compliant with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

FCC Part 15.247 Page 23 of 28

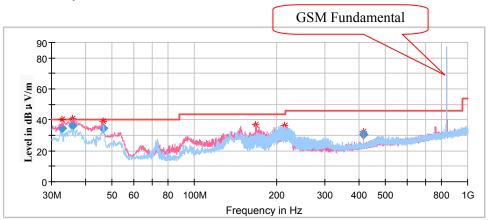
Test Data

Environmental Conditions

Temperature:	24.7~24.9 ℃
Relative Humidity:	48~51 %
ATM Pressure:	101.1~101.3 kPa

The testing was performed by Stone Zhang from 2020-12-25 to 20121-01-13.

EUT operation mode: Transmitting


Transmitting simultaneously test:

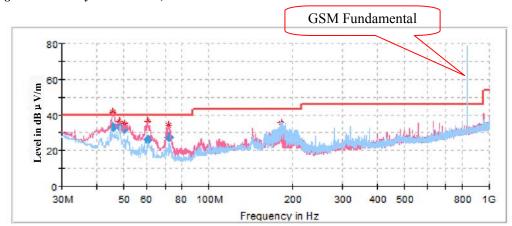
Powered by DC Source:

30MHz-1GHz:

(The worst case 2.4G Wi-Fi 802.11 n-HT20 high channel, 5G Wi-Fi Band4 802.11ac20 high channel and GSM 850 transmitting simultaneously was recorded)

Report No.: RKSA201216002-00B

Frequency (MHz)	Corrected Amplitude	Rx Antenna		Turntable	Corrected	Limit	Margin
	Quasi Peak (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
32.822950	34.34	100.0	V	260.0	-6.5	40.00	5.66
35.898300	36.32	100.0	V	332.0	-8.5	40.00	3.68
46.367850	34.76	100.0	V	57.0	-15.5	40.00	5.24
168.390450	28.82	100.0	V	190.0	-13.1	43.50	14.68
214.440450	30.83	100.0	Н	302.0	-12.9	43.50	12.67
415.161150	30.45	100.0	V	160.0	-8.2	46.00	15.55

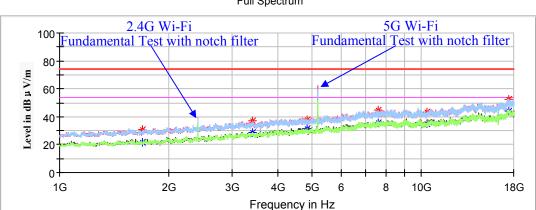

FCC Part 15.247 Page 24 of 28

Powered by POE:

30MHz-1GHz:

(The worst case 2.4G Wi-Fi 802.11 n-HT20 high channel, 5G Wi-Fi Band4 802.11ac20 high channel and GSM 850 transmitting simultaneously was recorded)

Report No.: RKSA201216002-00B


Frequency (MHz)	Corrected Amplitude	Rx Antenna		Turntable	Corrected	Limit	Margin
	Quasi Peak (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
45.765600	33.05	200.0	V	28.0	-14.5	40.00	6.95
48.014800	33.83	100.0	V	76.0	-15.9	40.00	6.17
50.124250	32.03	100.0	V	15.0	-17.2	40.00	11.47
60.794200	26.32	200.0	V	333.0	-17.0	40.00	13.68
72.327750	27.79	100.0	V	2.0	-16.3	40.00	12.21
182.558050	31.37	100.0	Н	73.0	-12.2	43.50	12.13

FCC Part 15.247 Page 25 of 28

Powered by DC Source:

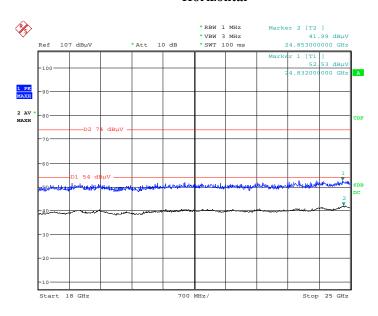
1GHz-18GHz:

(The worst case 2.4G Wi-Fi 802.11 n-HT20 high channel, 5G Wi-Fi Band4 802.11ac20 high channel and GSM 850 transmitting simultaneously was recorded)

Full Spectrum

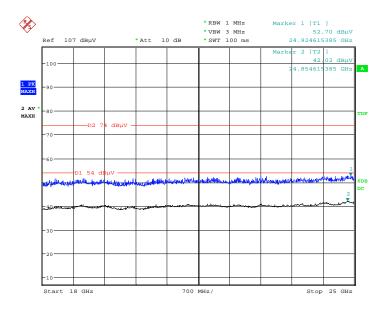
Report No.: RKSA201216002-00B

Frequency (MHz)	Corrected Amplitude		Rx Antenna		Turntable	Corrected	Limit	Margin
	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1691.900000		21.55	150.0	Н	349.0	-15.6	54.00	32.45
1691.900000	30.87		150.0	Н	349.0	-15.6	74.00	43.13
3417.400000		28.47	150.0	V	102.0	-9.0	54.00	25.53
3417.400000	36.83		150.0	V	102.0	-9.0	74.00	37.17
4828.400000		31.80	200.0	Н	77.0	-5.5	54.00	22.20
4828.400000	37.79		200.0	Н	77.0	-5.5	74.00	36.21
7577.300000		35.44	150.0	V	5.0	1.2	54.00	18.56
7577.300000	44.95		150.0	V	5.0	1.2	74.00	29.05
10382.300000		34.77	200.0	V	281.0	2.2	54.00	19.23
10382.300000	43.69		200.0	V	281.0	2.2	74.00	30.31
17462.800000		43.76	200.0	Н	319.0	8.8	54.00	10.24
17462.800000	52.68		200.0	Н	319.0	8.8	74.00	21.32


FCC Part 15.247 Page 26 of 28

18GHz-25GHz:

(The worst case 2.4G Wi-Fi 802.11 n-HT20 high channel, 5G Wi-Fi Band4 802.11ac20 high channel and GSM 850 transmitting simultaneously was recorded)


Horizontal

Report No.: RKSA201216002-00B

Date: 13.JAN.2021 10:19:53

Vertical

Date: 13.JAN.2021 10:29:28

FCC Part 15.247 Page 27 of 28

Declarations

Report No.: RKSA201216002-00B

- 1: BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.
- 2: Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.
- 3: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.
- 4: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.
- 5: This report cannot be reproduced except in full, without prior written approval of the Company.
- 6: This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

***** END OF REPORT *****

FCC Part 15.247 Page 28 of 28