

SAR Test Report

Report No.: AGC00150180401FH01

FCC ID : S7A-SP36

APPLICATION PURPOSE: Class II Permissive Change

PRODUCT DESIGNATION: 10Upad

BRAND NAME : SENA

MODEL NAME : SP36

CLIENT: Sena Technologies, Inc.

DATE OF ISSUE: July 18,2018

IEEE Std. 1528:2013

STANDARD(S) : FCC 47CFR § 2.1093

IEEE/ANSI C95.1:2005

REPORT VERSION : V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 2 of 39

Report Revise Record

	Report Version	Revise Time	Issued Date	Valid Version	Notes
44	V1.0	To the state of th	July 18,2018	Valid	Class II Permissive Change

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 3 of 39

	Test Report Certification			
Applicant Name	Sena Technologies, Inc.			
Applicant Address	19, Heolleung-ro 569-gil, Gangnam-gu, Seoul, South Korea			
Manufacturer Name	Sena Technologies, Inc.			
Manufacturer Address	Floor 4G/4F, Science&Technology building, Maozhoushan industry park, BaoAn District, ShenZhen City, GuangDong province, China			
Product Designation	10Upad			
Brand Name	SENA			
Model Name	SP36			
Different Description	N/A			
EUT Voltage	DC3.7V by battery			
Applicable Standard	IEEE Std. 1528:2013 FCC 47CFR § 2.1093 IEEE/ANSI C95.1:2005			
Test Date	July 12,2018			
Report Template	AGCRT-US-Bluetooth/SAR (2018-01-01)			

Note: The results of testing in this report apply to the product/system which was tested only.

	Frot That	C 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Tested By	C The state of the	- CGC F
	Eric Zhou(Zhou Yongkang)	July 12,2018
	Anyola li	
Checked By -	Sec Fee	.:ail
	Angela Li(Li Jiao)	July 18,2018
	Foresto ei	
Authorized By		The Compliance
	Forrest Lei(Lei Yonggang) Authorized Officer	July 18,2018

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Report No.: AGC00150180401FH01 Page 4 of 39

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	
2. GENERAL INFORMATION	
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	7
3.1. THE SATIMO SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS	8 9 9
4. SAR MEASUREMENT PROCEDURE	
4.1. SPECIFIC ABSORPTION RATE (SAR) 4.2. SAR MEASUREMENT PROCEDURE 4.3. RF EXPOSURE CONDITIONS	12 14
5. TISSUE SIMULATING LIQUID	
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	15 16
6. SAR SYSTEM CHECK PROCEDURE	
6.1. SAR System Check Procedures	18
7. EUT TEST POSITION	
7.1.Test Position	
8. SAR EXPOSURE LIMITS	
9. TEST FACILITY	21
10. TEST EQUIPMENT LIST	22
11. MEASUREMENT UNCERTAINTY	
12. CONDUCTED POWER MEASUREMENT	26
13. TEST RESULTS	
13.1. SAR Test Results Summary	27
APPENDIX A. SAR SYSTEM CHECK DATA	
APPENDIX B. SAR MEASUREMENT DATA	
APPENDIX C. TEST SETUP PHOTOGRAPHS	
APPENDIX D. CALIBRATION DATA	39

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 5 of 39

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Francisco Band	Highest Reported 1g-SAR(W/Kg)	SAR Test Limit	
Frequency Band	Head SAR (with 10mm separation)	(W/Kg)	
Bluetooth	0.080	1.6	
SAR Test Result	PASS	(8) The stone of Globa	

Erogueney Band	Highest Reported 10g-Extremity SAR(W/Kg)				
Frequency Band	Body SAR(with 10mm separation)	(W/Kg)			
Bluetooth	0.039	4.0			
SAR Test Result	PASS	Attestation			

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg for 1g-SAR&4.0W/Kg for 10g-Extremity SAR), specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

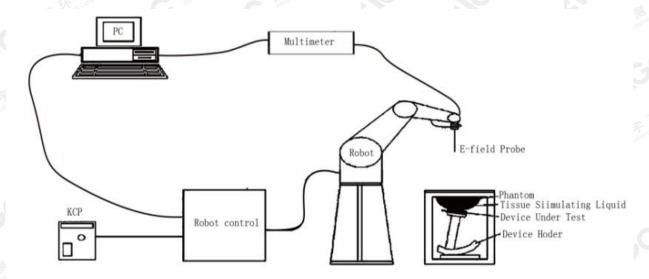
Page 6 of 39

2. GENERAL INFORMATION

General Information	
Product Designation	10Upad
Test Model	SP36
Hardware Version	v1.0
Software Version	v1.0
Device Category	Portable
RF Exposure Environment	Uncontrolled
Antenna Type	Internal
Bluetooth	GC
Bluetooth Version	□V2.0 □V2.1 □V2.1+EDR □V3.0 □V3.0+HS □V4.0 □V4.1
Operation Frequency	2402~2480MHz
Type of modulation	⊠GFSK ⊠∏/4-DQPSK ⊠8-DPSK
Maximum Output Power	19.73dBm
Antenna Gain	0.48dBi
Li-ion Battery	C C
Brand Name	SZM0150
Model Name	602248
Manufacturer Name	Shenzhen Hugnen Technology(HGT) Co. , LTD.
Manufacturer Address	B2, Baolihua Industrial Park, Baihua Community, Guangming Shenzhen
Capacitance	560mAh
Rated Voltage/ Charging Voltage	DC3.7V/ DC4.2V

Note: The sample used for testing is end product.

Droduct	Туре	-1111		TK Compliance	3 bal Compline	(B) Station of
Product	□ Production unit	THE THE	- 18	dentical Prot	otype	


The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (c), this document to cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com. AGC 3

Page 7 of 39

3. SAR MEASUREMENT SYSTEM

3.1. The SATIMO system used for performing compliance tests consists of following items

The COMOSAR system for performing compliance tests consists of the following items:

- The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software.
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues.
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- •The phantom, the device holder and other accessories according to the targeted measurement.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 8 of 39

3.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SATIMO. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SATIMO conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528 and relevant KDB files.) The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	SSE2
Manufacture	MVG
Identification No.	SN 08/16 EPGO282
Frequency	0.7GHz-6GHz Linearity:±0.06dB(700MHz-6GHz)
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.06dB
Dimensions	Overall length:330mm Length of individual dipoles:2mm Maximum external diameter:8mm Probe Tip external diameter:2.5mm Distance between dipoles/ probe extremity:1mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

3.3. Robot

The COMOSAR system uses the KUKA robot from SATIMO SA (France). For the 6-axis controller COMOSAR system, the KUKA robot controller version from SATIMO is used.

The XL robot series have many features that are important for our application:

☐ High precision (repeatability 0.02 mm)

☐ High reliability (industrial design)

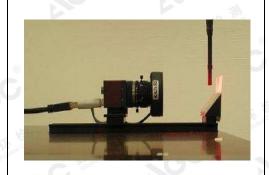
☐ Jerk-free straight movements

□ Low ELF interference (the closed metallic

construction shields against motor control fields)

□ 6-axis controller

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Report No.: AGC00150180401FH01 Page 9 of 39

3.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link.

During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

3.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles. The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity

 $\epsilon r=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 10 of 39

3.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

□ Left head

□ Right head

□ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 11 of 39

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}\Big|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;

E is the r.m.s. value of the electric field strength in the tissue in volts per meter;

σ is the conductivity of the tissue in siemens per metre;

ρ is the density of the tissue in kilograms per cubic metre;

c_b is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt}$ | t = 0 is the initial time derivative of temperature in the tissue in kelvins per second

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 12 of 39

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	≤2 GHz: ≤15 mm 2 – 3 GHz: ≤12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test dimeasurement point on the test.	on, is smaller than the above, must be ≤ the corresponding levice with at least one

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 13 of 39

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

			Self a Communication of the Co			
Maximum zoom scan s	patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ $3 - 4 \text{ GHz}: \leq 5 \text{ mm}^*$ $4 - 6 \text{ GHz}: \leq 4 \text{ mm}^*$			
uniform g		grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Z_{000m}}(1)$: between 1st two points closest to phantom surface $\leq 4 \text{ mm}$		3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points	$\leq 1.5 \cdot \Delta z_{Z_{0000}}(n-1)$				
Minimum zoom scan volume	X. V. Z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago-gent.com.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Page 14 of 39

4.3. RF Exposure Conditions

Test Configuration and setting:

The device is a bluetooth headset, and supports Bluetooth wireless technology.

For SAR testing, the device was controlled by software to test at reference fixed frequency points.

4.3.1 Antenna Location:

Edge2

Edge4

Edge3

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

IGC 8

Page 15 of 39

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 5.2

5.1. The composition of the tissue simulating liquid

Ingredient (% Weight) Frequency (MHz)	Water	Nacl	Polysorbate 20	DGBE	1,2 Propanediol	Triton X-100
2450 Head	71.88	0.16	0.0	7.99	0.0	19.97
2450 Body	70	15 (0)	0.0	9	0.0	20

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

Target Frequency	head		ŀ	oody
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73

($\epsilon r = relative permittivity$, $\sigma = conductivity and <math>\rho = 1000 \text{ kg/m}$ 3)

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 16 of 39

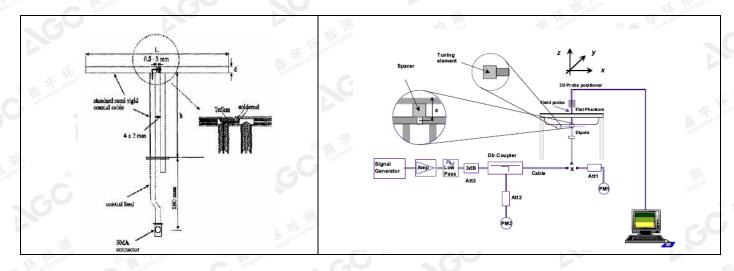
5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using SATIMO Dielectric Probe Kit and R&S Network Analyzer ZVL6.

		Tissue Stimulant M	easurement for 2450MHz			
*	Fr.	Dielectric Pa	Tissue	- 36		
	(MHz)	εr39.2(37.24-41.16)	δ[s/m]1.80(1.71-1.89)	Temp [°C]	Test time	
Head	2402	39.42	1.75	III.	T.	
	2441	38.87	1.80	24.2	July 12 2010	
	2450	38.26	1.85	21.3	July 12,2018	
	2480	37.90	1.85			
		Tissue Stimulant M	easurement for 2450MHz			
(6)	Fr.	Dielectric Pa	rameters (±5%)	Tissue	Williams (8)	
	(MHz)	εr52.7(50.065-55.335)	δ[s/m]1.95(1.8525-2.0475)	Temp [°C]	Test time	
Body	2402	53.75	1.89			
Compliance	2441	53.06	1.92	21.6	July 12 2019	
	2450	52.58	1.95	∠1.0	July 12,2018	
	2480	51.99	1.96	Global Coll.	3 St. Lation of Global	

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gott.com.

Page 17 of 39

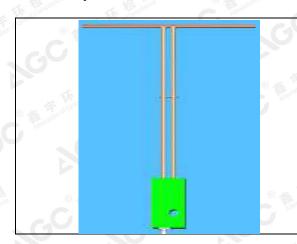

6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each SATIMO system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.



The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 18 of 39

6.2. SAR System Check 6.2.1. Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of IEEE. the table below provides details for the mechanical and electrical Specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	51.5	30.4	3.6

6.2.2. System Check Result

System Per	formance	Check a	t 2450MHz for He	ead				
Validation K	it: SN 29/	/15DIP 20	6450-393					
Frequency		get W/Kg)	Reference Result (± 10%)		Tested Value(W/Kg)		Tissue Temp.	Test time
[MHz]	1g	10g	1g	10g	1g	10g	[°C]	
2450	54.53	24.30	49.077-59.983	21.87-26.730	52.10	23.79	21.3	July 12,2018
System Peri	formance	Check a	t 2450MHz for Bo	ody				
Frequency		get (W/Kg)		Reference Result (± 10%)		sted (W/Kg)	Tissue Temp.	Test time
[MHz]	1g	10g	1g	10g	1g	10g	[°C]	Allesia
2450	49.92	23.16	44.928-54.912	20.844-25.476	49.83	22.51	21.6	July 12,2018

Note

(1) We use a CW signal of 18dBm for system check, and then all SAR values are normalized to 1W forward power. The result must be within ±10% of target value.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 19 of 39

7. EUT TEST POSITION

This EUT was tested in Head SAR Edge2 & Body SAR Edge 2.

7.1.Test Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 10mm

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 20 of 39

8. SAR EXPOSURE LIMITS

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit (W/kg)
Spatial Peak SAR (1g cube tissue for brain or body)	1.60
Spatial Average SAR (Whole body)	0.08
Spatial Peak SAR (Limbs)	4.0

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (SC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Page 21 of 39

9. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2F., Bldg.2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District B112-B113, Shenzhen 518012
NVLAP Lab Code	600153-0
Designation Number	CN5028
Test Firm Registration Number	682566
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by National Voluntary Laboratory Accreditation program, NVLAP Code 600153-0

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 22 of 39

10. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Current calibration date	Next calibration date	
SAR Probe	MVG	SN 08/16 EPGO282	Aug. 08,2017	Aug. 07,2018	
Phantom	SATIMO	SN_4511_SAM90	Validated. No cal required.	Validated. No cal required.	
Liquid	SATIMO	下程 ^测	Validated. No cal required.	Validated. No cal required.	
Multimeter	Keithley 2000	1188656	Mar. 01,2018	Feb. 28,2019	
Dipole	SATIMO SID2450	SN29/15 DIP 2G450-393	July 05,2016	July 04,2019	
Signal Generator	Agilent-E4438C	US41461365	Mar. 01,2018	Feb. 28,2019	
Vector Analyzer	Agilent / E4440A	US41421290	Mar. 01,2018	Feb. 28,2019	
Network Analyzer	Rhode & Schwarz ZVL6	SN100132	Mar. 01,2018	Feb. 28,2019	
Attenuator	Warison /WATT-6SR1211	N/A	N/A	N/A	
Attenuator	Mini-circuits / VAT-10+	N/A	N/A	N/A	
Amplifier	EM30180	SN060552	Mar. 01,2018	Feb. 28,2019	
Directional Couple	Werlatone/ C5571-10	SN99463	June 12,2018	June 11,2019	
Directional Couple	Werlatone/ C6026-10	SN99482	June 12,2018	June 11,2019	
Power Sensor	NRP-Z21	1137.6000.02	Oct. 12,2017	Oct. 11,2018	
Power Sensor	NRP-Z23	US38261498	Mar. 01,2018	Feb. 28,2019	
Power Viewer	R&S	V2.3.1.0	N/A	N/A	

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

The results spowth this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Page 23 of 39

11. MEASUREMENT UNCERTAINTY

Measur	ement un	certainty fo	r Dipole	averaged	over 1 grar	n / 10 gran	า.		
а	b	С	d	e f(d,k)	f	g	h cxf/e	i c×g/e	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System			:111)		-011	- 71		The state of	Compliance
Probe calibration	E.2.1	5.831	N	1 水板	1	15h Kil Compilar	5.83	5.83	00
Axial Isotropy	E.2.2	0.695	R ®	√3	√0.5	√0.5	0.28	0.28	00
Hemispherical Isotropy	E.2.2	1.045	R	$\sqrt{3}$	√0.5	√0.5	0.43	0.43	oo
Boundary effect	E.2.3	1.0	R	√3	1	1	0.58	0.58	œ
Linearity	E.2.4	0.685	R	$\sqrt{3}$	1	1 8 4	0.40	0.40	00
System detection limits	E.2.4	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	oo
Modulation response	E2.5	3.0	R	√3	1	1	1.73	1.73	00
Readout Electronics	E.2.6	0.021	N	1	1	The Time	0.021	0.021	00
Response Time	E.2.7	0	R	√3	18 %	1	0	0	00
Integration Time	E.2.8	1.4	R	√3	1	1	0.81	0.81	00
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	œ
RF ambient conditions-reflections	E.6.1	3.0	R	√3	1	1 4	1.73	1.73	œ
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1 Allestation of	0.81	0.81	00
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1	1	0.81	0.81	oo
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	1 张		1.33	1.33	00
Test sample Related	The Manager	® <u>&</u>	Fion of Global	® 48	astation of Gill		Attes	60	1
Test sample positioning	E.4.2	2.6	N	1	1	1	2.6	2.6	8
Device holder uncertainty	E.4.1	3	N	1	1	1	3	3	00
Output power variation—SAR drift measurement	E.2.9	5	R	$\sqrt{3}$	n liance 1	TH KE	2.89	2.89	00
SAR scaling	E.6.5	5	R a	$\sqrt{3}$	18 %	Hallon of 1	2.89	2.89	∞
Phantom and tissue parameters	® ##estation	1,0	6	The	60				
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	1	1	2.31	2.31	00
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N.	1	For to 1 a Comple	0.84	1.90	1.60	oc
Liquid conductivity measurement	E.3.3	8 4 100 of G	N	- (1)	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	00
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	00
Combined Standard Uncertainty	(i) Mestation of C	(2)	RSS			NO	9.79	9.59	
Expanded Uncertainty (95% Confidence interval)		0	K=2				19.58	19.18	Kil Compi

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.cett.com.

Page 24 of 39

a	b	С	d	e f(d,k)	f	g	h cxf/e	i c×g/e	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System	J	-G *	ile.						:700
Probe calibration drift	E.2.1.3	0.5	N	1	1	1 1	0.50	0.50	8
Axial Isotropy	E.2.2	0.695	R	√3	0	T O	0.00	0.00	00
Hemispherical Isotropy	E.2.2	1.045	R	√3	0	0	0.00	0.00	00
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	0	0	0.00	0.00	00
Linearity	E.2.4	0.685	R	√3	0	0	0.00	0.00	00
System detection limits	E.2.4	1.0	R	$\sqrt{3}$	- 100 - 0	© 0	0.00	0.00	00
Modulation response	E2.5	3.0	R	√3	0	Co	0.00	0.00	00
Readout Electronics	E.2.6	0.021	N	1	0	0	0.00	0.00	00
Response Time	E.2.7	0	R	√3	0	0	0.00	0.00	00
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	00
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	00
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	00
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	-july	® #1 Finds	0.81	0.81	00
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1	U 1	0.81	0.81	00
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	0	0	0.00	0.00	00
System check source (dipole)	IIII		私	ompliance	The state of	nplia.	® # Ighon of GI	(B)	Altestal
Deviation of experimental dipoles	E.6.4	2	N	1 8	estation 1	1-	2	2	8
Input power and SAR drift measurement	8,6.6.4	5	R	$\sqrt{3}$	1	1	2.89	2.89	00
Dipole axis to liquid distance	8,E.6.6	2	R	√3	1	1,5	1.15	1.15	œ
Phantom and tissue parameters		AST SOUCE	•	五 天下 清空	mpliano	E Global Com		Attestation	
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	d 4	R	$\sqrt{3}$	1	to tation 3	2.31	2.31	80
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	00
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5	N	1 %	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	00
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	00
Combined Standard Uncertainty		KET WALES	RSS	12 mpllance	® 45th	in of Global	5.564	5.205	
Expanded Uncertainty (95% Confidence interval)	The spin of Gr	OSI COLLIN	K=2		C AMES	\ G	11.128	10.410	

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-gett.com.

Page 25 of 39

System Va	lidation ι	ıncertainty	for Dipo	le average	ed over 1 g	ram / 10 gr	am.		
a	b	c Tol	d Prob.	e f(d,k)	f	g	h cxf/e 1g Ui	i cxg/e 10g Ui	k
Uncertainty Component	Sec.	(±%)	Dist.	Div.	Ci (1g)	Ci (10g)	(±%)	(±%)	vi
Measurement System		2.G	Hes						litte:
Probe calibration	E.2.1	5.831	N	1	1	1	5.83	5.83	00
Axial Isotropy	E.2.2	0.695	R	√3	ance 1	F Glot Complian	0.40	0.40	8
Hemispherical Isotropy	E.2.2	1.045	R	√3	0	0	0.00	0.00	8
Boundary effect	E.2.3	1.0	R	√3	1	1	0.58	0.58	8
Linearity	E.2.4	0.685	R	√3	1	1	0.40	0.40	8
System detection limits	E.2.4	1.0	R	√3	3/ Com	® 1 ₈	0.58	0.58	00
Modulation response	E2.5	3.0	R	√3	0	0	0.00	0.00	00
Readout Electronics	E.2.6	0.021	N	1	1	1	0.021	0.021	8
Response Time	E.2.7	0.0	R	√3	0	0	0.00	0.00	00
Integration Time	E.2.8	1.4	R	√3	0	0	0.00	0.00	oc
RF ambient conditions-Noise	E.6.1	3.0	R	√3	1	1	1.73	1.73	00
RF ambient conditions-reflections	E.6.1	3.0	R	√3	1	1	1.73	1.73	00
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	Findiance 1	® # 15 of	0.81	0.81	00
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1	Alles 1	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	1	1	1.33	1.33	00
System check source (dipole)	lim		不是	ompliance	TK TE	phanes	® # Jion of G	opal) A State of the s
Deviation of experimental dipole from numerical dipole	E.6.4	5.0	Nicoball	100	astalion of 1	1-	5.00	5.00	o
Input power and SAR drift measurement	8,6.6.4	5.0	R	√3	1	1	2.89	2.89	00
Dipole axis to liquid distance	8,E.6.6	2.0	R	√3	1	1,5	1.15	1.15	00
Phantom and tissue parameters		457 2000 11111		五天	ompliano	F Global Comm		Attestation.	
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4.0	R	√3		te lation 3	2.31	2.31	oc
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	8
Liquid conductivity measurement	E.3.3	4.0	N	1	0.78	0.71	3.12	2.84	N
Liquid permittivity measurement	E.3.3	5.0	N N	1	0.23	0.26	1.15	1.30	M
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	α
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	α
Combined Standard Uncertainty		HE JULIE	RSS	* Ampliance	® ##	of Global	9.718	9.517	
Expanded Uncertainty (95% Confidence interval)	新年 等 of G	Oal Cours	K=2	C) 30	C M	. C	19.437	19.035	

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 26 of 39

12. CONDUCTED POWER MEASUREMENT

Bluetooth V4.1(BR/EDR)

Modulation			Frequency(MHz)	Maximum Peak Power (dBm)
obal Comp.	Atles W	0	2402	19.05
GFSK	10	39	2441	19.73
CO "		78	2480	19.60
(III)	litz:	O Global Comm	2402	18.86
π /4-DQPSK	2	39	2441	18.72
Tation of Globa	Mary and Calabat	78	2480	19.60
Paris C	Aites	0	2402	18.77
8-DPSK	3	39	2441	19.71
	在	78	2480	19.58

Bluetooth_V4.1(BLE)

Modulation	Channel	Frequency(MHz)	Maximum Peak Power (dBm)
	0	2402	5.89
GFSK	19	2440	9.85
GI SK	39	2480	8.88

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 27 of 39

13. TEST RESULTS

13.1. SAR Test Results Summary 13.1.1. Test position and configuration

- 1. The EUT is a model of Bluetooth headset. According to user manual, the EUT is installed in the helmet, when remove it out of the helmet, the EUT can also normally work.
- 2. According to KDB 447498 D01 General RF Exposure Guidance v06, due to the Max peak power for Bluetooth is more than the test exclusion threshold, which have to be tested.
- 3. For SAR testing, the device was controlled by software to test at reference fixed frequency.

13.1.2. Operation Mode

- Per KDB 447498 D01 v06, for each exposure position, if the highest 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.
- 2. Per KDB 865664 D01 v01r04,for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is ≥0.8W/Kg, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/Kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20.
- 3. Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:

 Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)]
- 4. According to KDB 447498 D01, annex A, SAR is not required for Bluetooth_V4.1(BLE). because its maximum output power is less than 19 mW.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 28 of 39

13.1.3. Test Result

270 (4)								- Kara 1131.	
SAR MEASUREME	ENT								
Depth of Liquid (cm	1):>15			Rel	ative Humidity	/ (%): 50.7			
Product: 10Upad									
Test Mode: BT									
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg
Head SAR Edge2	1DH5	39	2441	0.06	0.073	20.00	19.73	0.078	1.6
Head SAR Edge2	2DH5	78	2480	-0.05	0.073	20.00	19.60	0.080	1.6
Head SAR Edge2	3DH5	39	2441	0.03	0.073	20.00	19.71	0.078	1.6

Note:

(1)When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

· Glo		aloba.	(a) (c)	-3-010					
SAR MEASUREM	ENT								
Depth of Liquid (cn	n):>15			Re	lative Humidity	(%): 50.7			
Product: 10Upad									
Test Mode: BT									
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	10g-Extremity SAR (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg
Body SAR Edge2	2DH5	78	2480	-0.02	0.036	20.00	19.60	0.039	4.0

The results showed the sample (s) tested unless otherwise stated and the sample (s) are retained for 30 days only. The document is issued by (SC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

Page 29 of 39

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab Date: July 12,2018

System Check Head 2450 MHz

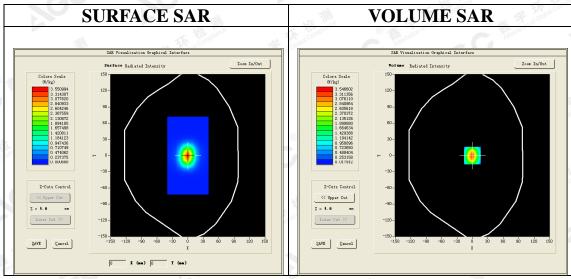
DUT: Dipole 2450 MHz Type: SID 2450

Communication System CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Conv.F=2.52 Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ mho/m; $\epsilon r = 38.26$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):21.9, Liquid temperature (°C): 21.3

SATIMO Configuration


• Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

· Sensor-Surface: 4mm (Mechanical Surface Detection)

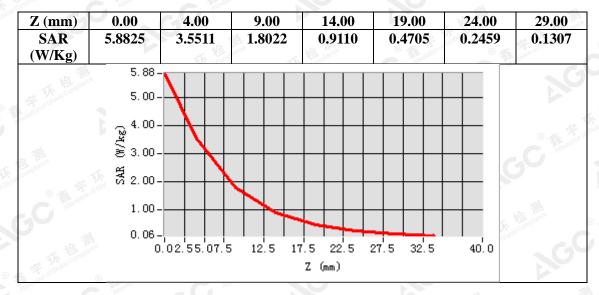
· Phantom: SAM twin phantom

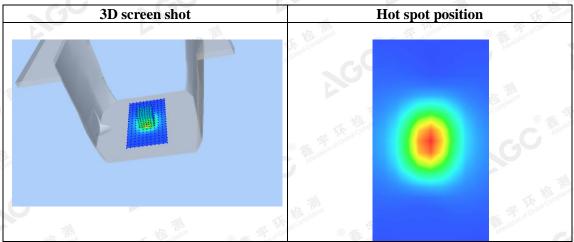
Measurement SW: OpenSAR V4_02_32

Configuration/System Check 2450MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 2450MHz Head/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm

Maximum location: X=0.00, Y=0.00 SAR Peak: 5.88 W/kg

SAR 10g (W/Kg)	1.501239
SAR 1g (W/Kg)	3.287164


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Attestation of Global Compliance

GC

Page 30 of 39

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Date: July 12,2018

Page 31 of 39

Test Laboratory: AGC Lab System Check Body 2450 MHz

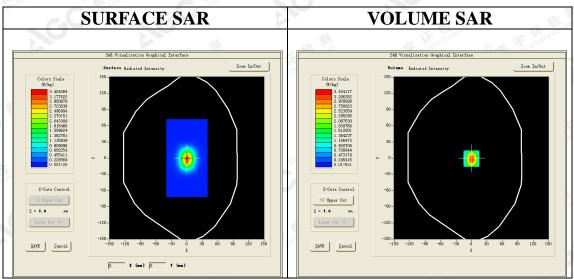
DUT: Dipole 2450 MHz Type: SID 2450

Communication System CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Conv.F=2.58 Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.95$ mho/m; $\epsilon r = 52.58$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):21.9, Liquid temperature (°C): 21.6

SATIMO Configuration

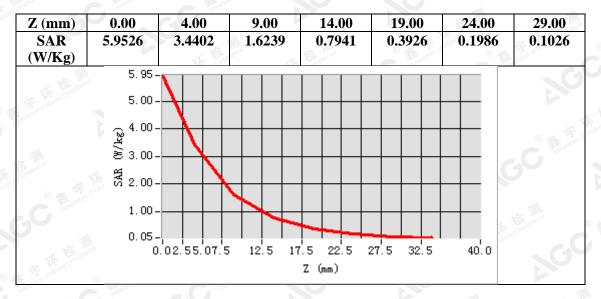

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

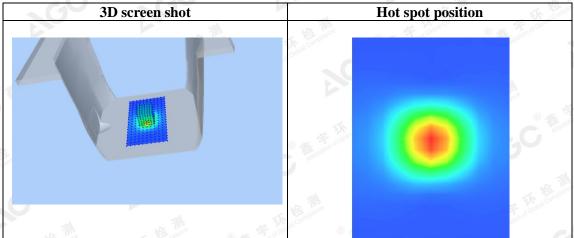
Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 2450MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 2450MHz Body/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm


Maximum location: X=0.00, Y=-1.00 SAR Peak: 5.95 W/kg


SAR 10g (W/Kg)	1.420153
SAR 1g (W/Kg)	3.143881

The results spower that the sample (s) the sample (s) tested unless otherwise stated and the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attrictly (www.agc-gent.com.

Page 32 of 39

The results spowth this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Page 33 of 39

APPENDIX B. SAR MEASUREMENT DATA

Test Laboratory: AGC Lab Date: July 12,2018

Bluetooth High-Head SAR- Edge2 (2DH5)

DUT: 10Upad; Type: SP36

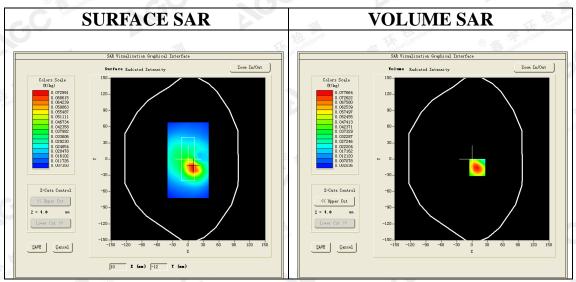
Communication System: Bluetooth; Communication System Band: Bluetooth; Duty Cycle: 1:1.28; Conv.F=2.52; Frequency: 2480 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ mho/m; $\epsilon r = 37.90$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient temperature ($^{\circ}$):21.9, Liquid temperature ($^{\circ}$): 21.3

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


· Sensor-Surface: 4mm (Mechanical Surface Detection)

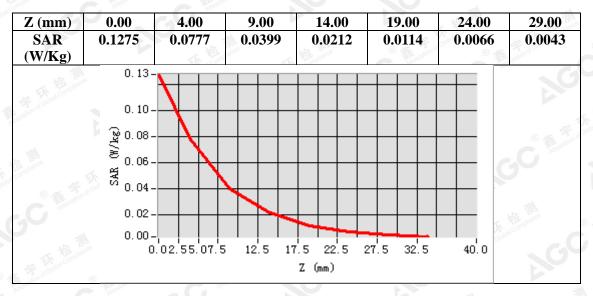
· Phantom: SAM twin phantom

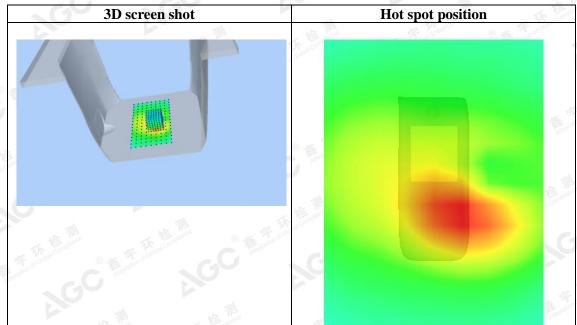
Measurement SW: OpenSAR V4_02_32

Configuration/Bluetooth High- Head SAR- Edge2/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/Bluetooth High- Head SAR- Edge2 /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

sam_direct_droit2_surf8mm.txt
7x7x7,dx=5mm dy=5mm dz=5mm
Validation plane
Head SAR-Edge2
Bluetooth
High
Crest factor: 1.28

Maximum location: X=10.00, Y=-16.00 SAR Peak: 0.13 W/kg


SAR 10g (W/Kg)	0.037979
SAR 1g (W/Kg)	0.072953


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

GC

Page 34 of 39

The results specified this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-gett.com.

Date: July 12,2018

Page 35 of 39

Test Laboratory: AGC Lab

Bluetooth High-BodySAR- Edge2 (2DH5)

DUT: 10Upad; Type: SP36

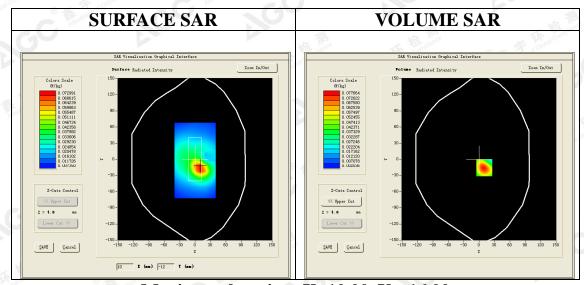
Communication System: Bluetooth; Communication System Band: Bluetooth; Duty Cycle: 1:1.28; Conv.F=2.58; Frequency: 2480 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.96$ mho/m; $\epsilon r = 51.99$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C):21.9, Liquid temperature (°C): 21.6

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/Bluetooth High- Body SAR- Edge2/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/Bluetooth High- Body SAR- Edge2 /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

sam_direct_droit2_surf8mm.txt
Sam_unect_uronz_surronnin.txt
7x7x7,dx=5mm dy=5mm dz=5mm
Validation plane
Body SAR-Edge2
Bluetooth
High Management
Crest factor: 1.28

Maximum location: X=10.00, Y=-16.00

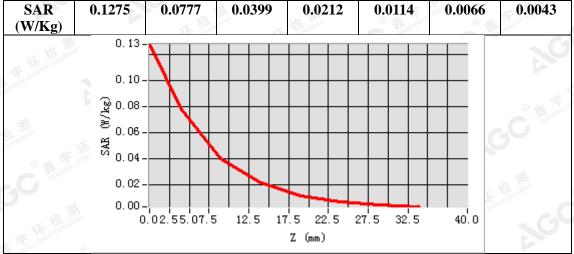
SAR Peak: 0.13 W/kg

SAR 10g (W/Kg)	0.036285
SAR 1g (W/Kg)	0.070536

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

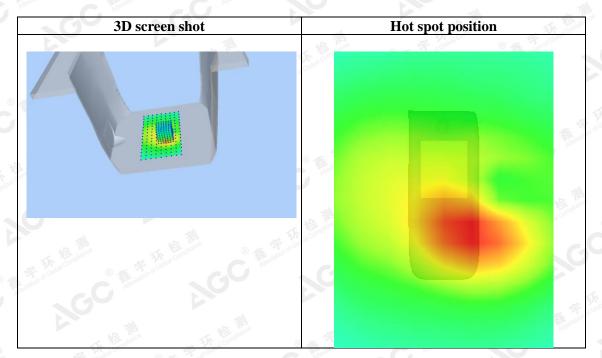
Attestation of Global Compliance

GC


Z (mm)

0.00

4.00


Report No.: AGC00150180401FH01 Page 36 of 39

19.00	24.00	29.00		
0.0114	0.0066	0.0043		

14.00

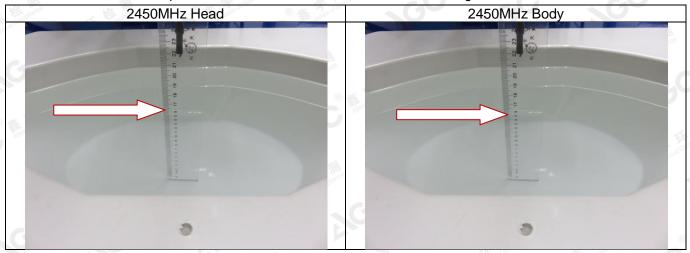
9.00

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 37 of 39

APPENDIX C. TEST SETUP PHOTOGRAPHS

Head SAR Edge2


The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by CC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a test; //www.agc contract cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a test confirmed at a te

Page 38 of 39

DEPTH OF THE LIQUID IN THE PHANTOM—ZOOM IN

Note: The position used in the measurement were according to IEEE 1528-2013

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true from the sample (s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true from the sample (s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a sample (s) are retained for 30 days only. The document is issued by KGC, this document is a sample (s) are retained for 30 days only. The document is issued by KGC, this document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) a

Page 39 of 39

APPENDIX D. CALIBRATION DATA

Refer to Attached files.

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (CE), this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed et attp://www.agc.gett.com.