FCC ID: ALH29473110 2.1033(c)(9) TUNE-UP (FCC ID:ALH29463110) (FCC ID:ALH29473110) # TK-260G/TK-270G and TK-360G/TK-370G Tuning Procedure Before attempting to tune the transceiver, connect the unit to a suitable power supply. Whenever the transmitter tuned, must be connected to a suitable dummy load, unless the instruction specify otherwise. The speaker output connector must be terminated with a 80hms dummy load at any time during the tuning and connected to an AC voltmeter and an audio distortion meter or a SINAD measurement meter at all the time during the tuning. # 1-1 Adjusting Mode Connect with the Radio and Personal Computer to COMPUTER PROGRAMMING INTERFACE(KPG-8 or KPG-22) ## 1-2 Tuning Items - Battery Warning Level - · RF Power - Squelch Threshold Level(Tight) - · Squelch Threshold Level(Open) - · QT Deviation - DQT Deviation - · QT Balance - DQT Balance - DTMF Deviation - · Single Tone Deviation ### 1-3 Test Mode Starting Test Mode, select the Tuning Frequency and Signaling. - 1-3-1 Open the Program Menu of Window. - 1-3-2 Press [T] or use [1][1] keys to Test Mode, then Press the [Enter]. - 1-3-3 Starting the Test Mode channel and Signaling after Tuning Data Read. - 1-3-4 Use $[\leftarrow][\rightarrow]$ keys to select channel then use $[\downarrow][\uparrow]$ keys to select channel number then Press the [Enter]. - 1-3-5 Use [←][→] keys to select Signaling then use [↓][†] keys to select Signaling number 12 waves. - 1-3-6 Press the [Space],[F2] then Transmitter on. - 1-3-7 Back to Reception during transmitter use [Space],[F2]. # 2-1 Tuning Mode Starting Tuning Mode from Test Mode. 2-1-1 Press the [F10] during the TEST MODE CHANNEL & SIGNALING MODE then starting Tuning Mode and message Window open. | Tuning Mode | | | | | |-------------|----------------------------|--|--|--| | 1 | Battery Warning Level | | | | | 1 | RF High Power | | | | | | RF Low Power | | | | | | QT VCO Balance | | | | | + | QT TCXO Balance | | | | | | DQT VCO Balance | | | | | | DQT TCXO Balance | | | | | | Max Deviation | | | | | | QT Fine Deviation | | | | | | DQT Fine Deviation | | | | | | DTMF Fine Deviation | | | | | | Single Tone Fine Deviation | | | | | | Sensitivity | | | | | | Squelch(Tight) | | | | | | Squelch(Open) | | | | - 2-1-2 Use [\][†] keys select tuning item [Battery Warning Level] then press [Enter]. - 2-1-3 Use [←][→] keys to adjust the level then press [Enter]. - 2-1-4 Select tuning item [RF High Power] then press [Enter]. - 2-1-5 Use [←][→] keys to adjust the level then press [Enter]. - 2-1-6 Select tuning item [RF Low Power] then press [Enter]. - 2-1-7 Use $[\leftarrow][\rightarrow]$ keys to adjust the level then press [Enter]. - 2-1-8 Select tuning item [QT VCO Balance] then press [Enter]. - 2-1-9 Use [←][→] keys to adjust the level then press [Enter]. - 2-1-10 Select tuning item [QT TCXO Balance] then press [Enter]. - 2-1-11 Use [←][→] keys to adjust the level then press [Enter]. - 2-1-12 Select tuning item [DQT VCO Balance] then press [Enter]. - 2-1-13 Use $[\leftarrow][\rightarrow]$ keys to adjust the level then press [Enter]. - 2-1-14 Select tuning item [DQT TCXO Balance] then press [Enter]. - 2-1-15 Use $[\leftarrow][\rightarrow]$ keys to adjust the level then press [Enter]. - 2-1-16 Select tuning item [Max Deviation] then press [Enter]. - 2-1-17 Use [←][→] keys to adjust the level then press [Enter]. - 2-1-18 Select tuning item [QT Fine Deviation] then press [Enter]. - 2-1-19 Use $[\leftarrow][\rightarrow]$ keys to adjust the level then press [Enter]. - 2-1-20 Select tuning item [DQT Fine Deviation] then press [Enter]. - 2-1-21 Use [←][→] keys to adjust the level then press [Enter]. - 2-1-22 Select tuning item [DTMF Fine Deviation] then press [Enter]. - 2-1-23 Use [←][→] keys to adjust the level then press [Enter]. - 2-1-24 Select tuning item [Single Tone Fine Deviation] then press [Enter]. - 2-1-25 Use [←][→] keys to adjust the level then press [Enter]. - 2-1-26 Select tuning item [Sensitivity] then press [Enter]. - 2-1-27 Use [←][→] keys to adjust the level then press [Enter]. - 2-1-28 Select tuning item [Squelch(Tight)] then press [Enter]. - 2-1-29 Use [←][→] keys to adjust the level then press [Enter]. - 2-1-30 Select tuning item [Squelch(Open)] then press [Enter]. - 2-1-31 Use $[\leftarrow][\rightarrow]$ keys to adjust the level then press [Enter]. Press [Esc] then finish the TEST MODE. (FCC ID:ALH29473110) ### TK-360G/TK-370G CIRCUIT DESCRIPTION The KENWOOD model TK-360G, TK-370G are UHF/FM hand-held transceiver designed to operate in the frequency range of 450 to 470MHz. The unit consists of a receiver, a transmitter, a phase-locked loop (PLL) frequency synthesizer, a digital control circuit, power supply circuit and a signaling circuit. ### 1. RECEIVER CIRCUIT The receiver is double conversion superheterodyne, designed to operate in the frequency range of 450 to 470MHz. ### 1.1 FRONT-END RF AMPLIFIER An incoming signal from the antenna is applied to on RF amplifier (Q301) after passing through a transmit/receive switch circuit (D3 and D7 are off) and a band pass filter (L308,L309). After the signal is amplified (Q301), the signal is filtered by a band pass filter (L302,L304 and L306) to eliminate unwanted signals before it is passed to the first mixer. #### 1.2 FIRST MIXER The signal from the RF amplifier is heterodyned with the first local oscillator signal from the PLL frequency synthesizer circuit at the first mixer (Q19) to become a 49.95MHz first intermediate frequency (1st IF) signal. The first IF signal is fed through two monolithic crystal filters (MCFs:XF1) to further remove spurious signals. ### 1.3 IF AMPLIFIER The first IF signal is amplified by Q22, and then enters IC4 (FM processing IC). The signal is heterodyned again with a second local oscillator signal within IC4 to become a 450kHz second IF signal. The second IF signal is fed through a 450kHz ceramic filter to further eliminate unwanted signals before it is amplified and FM detected in IC4. ### 1.4 AUDIO AMPLIFIER The recovered audio signal obtained from IC4 is amplified by IC16 (1/2), high-pass filtered by IC14, and de-empfasized by IC14. The audio signal is then amplified by IC15. The processed audio signal passes through an audio volume control and is amplified to a sufficient level to drive a loud speaker by an audio power amplifier (IC11). ### 1.5 SQUELCH AND MUTE CIRCUIT The output signal from the squelch circuit, which consists of IC4, is applied to the microprocessor. The microprocessor controls the mute control line (MUTE) according to the input signal and the microprocessor task condition. ### 2. TRANSMITTER ### 2.1 MICROPHONE CIRCUIT The signal from the microphone is high-pass filtered by IC14, passed through microphone mute circuit (Q35), limited and pre-emphasized by IC14,D23. ### 2.2 MODULATOR CIRCUIT The output of the Low-pass filter network (IC14) is passed to the D/A converter (IC17) for maximum deviation adjustment and is applied to a varactor diode (D6) in the voltage controlled oscillator (VCO) located in the frequency synthesizer section. # 2.3 DRIVER AND FINAL POWER AMPLIFIER CIRCUITS The transmit signal obtained from the VCO buffer amplifier Q3 is amplified to approximately 17dBm by Q4,Q5 and Q6. This amplified signal is passed to the power module (IC1). The power module consists of a 2-stages amplifier and is capable of producing up to 4W of RF power. # 2.4 TRANSMIT/RECEIVE SWITCHING CIRCUIT The power module output signal is passed through a 3-stages low-pass filter network and a transmit/receive switching circuit before it is passed to the antenna terminal. The transmit/receive switching circuit is comprised of D3 and D7. D3 and D7 are turned on (conductive) in transmit mode and turned off (isolated) in receive mode. # 2.5 AUTOMATIC POWER CONTROL CIRCUIT AND TRANSMITTER OUTPUT LEVEL SWITCH The automatic power control (APC) circuit stabilizes the transmitter output power at a predetermined level by sensing the collector current of the final amplifier Field Effect Transistor (FET) in the power module. The voltage comparator IC3 (2/2) compares the voltage obtained by the above drain current with a reference voltage, set using the microprocessor and Q15. An APC voltage proportional to the difference between the sensed voltage and the reference voltage appears at the output of IC3 (2/2). This output voltage controls pin 2 of the power module, which keeps the transmitter output power constant. The transmitter output power can be varied to 1W or 2W output power by the microprocessor, which in turn changes the reference voltage and hence the output power. # 3. PLL FREQUENCY SYNTHESIZER #### 3.1 PLL The frequency step of the PLL circuit is 5 or 6.25kHz. A 16.8MHz reference oscillator signal is divided at IC2 by a fixed counter to produce the 5 or 6.25kHz reference frequency. The VCO output signal is buffer amplified by Q1, then divided in IC2, by a dual-modules programmable counter in this case. The divided signal is compared in phase with the 5 or 6.25kHz reference signal in the phase comparator also in IC2. The output signal from the phase comparator is low-pass filtered and passed to the VCO to control the oscillator frequency. # 3.2 VOLTAGE CONTROLLED OSCILLATOR (VCO) The operating frequency is generated by Q2 in transmit mode and Q10 in receive mode. The oscillator frequency is controlled by applying the VCO control voltage, obtained from the phase comparator, to the varactor diodes (D2 and D4 in transmit mode and D9 and D11 in receive mode). The T/R pin is set high in receive mode causing Q7 and Q8 to turn off Q2, and turn on Q10, and is set low for transmit mode. The outputs from Q2 and Q10 are amplified by Q3 and outputted to the buffer amplifiers. # 3.3 UNLOCK DETECTOR CIRCUIT If a pulse signal appears at the LD pin of IC2, an unlock condition occurs, the DC voltage, obtained from D1, R1 and C6, causes the voltage applied to the UL pin of the microprocessor to go low. When the microprocessor detects this condition, the transmitter is disabled by ignoring the push-to-talk switch input signal. ### 4. DIGITAL CONTROL CIRCUIT #### 4.1 KEY SWITCHES AND ROTARY ENCODER INPUT CIRCUIT The key switches and rotary encoder (channel selector) information are entered directly into the microprocessor (IC13). ### 4.2 RESET CIRCUIT When the power is initially turned on, IC8 detects a 5V reference voltage rise, then output a high level signal to reset the microprocessor (IC13). ### 4.3 LAMP CIRCUIT An LED is provided to illuminate the LCD and its operation is controlled by the microprocessor. #### 5. POWER SUPPLY CIRCUIT ### 5.1 POWER SWITCHING CIRCUIT A 5V reference voltage [5M] supply for the control circuit is derived from an internal battery by IC7. This reference is used to provide a 5V supply in transmit mode [5T], and a 5V supply in receive mode [5R] and a 5V supply common in both modes [5C] based on the control signal sent from the microprocessor. ### 5.2 BATTERY SAVER CIRCUIT If no activity is detected (squelch closed) on the channel, the units enters into the battery save mode controlled by the microprocessor. In this mode, SAVE line is set low, causing Q18 to disable [5C] and [5R]. ### **6.ADDITIONAL CIRCUIT** #### 6.1 QT, DQT ENCODE The QT, DQT encoder tone is set by the data from the microprocessor. QT, DQT tone is generated by the microprocessor (IC13). The output is applied to the VCO and TCXO (X1). ### 6.2 QT,DQT DECODE A part of the recovered audio signal obtained at the amplifier IC16 (2/2) are the QT and DQT tones and are low pass filtered by IC19 and passed to the microprocessor for decoding. ### 6.3 DTMF ENCODE Once a signal is passed from the DTMF keypad to the microprocessor. The encoded signal is obtained by the microprocessor. This signal provides a TX DTMF tone and a RX DTMF tone. The TX DTMF tone is passed to the pre-emphasis circuit (Mic. amplifier) and then to the VCO. The RX DTMF tone is passed to the de-emphasis circuit, audio power amplifier and then to the speaker. ### **6.4 DTMF DECODE** The DTMF input signal from the DET line is passed to IC18, DTMF decoder. The decoded information is then processed by the microprocessor. ACTIVE DEVICES Wodel TK-370G ALH29473110 :UI **DESCRIPTION** PARTS NUMBER TIUORUO 9752SAM DS VARIABLE CAPACITANCE DIODE, FREQUENCY CONTROL DIODE, UNLOCK DETECT ITTSSAM Id SYMBOL (X21-2880-11) TRANSISTOR, DC SWITCH DTA144EE Q13 TRAUSISTOR, IF AMP 52C4649(N,P) Q12 TRANSISTOR, RIPPLE FILTER \$2C4617(S) 110 TRANSISTOR, RF OSCILLATOR SZK208NA(K2S) 010 TRANSISTOR, DC SWITCH **DTC144EE** 60 TRANSISTOR, DC SWITCH **UMC4** 80 **FET, DC SWITCH** 227543 LO TRABSISTOR, TX DRIVE **52C4988** 90 TRABSISTOR, TX PRE-DRIVE 72C2108(人) ď2 TRANSISTOR, RF BUFFER AMP $5202108(\lambda)$ ØΦ TRANSISTOR, RF BUFFER AMP **52C2108(人)** C₃ TRANSISTOR, RF OSCILLATOR S2C4559(E54) QS TRANSISTOR, RF BUFFER AMP **52C2108(A)** 10 IC, LOW PASS FILTER 1018 UATOWSTAT IC, DTMF DECODER LC73872M 1018 IC, DEVIATION CONTROL X9C1032I LIOI IC, AUDIO AMP TC75W51FU 1016 IC, AUDIO AMP U₃towatAT 1015 IC, BASEBAND PROCESSOR TC35453F PLOI IC, MICRO PROCESSOR 30622M4102GP 1013 IC, FLASH ROM HT29C020-90TI 1015 ICAUDIO POWER AMP **48967AT** 1101 IC, EEPROM 6.51201N804STA 1010 IC, VOLTAG DETECT RN5VL45C **601** IC, RESET SWITCH PST9140NR **801** IC, VOLTAGE REGURATER 2-81320HC-KD LOI IC, SHIFT REGISTER BU4094BCFV 1C₆ IC, SHIFT REGISTER IC2 BN4094BCLA IC,IF SYSTEM IC4 N₃8118AT JG,APC **V4092MUN** IC3 IC,PHASE LOCKED LOOP SYSTEM **MB15A02** ICS DIODE, LIMITTER RB706F-40 **D**53 DIODE, REVERCE PROTECTION 12B124-400 DSS DIODE, REVERCE PROTECTION 122373 DSI DIODE, REVERCE PROTECTION **TITSSAM** 610 LED, BUSY&TX B30-5019-02 810 DIODE, REVERCE PROTECTION ITTSSAM LIG **DIODE, SWITCH** H2C577 D12 DIODE, RF SWITCH **DYN332E** DIG DIODE, RF SWITCH **DYN332E** D13 DIODE'SHEED NE **ITTSSAM** D15 VARIABLE CAPACITANCE DIODE, FREQUENCY CONTROL 97523AM III DIODE, RF SWITCH **LLZOSH** DIO VARIABLE CAPACITANCE DIODE, FREQUENCY CONTROL **97525AM 6Q** ZENER DIODE, VOLTAGE PROTECTION JJAGUZH 8G DIODE, AUTENNA SWITCH H2C5777 Lα VARIABLE CAPACITANCE DIODE, DEVIATION 098AM D₀ DIODE, RF SWITCH H2C577 D2 VARIABLE CAPACITANCE DIODE, FREQUENCY CONTROL **97523AM** Þα DIODE, ANTENNA SWITCH HVU131 **D3** TRANSISTOR, DC SWITCH **DTA144EE** 110 | DESCRIPTION | илмвек | | SAMB
CNBCI
(A20-E | |---|---|---|---| | LTAGE FEEDBACK | DIODE,REP
DIODE,REP
DIODE,SPI
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP
LED,LAMP | MA2S111
MA2S111
MA2S111
MA2S111
MA2S111
MA2S111
MA2S111
MA2S111
B30-2171-05
B30-2171-05
B30-2171-05
B30-2171-05
B30-2171-05
B30-2171-05
B30-2171-05
B30-2171-05
B30-2171-05
B30-2171-05
B30-2171-05
B30-2171-05
B30-2171-05
B30-2171-05
B30-2171-05
B30-2171-05
B30-2171-05
B30-2171-05
B30-2171-05 | Q502
Q501
Q501
Q501
Q503
Q503
Q503
Q503
Q503
Q503
Q503
Q503 | | DESCRIPTION | илмвев | STAAG TIU: | SYMB | | | | 3520-10) | -75X) | | TOR,DC SWITCH
WITCH
TOR,DC SWITCH
TOR,DC SWITCH
TOR,DC SWITCH
WITCH | FET,DC S
TRANSIST
PET,DC S
PET,DC S
TENSIST
TRANSIST | 32K228 DTC144EE DTC144EE S2K1288 S2C4613 DTA114XE DTA114KE | Q301
Q35
Q35
Q31
Q31
Q31
Q30
Q31
Q50
Q50
Q50
Q50
Q50
Q50
Q50
Q50
Q50
Q50 | | ТОЯ, DC SWITCH
ТОЯ, DC SWITCH
ТОЯ, DC SWITCH
ТОЯ, DC SWITCH
ТОЯ, IE AMP
ТОЯ, DC SWITCH
ТОЯ, DC SWITCH | CEICNART TENAIT SICNART CEICNART | DICII4EE DICII4EE DWC4 DWC300 UWC300 32K558 Eb510 DICII4EE | Q25
Q25
Q20
Q20
Q21
Q19
Q19 | IC, FINAL MODULE IC1 W68732H