EMC TEST REPORT **Applicant** UAB TELTONIKA TELEMATICS FCC ID 2A3HUFMC13A **Product** Fleet Management System **Brand** TELTONIKA TELEMATICS Model FMC13A-QBIB0 **Report No.** R2205A0450-E1 **Issue Date** August 12, 2022 TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC Code CFR47 Part15B (2021)/ ANSI C63.4-2014. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. Prepared by: Liu Wei Approved by: Fan Guangchang Fan Guangchang TA Technology (Shanghai) Co., Ltd. Building 3, No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000 # **Table of Contents** | 1 | Test | Laboratory | 4 | |---|-------|---|------| | | 1.1 | Notes of the Test Report | 4 | | | 1.2 | Test facility | 4 | | | 1.3 | Testing Location | | | 2 | Ger | neral Description of Equipment under Test | 5 | | | 2.1 | Applicant and Manufacturer Information | 5 | | | 2.2 | General information | 5 | | | 2.3 | Applied Standards | 6 | | | 2.4 | Test Mode | 7 | | 3 | Test | Case Results | 8 | | | 3.1 | Radiated Emission | 8 | | | 3.2 | Conducted Emission | | | 4 | Und | ertainty Measurement | . 14 | | 5 | | n Test Instruments | | | Α | NNEX. | A: The EUT Appearance | . 16 | | Α | NNEX | B: Test Setup Photos | . 17 | Report No.: R2205A0450-E1 ## **Summary of measurement results** | Number | Test Case | Clause in FCC Rules | Conclusion | |--------|--------------------|---------------------------------|------------| | 1 | Radiated Emission | FCC Part15.109, ANSI C63.4-2014 | PASS | | 2 | Conducted Emission | FCC Part15.107, ANSI C63.4-2014 | NA | Date of Testing: May 26, 2022 ~June 10, 2022 Date of Sample Received: May 26, 2022 Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. 1 Test Laboratory ### 1.1 Notes of the Test Report This report shall not be reproduced in full or partial, without the written approval of **TA technology** (**shanghai**) **co.**, **Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. ### 1.2 Test facility #### FCC (Designation number: CN1179, Test Firm Registration Number: 446626) TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements. #### A2LA (Certificate Number: 3857.01) TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement. #### 1.3 Testing Location Company: TA Technology (Shanghai) Co., Ltd. Building 3, No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, Address: China City: Shanghai Post code: 201201 Country: P. R. China Contact: Fan Guangchang Telephone: +86-021-50791141/2/3 Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com E-mail: fanguangchang@ta-shanghai.com # 2 General Description of Equipment under Test ### 2.1 Applicant and Manufacturer Information | Applicant | UAB TELTONIKA TELEMATICS | |----------------------|--| | Applicant address | Saltoniskiu st. 9B-1,Vilnius,Lithuania | | Manufacturer | UAB TELTONIKA TELEMATICS | | Manufacturer address | Saltoniskiu st. 9B-1,Vilnius,Lithuania | | Factory | UAB TELTONIKA EMS | | Factory address | Ditvos st. 6, Vilnius,Lithuania | ### 2.2 General information | EUT Description | | | | | | | |------------------------|------------------------------------|---------------------------|---------------|--|--|--| | Device Type | Fleet Management System | | | | | | | Model | FMC13A-QBIB0 | | | | | | | IMEI | 866258043643391 | | | | | | | HW Version | FMC13A-40 | | | | | | | SW Version | FMB.Ver.03.27.13 | | | | | | | Power Rating | DC 12V and DC 24V fr | rom External power supply | | | | | | Connecting I/O Port(s) | Please refer to the User's Manual. | | | | | | | Antenna Type | Internal Antenna | | | | | | | | Band | Tx (MHz) | Rx (MHz) | | | | | | WCDMA Band II | 1850 ~ 1910 | 1930 ~ 1990 | | | | | | WCDMA Band IV | 1710 ~ 1755 | 2110 ~ 2155 | | | | | | WCDMA Band V | 824 ~ 849 | 869 ~ 894 | | | | | F | LTE Band 2 | 1850 ~ 1910 | 1930 ~ 1990 | | | | | Frequency | LTE Band 4 | 1710 ~ 1755 | 2110 ~ 2155 | | | | | | LTE Band 5 | 824 ~ 849 | 869 ~ 894 | | | | | | LTE Band 12 | 699 ~ 716 | 729 ~ 746 | | | | | | LTE Band 13 | 777 ~ 787 | 746 ~ 756 | | | | | | Bluetooth | 2400 ~ 2483.5 | 2400 ~ 2483.5 | | | | Note: 1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant. ### 2.3 Applied Standards According to the specifications of the manufacturer, it must comply with the requirements of the following standards: Test standards FCC Code CFR47 Part15B (2021) ANSI C63.4-2014 2.4 Test Mode | Test Mode | | |-----------|--| | Mode 1 | External Power Supply + EUT + WCDMA/LTE/Bluetooth Receiver | #### 3 Test Case Results #### 3.1 Radiated Emission #### Ambient condition | Temperature Relative humidity | | Pressure | |-------------------------------|---------|----------| | 15°C~35°C | 30%~60% | 101.5kPa | #### **Methods of Measurement** The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power. Set the spectrum analyzer in the following: Below 1GHz: RBW=100 kHz / VBW=300 kHz / Sweep=AUTO Above 1GHz: - (a) PEAK Detector: RBW=1MHz / VBW=3MHz/ Sweep=AUTO - (b) AVERAGE Detector: RBW=1MHz / VBW=3MHz / Sweep=AUTO The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded. **Test Setup** #### **Below 1GHz** #### **Above 1GHz** Note: Area side: 2.4mX3.6m Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast. #### Class B | Frequency
(MHz) | Field Strength
(dBµV/m) | Detector | |--|----------------------------|------------| | 30 -88 | 40.0 | Quasi-peak | | 88-216 | 43.5 | Quasi-peak | | 216 – 960 | 46.0 | Quasi-peak | | 960-1000 | 54.0 | Quasi-peak | | 1000-5 th harmonic of the highest | 54 | Average | | frequency or 40GHz, which is lower | 74 | Peak | #### **Test Results** Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection. During the test, pre-tests were performed in the EUT's voltage (DC 12V and DC 24V), and DC 24V mode is selected as the worst condition. The test data of the worst-case condition was recorded in this report. A symbol (dB V/) in the test plot below means (dBuV/m) Radiated Emission from 30MHz to 1GHz | Frequency
(MHz) | Quasi-Peak
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Meas.
Time
(ms) | Height (cm) | Polarization | Azimuth (deg) | Correct
Factor
(dB) | |--------------------|------------------------|-------------------|----------------|-----------------------|-------------|--------------|---------------|---------------------------| | 42.58 | 9.54 | 40.00 | 30.46 | 1000.00 | 110.0 | V | 161.00 | 20 | | 57.90 | 9.88 | 40.00 | 30.12 | 1000.00 | 100.0 | V | 206.00 | 20 | | 126.27 | 4.73 | 43.50 | 38.77 | 1000.00 | 110.0 | V | 174.00 | 16 | | 222.91 | 7.88 | 46.00 | 38.12 | 1000.00 | 125.0 | V | 161.00 | 18 | | 276.44 | 9.08 | 46.00 | 36.92 | 1000.00 | 110.0 | V | 183.00 | 20 | | 346.17 | 11.13 | 46.00 | 34.87 | 1000.00 | 110.0 | V | 158.00 | 22 | Remark: 1. Correction Factor = Antenna factor + Insertion loss(cable loss +amplifier gain) 2. Margin = Limit – Quasi-Peak Radiated Emission from 1GHz to 18GHz | Frequency
(MHz) | Peak
(dBuV/m) | Average
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Meas.
Time
(ms) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor
(dB) | |--------------------|------------------|---------------------|-------------------|----------------|-----------------------|----------------|--------------|---------------|---------------------------| | 1497.25 | | 21.17 | 54.00 | 32.83 | 1000.00 | 215.0 | Н | 356.00 | -16 | | 1520.63 | 33.64 | | 74.00 | 40.36 | 1000.00 | 110.0 | Н | 44.00 | -15 | | 2549.13 | | 25.21 | 54.00 | 28.79 | 1000.00 | 110.0 | V | 345.00 | -10 | | 2585.25 | 43.96 | | 74.00 | 30.04 | 1000.00 | 110.0 | V | 344.00 | -10 | | 4153.50 | | 32.34 | 54.00 | 21.66 | 1000.00 | 115.0 | Н | 10.00 | -3 | | 4176.88 | 40.26 | | 74.00 | 33.74 | 1000.00 | 194.0 | Н | 216.00 | -3 | | 5781.25 | 48.97 | | 74.00 | 25.03 | 1000.00 | 115.0 | V | 264.00 | 0 | | 5859.88 | | 35.97 | 54.00 | 18.03 | 1000.00 | 215.0 | Н | 168.00 | 0 | | 8016.75 | 48.00 | | 74.00 | 26.00 | 1000.00 | 206.0 | V | 0.00 | 2 | | 8031.63 | | 34.88 | 54.00 | 19.12 | 1000.00 | 215.0 | V | 41.00 | 2 | | 10379.75 | | 37.58 | 54.00 | 16.42 | 1000.00 | 115.0 | V | 64.00 | 6 | | 10401.00 | 51.24 | | 74.00 | 22.76 | 1000.00 | 115.0 | Н | 197.00 | 6 | #### 3.2 Conducted Emission #### **Ambient condition** | Temperature | Temperature Relative humidity | | |-------------|-------------------------------|----------| | 15°C~35°C | 30%~60% | 101.5kPa | #### **Methods of Measurement** The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line. #### **Test Setup** Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz. #### Limits | Frequency | Conducted Limits(dBμV) | | | | |--|------------------------|-----------------------|--|--| | (MHz) | Quasi-peak | Average | | | | 0.15 - 0.5 | 66 to 56 * | 56 to 46 [*] | | | | 0.5 - 5 | 56 | 46 | | | | 5 - 30 | 60 | 50 | | | | * Decreases with the logarithm of the frequency. | | | | | #### **Test Results** This is vehicle product provide by battery, not applicable conducted emission. # **Uncertainty Measurement** | Case | Uncertainty | Factor k | |----------------------------------|-------------|----------| | Radiated Emission 30MHz – 200MHz | 4.17 dB | 1.96 | | Radiated Emission 200MHz – 1GHz | 4.84 dB | 1.96 | | Radiated Emission 1GHz – 18GHz | 4.35 dB | 1.96 | EMC Test Report No.: R2205A0450-E1 ### 5 Main Test Instruments | Name of Equipment | Manufacturer | Type/Model | Serial
Number | Calibration
Date | Expiration
Time | |--------------------------|--------------|------------|------------------|---------------------|--------------------| | Radiated Emission | | | | | | | EMI Test Receiver | R&S | ESR | 102389 | 2022-05-25 | 2023-05-24 | | Signal Analyzer | R&S | FSV40 | 100816 | 2021-12-12 | 2022-12-11 | | TRILOG Broadband Antenna | SCHWARZBECK | VULB 9163 | 1023 | 2020-05-05 | 2023-05-04 | | Horn Antenna | Schwarzbeck | BBHA 9120D | 430 | 2021-07-26 | 2024-07-25 | | Software | R&S | EMC32 | 9.26.01 | 1 | 1 | ******END OF REPORT ****** # **ANNEX A: The EUT Appearance** The EUT Appearance are submitted separately. # **ANNEX B: Test Setup Photos** The Test Setup Photos are submitted separately.