
ESP32MINI1
User Manual

Preliminary v0.1

Espressif Systems

Copyright © 2021

www.espressif.com

https://manuals.plus/m/8cb4e1a24f824e5eb089874bb63f6ae34733b89336005d54303e81881103bc59

About This Manual

This user manual shows how to get started with ESP32-MINI-1 module.

Document Updates

Please always refer to the latest version on https://www.espressif.com/en/support/download/documents.

Revision History

For revision history of this document, please refer to the last page.

Documentation Change Notification

Espressif provides email notifications to keep customers updated on changes to technical documentation.

Please subscribe at www.espressif.com/en/subscribe.

Certification

Download certificates for Espressif products from www.espressif.com/en/certificates.

Contents

Contents

1 Overview 4

1.1 Module Overview 4

1.2 Pin Description 4

2 Get Started on ESP32MINI1 7

2.1 What You Need 7

2.2 Hardware Connection 7

2.3 Set up Development Environment 8

2.3.1 Install Prerequisites 8

2.3.2 Get ESP-IDF 8

2.3.3 Set up Tools 9

2.3.4 Set up Environment Variables 9

2.4 Create Your First Project 9

2.4.1 Start a Project 9

2.4.2 Connect Your Device 9

2.4.3 Configure 10

2.4.4 Build the Project 10

2.4.5 Flash onto the Device 11

2.4.6 Monitor 12

3 Learning Resources 14

3.1 Must-Read Documents 14

3.2 Must-Have Resources 14

Revision History 16

Espressif Systems 3 ESP32-MINI-1 User Manual (Preliminary v0.1)

1 Overview

1 Overview

1.1 Module Overview

ESP32-MINI-1 is a highly-integrated, small-sized Wi-Fi+Bluetooth®+Bluetooth® LE MCU module that has a rich

set of peripherals. This module is an ideal choice for a wide variety of IoT applications, ranging from home

automation, smart building, consumer electronics to industrial control, especially suitable for applications within a

compact space, such as bulbs, switches and sockets.

This module comes in two versions:

• 85 °C version

• 105 °C version

Table 11. ESP32MINI1 Specifications

Categories Items Specifications

Wi-Fi
Protocols

802.11 b/g/n (802.11n up to 150 Mbps)

A-MPDU and A-MSDU aggregation and 0.4 µs guard

interval support

Frequency range 2412 ~ 2484 MHz

Bluetooth®

Protocols
Protocols v4.2 BR/EDR and Bluetooth® LE specifica-

tions

Radio
Class-1, class-2 and class-3 transmitter

AFH

Audio CVSD and SBC

Hardware

Module interfaces

SD card, UART, SPI, SDIO, I2C, LED PWM, motor

PWM, I2S, infrared remote controller, pulse counter,

GPIO, touch sensor, ADC, DAC, Two-Wire Automo-

tive Interface (TWAITM, compatible with ISO11898-1)

Integrated crystal 40 MHz crystal

Integrated SPI flash 4 MB

Operating voltage/Power supply 3.0 V ~ 3.6 V

Operating current Average: 80 mA

Minimum current delivered by power

supply
500 mA

Recommended operating tempera-

ture range

85 °C version: –40 °C ~ +85 °C; 105 °C version: –40

°C ~ +105 °C

Moisture sensitivity level (MSL) Level 3

1.2 Pin Description

ESP32-MINI-1 has 55 pins. See pin definitions in Table 1-2.

Espressif Systems 4 ESP32-MINI-1 User Manual (Preliminary v0.1)

1 Overview

Table 12. Pin Definitions

Name No. Type Function

GND 1, 2, 27, 38 ~ 55 P Ground

3V3 3 P Power supply

I36 4 I GPIO36, ADC1_CH0, RTC_GPIO0

I37 5 I GPIO37, ADC1_CH1, RTC_GPIO1

I38 6 I GPIO38, ADC1_CH2, RTC_GPIO2

I39 7 I GPIO39, ADC1_CH3, RTC_GPIO3

EN 8 I

High: enables the chip

Low: the chip powers off

Note: do not leave the pin floating

I34 9 I GPIO34, ADC1_CH6, RTC_GPIO4

I35 10 I GPIO35, ADC1_CH7, RTC_GPIO5

IO32 11 I/O GPIO32, XTAL_32K_P (32.768 kHz crystal oscillator input), ADC1_CH4,

TOUCH9, RTC_GPIO9

IO33 12 I/O GPIO33, XTAL_32K_N (32.768 kHz crystal oscillator output), ADC1_CH5,

TOUCH8, RTC_GPIO8

IO25 13 I/O GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXD0

IO26 14 I/O GPIO26, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1

IO27 15 I/O GPIO27, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV

IO14 16 I/O GPIO14, ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK,

HS2_CLK, SD_CLK, EMAC_TXD2

IO12 17 I/O GPIO12, ADC2_CH5, TOUCH5, RTC_GPIO15, MTDI, HSPIQ,

HS2_DATA2, SD_DATA2, EMAC_TXD3

IO13 18 I/O GPIO13, ADC2_CH4, TOUCH4, RTC_GPIO14, MTCK, HSPID,

HS2_DATA3, SD_DATA3, EMAC_RX_ER

IO15 19 I/O GPIO15, ADC2_CH3, TOUCH3, RTC_GPIO13, MTDO, HSPICS0,

HS2_CMD, SD_CMD, EMAC_RXD3

IO2 20 I/O GPIO2, ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP, HS2_DATA0,

SD_DATA0

IO0 21 I/O GPIO0, ADC2_CH1, TOUCH1, RTC_GPIO11, CLK_OUT1,

EMAC_TX_CLK

IO4 22 I/O GPIO4, ADC2_CH0, TOUCH0, RTC_GPIO10, HSPIHD, HS2_DATA1,

SD_DATA1, EMAC_TX_ER

NC 23 - No connect

NC 24 - No connect

IO9 25 I/O GPIO9, HS1_DATA2, U1RXD, SD_DATA2

IO10 26 I/O GPIO10, HS1_DATA3, U1TXD, SD_DATA3

NC 28 - No connect

IO5 29 I/O GPIO5, HS1_DATA6, VSPICS0, EMAC_RX_CLK

IO18 30 I/O GPIO18, HS1_DATA7, VSPICLK

IO23 31 I/O GPIO23, HS1_STROBE, VSPID

IO19 32 I/O GPIO19, VSPIQ, U0CTS, EMAC_TXD0

Cont’d on next page

Espressif Systems 5 ESP32-MINI-1 User Manual (Preliminary v0.1)

1 Overview

Table 12 – cont’d from previous page

Name No. Type Function

IO22 33 I/O GPIO22, VSPIWP, U0RTS, EMAC_TXD1

IO21 34 I/O GPIO21, VSPIHD, EMAC_TX_EN

RXD0 35 I/O GPIO3, U0RXD, CLK_OUT2

TXD0 36 I/O GPIO1, U0TXD, CLK_OUT3, EMAC_RXD2

NC 37 - No connect

1 Pins GPIO6, GPIO7, GPIO8, GPIO11, GPIO16, and GPIO17 on the ESP32-U4WDH chip are connected to the

SPI flash integrated on the module and are not led out.
2 For peripheral pin configurations, please refer to ESP32 Series Datasheet.

Espressif Systems 6 ESP32-MINI-1 User Manual (Preliminary v0.1)

2 Get Started on ESP32-MINI-1

2 Get Started on ESP32MINI1

2.1 What You Need

To develop applications for ESP32-MINI-1 module you need:

• 1 x ESP32-MINI-1 module

• 1 x Espressif RF testing board

• 1 x USB-to-Serial board

• 1 x Micro-USB cable

• 1 x PC running Linux

In this user guide, we take Linux operating system as an example. For more information about the configuration

on Windows and macOS, please refer to ESP-IDF Programming Guide.

2.2 Hardware Connection

1. Solder the ESP32-MINI-1 module to the RF testing board as shown in Figure 2-1.

Figure 21. Hardware Connection

2. Connect the RF testing board to the USB-to-Serial board via TXD, RXD, and GND.

3. Connect the USB-to-Serial board to the PC.

4. Connect the RF testing board to the PC or a power adapter to enable 5 V power supply, via the Micro-USB

cable.

5. During download, connect IO0 to GND via a jumper. Then, turn ”ON” the testing board.

6. Download firmware into flash. For details, see the sections below.

Espressif Systems 7 ESP32-MINI-1 User Manual (Preliminary v0.1)

2 Get Started on ESP32-MINI-1

7. After download, remove the jumper on IO0 and GND.

8. Power up the RF testing board again. ESP32-MINI-1 will switch to working mode. The chip will read

programs from flash upon initialization.

Note:

IO0 is internally logic high. If IO0 is set to pull-up, the Boot mode is selected. If this pin is pull-down or left floating, the

Download mode is selected. For more information on ESP32-MINI-1, please refer to ESP32-MINI-1 Datasheet.

2.3 Set up Development Environment

The Espressif IoT Development Framework (ESP-IDF for short) is a framework for developing applications based

on the Espressif ESP32. Users can develop applications with ESP32 in Windows/Linux/macOS based on

ESP-IDF. Here we take Linux operating system as an example.

2.3.1 Install Prerequisites

To compile with ESP-IDF you need to get the following packages:

• CentOS 7:

sudo yum install git wget flex bison gperf python cmake ninja−build ccache dfu−util

• Ubuntu and Debian (one command breaks into two lines):

sudo apt−get install git wget flex bison gperf python python−pip python−setuptools cmake
ninja−build ccache libffi −dev libssl −dev dfu−util

• Arch:

sudo pacman −S −−needed gcc git make flex bison gperf python−pip cmake ninja ccache dfu−util

Note:

• This guide uses the directory ~/esp on Linux as an installation folder for ESP-IDF.

• Keep in mind that ESP-IDF does not support spaces in paths.

2.3.2 Get ESPIDF

To build applications for ESP32-MINI-1 module, you need the software libraries provided by Espressif in ESP-IDF

repository.

To get ESP-IDF, create an installation directory (~/esp) to download ESP-IDF to and clone the repository with ‘git

clone’:

mkdir −p ~/esp
cd ~/esp
git clone −−recursive https://github.com/espressif/esp−idf. git

Espressif Systems 8 ESP32-MINI-1 User Manual (Preliminary v0.1)

2 Get Started on ESP32-MINI-1

ESP-IDF will be downloaded into ~/esp/esp-idf. Consult ESP-IDF Versions for information about which ESP-IDF

version to use in a given situation.

2.3.3 Set up Tools

Aside from the ESP-IDF, you also need to install the tools used by ESP-IDF, such as the compiler, debugger,

Python packages, etc. ESP-IDF provides a script named ’install.sh’ to help set up the tools in one go.

cd ~/esp/esp−idf
./ install .sh

2.3.4 Set up Environment Variables

The installed tools are not yet added to the PATH environment variable. To make the tools usable from the

command line, some environment variables must be set. ESP-IDF provides another script ’export.sh’ which does

that. In the terminal where you are going to use ESP-IDF, run:

. $HOME/esp/esp−idf/export.sh

Now everything is ready, you can build your first project on ESP32-MINI-1 module.

2.4 Create Your First Project

2.4.1 Start a Project

Now you are ready to prepare your application for ESP32-MINI-1 module. You can start with

get-started/hello_world project from examples directory in ESP-IDF.

Copy get-started/hello_world to ~/esp directory:

cd ~/esp
cp −r $IDF_PATH/examples/get−started/hello_world .

There is a range of example projects in the examples directory in ESP-IDF. You can copy any project in the same

way as presented above and run it. It is also possible to build examples in-place, without copying them

first.

2.4.2 Connect Your Device

Now connect your ESP32-MINI-1 module to the computer and check under what serial port the module is

visible. Serial ports in Linux start with ‘/dev/tty’ in their names. Run the command below two times, first with the

board unplugged, then with plugged in. The port which appears the second time is the one you need:

ls /dev/tty*

Note:

Keep the port name handy as you will need it in the next steps.

Espressif Systems 9 ESP32-MINI-1 User Manual (Preliminary v0.1)

2 Get Started on ESP32-MINI-1

2.4.3 Configure

Navigate to your ‘hello_world’ directory from Step 2.4.1. Start a Project, set ESP32 chip as the target and run the

project configuration utility ‘menuconfig’.

cd ~/esp/hello_world
idf .py set−target esp32
idf .py menuconfig

Setting the target with ‘idf.py set-target esp32’ should be done once, after opening a new project. If the project

contains some existing builds and configuration, they will be cleared and initialized. The target may be saved in

environment variable to skip this step at all. See Selecting the Target for additional information.

If the previous steps have been done correctly, the following menu appears:

Figure 22. Project Configuration Home Window

The colors of the menu could be different in your terminal. You can change the appearance with the option

‘--style’. Please run ‘idf.py menuconfig --help’for further information.

2.4.4 Build the Project

Build the project by running:

idf .py build

This command will compile the application and all ESP-IDF components, then it will generate the bootloader,

partition table, and application binaries.

$ idf .py build
Running cmake in directory /path/to/hello_world/build
Executing ”cmake −G Ninja −−warn−uninitialized /path/to/hello_world”...
Warn about uninitialized values .
−− Found Git: /usr/bin/git (found version ”2.17.0”)

Espressif Systems 10 ESP32-MINI-1 User Manual (Preliminary v0.1)

2 Get Started on ESP32-MINI-1

−− Building empty aws_iot component due to configuration
−− Component names: ...
−− Component paths: ...

... (more lines of build system output)

[527/527] Generating hello−world.bin
esptool .py v2.3.1

Project build complete. To flash , run this command:
../../../ components/esptool_py/esptool/esptool.py −p (PORT) −b 921600 write_flash −−flash_mode dio
−−flash_size detect −−flash_freq 40m 0x10000 build/hello−world.bin build 0x1000
build/bootloader/bootloader.bin 0x8000 build/ partition_table / partition −table.bin
or run ’ idf .py −p PORT flash’

If there are no errors, the build will finish by generating the firmware binary .bin file.

2.4.5 Flash onto the Device

Flash the binaries that you just built onto your ESP32-MINI-1 module by running:

idf .py −p PORT [−b BAUD] flash

Replace PORT with your module‘s serial port name from Step: Connect Your Device.

You can also change the flasher baud rate by replacing BAUD with the baud rate you need. The default baud

rate is 460800.

For more information on idf.py arguments, see idf.py.

Note:

The option ‘flash‘ automatically builds and flashes the project, so running ‘idf.py build‘ is not necessary.

Running esptool .py in directory [...]/ esp/hello_world
Executing ”python [...]/ esp−idf/components/esptool_py/esptool/esptool.py −b 460800 write_flash
@flash_project_args ”...
esptool .py −b 460800 write_flash −−flash_mode dio −−flash_size detect −−flash_freq 40m 0x1000
bootloader/bootloader.bin 0x8000 partition_table / partition −table.bin 0x10000 hello−world.bin
esptool .py v2.3.1
Connecting
Detecting chip type ... ESP32
Chip is ESP32U4WDH (revision 3)
Features : WiFi, BT, Single Core
Uploading stub ...
Running stub ...
Stub running ...
Changing baud rate to 460800
Changed.

Espressif Systems 11 ESP32-MINI-1 User Manual (Preliminary v0.1)

2 Get Started on ESP32-MINI-1

Configuring flash size ...
Auto−detected Flash size : 4MB
Flash params set to 0x0220
Compressed 22992 bytes to 13019...
Wrote 22992 bytes (13019 compressed) at 0x00001000 in 0.3 seconds (effective 558.9 kbit/s)...
Hash of data verified .
Compressed 3072 bytes to 82...
Wrote 3072 bytes (82 compressed) at 0x00008000 in 0.0 seconds (effective 5789.3 kbit/s)...
Hash of data verified .
Compressed 136672 bytes to 67544...
Wrote 136672 bytes (67544 compressed) at 0x00010000 in 1.9 seconds (effective 567.5 kbit/s)...
Hash of data verified .

Leaving ...
Hard resetting via RTS pin...

If everything goes well, the “hello_world” application starts running after you remove the jumper on IO0 and GND,

and re-power up the testing board.

2.4.6 Monitor

To check if “hello_world” is indeed running, type ‘idf.py -p PORT monitor‘ (Do not forget to replace PORT with

your serial port name).

This command launches the IDF Monitor application:

$ idf .py −p /dev/ttyUSB0 monitor
Running idf_monitor in directory [...]/ esp/hello_world/build
Executing ”python [...]/ esp−idf/tools/idf_monitor.py −b 115200 [...]/ esp/hello_world/build/hello−world.elf ”...
−−− idf_monitor on /dev/ttyUSB0 115200 −−−
−−− Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H −−−
ets Jun 8 2016 00:22:57

rst :0x1 (POWERON_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)
ets Jun 8 2016 00:22:57
...

After startup and diagnostic logs scroll up, you should see “Hello world!” printed out by the application.

...
Hello world!
Restarting in 10 seconds ...
This is esp32 chip with 1 CPU core, WiFi/BT/BLE, silicon revision 3, 4MB external flash
Restarting in 9 seconds ...
Restarting in 8 seconds ...
Restarting in 7 seconds ...

To exit IDF monitor use the shortcut Ctrl+].

Espressif Systems 12 ESP32-MINI-1 User Manual (Preliminary v0.1)

2 Get Started on ESP32-MINI-1

That’s all what you need to get started with ESP32-MINI-1 module! Now you are ready to try some other

examples in ESP-IDF, or go right to developing your own applications.

Espressif Systems 13 ESP32-MINI-1 User Manual (Preliminary v0.1)

3 Learning Resources

3 Learning Resources

3.1 MustRead Documents

The following link provides documents related to ESP32.

• ESP32 Datasheet

This document provides an introduction to the specifications of the ESP32 hardware, including overview,

pin definitions, functional description, peripheral interface, electrical characteristics, etc.

• ESP32 ECO V3 User Guide

This document describes differences between V3 and previous ESP32 silicon wafer revisions.

• ECO and Workarounds for Bugs in ESP32

This document details hardware errata and workarounds in the ESP32.

• ESP-IDF Programming Guide

It hosts extensive documentation for ESP-IDF ranging from hardware guides to API reference.

• ESP32 Technical Reference Manual

The manual provides detailed information on how to use the ESP32 memory and peripherals.

• ESP32 Hardware Resources

The zip files include the schematics, PCB layout, Gerber and BOM list of ESP32 modules and development

boards.

• ESP32 Hardware Design Guidelines

The guidelines outline recommended design practices when developing standalone or add-on systems

based on the ESP32 series of products, including the ESP32 chip, the ESP32 modules and development

boards.

• ESP32 AT Instruction Set and Examples

This document introduces the ESP32 AT commands, explains how to use them, and provides examples of

several common AT commands.

• Espressif Products Ordering Information

3.2 MustHave Resources

Here are the ESP32-related must-have resources.

• ESP32 BBS

This is an Engineer-to-Engineer (E2E) Community for ESP32 where you can post questions, share

knowledge, explore ideas, and help solve problems with fellow engineers.

• ESP32 GitHub

ESP32 development projects are freely distributed under Espressif’s MIT license on GitHub. It is

established to help developers get started with ESP32 and foster innovation and the growth of general

knowledge about the hardware and software surrounding ESP32 devices.

• ESP32 Tools

This is a webpage where users can download ESP32 Flash Download Tools and the zip file ”ESP32

Certification and Test”.

Espressif Systems 14 ESP32-MINI-1 User Manual (Preliminary v0.1)

3 Learning Resources

• ESP-IDF

This webpage links users to the official IoT development framework for ESP32.

• ESP32 Resources

This webpage provides the links to all available ESP32 documents, SDK and tools.

Espressif Systems 15 ESP32-MINI-1 User Manual (Preliminary v0.1)

Revision History

Revision History

Date Version Release notes

2021-01-14 V0.1 Preliminary release

Espressif Systems 16 ESP32-MINI-1 User Manual (Preliminary v0.1)

www.espressif.com

Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without notice.

ALL THIRD PARTY’S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO
WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-
INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information
in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any
intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a
registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property
of their respective owners, and are hereby acknowledged.

Copyright © 2021 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.

	1 Overview
	1.1 Module Overview
	1.2 Pin Description

	2 Get Started on ESP32-MINI-1
	2.1 What You Need
	2.2 Hardware Connection
	2.3 Set up Development Environment
	2.3.1 Install Prerequisites
	2.3.2 Get ESP-IDF
	2.3.3 Set up Tools
	2.3.4 Set up Environment Variables

	2.4 Create Your First Project
	2.4.1 Start a Project
	2.4.2 Connect Your Device
	2.4.3 Configure
	2.4.4 Build the Project
	2.4.5 Flash onto the Device
	2.4.6 Monitor

	3 Learning Resources
	3.1 Must-Read Documents
	3.2 Must-Have Resources

	Revision History

