

FCC Test Report

Product Name	Intel® Dual Band Wireless-AC 8260
Model No.	8260NGW
FCC ID.	PD98260NG, PD98260NGU

*FCC ID: PD98260NG (for OEM factory install)

*FCC ID: PD98260NGU (for User Installation w/bios lock feature.)

Applicant	Intel Mobile Communications
Address	100 Center Point Circle, Suite 200 Columbia, South Carolina
	29210 USA

Date of Receipt	Mar. 30, 2015
Issued Date	May 13, 2015
Report No.	1540055R-RFUSP01V00-A
Report Version	V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report

Issued Date: May 13, 2015 Report No.: 1540055R-RFUSP01V00-A

Product Name	Intel® Dual Band Wireless-AC 8260	
Applicant	Intel Mobile Communications	
Address	100 Center Point Circle, Suite 200 Columbia, South Carolina 29210 USA	
Manufacturer	Intel Mobile Communications	
Model No.	8260NGW	
FCC ID.	PD98260NG, PD98260NGU	
EUT Rated Voltage	DC 3.3V (via Mini-PCI Express slot)	
EUT Test Voltage	AC 120V/ 60Hz	
Trade Name	Intel	
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2013	
	ANSI C63.4: 2009, ANSI C63.10: 2009	
Test Result	Complied	

Documented By

:

:

1

Jinn Chen

(Senior Adm. Specialist / Jinn Chen)

Tested By

Dlan Chen

(Engineer / Alan Chen)

Approved By

(Director / Vincent Lin)

TABLE OF CONTENTS

De	escription	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	5
1.2.	Operational Description	
1.3.	Tested System Details	
1.4.	Configuration of Tested System	
1.5.	EUT Exercise Software	
1.6.	Test Facility	9
2.	CONDUCTED EMISSION	
2.1.	Test Equipment	
2.1.	Test Setup	
2.2.	Limits	
2.3.	Test Procedure	
2.4.		
2.5.	Uncertainty	
	Test Result of Conducted Emission	
3.	PEAK POWER OUTPUT	
3.1.	Test Equipment	
3.2.	Test Setup	
3.3.	Limit	
3.4.	Test Procedure	
3.5.	Uncertainty	
3.6.	Test Result of Peak Power Output	
4.	RADIATED EMISSION	
4.1.	Test Equipment	
4.2.	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	
4.5.	Uncertainty	
4.6.	Test Result of Radiated Emission	
5.	RF ANTENNA CONDUCTED TEST	
5.1.	Test Equipment	
5.2.	Test Setup	33
5.3.	Limits	
5.4.	Test Procedure	
5.5.	Uncertainty	
5.6.	Test Result of RF Antenna Conducted Test	34
6.	BAND EDGE	
6.1.	Test Equipment	
6.2.	Test Setup	37
6.3.	Limit	
6.4.	Test Procedure	38
6.5.	Uncertainty	
6.6.	Test Result of Band Edge	
7.	CHANNEL NUMBER	
7. 7.1.		
7.1. 7.2.	Test Equipment	
7.2. 7.3.	Test Setup	
	Limit	
7.4.	Test Procedure	
7.5.	Uncertainty Tost Deput of Channel Number	
7.6.	Test Result of Channel Number	
8.	CHANNEL SEPARATION	
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limit	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Channel Separation	
9.	DWELL TIME	
9.1.	Test Equipment	

9.2.	Test Setup	62
9.3.	Limit	62
9.4.	Test Procedure	
9.5.	Uncertainty	62
9.6.	Test Result of Dwell Time	63
10.	OCCUPIED BANDWIDTH	
10.1.	Test Equipment	69
10.2.	Test Setup	69
10.3.	Limits	69
10.4.	Test Procedure	69
10.5.	Uncertainty	69
10.6.	Test Result of Occupied Bandwidth	
11.	EMI REDUCTION METHOD DURING COMPLIANCE TESTING	
Attachr	ment 1: EUT Test Photographs	

Attachment 1: EUT Test Photographs Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Intel® Dual Band Wireless-AC 8260	
Trade Name	Intel	
Model No.	8260NGW	
FCC ID.	PD98260NG, PD98260NGU	
Frequency Range	2402 – 2480MHz	
Channel Number 79		
Type of Modulation	FHSS: GFSK(1Mbps) /π/4DQPSK(2Mbps) / 8DPSK(3Mbps)	
Antenna Type	PIFA Antenna	
Channel Control	Auto	
Antenna Gain	Refer to the table "Antenna List"	

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	SkyCross	N/A (Main)	PIFA	3.24 dBi for 2.4GHz
		N/A (Aux)		

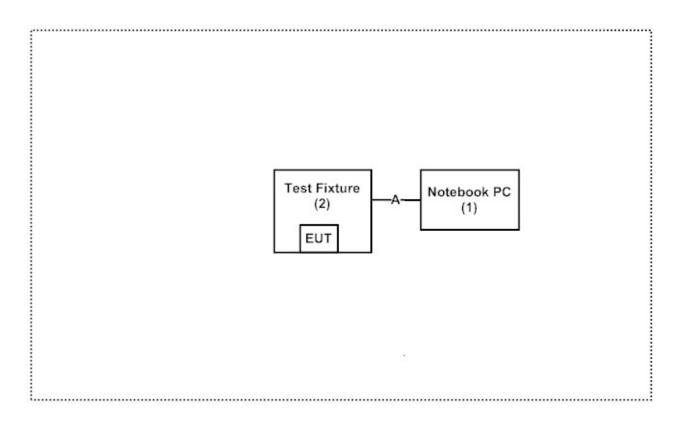
Note: 1. The antenna of EUT is conform to FCC 15.203.

Center Frequency of Each Channel:

- · · · · · · · · · · · · · · · · · · ·							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 00:	2402 MHz	Channel 20:	2422 MHz	Channel 40:	2442 MHz	Channel 60:	2462 MHz
Channel 01:	2403 MHz	Channel 21:	2423 MHz	Channel 41:	2443 MHz	Channel 61:	2463 MHz
Channel 02:	2404 MHz	Channel 22:	2424 MHz	Channel 42:	2444 MHz	Channel 62:	2464 MHz
Channel 03:	2405 MHz	Channel 23:	2425 MHz	Channel 43:	2445 MHz	Channel 63:	2465 MHz
Channel 04:	2406 MHz	Channel 24:	2426 MHz	Channel 44:	2446 MHz	Channel 64:	2466 MHz
Channel 05:	2407 MHz	Channel 25:	2427 MHz	Channel 45:	2447 MHz	Channel 65:	2467 MHz
Channel 06:	2408 MHz	Channel 26:	2428 MHz	Channel 46:	2448 MHz	Channel 66:	2468 MHz
Channel 07:	2409 MHz	Channel 27:	2429 MHz	Channel 47:	2449 MHz	Channel 67:	2469 MHz
Channel 08:	2410 MHz	Channel 28:	2430 MHz	Channel 48:	2450 MHz	Channel 68:	2470 MHz
Channel 09:	2411 MHz	Channel 29:	2431 MHz	Channel 49:	2451 MHz	Channel 69:	2471 MHz
Channel 10:	2412 MHz	Channel 30:	2432 MHz	Channel 50:	2452 MHz	Channel 70:	2472 MHz
Channel 11:	2413 MHz	Channel 31:	2433 MHz	Channel 51:	2453 MHz	Channel 71:	2473 MHz
Channel 12:	2414 MHz	Channel 32:	2434 MHz	Channel 52:	2454 MHz	Channel 72:	2474 MHz
Channel 13:	2415 MHz	Channel 33:	2435 MHz	Channel 53:	2455 MHz	Channel 73:	2475 MHz
Channel 14:	2416 MHz	Channel 34:	2436 MHz	Channel 54:	2456 MHz	Channel 74:	2476 MHz
Channel 15:	2417 MHz	Channel 35:	2437 MHz	Channel 55:	2457 MHz	Channel 75:	2477 MHz
Channel 16:	2418 MHz	Channel 36:	2438 MHz	Channel 56:	2458 MHz	Channel 76:	2478 MHz
Channel 17:	2419 MHz	Channel 37:	2439 MHz	Channel 57:	2459 MHz	Channel 77:	2479 MHz
Channel 18:	2420 MHz	Channel 38:	2440 MHz	Channel 58:	2460 MHz	Channel 78:	2480 MHz
Channel 19:	2421 MHz	Channel 39:	2441 MHz	Channel 59:	2461 MHz		

- 1. The EUT is an Intel® Dual Band Wireless-AC 8260 with a built-in WLAN and Bluetooth transceiver, this report for Bluetooth.
- 2. These tests were conducted on a sample for the purpose of demonstrating compliance of Bluetooth transmitter with Part 15 Subpart C Paragraph 15.247 for spread spectrum devices.
- 3. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.

Test Mode	Mode 1: Transmit - 1Mbps (GFSK)
	Mode 2: Transmit - 2Mbps (4DQPSK)
	Mode 3: Transmit - 3Mbps (8DPSK)


1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

		Product	Manufacturer	Model No.	Serial No.	Power Cord
]	l	Notebook PC	DELL	N/A	N/A	Non-Shielded, 1.8m
2	2	Test Fixture	Intel	N/A	N/A	N/A

Sign	al Cable Type	Signal cable Description
А	Test Fixture Cable	Non-Shielded, 1.0m

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT and Peripherals as shown on 1.4
- (2) Execute software "DRTU (Ver 1.8.1-01253)" on the Notebook PC.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous Transmit.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	30-65
Barometric pressure (mbar)	860-1060	950-1000

Ambient conditions in the laboratory:

The related certificate for our laboratories about the test site and management system can be downloaded

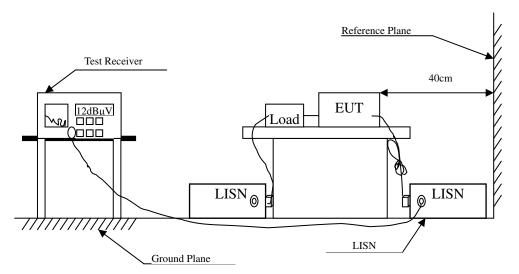
from QuieTek Corporation's Web Site: <u>http://www.quietek.com/chinese/about/certificates.aspx?bval=5</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

Site Description:	File on
	Federal Communications Commission
	FCC Engineering Laboratory
	7435 Oakland Mills Road
	Columbia, MD 21046
	Registration Number: 92195

Site Name:	Quietek Corporation
Site Address:	No.5-22, Ruishukeng,
	Linkou Dist. New Taipei City 24451,
	Taiwan, R.O.C.
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789
	E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Remark
Х	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2014	
Х	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2015	Peripherals
Х	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2015	EUT
	DC LISN	Schwarzbeck	8226 / 176	Mar, 2015	EUT
Х	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2015	
	No.1 Shielded Room				

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBµV) Limit				
Frequency	Lin	nits		
MHz	QP	AV		
0.15 - 0.50	66-56	56-46		
0.50-5.0	56	46		
5.0 - 30	60	50		

Remarks: In the above table, the tighter limit applies at the band edges.

2.4. Test Procedure

The EUT and Peripherals are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

The EUT was setup to ANSI C63.4, 2009; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

2.5. Uncertainty

± 2.26 dB

2.6.	Test Result of Conducted Emission			
	Product	:	Intel® Dual Band Wireless-AC 8260	
	Test Item	:	Conducted Emission Test	
	Power Line	:	Line 1	
	Test Mode	:	Mode 3: Transmit - 3Mbps (8DPSK) (2441MHz)	

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV	dB	dBµV
LINE 1					
Quasi-Peak					
0.158	9.668	30.270	39.938	-25.833	65.771
0.209	9.661	27.480	37.141	-27.173	64.314
0.548	9.679	32.270	41.949	-14.051	56.000
2.330	9.783	21.970	31.753	-24.247	56.000
4.638	9.853	13.630	23.483	-32.517	56.000
17.853	10.042	11.580	21.622	-38.378	60.000
Average					
0.158	9.668	17.830	27.498	-28.273	55.771
0.209	9.661	17.760	27.421	-26.893	54.314
0.548	9.679	30.200	39.879	-6.121	46.000
2.330	9.783	13.880	23.663	-22.337	46.000
4.638	9.853	4.990	14.843	-31.157	46.000
17.853	10.042	3.120	13.162	-36.838	50.000

1. All Reading Levels are Quasi-Peak and average value.

2. " " means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

Product Test Item Power Line Test Mode	 Intel® Dual Band Wireless-AC 8260 Conducted Emission Test Line 2 Mode 3: Transmit - 3Mbps (8DPSK) (2441MHz) 				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV	dB	dBµV
LINE 2					
Quasi-Peak					
0.150	9.671	36.210	45.881	-20.119	66.000
0.240	9.663	23.380	33.043	-30.386	63.429
0.548	9.679	31.360	41.039	-14.961	56.000
2.396	9.784	21.760	31.544	-24.456	56.000
4.650	9.853	13.450	23.303	-32.697	56.000
18.728	10.172	13.110	23.282	-36.718	60.000
Average					
0.150	9.671	22.250	31.921	-24.079	56.000
0.240	9.663	12.460	22.123	-31.306	53.429
0.548	9.679	29.200	38.879	-7.121	46.000
2.396	9.784	13.890	23.674	-22.326	46.000
4.650	9.853	4.080	13.933	-32.067	46.000
18.728	10.172	3.570	13.742	-36.258	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. " " means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output


3.1. Test Equipment

_	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
X	Power Meter	Anritsu	ML2495A/6K00003357	May, 2015
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2014

Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

3.2. Test Setup

3.3. Limit

The maximum peak power shall be less 1Watt.

3.4. Test Procedure

The EUT was setup to ANSI C63.4, 2009; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

3.5. Uncertainty

± 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Peak Power Output
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK)

Channel No.	Frequency	Measurement	Required Limit	Result
	(MHz)	(dBm)		
Channel 00	2402.00	11.47	1 Watt= 30 dBm	Pass
Channel 39	2441.00	11.45	1 Watt= 30 dBm	Pass
Channel 78	2480.00	11.24	1 Watt= 30 dBm	Pass

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Peak Power Output
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit - 2Mbps (4DQPSK)

Channel No.	Frequency	Measurement	Required Limit	Result
	(MHz)	(dBm)		
Channel 00	2402.00	9.43	1 Watt= 30 dBm	Pass
Channel 39	2441.00	9.45	1 Watt= 30 dBm	Pass
Channel 78	2480.00	9.40	1 Watt= 30 dBm	Pass

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Peak Power Output
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit - 3Mbps (8DPSK)

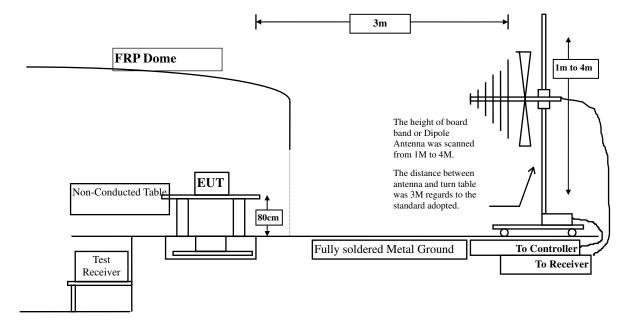
Channel No.	Frequency	Measurement	Required Limit	Result
	(MHz)	(dBm)		
Channel 00	2402.00	9.34	1 Watt= 30 dBm	Pass
Channel 39	2441.00	9.38	1 Watt= 30 dBm	Pass
Channel 78	2480.00	9.27	1 Watt= 30 dBm	Pass

4. **Radiated Emission**

4.1. Test Equipment

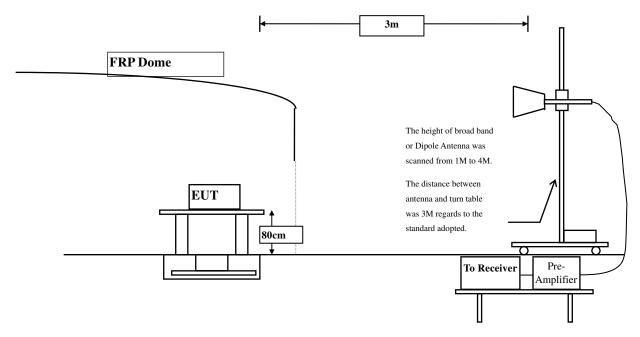
The following test equipments are used during the radiated emission test:

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Magnetic Loop Antenna	Teseq	HLA6121/ 37133	Sep, 2014
	Х	Bilog Antenna	Schaffner Chase	CBL6112B/ 2707	Jun, 2014
	Х	EMI Test Receiver	R&S	ESCS 30/838251/ 001	Jun, 2014
	Х	Coaxial Cable	QTK(Arnist)	RG 214/ LC003-RG	Jun, 2014
	Х	Coaxial signal switch	Arnist	MP59B/ 6200798682	Jun, 2014


Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
CB # 8	X Spectrum Analyzer		R&S	FSP40/ 100339	Oct, 2014
	Х	Horn Antenna	ETS-Lindgren	3117/ 35205	Mar, 2015
	Х	Horn Antenna	Schwarzbeck	BBHA9170/209	Jan, 2015
	X Horn Antenna TRC		TRC	AH-0801/95051	Aug, 2014
	Х	Pre-Amplifier	EMCI	EMC012630SE/980210	Jan, 2015
	Х	Pre-Amplifier	MITEQ	JS41-001040000-58-5P/153945	Jul, 2014
	Х	Pre-Amplifier	NARDA	DBL-1840N506/013	Jul, 2014

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.


4.2. Test Setup

Below 1GHz

Above 1GHz

4.3. Limits

General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits						
Frequency MHz	uV/m @3m dBµV/m@3m					
30-88	100	40				
88-216	150	43.5				
216-960	200	46				
Above 960	500	54				

Remarks: 1. RF Voltage $(dB\mu V) = 20 \log RF$ Voltage (uV)

- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.4. Test Procedure

The EUT was setup according to ANSI C63.10, 2009 and tested compliance to FCC 47CFR 15.249 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2009 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement.

The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

4.5. Uncertainty

± 3.9 dB above 1GHz

± 3.8 dB below 1GHz

Product Test Item Test Site Test Mode	 Intel® Dual Band Wireless-AC 8260 Harmonic Radiated Emission No.3 OATS Mode 1: Transmit - 1Mbps (GFSK)(2402MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	dBµV/m	dB	dBµV/m	
Horizontal						
Peak Detector:						
4804.000	3.327	39.420	42.747	-31.253	74.000	
7206.000	10.136	41.050	51.186	-22.814	74.000	
9608.000	13.706	37.190	50.896	-23.104	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
4804.000	6.638	42.970	49.607	-24.393	74.000	
7206.000	11.005	40.630	51.635	-22.365	74.000	
9608.000	14.103	37.530	51.633	-22.367	74.000	
Average						
Detector:						

4.6. Test Result of Radiated Emission

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® Dual Band Wireless-AC 8260							
Test Item	: Harmonic Radiated Emission							
Test Site	: No.3 OAT	: No.3 OATS						
Test Mode	: Mode 1: 7	: Mode 1: Transmit - 1Mbps (GFSK)(2441MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBµV	dBµV/m	dB	dBµV/m			
Horizontal								
Peak Detector:								
4882.000	3.001	39.350	42.351	-31.649	74.000			
7323.000	11.846	40.590	52.437	-21.563	74.000			
9764.000	12.563	37.590	50.153	-23.847	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
4882.000	5.713	41.260	46.974	-27.026	74.000			
7323.000	12.727	40.290	53.018	-20.982	74.000			
9764.000	13.028	37.150	50.178	-23.822	74.000			
Average								
Detector:								

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Harmonic Radiated Emission
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK)(2480MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
4960.000	2.760	39.260	42.020	-31.980	74.000
7440.000	12.567	41.260	53.826	-20.174	74.000
9920.000	13.456	37.160	50.616	-23.384	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4960.000	5.557	42.230	47.787	-26.213	74.000
7440.000	13.426	40.330	53.755	-20.245	74.000
9920.000	13.958	37.630	51.588	-22.412	74.000
Average					
Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Intel® Dual Band Wireless-AC 8260 Harmonic Radiated Emission No.3 OATS Mode 2: Transmit - 2Mbps (4DQPSK)(2402MHz) 				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
4804.000	3.327	39.260	42.587	-31.413	74.000
7206.000	10.136	41.260	51.396	-22.604	74.000
9608.000	13.706	37.260	50.966	-23.034	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4804.000	6.638	42.300	48.937	-25.063	74.000
7206.000	11.005	41.260	52.265	-21.735	74.000
9608.000	14.103	37.150	51.253	-22.747	74.000
Average					
Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Intel® Dual Band Wireless-AC 8260 Harmonic Radiated Emission No.3 OATS Mode 2: Transmit - 2Mbps (4DQPSK) (2441MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	dBµV/m	dB	dBµV/m	
Horizontal						
Peak Detector:						
4882.000	3.001	39.150	42.151	-31.849	74.000	
7323.000	11.846	41.260	53.107	-20.893	74.000	
9764.000	12.563	37.150	49.713	-24.287	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
4882.000	5.713	41.630	47.344	-26.656	74.000	
7323.000	12.727	40.360	53.088	-20.912	74.000	
9746.000	13.138	37.550	50.688	-23.312	74.000	
Average						
Detector:						

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: Harmon : No.3 OA			(Hz)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level	C	
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
4960.000	2.760	39.560	42.320	-31.680	74.000
7440.000	12.567	41.020	53.586	-20.414	74.000
9920.000	13.456	37.850	51.306	-22.694	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4960.000	5.557	42.110	47.667	-26.333	74.000
7440.000	13.426	40.030	53.455	-20.545	74.000
9920.000	13.958	37.150	51.108	-22.892	74.000
Average					
Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: Harmoni : No.3 OA			z)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
4804.000	3.327	39.230	42.557	-31.443	74.000
7206.000	10.136	41.290	51.426	-22.574	74.000
9608.000	13.706	37.150	50.856	-23.144	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4804.000	6.638	42.010	48.647	-25.353	74.000
7206.000	11.005	41.120	52.125	-21.875	74.000
9608.000	14.103	37.260	51.363	-22.637	74.000
Average					
Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: Harmonie : No.3 OA			(z)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
4882.000	3.001	39.110	42.111	-31.889	74.000
7323.000	11.846	41.260	53.107	-20.893	74.000
9746.000	12.645	37.590	50.234	-23.766	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4882.000	5.713	41.850	47.564	-26.436	74.000
7323.000	12.727	41.020	53.748	-20.252	74.000
9764.000	13.028	37.150	50.178	-23.822	74.000
Average					
Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Intel® I	Dual Band Wireles	ss-AC 8260			
Test Item	: Harmon	: Harmonic Radiated Emission				
Test Site	: No.3 O	: No.3 OATS				
Test Mode	: Mode 3	: Transmit - 3Mbp	os (8DPSK) (2480MH	z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	dBµV/m	dB	dBµV/m	
Horizontal						
Peak Detector:						
4960.000	2.760	39.690	42.450	-31.550	74.000	
7440.000	12.567	41.010	53.576	-20.424	74.000	
9920.000	13.456	37.560	51.016	-22.984	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
4960.000	2.760	41.590	44.350	-29.650	74.000	
7440.000	13.426	40.130	53.555	-20.445	74.000	
9920.000	13.958	37.590	51.548	-22.452	74.000	
Average						
Detector:						

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	General Radiated Emission
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK) (2441MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
196.840	-10.490	41.831	31.341	-12.159	43.500
369.500	0.680	34.376	35.056	-10.944	46.000
495.600	1.288	34.003	35.291	-10.709	46.000
619.760	1.866	31.991	33.857	-12.143	46.000
792.420	6.157	26.165	32.322	-13.678	46.000
920.460	6.542	27.899	34.441	-11.559	46.000
Vertical					
121.180	-3.650	33.869	30.219	-13.281	43.500
278.320	-6.250	39.375	33.125	-12.875	46.000
460.680	-2.080	32.926	30.846	-15.154	46.000
563.500	-2.668	37.820	35.153	-10.847	46.000
741.980	-0.560	35.072	34.512	-11.488	46.000
943.740	3.170	28.523	31.693	-14.307	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: Genera : No.3 C			IHz)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
156.100	-8.635	40.368	31.733	-11.767	43.500
307.420	-4.332	36.624	32.292	-13.708	46.000
466.500	3.000	33.224	36.224	-9.776	46.000
621.700	1.612	26.997	28.609	-17.391	46.000
773.020	4.922	30.988	35.910	-10.090	46.000
889.420	6.370	30.323	36.693	-9.307	46.000

Vertical 128.940

266.680

410.240

569.320

724.520

881.660

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

32.461

34.494

33.776

36.699

33.806

38.256

-11.039

-11.506

-12.224

-9.301

-12.194

-7.744

43.500

46.000

46.000

46.000

46.000

46.000

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

36.298

40.230

38.356

39.309

34.766

37.166

4. Measurement Level = Reading Level + Correct Factor.

-3.837

-5.736

-4.580

-2.610

-0.960

1.090

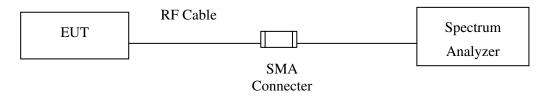
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	General Radiated Emission
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit - 3Mbps (8DPSK) (2441MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
214.300	-10.488	40.658	30.169	-13.331	43.500
379.200	1.206	32.848	34.054	-11.946	46.000
518.880	3.010	26.871	29.881	-16.119	46.000
668.260	1.700	25.296	26.996	-19.004	46.000
807.940	5.979	25.908	31.887	-14.113	46.000
920.460	6.542	29.718	36.260	-9.740	46.000
Vertical					
154.160	-5.414	37.980	32.566	-10.934	43.500
313.240	-4.286	40.257	35.971	-10.029	46.000
487.840	-2.466	38.713	36.246	-9.754	46.000
660.500	-1.267	34.050	32.783	-13.217	46.000
815.700	2.665	33.448	36.113	-9.887	46.000
955.380	2.750	32.446	35.196	-10.804	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

5. **RF** Antenna Conducted Test


5.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015

Note: 1. All equipments are calibrated every one year.

2. The test instruments Marked "X" are used to measure the final test results.

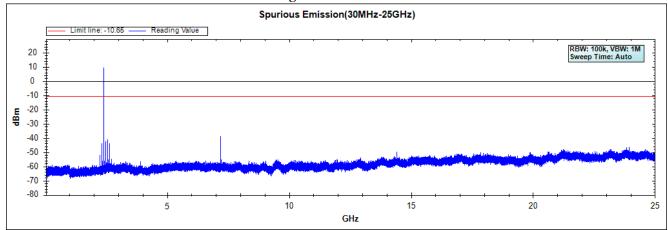
5.2. Test Setup

5.3. Limits

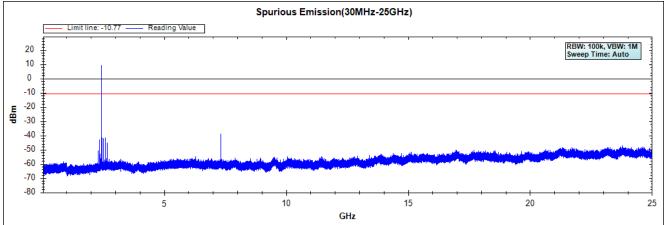
According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.4. Test Procedure

The EUT was setup to ANSI C63.4, 2009; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.


5.5. Uncertainty

± 150Hz


5.6. Test Result of RF Antenna Conducted Test

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	RF Antenna Conducted Test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK)

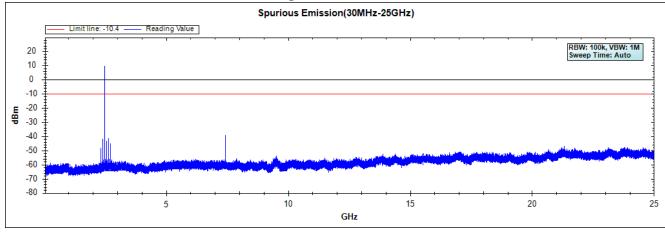
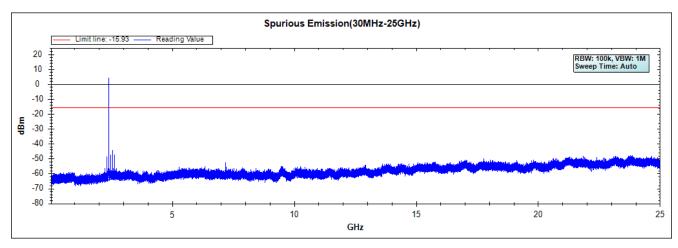

Figure Channel 00:

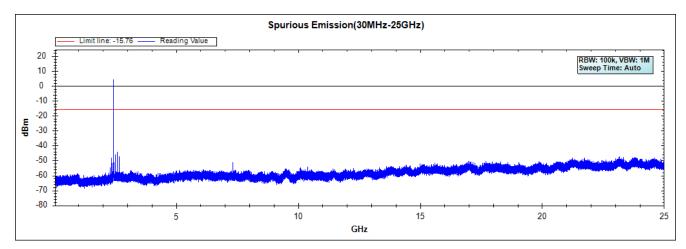
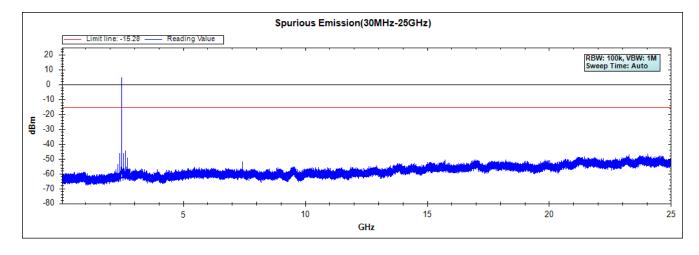
Figure Channel 39:

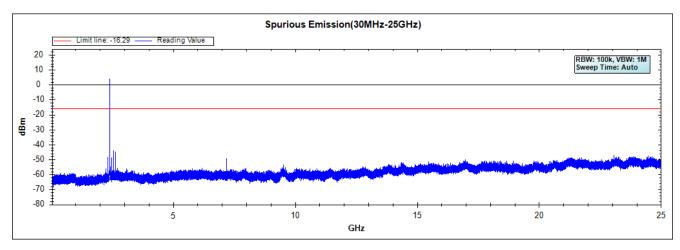

Figure Channel 78:

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	RF Antenna Conducted Test
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit - 2Mbps (4DQPSK)

Figure Channel 00:

Figure Channel 39:


Figure Channel 78:

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	RF Antenna Conducted Test
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit - 3Mbps (8DPSK)

Figure Channel 00:

Figure Channel 39:

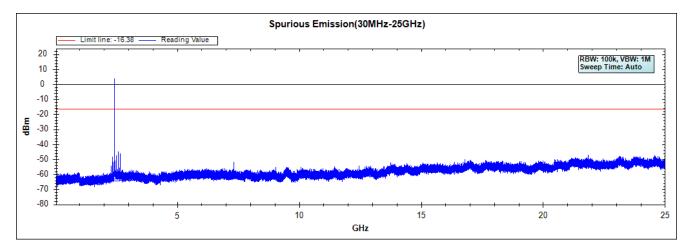
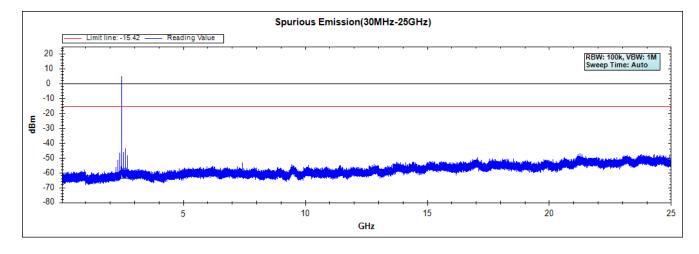



Figure Channel 78:

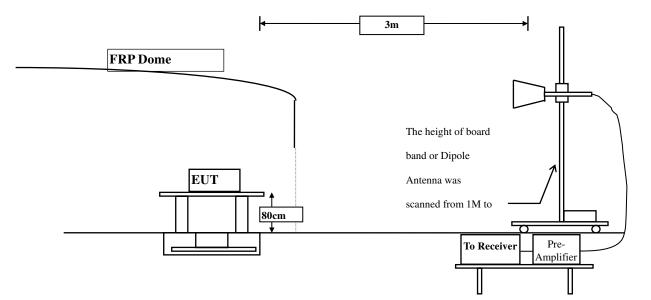
6. Band Edge

6.1. Test Equipment

RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
CB # 8	X Spectrum Analyzer		R&S	FSP40/ 100339	Oct, 2014
	Х	Horn Antenna	ETS-Lindgren	3117/ 35205	Mar, 2015
	Х	Horn Antenna	Schwarzbeck	BBHA9170/209	Jan, 2015
	Х	Horn Antenna	TRC	AH-0801/95051	Aug, 2014
	Х	Pre-Amplifier	EMCI	EMC012630SE/980210	Jan, 2015
	Х	Pre-Amplifier	MITEQ	JS41-001040000-58-5P/153945	Jul, 2014
	Х	Pre-Amplifier	NARDA	DBL-1840N506/013	Jul, 2014


Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Radiated Measurement:

Above 1GHz

6.3. Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

6.4. Test Procedure

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

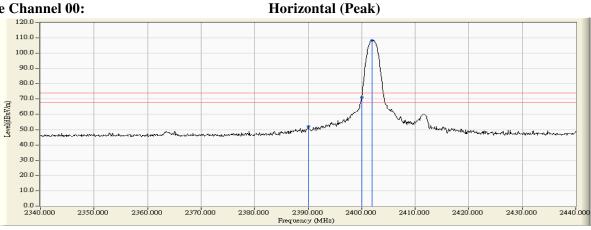
The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2009 on radiated measurement.

The bandwidth setting below 1GHz and above 1GHz on the field strength meter is 120 kHz and 1MHz, respectively.

6.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz


6.6. **Test Result of Band Edge**

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK)

RF Radiated Measurement (Horizontal):

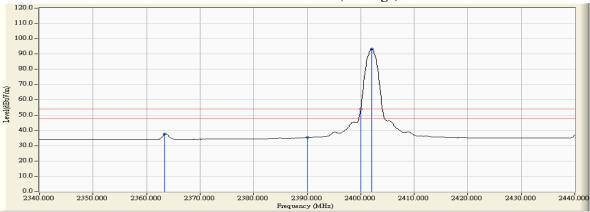
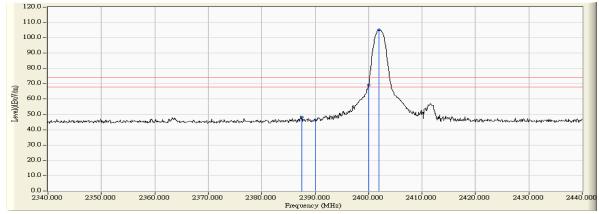

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
00 (Peak)	2390.000	-1.131	53.203	52.072	74.00	54.00	Pass
00 (Peak)	2400.000	-1.084	72.049	70.966	74.00	54.00	Pass
00 (Peak)	2401.900	-1.073	109.369	108.296			
00 (Average)	2363.400	-1.235	38.728	37.492	74.00	54.00	Pass
00 (Average)	2390.000	-1.131	36.447	35.316	74.00	54.00	Pass
00 (Average)	2400.000	-1.084	54.973	53.890	74.00	54.00	Pass
00 (Average)	2402.100	-1.072	94.268	93.196			

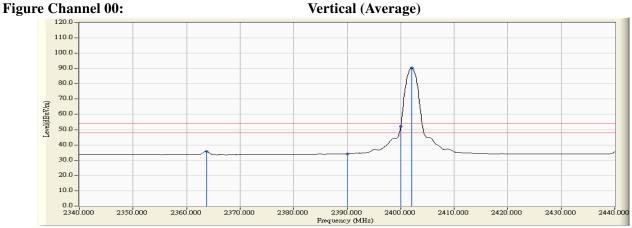
Figure Channel 00:

Figure Channel 00:

Horizontal (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.


Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK)


RF Radiated Measurement (Vertical):

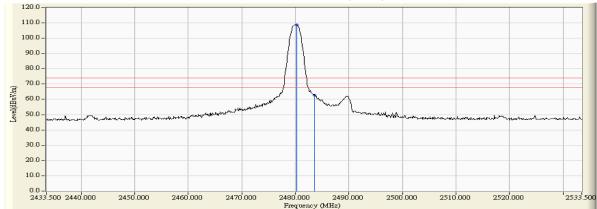
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesuit
00 (Peak)	2387.500	-1.713	50.073	48.360	74.00	54.00	Pass
00 (Peak)	2390.000	-1.725	47.959	46.234	74.00	54.00	Pass
00 (Peak)	2400.000	-1.733	71.016	69.284	74.00	54.00	Pass
00 (Peak)	2401.900	-1.729	106.778	105.049			
00 (Average)	2363.700	-1.604	37.428	35.825	74.00	54.00	Pass
00 (Average)	2390.000	-1.725	35.967	34.242	74.00	54.00	Pass
00 (Average)	2400.000	-1.733	53.785	52.053	74.00	54.00	Pass
00 (Average)	2402.100	-1.729	92.044	90.315			

Figure Channel 00:

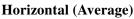
Vertical (Peak)

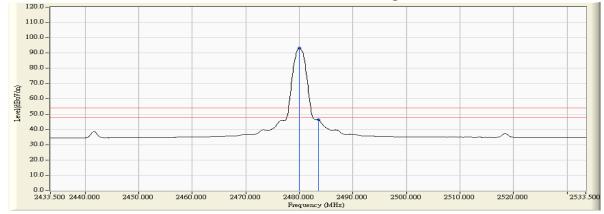
Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK)

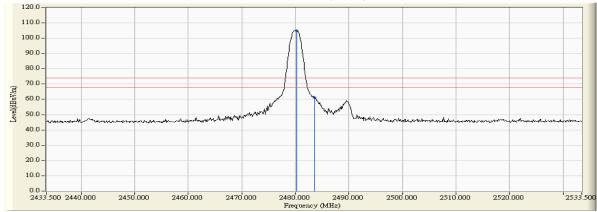
RF Radiated Measurement (Horizontal):


Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
78 (Peak)	2480.200	-0.579	109.360	108.781			
78 (Peak)	2483.500	-0.558	63.253	62.695	74.00	54.00	Pass
78 (Average)	2480.000	-0.581	93.811	93.230			
78 (Average)	2483.500	-0.558	46.971	46.413	74.00	54.00	Pass


Figure Channel 78:

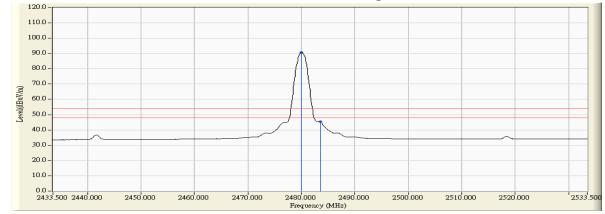
Horizontal (Peak)

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK)

RF Radiated Measurement (Vertical):

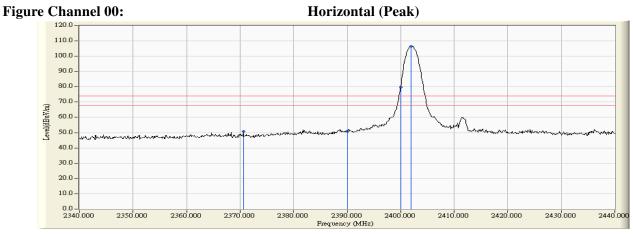
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
78 (Peak)	2480.200	-1.323	106.345	105.022			
78 (Peak)	2483.500	-1.305	62.507	61.202	74.00	54.00	Pass
78 (Average)	2480.000	-1.324	92.152	90.828			
78 (Average)	2483.500	-1.305	46.555	45.250	74.00	54.00	Pass

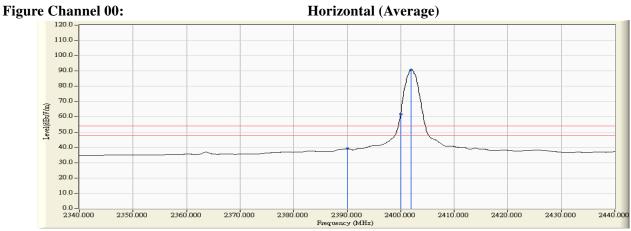

Figure Channel 78:

Vertical (Peak)

Figure Channel 78:

Vertical (Average)


Note:

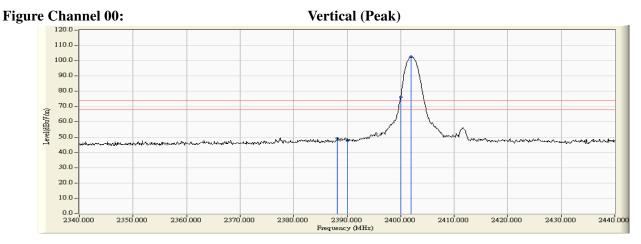

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

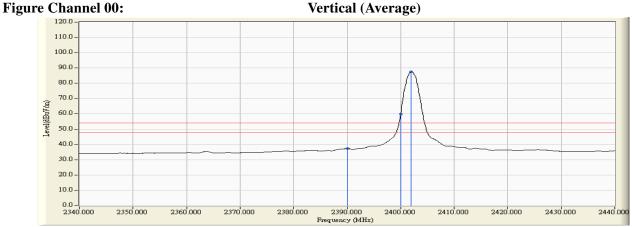
Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit - 2Mbps (4DQPSK)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
00 (D 1)		· · ·	· · · · ·	· · · · · ·	· /	· · · · · · · · · · · · · · · · · · ·	D
00 (Peak)	2370.600		52.066	50.859	74.00	54.00	Pass
00 (Peak)	2390.000	-1.131	51.890	50.759	74.00	54.00	Pass
00 (Peak)	2400.000	-1.084	80.839	79.756	74.00	54.00	Pass
00 (Peak)	2401.900	-1.073	107.589	106.516			
00 (Average)	2390.000	-1.131	40.339	39.208	74.00	54.00	Pass
00 (Average)	2400.000	-1.084	62.812	61.729	74.00	54.00	Pass
00 (Average)	2402.000	-1.073	91.814	90.742			

Note: 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.


- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



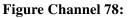
Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit - 2Mbps (4DQPSK)

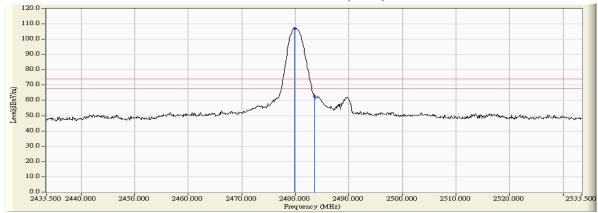
RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesult
00 (Peak)	2388.200	-1.716	51.033	49.317	74.00	54.00	Pass
00 (Peak)	2390.000	-1.725	49.351	47.626	74.00	54.00	Pass
00 (Peak)	2400.000	-1.733	78.051	76.319	74.00	54.00	Pass
00 (Peak)	2401.900	-1.729	104.330	102.601			
00 (Average)	2390.000	-1.725	39.132	37.407	74.00	54.00	Pass
00 (Average)	2400.000	-1.733	61.412	59.680	74.00	54.00	Pass
00 (Average)	2402.000	-1.729	89.329	87.600			

Note: 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.


- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

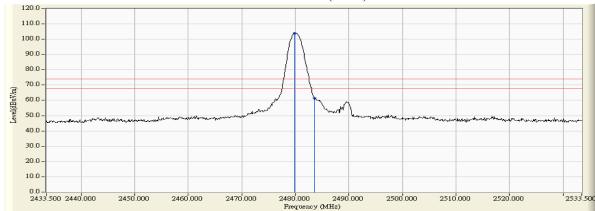

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit - 2Mbps (4DQPSK)

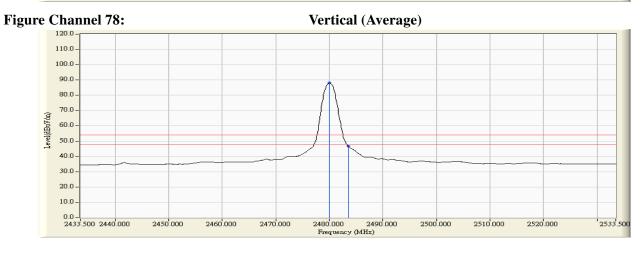
RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Desult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
78 (Peak)	2479.900	-0.581	107.640	107.059			
78 (Peak)	2483.500	-0.558	63.255	62.697	74.00	54.00	Pass
78 (Average)	2480.000	-0.581	91.183	90.602			
78 (Average)	2483.500	-0.558	48.784	48.226	74.00	54.00	Pass

Horizontal (Peak)

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit - 2Mbps (4DQPSK)

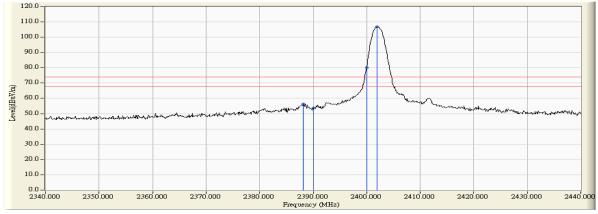

RF Radiated Measurement (Vertical):

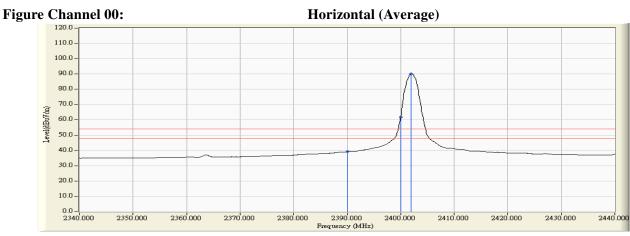
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
78 (Peak)	2479.900	-1.325	105.321	103.996			
78 (Peak)	2483.500	-1.305	62.830	61.525	74.00	54.00	Pass
78 (Average)	2480.000	-1.324	89.552	88.228			
78 (Average)	2483.500	-1.305	47.955	46.650	74.00	54.00	Pass

Figure Channel 78:

Vertical (Peak)

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

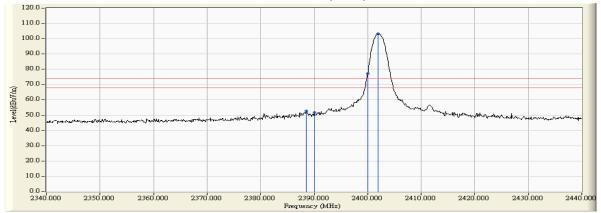

Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit - 3Mbps (8DPSK)

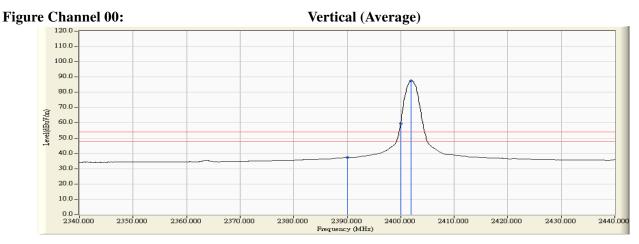

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
00 (Peak)	2388.100	-1.138	57.391	56.253	74.00	54.00	Pass
00 (Peak)	2390.000	-1.131	54.741	53.610	74.00	54.00	Pass
00 (Peak)	2400.000	-1.084	81.308	80.225	74.00	54.00	Pass
00 (Peak)	2402.000	-1.073	107.826	106.754			
00 (Average)	2390.000	-1.131	40.298	39.167	74.00	54.00	Pass
00 (Average)	2400.000	-1.084	62.723	61.640	74.00	54.00	Pass
00 (Average)	2402.000	-1.073	91.171	90.099			

Figure Channel 00:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit - 3Mbps (8DPSK)

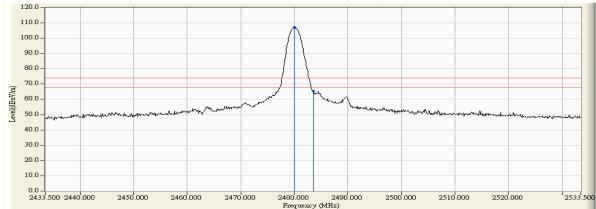

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel NO.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
00 (Peak)	2388.500	-1.718	54.331	52.613	74.00	54.00	Pass
00 (Peak)	2390.000	-1.725	53.396	51.671	74.00	54.00	Pass
00 (Peak)	2400.000	-1.733	78.883	77.151	74.00	54.00	Pass
00 (Peak)	2402.000	-1.729	104.870	103.141			
00 (Average)	2390.000	-1.725	39.043	37.318	74.00	54.00	Pass
00 (Average)	2400.000	-1.733	61.371	59.639			
00 (Average)	2402.000	-1.729	89.307	87.578			

Figure Channel 00:

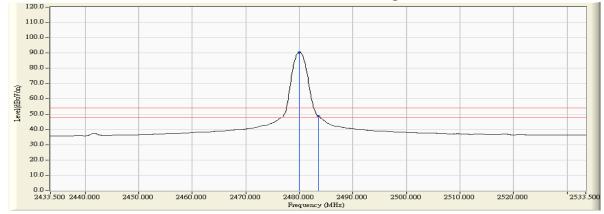
Vertical (Peak)

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit - 3Mbps (8DPSK)

RF Radiated Measurement (Horizontal):

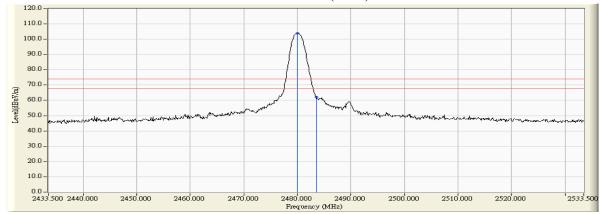
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
78 (Peak)	2480.000	-0.581	107.579	106.998			
78 (Peak)	2483.500	-0.558	65.809	65.251	74.00	54.00	Pass
78 (Average)	2480.000	-0.581	90.991	90.410			
78 (Average)	2483.500	-0.558	49.010	48.452	74.00	54.00	Pass

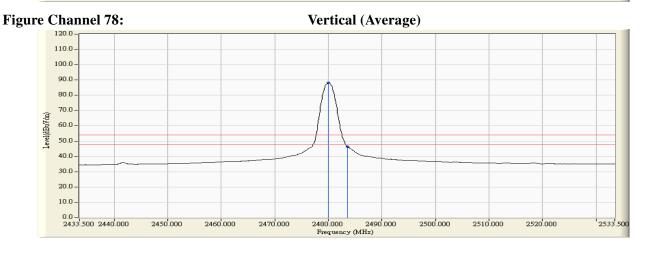

Figure Channel 78:

Horizontal (Peak)

Horizontal (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Intel [®] Dual Band Wireless-AC 8260
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit - 3Mbps (8DPSK)

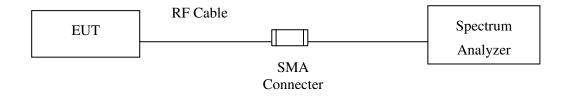

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Degult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
78 (Peak)	2480.000	-1.324	105.377	104.053			
78 (Peak)	2483.500	-1.305	63.239	61.934	74.00	54.00	Pass
78 (Average)	2480.000	-1.324	89.513	88.189			
78 (Average)	2483.500	-1.305	47.766	46.461	74.00	54.00	Pass

Figure Channel 78:

Vertical (Peak)

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


7. Channel Number

7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015

Note: 1. All equipments are calibrated every one year.2. The test instruments marked by "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limit

Frequency hopping systems operating in the 2400-2483.5 MHz bands shall use at least 75 hopping frequencies.

7.4. Test Procedure

The EUT was setup to ANSI C63.4, 2009; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

7.5. Uncertainty

N/A

7.6. Test Result of Channel Number

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Channel Number
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK)

Frequency Range	Measurement	Required Limit	Result
(MHz)	(Hopping Channel)	(Hopping Channel)	Kesuit
2402 ~ 2480	79	>75	Pass

2402-2421MHz

2422-2441MHz

gilant Spe	thum Analy	ALL SHE	ue SA										Aglian	it Spectrum	Linelyzer	Smooth	54								
Center		41150	0000 GI	lz		ree Run		Avg Type	Log-Per	DH SH DD F	NOOP IL 2015	Frequency	Cen	ter Fred		15000	000 GH	2	1	A Dun	Avg Typ	pe: Log-Pw	IM SEA	TALE 12345	Frequency
-			15	NO: Fast G Galad.ow	sAtten	30 dB	-	2.2				A	_				P) IFC	0: Fast G	\$Atten: 3	0 dB	100		_		
10 dB/div		fiset 0.5 20.50 d							MKR	2 2.421 9.	00 GHz 82 dBm			B/div F	ef Offse lef 20.	et 0.5 di	m			2		MI	1	1 00 GH: 0.06 dBn	
105 0500	W	N	An M	nji	WV	W	Γ¥	M	MA	nn	N	Center Freq 2.411500000 GHz	10 h 0 500	21	À	N	W	ηn	M	1V	ŴV	ŴV	VV	WW	Center Free 2.431500000 GH
相6 295 285								-				Start Freq 2,401500000 GHz	-196 -295 -385												Start Fre 2,421500000 GH
49.6 59.6 69.6							-					Stop Freq 2.421500000 GHz	49.6 -99.6 -89.6		-	-									Stop Fre 2,441500000 GH
Res B	10150 G V 100 k			#VB	W 100 kH		EMPTE			467 ms	2150 GHz (1001 pts)		#Re	1 2.4215 s BW 10	0 kHz		_	#VBV	/ 100 kHz		KTON 1 P		2.467 m	.44150 GH s (1001 pts	
1 N N 3 4 5	1 [f]		2,402 0 2,421 0	0 GHz 0 GHz	9.72 9.82	dBm dBm						Freq Offset 0 Hz	19345	N 1	f]		2,422,0		9.97 c 10.06 c	Bm					Freq Offse 0 H
6 7 8 9 10													6 7 8 9 10												
80									STATIA	6	2		MSG									STATE:	TIME		

2442-2461MHz

2462-2480MHz

unt Spectrum Analyzer - Samur SA		igliant Spectrum Analyzer - Swept SA
Trig Free Run		Conter Freq 2.471500000 GHz PNO: Fast Conter Freq 2.471500000 GHz Trig: Free Run PNO: Fast Conter Freq 2.471500000 GHz Trig: Free Run PNO: Fast Conter Freq 2.471500000 GHz PNO: Fast Conter Freq 2.471500000 G
Ref Offset 0.5 dB Mkr2 2.461 00 GHz dB/div Ref 20.50 dBm 10.82 dBm	Auto Tune	If Galaties Atten: 30 dB origin Ninual Ref Offset 0.5 dB Mkr2 2.480 00 GHz Auto Tr 90 dB/div Ref 20.50 dBm 10.31 dBm
	Center Freq 2.451500000 GHz 0	(1) (1) (1) (1) (1) (1) (1) (1)
6 5 1	StartFreq	115 Start F 245 2.45150000
6 6 9	Stop Freq	485 Stop F 2.421500000
art 2.44150 GHz es BW 100 kHz Sweep 2.467 ms (1001 pts) Auto	2.000000 MHz	Start 2.46150 GHz Stop 2.48150 GHz CF S RRes BW 100 KHz #VBW 100 KHz Sweep 2.467 ms (1001 pts) Auto
1 1 7 2.442 00 GHz 10.84 dBm 1085 dBm Faild Gravesting Faild Gravest		DD2 0002 0002 0002 0000 000 0000 000 000

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Channel Number
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit - 2Mbps (4DQPSK)

Frequency Range (MHz)	Measurement (Hopping Channel)	Required Limit (Hopping Channel)	Result
2402 ~ 2480	79	>75	Pass

2402-2421MHz

2422-2441MHz

ant Spectrum Analyzes - Swept SA	Agiinit Spectrum Analyzer - Sanget SA
Inter Freq 2.411500000 GHz PHO: Freq Photo Phot	Center Fred 2.431500000 GHZ
Ref 0fiset 0.5 dB MKr2 2.421 00 GHz dB/div Ref 20.50 dBm 5.27 dBm	Lto Tune Ref Offset 0.5 dB Auto T 10 dB/div Ref 20.50 dBm 6.39 dBm
2,41160	Inter Freq 100 01 Center / 2431500000 Cetz 9.500
	Tart Freq 202 Start F 20000 GH2 2025 2421500000
	10p Freq 48.5
art 2.40150 GHz Stop 2.42150 GHz es BW 100 hHz #VBW 100 kHz Sweep 2.467 ms (1001 pts) 200 2000 Hz BW 200 Hz Sweep 2.467 ms (1001 pts) 440	CF Step Start 2.42150 GHz Stop 2.44150 GHz Stop 2.44150 GHz 2.00000 Hz #VBW 100 kHz Sweep 2.467 ms (10101 pts) 2.000000 Mtz Mtz Sweep 2.467 ms (10101 pts) 2.000000 Mtz 2.00000 Mtz 2.000000 Mtz 2.0000000 Mtz 2.00000000 Mtz 2.00000000 Mtz 2.00000 Mtz 2.00000 Mtz 2.00
N f 2,402.00 GHz 5.78 dBm	eq Offset 3 4 5 5 6 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	6 8 9 10 11
	NG CTATUS

2442-2461MHz

2462-2480MHz

dilant Spect	um Anal	yzer - Swe	er SA										it Spectrum	Analyzer	Servert SA													
Center F		45150	0000 GH	łz		ee Run	Avg Ty	pe: Log-Per	ITR-SOLARP ITA	HAD IL IN E 123456 H NNNNN RT P NNNNN	Frequency	Cen			500000	GHz	1000	e Run	Avg Typ	e: Log-Per	10423-42 10	ALE 123456	Frequency					
		- Sanda	.15	NO: Fast G	sAtten	30 dB		1994 C.	5	REAL WARNES		-	and services	10.000	and some of	PHO: Fast IFGaind.ow	#Atten: 3		100	-	1.1	OFT P NNNNN						
10 dB/div	Ref	0ffset 0.5 20.50 d	i dB IBm					Mki		00 GHz 64 dBm	Auto Tune		B/div I	tef Offset tef 20.5	0.5 dB 0 dBm					Mk		00 GHz	Auto Tur					
105 1 1500	~	~	Mar	a m	~	-		-		, t	Center Freq 2.451500000 GHz		21	~	ale a	- sur	in	n.n	~	-	~	*	Center Free 2.471500000 GH					
-3:50 -10:6 -29:5 -38:5											Start Freq 2.441500000 GHz	-950 -196 -295 -395										1	Start Free 2.461500000 GH					
49.6 50.6 10.6								-	-		Stop Freq 2.461500000 GHz	-49.6 -59.6 -89.6		-						-	-		Stop Free 2.481500000 GH					
Start 2.44 Res BW	100 k			#VB	V 100 KH		interna da	Sweep 3	2,467 ms	6150 GHz (1001 pts)	CF Step 2.000000 MHz Auto Man	#Re	1 2.461	00 kHz		#VE	W 100 kHz		con 18		2.467 ms	8150 GHz (1001 pts)	CF Step 2.000000 MH Auto Ma					
1 N N N N N N N N N N N N N N N N N N N			2,442 0 2,461 0	0 GHz 0 GHz	6.03 6.64	dBm					Freq Offset 0 Hz	1	NN		2.46 2.48	2 00 GHz 0 00 GHz	5,48 d 6,75 d	Bm					Freq Offse 0 H					
0 7 8 9 10 11												6 7 8 9 10 11																
55								STATU	10	21		MSG								STATE	AR .	2						

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Channel Number
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit - 3Mbps (8DPSK)

Frequency Range (MHz)	Measurement (Hopping Channel)	Required Limit (Hopping Channel)	Result
2402 ~ 2480	79	>75	Pass

2402-2421MHz

2422-2441MHz

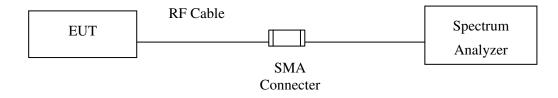
light Spectrum Analyzer - Swept SA					Apliant Spectrue							
art Freq 2.401500000	GHZ	Avg Type: Log-Pen		Frequency	Center Fre	q 2.43150	00000 GHz	Trig: Free Run	Avg Typ	e: Log-Per	DICESSINAD EL 2015 DALE 1 2 3 4 5 6 DIRE OFFICIAL	Frequency
	IFGaind.ow \$Atten: 30						IF Galuid.ow	\$Atten: 30 dB				Auto Tun
Ref Offset 0.5 dB dB/div Ref 20.50 dBm		Mk	r2 2.421 00 GHz 5.86 dBm	Auto Turke	10 dB/div	Ref Offset 0.5 Ref 20.50 c	5 dB dBm			Mkr2	2.441 00 GHz 6.07 dBm	Auto run
	-		1	Center Freq 2.411500000 GHz	105 0 500	-	Man Mar		112	~~	- A	Center Fre 2.431500000 GH
95				Start Freq 2.401600000 GHz	-196 -295 -395							Start Fr 2.421500000 G
96 06				Stop Freq 2.421500000 GHz	48.6 -50.6 #0.6						_	Stop Fr 2.441500000 G
art 2.40150 GHz Res BW 100 kHz	#VBW 100 kHz	Sweep	Stop 2.42150 GHz 2.467 ms (1001 pts)	2.000000 MHz	Start 2.421 #Res BW 1	50 GHz 00 kHz	#VBV	V 100 kHz	-		top 2.44150 GHz 67 ms (1001 pts)	CF St 2.000000 M
			H FORLER WALLE	Auto Man	-				FUNCTION	NUDWWDINE	FORCE ON WALLE	Auto Ma
1 N f 2 N f 2 3 4 5	402 00 GHz 6.48 dB 421 00 GHz 5.86 dB	m)		Freq Offset 0 Hz	12345	1	2.422.00 GHz 2.441 00 GHz	6.84 dBm 6.07 dBm				Freq Offs 01
6. 7. 8. 9. 0.					6 7 8 9 10							
					7				-			

2442-2461MHz

2462-2480MHz

lient Spectru	m Analyzar											Espectrum										
enter Fr		1500000	GHz PHO: Fast	1.5.5	Run	Avg Type: L	og-Pwr	INSUL-4918 IBAD 719	TPNNNNN	Frequency	Cent			500000	GHZ PHO: Fast	100	e Run	Avg Typ	e: Log-Pwr	175:28/519 1944	TP NNNN	Frequency
			IFGalad.ew	#Atten: 30	dB	-	-17.		-	1.10.00.00	-				FGaladow	sAtten: 3		-				A
dB/div	Ref 0f/set 05 dB Mkr2 2.461 00 C div Ref 20.50 dBm 7.30 d							00 GHz 30 dBm	Auto Tune	Auto Tune Ref Offset 0.5 dB Mkr2 2.480 00 GH									Auto Tur			
05 A1	ary.	an		2	1	~	~	-	1	Center Freq 2.451500000 GHz	105 0500	21	~	~~	~	m	~		~	~	2	Center Fre 2.471500000 GH
95										Start Freq 2.441500000 GHz	-106. -205.										X	Start Fr 2.461600000 G
16	-				-	_		_		Stop Freq 2.461500000 GHz	496 -996 -106			-					-			Stop Fr 2.481500000 (
art 2.44 Res BW	150 GHz 100 kHz		#VB	W 100 kHz	2	Sv	S veep 2,4	Stop 2.46 167 ms (i150 GHz 1001 pts)	CF Step 2.000000 MHz Auto Man	Star #Res	1 2.4615 s BW 10	i0 GHz 10 kHz		#VB	W 100 kHz			Sweep 3	Stop 2.41 2.467 ms (8150 GHz 1001 pts)	CF St 2.000000 M Auto
1 N 2 N 3	1 1 1	2.44 2.46	2 00 GHz 51 00 GHz	6.84 dE 7.30 dE		Din Pana	ION WIDTH F	FONCTO	N WILLE	FreqOffset	1		f f	2.46 2.49	2 00 GHz 0 00 GHz	7.18 d 7.18 d		aren er	NU DA MORA	FONCTO	IN WILLE	Freq Offs
4 5 6 7										0 Hz	4 5 6 7										_	0
9 9 0									Ξ,		9 10 11										=.	
							STATIAN				ASC .								STATE			

8. Channel Separation


8.1. Test Equipment

_	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015

Note: 1. All equipments are calibrated every one year.

2. The test instruments mark by "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

8.4. Test Procedure

The EUT was setup to ANSI C63.4, 2009; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

8.5. Uncertainty

± 150Hz

8.6. Test Result of Channel Separation

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Channel Separation
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK)

	Fraguanay	Measurement	Limit	Limit of (2/3)*20dB		
Channel No.	Frequency (MHz)	Level	$(l_{2}\mathbf{U}_{2})$	Bandwidth (kHz)	Result	
	(WITZ)	(kHz)	(kHz)	Balluwiuui (KHZ)		
00	2402	1000	>25 kHz	753.3	Pass	
39	2441	1000	>25 kHz	753.3	Pass	
78	2480	1000	>25 kHz	753.3	Pass	

NOTE: The 20dB Bandwidth is refer to section 10.

Agilent Spectr	um Analyzer - Swept SA							
XI RL	RF 50 Ω AC		SENSE:IN		ALIGN AUTO		MApr 13, 2015	Eregueney
Center F	req 2.40200000	O GHz PNO: Wide G IFGain:Low	Trig: Free Rur #Atten: 30 dB		e: Log-Pwr	TY	2E 1 2 3 4 5 6 PE MWWWWW ET P N N N N N	Frequency
10 dB/div	Ref Offset 0.5 dB Ref 20.50 dBm				Mkr		00 GHz 82 dBm	Auto Tur
10.5			1	•2				0
10.5			$\square \square$	A				Center Fr 2.402000000 G
9.50								
19.5 29.5								Start Fr
39.5		/				A		2.397000000 G
49.5	man graded and a character of the	er and the Market			- hree	we have	un and un	Stop Fr
59.5 69.5								2.407000000 G
	402000 GHz 100 kHz	#VBW	/ 100 kHz	#	≸Sweep 5		0.00 MHz 1001 pts)	CF St 1.000000 M
KR MODE TI 1 N 1		402 00 GHz	Y 9.88 dBm	FUNCTION FL	INCTION WIDTH	FUNCTIO	DN VALUE	<u>Auto</u> N
2 N 1 3		403 00 GHz	9.82 dBm					Freq Offs
4 5								0
6								
8								
10 11								
			Ш	4		-		
SG					STATUS	5		

Channel 00 2402MHz

							•	Inamin	51 57		111	112			
Agiler	nt Spe	ctrum	Ana	lyzer - Swe	ept SA										
LXI R	L		RF	50 Ω	AC			SEI	ISE:INT			ALIGN AUTO	02:56:29 P	M Apr 13, 2015	_
Cen	iter	Free	a 2	.44100	00000	SHz				Avg	Туре	: Log-Pwr	TRA	CE 1 2 3 4 5 6	Frequency
						PNO: Wid		Trig: Free #Atten: 30					TY	PE MWWWWW ET P N N N N N	
						IFGain:Lo	w	#Atten: 30	JaB					,	Auto Tu
		5	⊳f	Offset 0.	5 48							Mkr		00 GHz	Autoru
10 d	B/div			20.50									9.	81 dBm	
Ĺõĝ			1						N1	2					
10.5			-			_			<u> </u>						Center Fr
0.500										$\ell \mid \chi$					2.441000000 G
									$\mid \bigvee$						2.441000000 G
-9.50											.				
-19.5	_					_					<u>\</u>				Otort Fr
-29.5															Start Fr
							- 7				•		~		2.436000000 G
-39.5	-		+			-	J.S.					\mathbb{W}	$+\Lambda$		
-49.5			_	Marrier	. in	and a state of the second	×					where the			
-59.5	-uni	ر جەربى مەربى	a	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	All and a second								1 We	and man	Stop Fr
															2.446000000 G
-69.5	-		-		-	-									
_															
				00 GHz									Span 1	0.00 MHz	
#Re	s Bi	W 10	1 O I	kHz		#\	/BW	/ 100 kHz			#\$	Sweep 5	00.0 ms (1001 pts)	1.000000 M
MKR	MODE	TRC	SCL		×			Y	E F	JNCTION	FUN	ICTION WIDTH	FUNCTI	DN VALUE	Auto M
1	Ν		f			00 GHz		9.77 di							
2	Ν	1	f		2.442	2 00 GHz		9.81 di	3m						
3			_												Freq Offs
			-				<u> </u>								0
5 6 7															
7															
8			-												
10			-												
11														~	
<															
MSG												STATUS	3		
												1	1		

Channel 39 2441MHz

Channel 78 2480 MHz

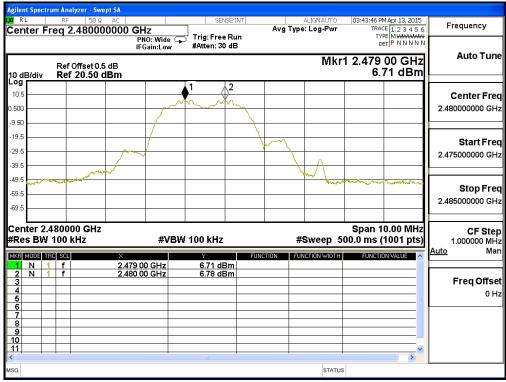
	um Analyzer - Swo								
Kanter Fi	RF 50 Ω req 2.48000	AC	s	ENSE:INT		ALIGNAUTO : Log-Pwr	TRAC	Apr 13, 2015	Trace/Detector
Conter 1	109 2.10000	PNO: Wit IFGain:Lo	de 🖵 Trig: Fr w #Atten:			-			Select Trace
10 dB/div	Ref Offset 0.6 Ref 20.50 (Mkr	1 2.479 9.7	00 GHz 71 dBm	1
10.5				₽ 2					Clear Write
-9.50		,							
19.5				+					Trace Averag
-29.5					-M	Λ			TraceAverag
-49.5	- Agreet which where	and we dere the			Howard	and the second	And aline the street	haranson	
-69.5									Max Hol
Center 2.4 Res BW	480000 GHz 100 kHz	#	VBW 100 kH	z	#	Sweep 5	Span 10 00.0 ms (*	0.00 MHz 1001 pts)	Min Ho
MKR MODE TF	f	× 2.479 00 GHz		dBm	NCTION FUN	ICTION WIDTH	FUNCTIO	N VALUE	
2 N 1 3 4 5 6		2.480 00 GHz	z 9.74	dBm				=====	View Blank ∨iew
7 8 9 10									Mo 1 of
								~	1013
SG						STATUS			

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Channel Separation
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit - 2Mbps (4DQPSK)

	Fraguanay	Measurement	Limit	Limit of (2/3)*20dB		
Channel No.	Frequency (MHz)	Level	(kHz)	Bandwidth (kHz)	Result	
	(MIIIZ)	(kHz)	(KIIZ)	Daliuwiuui (KHZ)		
00	2402	1000	>25 kHz	980.7	Pass	
39	2441	1000	>25 kHz	972.7	Pass	
78	2480	1000	>25 kHz	974.7	Pass	

NOTE: The 20dB Bandwidth is refer to section 10.

Channel 00 2402MHz


RL RF 50	ΩAC	SENSE:INT	ALIGN AUTO	03:32:36 PM Apr 13, 2015	
enter Freq 2.4020	PNO: Wide 🗔	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr	TRACE 123456 TYPE MWWWWW DET P N N N N N	Frequency
Ref Offset 0 dB/div Ref 20.50		#Atten: 30 dB	Mkr	2 2.403 00 GHz 6.92 dBm	Auto Tun
50		1	2		Center Fre 2.402000000 GH
9.5				Λ	Start Fr 2.397000000 G
9.5				water a second second second second	Stop Fr 2.407000000 G
enter 2.402000 GH: Res BW 100 kHz	#VBV	v 100 kHz	-	Span 10.00 MHz 00.0 ms (1001 pts)	CF St 1.000000 M <u>Auto</u> M
KR MODE TRC SCL 1 N 1 f 2 N 1 f 3 - - 4 - - 5 - - 6 - -	× 2.402 00 GHz 2.403 00 GHz	6.86 dBm 6.92 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	Freq Offs 0
7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9					

					Chunne	107						
Agilent Spect	rum Anal	rzer - Swept	SA									
L <mark>XI</mark> RL	RF		AC		SEN	SE:INT			GNAUTO		M Apr 13, 2015	Frequency
Center F	req 2.	4410000				D	Avg	Type: L	og-Pwr	TRAC	^{се} 123456 РЕМ ИМИМИ	
				0: Wide ⊂ ain:Low	Trig: Free #Atten: 30					D		
			IFG	am.Luw	#Ficterit 00							Auto Tune
		ffset 0.5 d							MKr2		00 GHz	
10 dB/div	Ref	20.50 dB	m							6.	72 dBm	
Log						(1	2					
10.5						<u> </u>	~~~					Center Freq
0.500						· · · · · ·						2.441000000 GHz
-9.50							1					
-19.5								$\langle \rangle$				
					1			V	\sim			Start Freq
-29.5				- po-	~ '		_					2.436000000 GHz
-39.5							_			Λ		
-49.5			Jun	×					l l	and 1		
mon	and an	AND THE REAL PROPERTY								ملحو ر ا ی مر	Maran Samat	Stop Freq
-59.5												2.446000000 GHz
-69.5					-		_					2.44000000 0112
Center 2											0.00 MHz	CF Step
#Res B₩	/ 100 k	Hz		#VB	W 100 kHz			#S₩	/eep 50	00.0 ms (1001 pts)	1.000000 MHz
MKR MODE	IBCL SCL		×		Y	FIL	NCTION	FUNCTI	ON WIDTH	FUNCTIO	IN VALUE	Auto Man
1	1 f		2.441 00	GHz	6.77 dE							
2 19	1 f		2.442 00	GHz	6.72 dE	m						E
3												Freq Offset
5												0 Hz
6												
7 8												
9	++					+						
10												
11					-	_					~	
											1	
MSG									STATUS			

Channel 39 2441MHz

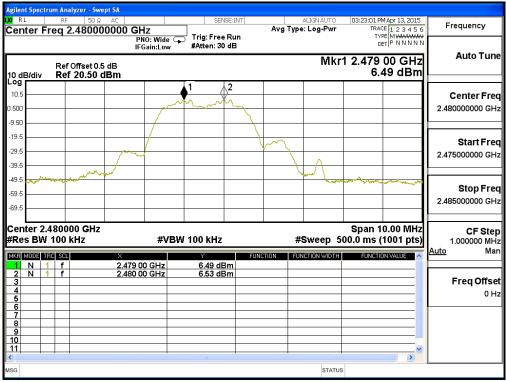
Channel 78 2480 MHz

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Channel Separation
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit - 3Mbps (8DPSK)

	Fraguanay	Measurement	Limit	Limit of (2/3)*20dB	
Channel No.	Frequency (MHz)	Level	$(l_{2}\mathbf{U}_{2})$	Bandwidth (kHz)	Result
	(MHZ)	(kHz)	(kHz)	Ballowioui (KHZ)	
00	2402	1000	>25 kHz	960.0	Pass
39	2441	1000	>25 kHz	960.7	Pass
78	2480	1000	>25 kHz	962.7	Pass

NOTE: The 20dB Bandwidth is refer to section 10.

Channel 00 2402MHz

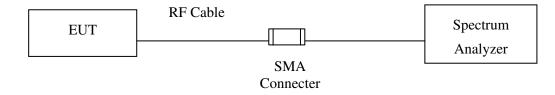

RLR	F 50 Ω AC		SENSE:I	NT	ALIGN AUTO	03:09:46 PM A	br 13, 2015	
enter Freq	2.40200000	0 GHz PNO: Wide G	Trig: Free Ru		: Log-Pwr	TRACE TYPE	123456 M WW/W//////	Frequency
		IFGain:Low	#Atten: 30 dE			1	PNNNNN	Auto Tun
0 dB/div Re	of Offset 0.5 dB ef 20.50 dBm				Mkr	2 2.403 0 6.67	0 GHz 7 dBm	Auto Tun
.og 10.5			1	2				Center Fre
.500			pont	many				2.402000000 GH
9.50			+/					
19.5		m		1	m			Start Fre
39.5						0		2.397000000 GH
19.5	- Marina and and and and and and and and and a	some/			\ \	and have	and the second	
59.5								Stop Fre 2.407000000 Gi
69.5								2.407000000 Gr
enter 2.402					I	Span 10.		CF Ste
Res BW 100		#VB\	N 100 kHz		<u> </u>	00.0 ms (10		1.000000 Mi Auto Ma
1 N 1 f		402 00 GHz	ĭ 6.65 dBm	FUNCTION FUN	ICTION WIDTH	FUNCTION	VALUE	Auto
2 N 1 f 3	2.	403 00 GHz	6.67 dBm					Freq Offs
4 5								01
6 7								
9								
10							~	
							>	

Agilen	t Spec	trum	Ana	lyzer - Swe	ept SA									
l xi Rl			RF	50 Ω			SE	VSE:INT			LIGN AUTO		M Apr 13, 2015	Frequency
Cen	ter	Free	q 2	.44100	00000 GH		Trig: Fre		Avg	Туре:	Log-Pwr	TRAC	E 123456	
						10: Wide Gain:Low	#Atten: 3					D		
_						Janneow								Auto Tune
		F	Ref	Offset 0.5	5 dB						WIKE:		00 GHz	
10 di	3/div	F	Ref	20.50 0	dBm							6.3	56 dBm	
Log								√1	2					
10.5								h	~~~					Center Freq
0.500			+					- march	~~ <u>~~</u>					2.441000000 GHz
-9.50										\mathbf{X}				
-19.5										$\langle \rangle$				
							1			J	~			Start Free
-29.5			+			100	\checkmark			1	<u> </u>			2.436000000 GHz
-39.5			_			\vdash	_					A		
-49.5					- were	and a second sec					۲	کسیر		
	erner a	"hours		V# - 1								-	and the second s	Stop Fred
-59.5			+											2.446000000 GHz
-69.5			+						_					2.44000000000
				00 GHz									0.00 MHz	CF Step
#Re	s BV	V 10)0 H	(Hz		#VE	3W 100 kHz			#S	weep 5	00.0 ms (1001 pts)	
MKR	MODE	TRC	SCL		×		Y		FUNCTION	FUNC	TION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> Man
1	Ν	1	f		2.441 0		6.55 d							
2	Ν	1	f		2.442 0	0 GHz	6.56 d	Зm						Freq Offset
3			-											
5													=	0 Hz
6			_											
7			-											
8 9														
10														
11			_							L			~	
MSG											STATUS			

Channel 39 2441MHz

Channel 78 2480 MHz

9. Dwell Time


9.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015

Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

9.2. Test Setup

9.3. Limit

The dwell time shall be the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

9.4. Test Procedure

The EUT was setup to ANSI C63.4, 2009; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

9.5. Uncertainty

 \pm 25msec

9.6. Test Result of Dwell Time

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Dwell Time
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK) (Channel 00,39,78 –DH5)

Frequency (MHz)	Time slot length (ms)	Hopping of Number	Sweep time (ms)	Duty cycle	Dwell Time (Sec)	Limit (Sec)	Result
2402	2.880	13	50	0.75	0.300	0.4	Pass
2441	2.890	13	50	0.75	0.301	0.4	Pass
2480	2.880	13	50	0.75	0.300	0.4	Pass

Duty cycle =((Time slot length(ms)*Hopping of Number) / Sweep time (ms)

Dwell time = (Duty cycle / 79) * (79*0.4)

CH 00 Time Interval between hops

CH 00 Transmission Time

nt Spentrum Analyzes - Samur SA		Aguents	pertrum &													
nter Freq 2.402000000 GHz PRO: Fast Trig: Free Run Avg Type: Log-Par Trig: Free Run Avg Type: Log-Par Trig: Free Run Avg Type: Log-Par Trig: Free Run Coll Participations Trig: Free Run Coll Participations Trig: Free Run Coll Participations Trig: Free Run Trig: Free Run T	Frequency	Cente	er Freq		00000	0 GHz	-	1		<u>n</u>	Avg Typ	e: Log-Pe	in lines	IPALE 1	23456 NNNNN	Frequency
PHO: Fast C Trig Free Run SAttar: 30 dB C R N N N		1.200				PHO	Fast G		Free Run n: 30 dB			<u> </u>		017	NNNN	
Mkr3 5.580 ms 9.59 dBm 9.59 dBm		10 dB/	div Re	1 20.0	0 dBm											Auto Tu
	Center Freq 2.402000000 GHz	10.0	11	11	-	-		-	-			+11		-	1	Center Fr 2.402000000 G
	Start Freq 2,402000000 GHz	10.00														Start Fi 2,402000000 0
nillizart sinceria nuertart	Stop Freq 2.402000000 GHz	-20.0														Stop F 2.402000000
ter 2.402000000 GHz Span 0 Hz BW 1.0 MHz #VBW 1.0 MHz Sweep 10.00 ms (1001 pts) cost lice terrory terr	CF Step 1.000000 MHz Auto Man	40.0														CF S 1 000000 M Auto
N 1 t 1830 ms 960 dBm N 1 t 4710 ms 956 dBm N ↑ t 5580 ms 958 dBm	Freq Offset 0 Hz	60.00-	ų	V	۷	×	¥	V	ų	M	V		4	41	V	Freq Off
			r 2.4020		GHz		HVDI		14.2			Cwaan.	50.00		n 0 Hz	
2 minue	-		r 2.4020 W 1.0 N		GHz		#VBV	1.0 M	IHz			Sweep	_	Spa ms (100		

CH39 Time Interval between hops

CH 39Transmission Time

glient Spectrum Analyzer					Agilitet Sper														
Center Freq 2.44	1000000 GHz	Avg Type: Log-Per	THATE 2 2 2 4 5 6 218 WALKS	Frequency	Center	Freq	2.4410	00000	00 GHz	Fast Ca	Trig: Fr	ree Run		Avg Typ	e: Log-Pe	1120	PALE 1 THE W	22450 NNNNN	Frequency
	IFGainLow SAttan	n 30 dB	Mkr3 7.020 ms	Auto Tune	-	_		_	IFGab	n.Low	sAtten	30 dB	-	_	_		OL N.	NNNN	Auto Tun
o dB/div Ref 20.0	00 dBm		9.51 dBm	1-1-1	10 dB/div	Re	1 20.00	dBm											
00	- Q1	()2 ∳3		Center Freq							-								Center Fr
0.0				2.441000000 GHz	10.0	111	T	T				T			TT			TIT	2.441000000 G
0.0				Start Freq	10.00			tt		1	111-	Ŧ			ttt	1		11	Start Fr
8.0	1			2,441000000 GHz	-10.0		+	+		+		+			+++-			+++	2.441000000 G
0.0	edippenge	when the st	1	Stop Freq	-21.0		+	+		+		+			+++-	-		++	Stop Fr
80				2,441000000 GHz	-30 0							+							2.441000000 G
enter 2.44100000 es BW 1.0 MHz	0 GHz #VBW 1.0 M	Hz Sween 1	Span 0 Hz 10.00 ms (1001 pts)	CF Step	40.0	11-1	11-	4		11	111-	1	1		111				CF Ste 1 000000 M
	-	PROFILE PROPERTY		Auto Man	58.0														Auto M
1 N 1 2 N T N T	3.270 ms 9.47 6.160 ms 9.55 7.020 ms 9.51	dBm dBm		Freq Offset	100	W	W.	4	44	W	4	4		Ų	4	4	V	4	Freq Offs
4 5 8				0 Hz	20.0						1.1			1	1	1		1.1	01
7.8			-		-70.0			1	-			1				1			
9					Center 2 Res BW			GHz		#VRV	1.0 MF	17	-	-	Sween	50.00	Spa ms (10	n 0 Hz	
Ri I		THE			MSS DV	1.5 1					1.2 10	14			_	30.00	1112 (101	or proj	

CH 78 Time Interval between hops

CH 78 Transmission Time

	Londyzern Savage SA	INFORM STRATE	1210331PHAP 12/2015		Agilian			et - Savet	si	_		1.00			-	AUTO	120211	900 B 2015	
	2.48000000 GHz	Avg Type: Log-Per	TRACE 2 2 2 4 5 6 TYPE DET P N N N N	Frequency				80000	000 Gł	łz		ng:Free		Avg T	ype: Lo	g-Per	INA	THE NUMBER OF	Frequency
	PNO: Fast The IFGainLow AAt	ten: 30 dB		Auto Tune					IF.	NO: Fast Galn:Low	* \$1	Atten 30	dB		_	_	-	an P NNNN	Auto Tun
dB/div R	tef 20.00 dBm	Contraction of the	Mkr3 6.590 ms 9.46 dBm	Auto Tune	10 de	3/div	Ref 2	0,00 dB	m										Auto Tu
50 9		2 3		Center Freq	Log	1				1				1	1			1	Center Fre
0				2.480000000 GHz	10.0	T	T			11	T			TT	11			11	2.480000000 G
0				Start Freq	10.00		+++		1		++								Start Fr
		1		2.480000000 GHz	-10.0				+		+++			+++-					2.48000000 G
10	of the state of th	heisten	(then	Stop Freq	31.0				-		-		-						Stop Fr
0				2.480000000 GHz	-30.0														2,480000000 G
	0000000 GHz		Span 0 Hz	CF Step	410				11										CFSt
s BW 1.0		Buch an a Barriston and	0.00 ms (1001 pts)	1 000000 MHz Auto Man															1 000000 M Auto M
NN	t 2,840 ms 9 t 5,720 ms 9	47 dBm 41 dBm		1.000	60.0	4	τ,	-	W	V	4	1	R	4	-	4	4		-
N	t 6,590 ms 9	46 dBm		Freq Offset 0 Hz	-60.01		1	-	-	-	+	-	-	-	+	-	-		Freq Offs
					70.0	-	+	-	-		+	-	_	-	+			-	
					Con	tor 2.41	20000	000 GH	_			_						Span 0 Hz	
	-			1		BW 1.0				#VB	W 1.0	MHz			SW	ep 50	00 ms	(1001 pts)	
		STATU			MISC				_		-					STATIAN			

Note:

The dwell times of the packet type of DH1, DH3, and DH5 are tested. Only the worst case is shown on the report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Dwell Time
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit - 2Mbps (4DQPSK) (Channel 00,39,78 –DH5)

Frequency (MHz)	Time slot length (ms)	Hopping of Number	Sweep time (ms)	Duty cycle	Dwell Time (Sec)	Limit (Sec)	Result
2402	2.890	13	50	0.75	0.301	0.4	Pass
2441	2.890	14	50	0.81	0.324	0.4	Pass
2480	2.880	13	50	0.75	0.300	0.4	Pass

Duty cycle =((Time slot length(ms)*Hopping of Number) / Sweep time (ms)

Dwell time = (Duty cycle /79) * (79*0.4)

CH 00 Time Interval between hops

Aglient Spectrum Logyter D Center Freq 2.402000000 GHz PRO: Fast FGainLow Adlan: 30 dB enter Freq 2.402000000 GHz PHO: Feat Trig: Free Run IF Gain Lew Attan: 30 dB Avg Type: Log-Per Frequency Avg Type: Log-Per Frequency DET P N N N TYTE WANN Auto Tur Auto Tu Mkr3 5.100 ms 6.50 dBm Ref 20,00 dBm Ref 20.00 dB Center Fre Center Fre 00000 Gi 000 G Start Free Start Fre 00000 G 000000 G window Stop Free Stop Fre 4 Mary 14 00 G CF Step nter 2.402000 s BW 1.0 MHz CF Step 1 000000 MH Span 0 Hz Sweep 10.00 ms (1001 pts) #VBW 1.0 MHz 6.51 dBm 6.79 dBm 6.50 dBm 1,350 ms 4,240 ms 5,100 ms ы 4 Ш M 6 W Freq Offse Freq Offse 0H 0H nter 2.402000000 GHz s BW 1.0 MHz Span 0 Hz Sweep 50.00 ms (1001 pts) #VBW 1.0 MHz

CH39 Time Interval between hops

CH 39Transmission Time

CH 00 Transmission Time

glitht Spectrum Analyzer - Sur								Spectrum An												
Center Freq 2.44100	00000 GHz	Trig: Free Run	Avg Type: L	og-Pwr	THE PACE 2 2 4 5 G	Frequency	Cent	er Freq	2.44100	00000	GHz		rig:Free	neen	Avg	Type: L	og-Per	101:393	DRIPHAD IL 2015	Frequency
2	PHO: Fast	sAtten: 30 dB	2.49.2	-		A	1				PNO: Fast IFGaln:Low		Atten: 30	dB				_	OT PNNNNN	
o dB/div Ref 20.00 d	dBm			Ņ	Mkr3 4.150 ms 6.43 dBm	Auto Tune	10 dB/	div Rel	20.00	Bm										Auto Tur
000 0 1	2 P	3	-	-	_	Center Freq 2.441000000 GHz	10.0	_						-		_				Center Fr 2.441000000 G
	1			ŕ		Start Freq 2.441000000 GHz	10.00													Start Fr 2,441000000 G
10 W	nation.			ursuppi		Stop Freq 2.441000000 GHz	30.0													Stop Fi 2.441000000 0
enter 2.441000000 G es BW 1.0 MHz	#VBW				Span 0 Hz .00 ms (1001 pts)	CF Step 1.000000 MHz Auto Man	40.0										1			CF St 1.000000 N Auto
1 N t 2 N t 4	400.0 µs 3,290 ms 4,150 ms	6,45 dBm 6,64 dBm 6,43 dBm				Freq Offset 0 Hz	50.01	d W	W	W	M	h	H	М	V	W	¥	m	W to	Freq Offe
6. 7. 8. 9. 9. 1.								er 2.4410 BW 1.0 M		Hz			0 MHz						Span 0 Hz	
Construction of the local distance				THINK			Rest	5W 1.0 M	nz	_	#V	DW 1.	o mna	-	-	31	eep o		s (1001 pts)	

CH 78 Time Interval between hops

CH 78 Transmission Time

	ectrum Analyzet - Swegt SA				um Anelyzen - Swegt SA	Actient Sp
	Freq 2.48000000 GHz		ITHAE 12 PHAP 13 (2015) ITHAE 12 2 2 4 5 6 TYRE WARNIN N	Avg Type: Log-Per Trig: Free Run	reg 2.480000000 GHz	enter
IFGeintow SAttar: 30 dB OF PANNAN Auto Tur		uto Tune	A.4.7	SAttar: 30 dB	IFGainLow SAt	
	Ref 20,00 dBm		6.44 dBm	N	Ref 20.00 dBm	dB/d
Center Fr		nter Freq	Center P	3		20
	manner	00000 GHz 10.0	2.480000000			0
StartFi		Start Freg	Start			Н
2.48000000 0			2,480000000	7		1
		30.0				
Stop F 2.480000000		Stop Freq 00000 GHz	2,480000000	Withornwood	hat she	o Pro
CFS		CESten	Span 0 Hz CFS		480000000 GHz	L
1,000000 N		00000 MHz	00 ms (1001 pts)		1.0 MHz #VBW 1.0	-
		60.0	FUNCTION WALLE	6.45 dBm	270.0 µs 6	N
• 11 17 17 18 17 3 • 11 FreqOffs		eq Offset 60.0		6.44 dBm	t 3,150 ms 0 t 4,020 ms 6	N
		-70 0				-
HZ Span 0 HZ #VBW 1.0 MHz Sween 50 00 ms (1001 nts)	2.480000000 GHz					
	2.480000000 GHz	30.0 CF Step 00000 MHz Man 60.0 0 Hz 70.0	Span 0 Hz 00 ms (1001 pts) repercevence Auto Freq Of	6.45 dBm 6.76 dBm	1.0 MHz #VBW 1.0	

Note:

The dwell times of the packet type of DH1, DH3, and DH5 are tested. Only the worst case is shown on the report.

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Dwell Time
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit - 3Mbps (8DPSK) (Channel 00,39,78 –DH5)

Frequency (MHz)	Time slot length (ms)	Hopping of Number	Sweep time (ms)	Duty cycle	Dwell Time (Sec)	Limit (Sec)	Result
2402	2.890	13	50	0.75	0.301	0.4	Pass
2441	2.890	13	50	0.75	0.301	0.4	Pass
2480	2.890	14	50	0.81	0.324	0.4	Pass

Duty cycle =((Time slot length(ms)*Hopping of Number) / Sweep time (ms)

Dwell time = (Duty cycle /79) * (79*0.4)

CH 00 Time Interval between hops

Aglient Spectrum Logyter D Center Freq 2.402000000 GHz PRO: Fast FGainLow Adlan: 30 dB enter Freq 2.402000000 GHz PHO: Fast IFGainLow Attan: 30 dB Avg Type: Log-Put Frequency Avg Type: Log-Per Frequency OT PNNN THE WARNA Auto Tur Auto Tu Mkr3 7.060 ms 6.31 dBm Ref 20,00 dBm Ref 20.00 dB Center Fre Center Fre 00000 Gi 02000000 G StartFree StartFre 000000 G Stop Free Stop Fre 00 G enter 2,4020000 s BW 1.0 MHz CF Step 1 000000 MHz CF Step 1.000000 MH Span 0 Hz Sweep 10.00 ms (1001 pts) #VBW 1.0 MHz 3,310 ms 6,200 ms 7,060 ms 6.31 dBm 6.70 dBm 6.31 dBm 4 ы V 4 Freq Offse Freq Offse 0 F 0H nter 2.40200000 s BW 1.0 MHz Span 0 Hz Sweep 50.00 ms (1001 pts) #VBW 1.0 MHz

CH39 Time Interval between hops

CH 39Transmission Time

CH 00 Transmission Time

nit Spectrum Analyzza - Swept SA		Agilant Spectrum Analyzer - Sungt SA
nter Freq 2.441000000 GH2 FK0 Freq 2.441000000 GH2 Trig:Free Run Avg Type: Leg-Per Trig:Free Run Avg Type: Leg-Per Trig:Free Run Avg Type: Leg-Per Trig:Free Run Avg Type: Leg-Per Trig:Free Run	Frequency	Center Freq 2.441000000 GHz W00-Far Trig-FreeRun W00-Far Trig-Fr
a desired as a second s		
dB/div Ref 20.00 dBm 6.20 dBn	S	10 dB/div Ref 20,00 dBm
	Center Freq 2.441000000 GHz	Center
	Start Freq 2.441000000 GHz	
0 photocology and	Stop Freq 2.441000000 GHz	
nter 2.441000000 GHz Span 0 H s BW 1.0 MHz #VBW 1.0 MHz Sweep 10.00 ms (1001 pts (000 lite(100) boxeputating reactorized	Z CF Step 1.000000 MHz Auto Man	1,00000
N t 1890 ms 521 dBm N t 4770 ms 6.68 dBm N t 5.500 ms 5.20 dBm	Freq Offset 0 Hz	Freque
		7703 Center 2.441000000 GHz Span 0 Hz Res BW 1.0 MHz Sweep 50.00 ms (1001 pts)
STATUS		MGG STATUS

CH 78 Time Interval between hops

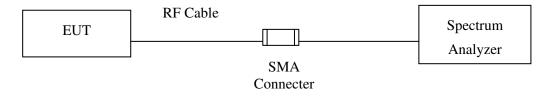
CH 78 Transmission Time

lieft Spectrum Analyzer - Savert 1			A		um Anelyzze - Se										
enter Freq 2.4800000	000 GHz Trig Free Run	Avg Type: Log-Per PALE 1.2 2 orr I'm N	Frequency		req 2.4800	00000 G	Hz PNO: Fast	Trig: Fre	e Run	Avg	Type: Lo	og-Pwr	101:21%	NALE 123450	Frequency
	IFGalad.ow #Attan: 30 dB	Mkr3 4.380	ms Auto Tune				FGaln:Low	\$Atten 1	BP OF	-	_	-		OR P NUMBER	Auto Tur
dB/div Ref 20.00 dB	m	6.19 d	Sm	10 dB/div	Ref 20,00	dBm				_	_	_			
00 Q1			Center Freq 2.480000000 GHz	10.0											Center Fr 2.480000000 G
			Start Freq 2,480000000 GHz	10.00 -10.0											Start F 2.480000000 t
, where the second s	hisakani.	lowience	Stop Freq 2.480000000 GHz	30.0											Stop F 2.480000000
nter 2.480000000 GHz s BW 1.0 MHz	#VBW 1.0 MHz	Span (Sweep 10.00 ms (1001	nooodoo MHz	40.0						1					CF S 1.000000 M Auto
N t N t N T	630 0 µs 6.17 dBm 3,520 ms 6.62 dBm 4,380 ms 6.19 dBm		Freq Offset 0 Hz	40.0	V N	4	W W	W	4	N	H	ų	¥	W W	FreqOff
					480000000	GHz								Span 0 Hz	
				Res BW	.0 MHz		#VBW	1.0 MH:	2		SW	reep 5	0.00 m	s (1001 pts)	

Note:

The dwell times of the packet type of DH1, DH3, and DH5 are tested. Only the worst case is shown on the report.

10. Occupied Bandwidth


10.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015

Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

10.2. Test Setup

10.3. Limits

N/A

10.4. Test Procedure

The EUT was setup to ANSI C63.4, 2009; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

10.5. Uncertainty

± 150Hz

10.6. Test Result of Occupied Bandwidth

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK)(2402MHz)

Cha	annel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
	00	2402	1130		NA

Figure Channel 00:

Agilent Spectrum Analyzer - Swe					
M RL RF 50 Ω Center Freq 2.40200	DOOOO GHz PNO: Wide 🔾	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	02:52:28 PM Apr 13, 2015 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
Ref Offset 0.	5 dB	#Atten: 30 dB	Mkr	2 2.401 44 GHz -10.02 dBm	Auto Tune
10 dB/div Ref 20.50 (Log		↓2 ↓2 ↓3		-10.02 dBm	Center Free 2.402000000 GH
29.5					Start Fre 2.397000000 GH
49.5 59.5			man han	mm	Stop Fre 2.407000000 GH
Center 2.402000 GHz Res BW 100 kHz	#VBW 1		Sweep 1	Span 10.00 MHz .267 ms (1001 pts)	CF Ste 1.000000 M⊦ <u>Auto</u> Ma
Model Inc State 1 N 1 f 2 N 1 f 3 N 1 f 4 - - - 5 - - 6	2.402 16 GHz 2.401 44 GHz	10.21 dBm -10.02 dBm -10.08 dBm			Freq Offse 0 ⊦
7 8 9 9 10 11					
< Isg			STATUS		

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK)(2441MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
39	2441	1130		NA

Figure Channel 39:

	RF 50 Ω AC		SENSE:INT	ALIGNAUTO	02:57:55 PM Apr 13, 2015	Frequency
enter F	req 2.4410000	00 GHz PNO: Wide 🕞 IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	
0 dB/div	Ref Offset 0.5 dB Ref 20.50 dBn			Mkr	2 2.440 44 GHz -10.40 dBm	Auto Tur
og 10.5						Center Fre
500				,		2.441000000 G
.50			\diamond^2		-9.83 dBm	2
9.5						
9.5			, m/			Start Fr 2.436000000 G
9.5						2.436000000 G
9.5				man		
9.5 mm	monte	whow		the bound	Mar mar and a marting	Stop Fr
9.5						2.446000000 G
9.0						
	441000 GHz 100 kHz	#VBW	V 100 kHz	Sweep 1	Span 10.00 MHz .267 ms (1001 pts)	CF St 1.000000 M
		×		UNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> N
		2.441 16 GHz	10.17 dBm			
1 N ′			-10.40 dBm			
1 N ⁷ 2 N ⁷ 3 N ⁷	1 f :	2.440 44 GHz 2.441 57 GHz	-10.40 dBm -9.91 dBm			Freq Offs
1 N ² 2 N ² 3 N ² 4	1 f :	2.440 44 GHz				
1 N / 2 N / 3 N / 4 5 6	1 f :	2.440 44 GHz			E	
1 N 2 2 N 7 3 N 7 4 5 6 7 8	1 f :	2.440 44 GHz				Freq Offs 0
1 N ² 2 N ² 3 N ² 4 5 5 5 5 7 8 9	1 f :	2.440 44 GHz				
2 N ′	1 f :	2.440 44 GHz				

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - 1Mbps (GFSK)(2480MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
78	2480	1130		NA

Figure Channel 78:

	RF 50 Ω AC		SENSE		ALIGNAUTO Type: Log-Pwr		Apr 13, 2015	Frequency
enter F	req 2.4800000	DU GHZ PNO: Wide (IFGain:Low	➡ Trig: Free F #Atten: 30 d	lun -	Type. Log-FWI	TYPE	PNNNNN	
0 dB/div	Ref Offset 0.5 dB Ref 20.50 dBn				Mkr	2 2.479 4 10.3-	14 GHz 1 dBm	Auto Tu
og 10.5			(). ().					Conton Fr
				\mathbf{X}				Center Fr
500			2 ²	3			-9.94 dBm	2.48000000 G
.50				- <u>X</u> -			-9.94 upm	
9.5			+ / +					Start Fr
9.5			\sim	<u></u>				2.475000000 G
9.5			/					2.4700000000
9.5		a a many m		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m			
9.5	mannon	mart and			why when	m	mm	Stop Fr
9.9								2.485000000 G
9.5								
	100000 011-					0		05.04
enter 2	4XIIIIIII (3H7							
	480000 GHZ 100 kHz	#VB	W 100 kHz		Sweep 1		0.00 MHz	
Res BW	100 kHz		W 100 kHz	FUNCTION	· · ·	.267 ms (1	001 pts)	1.000000 M
KR MODE T	100 kHz	X	Ÿ	FUNCTION	Sweep 1		001 pts)	CF St 1.000000 M <u>Auto</u> M
Res BW	RC SCL 1 f	× 2.480 01 GHz 2.479 44 GHz	10.06 dBn -10.31 dBn	<u>ו</u>	· · ·	.267 ms (1	001 pts)	1.000000 M <u>Auto</u> M
Res BW	RC SCL 1 f	× 2.480 01 GHz	Y 10.06 dBn	<u>ו</u>	· · ·	.267 ms (1	001 pts)	1.000000 M <u>Auto</u> M Freq Offs
Res BW 1 N 2 N 3 N 4 5	RC SCL 1 f	× 2.480 01 GHz 2.479 44 GHz	10.06 dBn -10.31 dBn	<u>ו</u>	· · ·	.267 ms (1	001 pts)	1.000000 M <u>Auto</u> M Freq Offs
Res BW 1 N 2 N 3 N 4 5 6	RC SCL 1 f	× 2.480 01 GHz 2.479 44 GHz	10.06 dBn -10.31 dBn	<u>ו</u>	· · ·	.267 ms (1	001 pts)	1.000000 M <u>Auto</u> M Freq Offs
Res BW	RC SCL 1 f	× 2.480 01 GHz 2.479 44 GHz	10.06 dBn -10.31 dBn	<u>ו</u>	· · ·	.267 ms (1	001 pts)	1.000000 M <u>Auto</u> M
Res BW 3 M009 1 2 N 3 N 4 5 6 7 8 9	RC SCL 1 f	× 2.480 01 GHz 2.479 44 GHz	10.06 dBn -10.31 dBn	<u>ו</u>	· · ·	.267 ms (1	001 pts)	1.000000 M <u>Auto</u> M Freq Offs
Res BW	RC SCL 1 f	× 2.480 01 GHz 2.479 44 GHz	10.06 dBn -10.31 dBn	<u>ו</u>	· · ·	.267 ms (1	001 pts)	1.000000 M <u>Auto</u> M Freq Offs

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit - 2Mbps (4DQPSK) (2402MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
00	2402	1471		NA

Figure Channel 00:

Center Freq 2.402000000 GHz	SENSE(INT	ALIGNAUTO Avg Type: Log-Pwr	02:29:42 PM Apr 15, 201 TRACE 1 2 3 4 5	Frequency
PNO: Wide IFGain:Low 10 dB/div Ref 10.00 dBm	⁷ Trig: Free Run Atten: 20 dB	AvgjHoid>100/100 Mkr1	2.401 984 GH 3.271 dBn	z Auto Tune
		funda		Center Free 2.402000000 GH
20.0		-20.0 1.471	0 dB	Start Free 2.401000000 GH
40.0			<u> </u>	Stop Free 2.403000000 GH
80.0				CF Ste 200.000 kH <u>Auto</u> Ma
70.0				Freq Offse 0 H
80.0 Center 2.402000 GHz #Res BW 30 kHz #VBW	300 kHz	Sween	Span 2.000 MH .067 ms (1001 pts	

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit - 2Mbps (4DQPSK) (2441MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
39	2441	1459		NA

Figure Channel 39:

Center 2.441000 GHz #Res BW 30 kHz	#VBW	300 kHz	Swee	Span : p 2.067 ms	2.000 MHz (1001 pts)	1
-80.0						
-70,0						Freq Offse 0 H
-50,0						CF Ste 200.000 kH <u>Auto</u> Ma
-30.0 -40.0					~	Stop Fre 2.442000000 GH
20.0				20.00 dB 159 MHz	-	Start Fre 2.440000000 GH
0.00	mm	m	funder	2		Center Fre 2.441000000 GH
10 dB/div Ref 10.00 dB	IFGain:Low	Atten: 20 dB	and the second second	kr1 2.440		Auto Tun
RF 50 Ω Center Freq 2.441000	AC 000 GHz PNO: Wide 🔾	SENSEUNT Trig: Free Run	ALIGNAU Avg Type: Log-F Avg Hold>100/10	wr TRA	M Apr 15, 2015 ACE 1 2 3 4 5 6 (PE M WWWWWWW DET P N N N N N	Frequency

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit - 2Mbps (4DQPSK)(2480MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
78	2480	1462		NA

Figure Channel 78:

Span 2.000 MHz Sweep 2.067 ms (1001 pts)
0
FreqOff
Auto N
CF St 200.000
2.481000000 0
Stop Fr
-20.00 dB 1.462 MHz 2.479000000 c
-20.00 dB
Center Fr 2.48000000 0
3.469 dBm
Mkr1 2.479 978 GHz Auto TL
Avg Type: Log-Pwr TRACE 123456 Frequency
stern: 20

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit - 3Mbps (8DPSK) (2402MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result	
00	2402	1440		NA	

Figure Channel 00:

Center 2.402000 GHz #Res BW 30 kHz	#VBW	300 kHz	Sweep	Span 2.000 l 2.067 ms (1001	
-80.0				1.11	
-70.0					Freq Offse 0 H
-50,0					CF Ste 200.000 kH <u>Auto</u> Ma
40.0					Stop Fre 2.403000000 GH
-10.0	-		-20 1.44	0 MHz	Start Fre 2.401000000 GH
0.00	~~~~	m	front		Center Fre 2.402000000 GH
10 dB/div Ref 10.00 dB	IFGain:Low	Atten: 20 dB		GHz Auto Tun Bm	
۲ RF 50 Ω Center Freq 2.402000	NC DOO GHz PNO: Wide 🔾	SENSE:INT	ALIGNAUT Avg Type: Log-Pw Avg Hold:>100/100	TRACE 123	45.6 Frequency

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit - 3Mbps (8DPSK) (2441MHz)

C	nannel No. Frequency (MHz)		Measurement Level (kHz)	Required Limit (kHz)	Result	
	39	2441	1441		NA	

Figure Channel 39:

RF 50 Ω Center Freq 2.441000	AC 0000 GHz PN0: Wide 🔾	SENSE:INT	ALIGNAU Avg Type: Log-I	wr TRAC	M Apr 15, 2015 CE 1 2 3 4 5 6 PE MWWWWWW ET P N N N N N	Frequency
0 dB/div Ref 10.00 dB	Avg Hold>100/1	and a fam.				
0.00	~~~~		han			Center Free 2.441000000 GH
20.0				20.00 dB 141 MHz	~	Start Free 2.440000000 GH
40.0					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Stop Fre 2.442000000 GH
50,0						CF Ste 200.000 kH Auto Ma
70.0						Freq Offse 0 H
80.0		- 1 i - 1			11.0	
Center 2.441000 GHz #Res BW 30 kHz	#VBW	300 kHz	Swee	Span 2 p 2.067 ms (.000 MHz (1001 pts)	
ISG			s	TATUS		<u> </u>

Product	:	Intel® Dual Band Wireless-AC 8260
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit - 3Mbps (8DPSK) (2480MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result	
78	2480	1444		NA	

Figure Channel 78:

Manant Spec	trum Analyzer - Sw RF 50 S		SENSE(INT	ALIGN	AUTO 02:34:241	PM Apr 15, 2015	
Center	Freq 2.4800	00000 GHz		Avg Type: Log	-Pwr TRA	ACE 1 2 3 4 5 6	Frequency
PNO: Wide Trig: Free Run IFGain:Low Atten: 20 dB				AvgjHoid>100/100 Type[//www.ww per/P NNNN Mkr1 2.480 168 GHz 4.846 dBm			Auto Tune
0.00		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~		Center Fred 2.480000000 GH:
-10.0					-20.00 dB	-	Start Free 2.479000000 GH:
-30.0						~	Stop Free 2.481000000 GH
50.0							CF Ste 200.000 kH <u>Auto</u> Ma
-70.0					-		Freq Offse 0 H
-80.0						1.0	
	2.480000 GHz V 30 kHz		‡VBW 300 kHz	Swe	Span : ep 2.067 ms	2.000 MHz (1001 pts)	
MSG					STATUS		[L

11. EMI Reduction Method During Compliance Testing

No modification was made during testing.