

FCC Test Report

Equipment	:	Sophos Wireless Access Point
Brand Name	:	SOPHOS
Model No.	:	AP 15C
FCC ID	:	2ACTO-AP15C
Standard	:	47 CFR FCC Part 15.407
Operating Band	:	5150 MHz – 5250 MHz 5725 MHz – 5850 MHz
FCC Classification	:	NII
Applicant Manufacturer	:	Sophos Ltd The Pentagon, Abingdon, OX14 3YP, United Kingdom
Function	:	 Outdoor AP; Indoor AP; Fixed P2P AP Portable Client

The product sample received on Dec. 01, 2015 and completely tested on Dec. 25, 2015. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

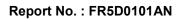
The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Kevin Liang / Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories and Support Equipment	8
1.3	Testing Applied Standards	8
1.4	Testing Location Information	8
1.5	Measurement Uncertainty	9
2	TEST CONFIGURATION OF EUT	10
2.1	The Worst Case Modulation Configuration	10
2.2	The Worst Case Power Setting Parameter	10
2.3	The Worst Case Measurement Configuration	11
2.4	Test Setup Diagram	13
3	TRANSMITTER TEST RESULT	14
3.1	AC Power-line Conducted Emissions	14
3.2	Emission Bandwidth	17
3.3	RF Output Power	20
3.4	Peak Power Spectral Density	24
3.5	Transmitter Bandedge Emissions	28
3.6	Transmitter Unwanted Emissions	32
3.7	Frequency Stability	69
4	TEST EQUIPMENT AND CALIBRATION DATA	71


APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result

Conformance Test Specifications				
Report Clause	Ref. Std. Clause	Description		
1.1.2	15.203	Antenna Requirement	Complied	
3.1	15.207	AC Power-line Conducted Emissions	Complied	
3.2	15.407(a)	Emission Bandwidth	Complied	
3.3	15.407(a)	RF Output Power (Maximum Conducted Output Power)	Complied	
3.4	15.407(a)	Peak Power Spectral Density	Complied	
3.5	15.407(b)	Transmitter Bandedge Emissions	Complied	
3.6	15.407(b)	Transmitter Unwanted Emissions	Complied	
3.7	15.407(g)	Frequency Stability	Complied	

Revision History

Report No.	Version	Description	Issued Date
FR5D0101AN	Rev. 01	Initial issue of report	Jan. 22, 2016

1 General Description

1.1 Information

1.1.1 Product Details

There are two DDR of EUT. The difference is the provider. For more detailed features description, please refer to the specifications or user's manual.

No.	Provider	
1	Nanya	
2	Winbond	

1.1.2 **RF General Information**

RF General Information (5150-5250MHz band)					
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	RF Output Power (dBm)
5150-5250	а	5180-5240	36-48 [4]	1	23.23
5150-5250	n (HT20)	5180-5240	36-48 [4]	2	24.54
5150-5250	n (HT40)	5190-5230	38-46 [2]	2	23.17

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

RF General Information (5725-5850MHz band)					
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{⊺x})	RF Output Power (dBm)
5725-5850	а	5745-5825	149-165 [5]	1	21.74
5725-5850	n (HT20)	5745-5825	149-165 [5]	2	22.95
5725-5850	n (HT40)	5755-5795	151-159 [2]	2	19.80

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

1.1.3 Antenna Information

	Antenna Category				
\square	Integral antenna (antenna permanently attached)				
	Temporary RF connector provided				
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connecte measurement. In case of conducted measurements the transmitter shall be connected to th measuring equipment via a suitable attenuator and correct for all losses in the RF path.				

Antenna General Information						
No. Ant. Cat. Ant. Type Gain (dBi)						
1	Integral	PIFA	6.66			
2	Integral	PIFA	6.52			

Remark:

This EUT supports 1TX and Port 1 for emission in modulation mode 11a.
 This EUT supports 2TX in modulation mode 11n.

1.1.4 Type of EUT

	Identify EUT			
EUT	Serial Number	N/A		
Pre	sentation of Equipment	Production ; Pre-Production ; Prototype		
		Type of EUT		
\square	Stand-alone			
	Combined (EUT where the radio part is fully integrated within another device)			
	Combined Equipment – Brand Name / Model No.:			
	Plug-in radio (EUT intended for a variety of host systems)			
	Host System – Brand Name / Model No.:			
	Other:			

1.1.5 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle				
Operated normally mode for worst duty cycle	Operated normally mode for worst duty cycle			
Operated test mode for worst duty cycle				
Test Signal Duty Cycle (x)Power Duty Factor[dB] - (10 log 1/x)				
⊠ 100.00% - IEEE 802.11a	0.00			
⊠ 100.00% - IEEE 802.11n (HT20)	0.00			
☑ 100.00% - IEEE 802.11n (HT40) 0.00				

1.1.6 EUT Operational Condition

Supply Voltage	AC mains	DC DC	
Type of DC Source	From adapter	From PoE	From Battery

1.2 Accessories and Support Equipment

Accessories Information						
DoE Adoptor	Brand Name	Power Dsine	Model Name	PD-9001GR/AC		
PoE Adapter Power Rating I/P: 100-240Vac , 20/60Hz, 0.67A ; O/P: 55Vdc,0.6A						
Note: Degerding to	manua datail and athan	information places ref	arta usar manual			

Note: Regarding to more detail and other information, please refer to user manual.

	Support Equipment - RF Conducted							
No.	No. Equipment Brand Name Model Name FCC							
1	Notebook	DELL	E5540	DoC				
2	Adapter for Notebook	DELL	HA65NM130	DoC				
3	UTM	SOPHOS	SG 105 rev.2	-				
4	Switch HUB	Pegatron	GR 2700	-				

Note : The UTM provides is by customer.

	Support Equipment - AC Conduction and Radiated Emission							
No.	No. Equipment Brand Name Model Name FCC ID							
1	UTM (Remote Workstation)	SOPHOS	SG 105 rev.2	-				
2	Switch HUB (Remote Workstation)	Pegatron	GR 2700	-				

Note : The UTM provides is by customer.

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- FCC KDB 789033 D02 v01
- FCC KDB 644545 D03 v01
- FCC-14-30A1-UNII
- FCC KDB 662911 D01 v02r01

1.4 Testing Location Information

	Testing Location								
\bowtie	HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.					
		TEL	:	886-3-327-3456 FA	X : 886-3-327-0973				
	Test Site Registration Number: 636805								
	Test Cond	ition		Test Site No.	Test Engineer	Test Environment			
	AC Conduction CO04-HY Anthony 22°C / 58%					22°C / 58%			
	RF Conducted TH01-HY Howard 23°C / 63%								
F	Radiated Emission03CH03-HYJoe23.8°C / 60%								

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty					
Test Item	Uncertainty				
AC power-line conducted emissions		±2.3 dB			
Emission bandwidth, 26dB bandwidth		±0.5%			
RF output power, conducted		±0.1 dB			
Power density, conducted		±0.5 dB			
Unwanted emissions, conducted	9 – 150 kHz	±0.4 dB			
	0.15 – 30 MHz	±0.4 dB			
	30 – 1000 MHz	±0.6 dB			
	1 – 18 GHz	±0.5 dB			
	18 – 40 GHz	±0.5 dB			
	40 – 200 GHz	N/A			
All emissions, radiated	9 – 150 kHz	±2.5 dB			
	0.15 – 30 MHz	±2.3 dB			
	30 – 1000 MHz	±2.6 dB			
	1 – 18 GHz	±3.6 dB			
	18 – 40 GHz	±3.8 dB			
	40 – 200 GHz	N/A			
Temperature		±0.8 °C			
Humidity		±5 %			
DC and low frequency voltages		±0.9%			
Time		±1.4 %			
Duty Cycle		±0.5 %			

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

	Worst Modulation Used for Conformance Testing							
Modulation Mode Transmit Chains (N _{TX}) Data Rate / MCS Worst Data Rate / MC								
11a	1	6-54Mbps	6 Mbps					
HT20	2	MCS 0-15	MO					
HT40	2	MCS 0-15	MO					

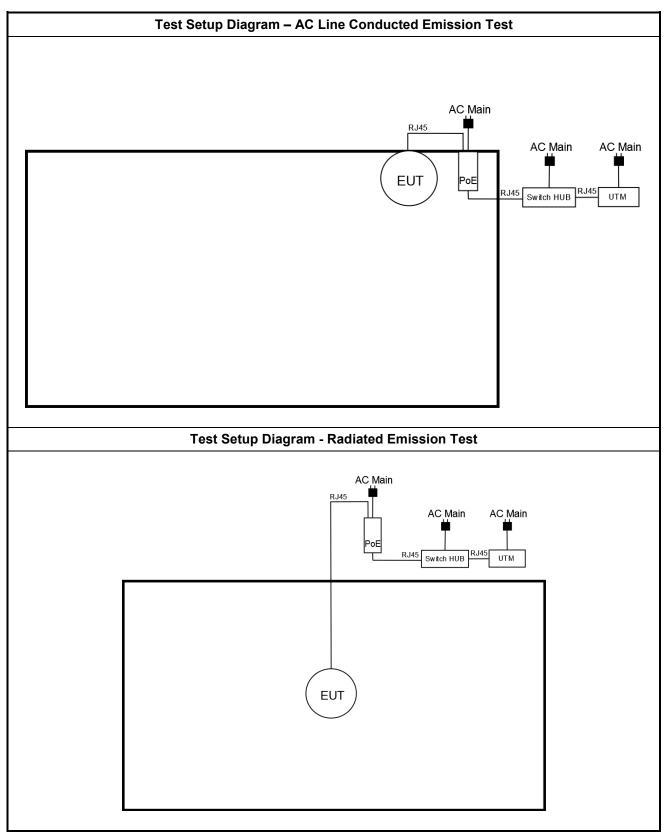
2.2 The Worst Case Power Setting Parameter

The Worst Case Power Setting Parameter (5150-5250MHz band)						
Test Software Version				AR	Т2	
	Test Frequency (MHz)					
Modulation Mode	N _{TX}	NCB: 20MHz		z	NCB: 40MHz	
		5180	5200	5240	5190	5230
11a	1	18	24.5	29.5	-	-
HT20	2	17	23	23.5	-	-
HT40	2	-	-	-	13	20.5

The Worst Case Power Setting Parameter (5725-5850MHz band)						
Test Software Version				AR	Г2	
		Test Frequency (MHz)				
Modulation Mode	N _{TX}	NCB: 20MHz		Ηz	NCB: 40MHz	
		5745	5785	5825	5755	5795
11a	1	19	28	22	-	-
HT20	2	17	23	19.5	-	-
HT40	2	-	-	-	15	19

2.3 The Worst Case Measurement Configuration

Th	The Worst Case Mode for Following Conformance Tests				
Tests Item	AC power-line conducted emissions				
Condition AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz					
Operating Mode	Operating Mode Operating Mode Description				
1	1 PoE Mode (DDR:Nanya)				
2 PoE Mode (DDR:Winbond)					
Operating mode 1 was the	Operating mode 1 was the worst case and it is recorded in this test report.				


The Worst Case Mode for Following Conformance Tests				
Tests Item	RF Output Power, Peak Power Spectral Density, Emission Bandwidth, Peak Excursion, Transmitter Conducted Unwanted Emissions Transmitter Conducted Bandedge Emissions			
Test Condition	Conducted measurement at transmit chains			
Modulation Mode 11a, HT20, HT40				

Th	The Worst Case Mode for Following Conformance Tests					
Tests Item	Transmitter Radiated Unwanted Emissions Transmitter Radiated Bandedge Emissions					
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.					
	EUT will be placed in	fixed position.				
User Position		mobile position and operati ree orthogonal planes.	ng multiple positions. EUT			
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes.					
Operating Mode <1GHz	Operating Mode Description					
1	PoE Mode (DDR:Nanya)					
2	PoE Mode (DDR:Winbond)				
Operating mode 1 was the	worst case and it is recorded	ed in this test report.				
Operating Mode >1GHz	Operating Mode Description	n				
1	PoE Mode (DDR:Nanya)					
Modulation Mode	11a, HT20, HT40					
	X Plane Y Plane Z Plane					
Orthogonal Planes of EUT						
Worst Planes of EUT			V			

2.4 Test Setup Diagram

Transmitter Test Result 3

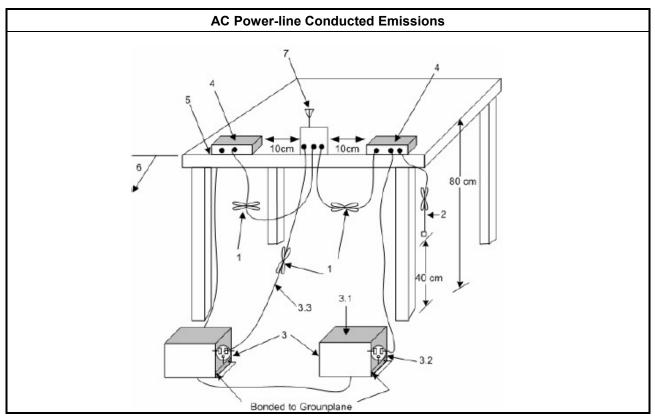
3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

AC Power-line Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5	66 - 56 *	56 - 46 *				
0.5-5	56	46				
5-30 60 50						
Note 1: * Decreases with the logarithm c	of the frequency					

ecreases with the logarithm of the frequency

3.1.2 Measuring Instruments

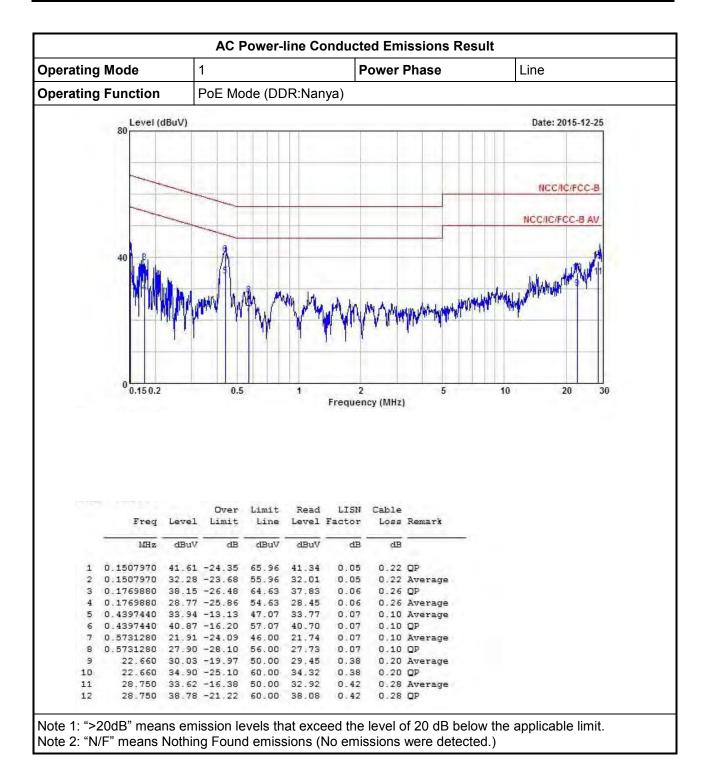

Refer a test equipment and calibration data table in this test report.

3.1.3 **Test Procedures**

Test Method

Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup



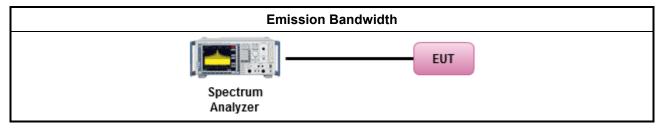
perating Mode			1			Po	Power Phase			Neutral		
perating	erating Function			de (DD	R:Nan	ya)						
	Level (dBuV)	Date: 2015-12-25									
	80											
	111											
												1
		-					_			0	NCC/IC/	FCC-B
								1.1	1.1.1	-		
		-								HCC	C/IC/FCC	RAU
										nee	MGALCC	-U AV
			7.									
	40		1								-	1 1ª
	All the la	i.	19					Manusheenyill		I.	ale	17 1
	44		111	11					1	in La	LUMAT	SIL
		IN MIL	1.11 1.1.1	MA MA	Mr. May	Why the	414 J. 100	and a start of the	Laborate Mark	HALL MAY	Auda .	
	19	THINN	MA W	A. C	M.	18 W W	T T T	JUN ANALANAN NAM		164		
				W	1	1 14 4				-		-
				10				1				
					-							
									1			1.1
	0 0.15 0.2		0.5		1	2		5		10	20	3
	0 0.15 0.2		0.5		1	2 Frequen	cy (MHz)			10	20	3
	0 0.15 0.2		0.5		1		cy (MHz)			10	20	3
	0 0.15 0.2	2	0.5		1		cy (MHz)			10	20	3
	0.150.2		0.5	<u> </u>	1		cy (MHz)			10	20	3
	0 0.15 0.2		0.5		1		cy (MHz)			10	20	3
	0 0.150.2		0.5	8	1		cy (MHz)			10	20	3
	0 0.150.2		0.5		1		cy (MHz)			10	20	3
	0 0.150.2		0.5		1		cy (MHz)			10	20	3
	0 0.150.2		0.5 Over	Limit	1 Read	Frequen	cy (MHz) Cable	1		10	20	3
		Level		Limit	Read	Frequen	Cable	1		10	20	3
			Over	Limit	Read	Frequen	Cable	1		10	20	3
	Freq MHz	Level dBuV	Over Limit dB	Limit Line dBuV	Read Level dBuV	LISN Factor dB	Cable Loss dB	Remark		10	20	3
1	Freq MHz 0.1507970	Level dBuV 33.97	Over Limit dB -21.99	Limit Line dBuV 55.96	Read Level dBuV 33.68	LISN Factor dB 0.07	Cable Loss dB 0.22	Remark Average		10	20	3
1 2 3	Freq MHz	Level dBuV 33.97 42.48	Over Limit dB -21.99 -23.48	Limit Line dBuV 55.96 65.96	Read Level dBuV	LISN Factor dB 0.07 0.07	Cable Loss dB 0.22 0.22	Remark Average QP		10	20	3
2	Freq MHz 0.1507970 0.1507970	Level dBuV 33.97 42.48 39.21	Over Limit dB -21.99 -23.48 -25.65	Limit Line dBuV 55.96 65.96 64.86	Read Level dBuV 33.68 42.19	LISN Factor dB 0.07	Cable Loss dB 0.22 0.22 0.26	Remark Average QP		10	20	3
2 3	Freq MHz 0.1507970 0.1507970 0.1719880 0.1719880	Level dBuV 33.97 42.48 39.21 29.82	Over Limit dB -21.99 -23.48 -25.65 -25.04	Limit Line dBuV 55.96 65.96 64.86	Read Level dBuV 33.68 42.19 38.88 29.49	LISN Factor dB 0.07 0.07 0.07	Cable Loss dB 0.22 0.22 0.26	Remark Average OP OP Average		10	20	3
2 3 4	Freq MHz 0.1507970 0.1507970 0.1507970 0.1719880	Level dBuV 33.97 42.48 39.21 29.82 33.96	Over Limit dB -21.99 -23.48 -25.65 -25.04 -29.31	Limit Line dBuV 55.96 65.96 64.86 54.86 63.27	Read Level dBuV 33.68 42.19 38.88 29.49	LISN Factor dB 0.07 0.07 0.07 0.07	Cable Loss dB 0.22 0.22 0.26 0.26 0.26	Remark Average OP OP Average		10	20	3
2 3 4 5	Freq MHz 0.1507970 0.1507970 0.1719880 0.2083320 0.2083320 0.2083320 0.4391090	Level dBuV 33.97 42.48 39.21 29.82 33.96 23.66 42.03	Over Limit dB -21.99 -23.48 -25.65 -25.04 -29.31 -29.61 -15.05	Limit Line dBuV 55.96 65.96 64.86 54.86 63.27 53.27	Read Level dBuV 33.68 42.19 38.88 29.49 33.60 23.30	LISN Factor dB 0.07 0.07 0.07 0.07 0.07	Cable Loss dB 0.22 0.22 0.26 0.26 0.29 0.29 0.29	Remark Average OP Average OP Average OP		10	20	3
2 3 4 5 6 7 8	Freq MHz 0.1507970 0.1507970 0.1507970 0.1719880 0.2083320 0.2083320 0.2083320 0.2083320 0.4391090	Level dBuV 33.97 42.48 39.21 29.82 33.96 23.66 23.66 42.03 35.05	Over Limit dB -21.99 -23.48 -25.65 -25.04 -29.31 -29.61 -15.05 -12.03	Limit Line dBuV 55.96 65.96 64.86 54.86 54.86 63.27 53.27 53.27 53.27 53.27	Read Level dBuV 33.68 42.19 38.88 29.49 33.60 23.30 41.86 34.88	LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Cable Loss dB 0.22 0.22 0.26 0.29 0.29 0.29 0.29 0.10	Remark Average OP QP Average OP Average OP Average		10	20	3
2 3 4 5 6 7 8 9	Freq MHz 0.1507970 0.1507970 0.1719880 0.1719880 0.2083320 0.2083320 0.4391090 0.4391090 23.020	Level dBuV 33.97 42.48 39.21 29.82 33.96 23.66 42.03 35.05 31.15	Over Limit dB -21.99 -23.48 -25.65 -25.04 -29.61 -29.61 -15.05 -12.03 -18.85	Limit Line dBuV 55.96 65.96 64.86 63.27 53.27 57.08 47.08 50.00	Read Level dBuV 33.68 42.19 38.88 29.49 33.60 23.30 41.86 34.88 30.52	LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Cable Loss dB 0.22 0.22 0.26 0.26 0.29 0.29 0.10 0.10 0.20	Remark Average OP OP Average OP Average OP Average Average		10	20	3
2 3 4 5 6 7 8 9 10	Freq MHz 0.1507970 0.1507970 0.1719880 0.2083320 0.2083320 0.2083320 0.4391090 0.4391090 0.4391090 23.020 23.020	Level dBuV 33.97 42.48 39.21 29.82 33.96 23.66 42.03 35.05 31.15 36.04	Over Limit dB -21.99 -23.48 -25.65 -25.04 -29.61 -29.61 -15.05 -12.03 -18.85 -23.96	Limit Line dBuV 55.96 65.96 64.86 63.27 53.27 57.08 47.08 50.00 60.00	Read Level dBuV 33.68 42.19 38.88 29.49 33.60 23.30 41.86 34.88 30.52 35.41	LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Cable Loss dB 0.22 0.26 0.26 0.29 0.29 0.29 0.10 0.10 0.20	Remark Average QP QP Average QP Average QP Average QP Average QP		10	20	3
2 3 4 5 6 7 8 9	Freq MHz 0.1507970 0.1507970 0.1719880 0.2083320 0.2083320 0.4391090 0.4391090 23.020 23.020 28.000	Level dBuV 33.97 42.48 39.21 29.82 33.96 42.03 35.06 42.03 31.15 36.04 33.55	Over Limit dB -21.99 -23.48 -25.65 -25.04 -29.61 -29.61 -15.05 -12.03 -18.85	Limit Line dBuV 55.96 65.96 64.86 54.86 63.27 53.27 57.08 47.08 50.00 50.00	Read Level dBuV 33.68 42.19 38.88 29.49 33.60 23.30 41.86 34.88 30.52 35.41 32.82	LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Cable Loss dB 0.22 0.26 0.26 0.29 0.29 0.29 0.10 0.10 0.20	Remark Average QP QP Average QP Average QP Average QP Average QP Average QP		10	20	3

3.1.5 Test Result of AC Power-line Conducted Emissions

3.2 Emission Bandwidth

3.2.1 Emission Bandwidth Limit

Emission Bandwidth Limit						
UNII Devices						
For the 5.15-5.25 GHz band, N/A						
For the 5.25-5.35 GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz.						
For the 5.47-5.725 GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz.						
For the 5.725-5.85 GHz band, 6 dB emission bandwidth \geq 500kHz.						
3.2.2 Mossuring Instruments						


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method									
\boxtimes	For	the emission bandwidth shall be measured using one of the options below:								
	\boxtimes	Refer as FCC KDB 789033, clause C for EBW and clause D for OBW measurement.								
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.								
		Refer as IC RSS-Gen, clause 4.6 for bandwidth testing.								
\square	For	conducted measurement.								
	\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain port 1.								
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.								
	\boxtimes	The EUT supports multiple transmit chains using options given below:								
		Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.								
		Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.								

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

UNII Emission Bandwidth Result (5150-5250MHz band)								
Condit	ion		Emission Bandwidth (MHz)					
Madulation Mada	N	Freq.	99% Ba	Indwidth	26dB Ba	Indwidth		
Modulation Mode	Ντχ	(MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 1	Chain- Port 2		
11a	1	5180	17.64	-	22.90	-		
11a	1	5200	23.18	-	39.95	-		
11a	1	5240	29.73	-	44.70	-		
HT20	2	5180	17.99	18.09	22.42	22.67		
HT20	2	5200	21.96	22.13	38.45	41.30		
HT20	2	5240	27.93	29.63	44.22	43.27		
HT40	2	5190	36.94	36.86	49.72	48.48		
HT40	2	5230	37.74	38.86	71.56	79.08		
Resu	lt			Com	plied			

UNII Emission Bandwidth Result (5725-5850MHz band)								
Condit	tion		Emission Bandwidth (MHz)					
Modulation Mode	Ντχ	Freq.	99% Ba	ndwidth	6dB Ba	ndwidth		
modulation mode		(MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 1	Chain- Port 2		
11a	1	5745	16.62	-	16.54	-		
11a	1	5785	23.32	-	16.47	-		
11a	1	5825	16.53	-	16.30	-		
HT20	2	5745	17.66	17.73	17.68	17.61		
HT20	2	5785	18.06	19.79	17.73	16.03		
HT20	2	5825	17.69	17.70	17.79	17.73		
HT40	2	5755	36.18	36.22	35.72	36.28		
HT40	2	5795	36.18	36.30	35.76	36.32		
Lim	it			-	≥ 500 kHz			
Resu	ılt			Com	plied			

3.3 **RF Output Power**

3.3.1 RF Output Power Limit

	Maximum Conducted Output Power Limit								
UNI	UNII Devices								
\boxtimes	For the 5.15-5.25 GHz band:								
	Outdoor AP: the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W. If G_{TX} > 6 dBi, then P_{Out} = 30 – (G_{TX} – 6). e.i.r.p. at any elevation angle above 30 degrees ≤ 125mW [21dBm]								
	Indoor AP: the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W. If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$								
	Point-to-point AP: the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W If G_{TX} > 23 dBi, then P_{Out} = 30 – (G_{TX} – 23).								
	Mobile or Portable Client: the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW. If $G_{TX} > 6$ dBi, then $P_{Out} = 24 - (G_{TX} - 6)$.								
	For the 5.25-5.35 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If G_{TX} > 6 dBi, then P_{Out} = 24 – (G_{TX} – 6).								
	For the 5.47-5.725 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If G_{TX} > 6 dBi, then P_{Out} = 24 – (G_{TX} – 6).								
\boxtimes	For the 5.725-5.85 GHz band:								
	Point-to-multipoint systems (P2M): the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W. If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$.								
	Point-to-point systems (P2P): the maximum conducted output power (P _{Out}) shall not exceed the lesser of 1 W.								
	t = maximum conducted output power in dBm, = the maximum transmitting antenna directional gain in dBi.								

3.3.2 Measuring Instruments

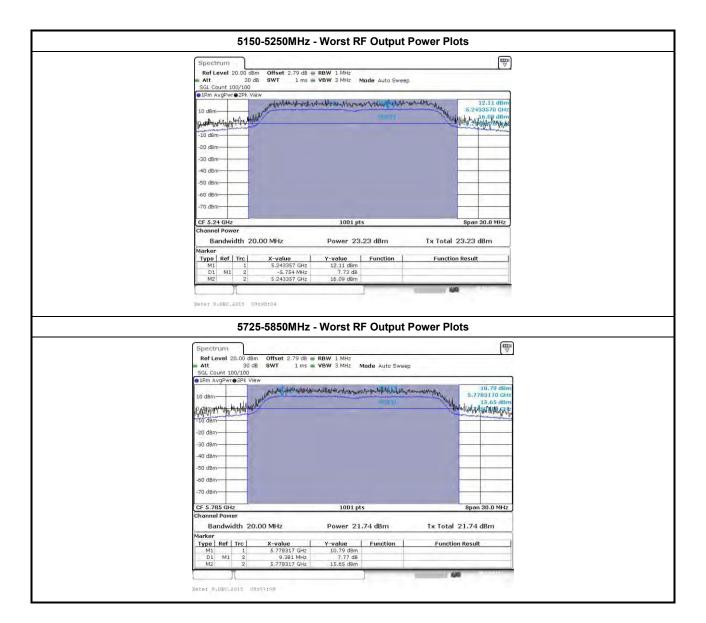
Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

		Test Method
\boxtimes	Max	imum Conducted Output Power
	[dut	y cycle ≥ 98% or external video / power trigger]
	\square	Refer as FCC KDB 789033, clause E Method SA-1 (spectral trace averaging).
		Refer as FCC KDB 789033, clause E Method SA-1 Alt. (RMS detection with slow sweep speed)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 789033, clause E Method SA-2 (spectral trace averaging).
		Refer as FCC KDB 789033, clause E Method SA-2 Alt. (RMS detection with slow sweep speed)
	Wid	eband RF power meter and average over on/off periods with duty factor
		Refer as FCC KDB 789033, clause E Method PM (using an RF average power meter).
\square	For	conducted measurement.
	\square	The EUT supports single transmit chain and measurements performed on this transmit chain 1.
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
	\boxtimes	The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
		If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG

3.3.4 Test Setup

RF Output Power (Spectrum Analyzer)					
EUT					
Spectrum Analyzer					



Maximum Conducted Output Power (5150-5250MHz band)								
		Freq.	C	Output Power (dE	Antenna Gain			
Modulation Mode	Ντχ	(MHz)	Chain Port 1	Chain Port 2	Sum Chain	(dBi)	Power Limit	
11a	1	5180	15.58	-	15.58	6.66	29.34	
11a	1	5200	21.81	-	21.81	6.66	29.34	
11a	1	5240	23.23	-	23.23	6.66	29.34	
HT20	2	5180	14.68	15.70	18.23	9.60	26.40	
HT20	2	5200	21.07	21.34	24.22	9.60	26.40	
HT20	2	5240	21.21	21.83	24.54	9.60	26.40	
HT40	2	5190	10.77	11.54	14.18	9.60	26.40	
HT40	2	5230	19.77	20.51	23.17	9.60	26.40	
Resu	ılt				Complied			

3.3.5 Test Result of Maximum Conducted Output Power

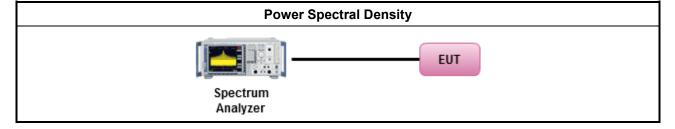
	Maximum Conducted Output Power (5725-5850MHz band)								
		Freq	C	Output Power (dB	m)	Antenna Gain			
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 2	Sum Chain	(dBi)	Power Limit		
11a	1	5745	15.34	-	15.34	6.66	29.34		
11a	1	5785	21.74	-	21.74	6.66	29.34		
11a	1	5825	17.50	-	17.50	6.66	29.34		
HT20	2	5745	14.01	15.85	18.04	9.60	26.40		
HT20	2	5785	19.38	20.43	22.95	9.60	26.40		
HT20	2	5825	15.47	17.77	19.78	9.60	26.40		
HT40	2	5755	11.99	13.70	15.94	9.60	26.40		
HT40	2	5795	15.82	17.59	19.80	9.60	26.40		
Resi	ılt			-	Complied	-			

3.4 Peak Power Spectral Density

3.4.1 Peak Power Spectral Density Limit

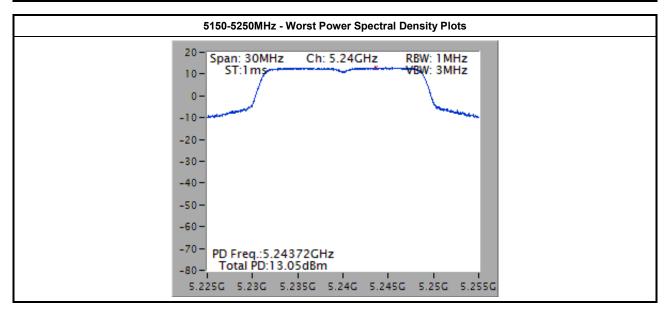
	Peak Power Spectral Density Limit							
UN	UNII Devices							
\square	For	the 5.15-5.25 GHz band:						
		Outdoor AP: the peak power spectral density (PPSD) shall not exceed the lesser of 17dBm/MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 17 - (G_{TX} - 6)$.						
	\boxtimes	Indoor AP: the peak power spectral density (PPSD) shall not exceed the lesser of 17dBm/MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 17 - (G_{TX} - 6)$.						
		Point-to-point AP: the peak power spectral density (PPSD) shall not exceed the lesser of 17dBm/MHz. If G_{TX} > 23 dBi, then P_{Out} = 17 – (G_{TX} – 23).						
		Mobile or Portable Client: the peak power spectral density (PPSD) \leq 11 dBm/MHz. If G _{TX} > 6 dBi, then PPSD= 11 – (G _{TX} – 6)						
		the 5.25-5.35 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. If G _{TX} > 6 dBi, a PPSD= 11 - (G _{TX} - 6).						
		the 5.47-5.725 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. If G _{TX} > 6 dBi, PPSD= 11 - (G _{TX} - 6).						
\square	For	the 5.725-5.85 GHz band:						
		Point-to-multipoint systems (P2M): the peak power spectral density (PPSD) \leq 30 dBm/500kHz. If $G_{TX} > 6$ dBi, then PPSD= 30 – ($G_{TX} - 6$).						
		Point-to-point systems (P2P): the peak power spectral density (PPSD) \leq 30 dBm/500kHz.						
pov	ver sł	peak power spectral density that he same method as used to determine the conducted output nall be used to determine the power spectral density. And power spectral density in dBm/MHz e maximum transmitting antenna directional gain in dBi.						

3.4.2 Measuring Instruments

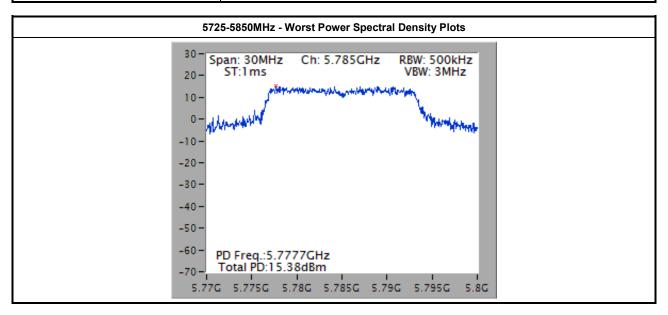

Refer a test equipment and calibration data table in this test report.

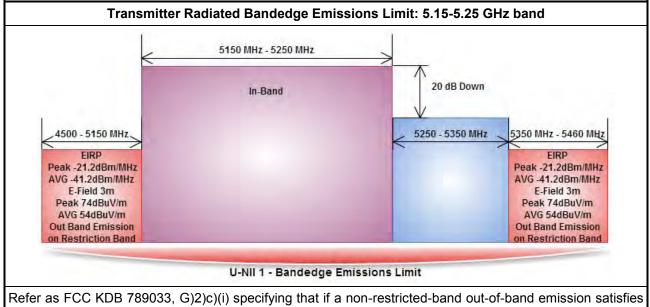
3.4.3 Test Procedures

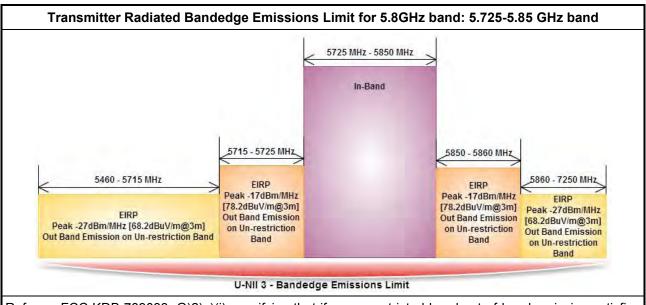
		Test Method
	outp func	k power spectral density procedures that the same method as used to determine the conducted ut power shall be used to determine the peak power spectral density and use the peak search tion on the spectrum analyzer to find the peak of the spectrum. For the peak power spectral density I be measured using below options:
	\boxtimes	Refer as FCC KDB 789033, F)5) power spectral density can be measured using resolution bandwidths < 1 MHz provided that the results are integrated over 1 MHz bandwidth
	[duty	y cycle ≥ 98% or external video / power trigger]
	\boxtimes	Refer as FCC KDB 789033, clause E Method SA-1 (spectral trace averaging).
		Refer as FCC KDB 789033, clause E Method SA-1 Alt. (RMS detection with slow sweep speed)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 789033, clause E Method SA-2 (spectral trace averaging).
		Refer as FCC KDB 789033, clause E Method SA-2 Alt. (RMS detection with slow sweep speed)
\square	For	conducted measurement.
	\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain port 1.
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
	\boxtimes	The EUT supports multiple transmit chains using options given below:
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.
		If multiple transmit chains, EIRP PPSD calculation could be following as methods: PPSD _{total} = PPSD ₁ + PPSD ₂ + + PPSD _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = PPSD _{total} + DG
		Each individually PPSD plots refer as test report clause 3.3.5 with each individually PPSD plots.
L		


3.4.4 Test Setup

3.4.5 Test Result of Peak Power Spectral Density


		Peak P	ower Spectral Density Result	(5150-5250MHz band)	
Modulation Mode	Ντχ	Freq. (MHz)	Peak Power Spectral Density (dBm/MHz)	PSD Limit	PSD-DG (dBi)
11a	1	5180	4.73	16.34	6.66
11a	1	5200	11.07	16.34	6.66
11a	1	5240	12.11	16.34	6.66
HT20	2	5180	6.79	13.40	9.60
HT20	2	5200	12.61	13.40	9.60
HT20	2	5240	13.05	13.40	9.60
HT40	2	5190	-0.08	13.40	9.60
HT40	2	5230	8.72	13.40	9.60
Resu	ılt			Complied	


		Peak F	ower Spectral Density Resul	t (5725-5850MHz band)	
Modulation Mode	Ντχ	Freq. (MHz)	Peak Power Spectral Density (dBm/500kHz)	PSD Limit	PSD-DG (dBi)
11a	1	5745	8.32	29.34	6.66
11a	1	5785	15.38	29.34	6.66
11a	1	5825	10.39	29.34	6.66
HT20	2	5745	10.81	26.40	9.60
HT20	2	5785	14.86	26.40	9.60
HT20	2	5825	12.23	26.40	9.60
HT40	2	5755	5.41	26.40	9.60
HT40	2	5795	9.50	26.40	9.60
Resu	ult			Complied	



3.5 Transmitter Bandedge Emissions

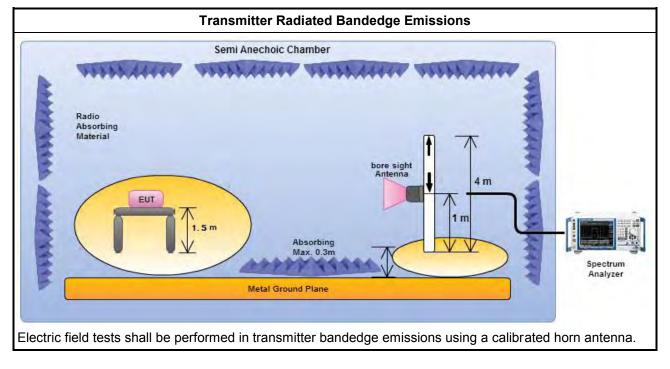
3.5.1 Transmitter Radiated Bandedge Emissions Limit

Refer as FCC KDB 789033, G)2)c)(i) specifying that if a non-restricted-band out-of-band emission satisfies both the average and peak limits of 15.209, it is not required to satisfy the -27 dBm or -17 dBm peak emission limit. Reason for change: to ensure that emission requirements in the non-restricted bands are not more stringent than those in the restricted bands.

Refer as FCC KDB 789033, G)2)c)(i) specifying that if a non-restricted-band out-of-band emission satisfies both the average and peak limits of 15.209, it is not required to satisfy the -27 dBm or -17 dBm peak emission limit. Reason for change: to ensure that emission requirements in the non-restricted bands are not more stringent than those in the restricted bands.

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.5.3 Test Procedures

	Test Method
\boxtimes	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\square	Refer as ANSI C63.10, clause 6.10 bandedge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.
	If EUT operate in adjacent contiguous bands, bandedge testing performed at the lowest frequency channel at lower-band and highest frequency channel at higher-band. Transmitter in-band emissions will consist of adjacent contiguous bands (e.g., IEEE 802.11ac VHT160 The lowest frequency channel at lower-band and highest frequency channel at higher-band in-band emissions will consist of two adjacent contiguous bands.)
	Operating in 5.15-5.25 GHz band (lower-band) and 5.25-5.35 GHz band (higher-band).
	Operating in 5.47-5.725 GHz band (lower-band) and 5.725-5.85 GHz band (higher-band).
	If EUT operate in individual non-contiguous bands, bandedge testing performed at the lowest frequency channel and highest frequency channel within lower-band and higher-band. (e.g., (e.g., IEEE 802.11ac VHT160)
	Operating in 5.25-5.35 GHz band (lower-band) and 5.47-5.725 GHz band (higher-band).
	Operating in 5.15-5.25 GHz band (lower-band) and 5.725-5.85 GHz band (higher-band).
\square	For the transmitter unwanted emissions shall be measured using following options below:
	Refer as FCC KDB 789033, clause G)2) for unwanted emissions into non-restricted bands.
	Refer as FCC KDB 789033, clause G)1) for unwanted emissions into restricted bands.
	Refer as FCC KDB 789033, G)6) Method AD (Trace Averaging).
	Refer as FCC KDB 789033, G)6) Method VB (Reduced VBW).
	Refer as ANSI C63.10, clause 4.1.4.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
	Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions.
	Refer as FCC KDB 789033, clause H)5) measurement procedure peak limit.
	Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak limit.
\square	For the transmitter bandedge emissions shall be measured using following options below:
	Refer as FCC KDB 789033, clause G)3)d) for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).
	Refer as ANSI C63.10, clause 6.10 for band-edge testing.
	Refer as ANSI C63.10, clause 6.10.6.2 for marker-delta method for band-edge measurements.
\square	For radiated measurement, refer as ANSI C63.10, clause 6.6. Test distance is 3m.
	Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements). Measurements in the bandedge are typically made at a closer distance 3m, because the instrumentation noise floor is typically close to the radiated emission limit.

3.5.4 Test Setup

3.5.5 Transmitter Radiated Bandedge Emissions (with Antenna)

Modulation Mode	N _{TX}	Freq. (MHz)	Measure Distance (m)	Freq. (MHz) PK	Level (dBuV/m) PK	Limit (dBuV/m) PK	Freq. (MHz) AV	Level (dBuV/m) AV	Limit (dBuV/m) AV	Pol.
11a	1	5180	3	5149.00	71.03	74	5150.00	52.65	54	Н
11a	1	5240	3	5149.80	62.30	74	5149.80	49.33	54	Н
HT20	2	5180	3	5149.40	69.24	74	5149.80	52.88	54	Н
HT20	2	5240	3	5116.80	60.15	74	5148.00	48.72	54	Н
HT40	2	5190	3	5148.62	68.31	74	5149.28	52.28	54	Н
HT40	2	5230	3	5144.40	65.78	74	5148.602	52.41	54	Н

Modulation Mode	Ντχ	Freq. (MHz)	Measure Distance (m)	Freq. (MHz) PK	Level (dBuV/m) PK	Limit (dBuV/m) PK	Pol.
11a	1	5745	3	5714.68	66.93	68.20	Н
11a	1	5825	3	5860.78	66.69	68.20	Н
HT20	2	5745	3	5714.89	66.38	68.20	Н
HT20	2	5825	3	5850.07	76.51	78.20	Н
HT40	2	5755	3	5713.18	67.00	68.20	Н
HT40	2	5795	3	5862.40	66.98	68.20	Н

3.6 Transmitter Unwanted Emissions

3.6.1 Transmitter Radiated Unwanted Emissions Limit

Unwanted emiss	sions below 1 GHz and re	stricted band emissions a	bove 1GHz limit
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

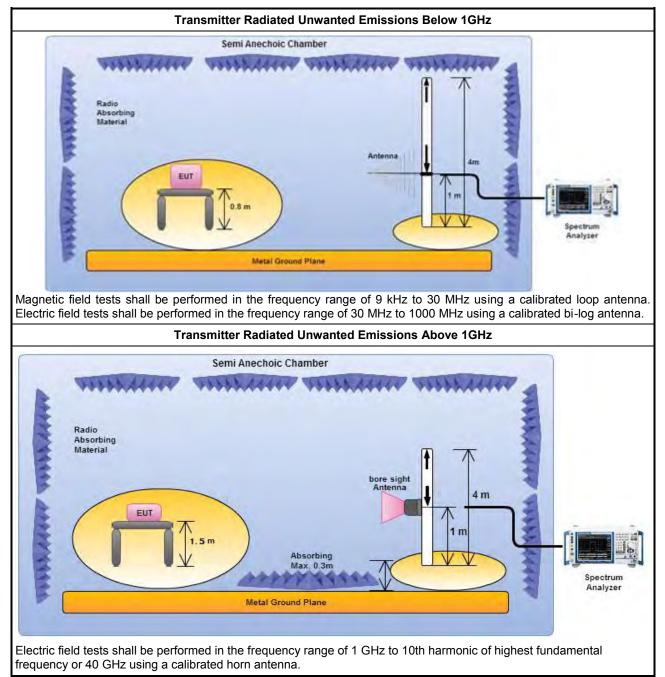
	Un-restricted band emissions above 1GHz Limit
Operating Band	Limit
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.725 - 5.85 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.85 5.86 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]
performed in the n equipment. When	by be performed at a distance other than the limit distance provided they are not ear field and the emissions to be measured can be detected by the measuremer performing measurements at a distance other than that specified, the results sha the specified distance using an extrapolation factor of 20 dB/decade (inverse of

linear distance for field-strength measurements, inverse of linear distance-squared for power-density

3.6.2 Measuring Instruments

measurements).

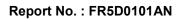
Refer a test equipment and calibration data table in this test report.



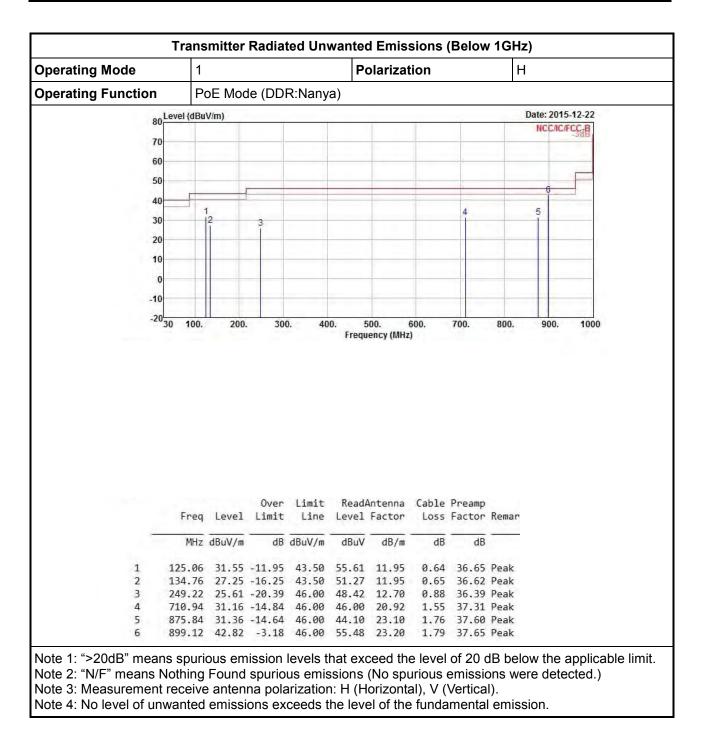
3.6.3 Test Procedures

		Test Method
	perfe equi abov are i be e dista	surements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement pment. Measurements shall not be performed at a distance greater than 30 m for frequencies ve 30 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or less impractical. When performing measurements at a distance other than that specified, the results shall extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density isurements).
\boxtimes	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\bowtie	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 789033, clause G)2) for unwanted emissions into non-restricted bands.
	\boxtimes	Refer as FCC KDB 789033, clause G)1) for unwanted emissions into restricted bands.
		Refer as FCC KDB 789033, G)6) Method AD (Trace Averaging).
		Refer as FCC KDB 789033, G)6) Method VB (Reduced VBW).
		Refer as ANSI C63.10, clause 4.1.4.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
		Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions.
		Refer as FCC KDB 789033, clause G)5) measurement procedure peak limit.
		Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak limit.
\boxtimes	For	radiated measurement.
	\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m.
	\boxtimes	Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m.
	\square	Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1GHz. For 1 GHz to 5 GHz, test distance is 3m; For 5 GHz to 40 GHz, test distance is 3m.
\square	The	any unwanted emissions level shall not exceed the fundamental emission level.
\square		mplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value no need to be reported.

3.6.4 Test Setup

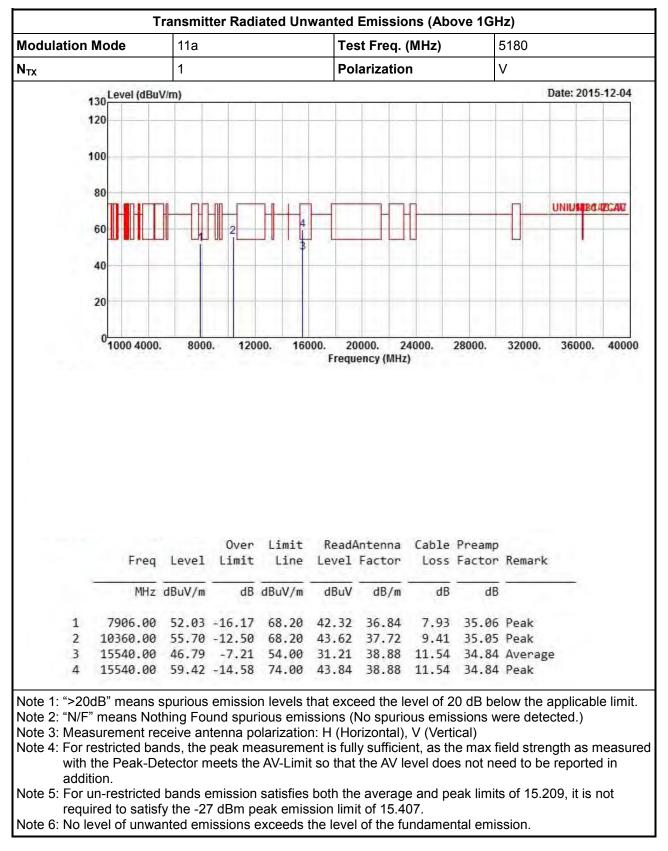

3.6.5 Transmitter Radiated Unwanted Emissions-with Antenna (Below 30MHz)

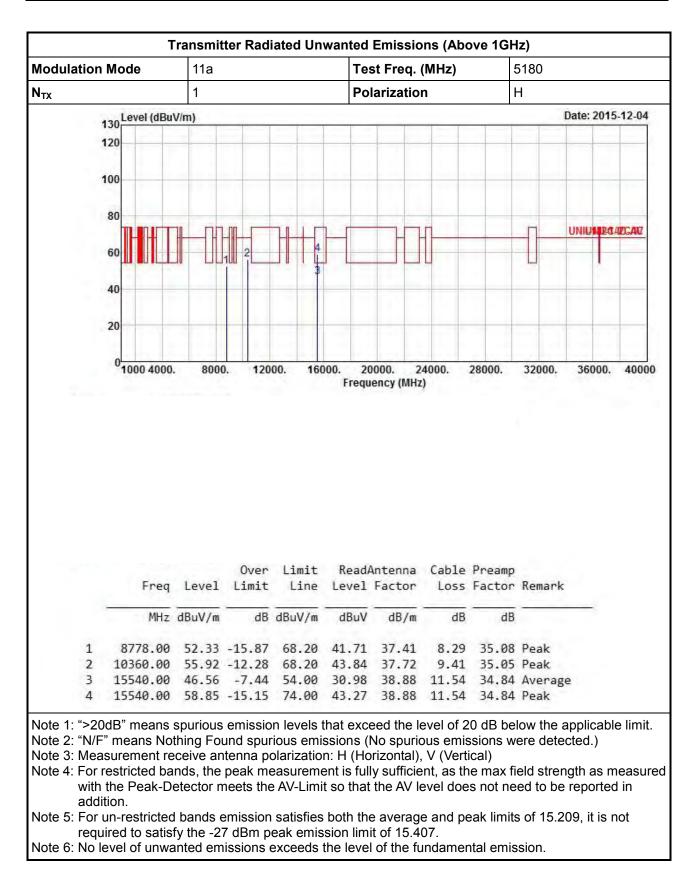
All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

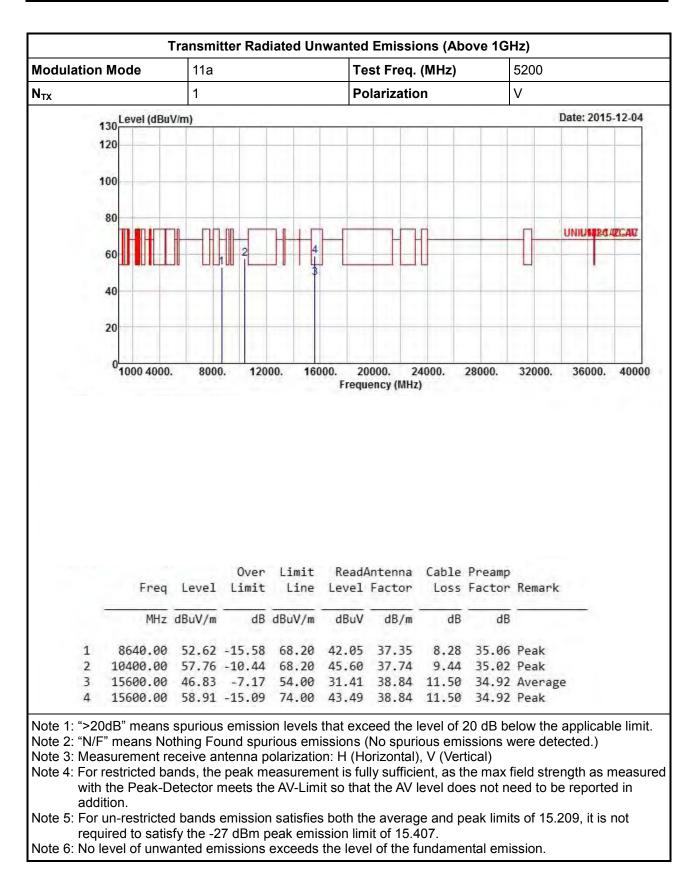


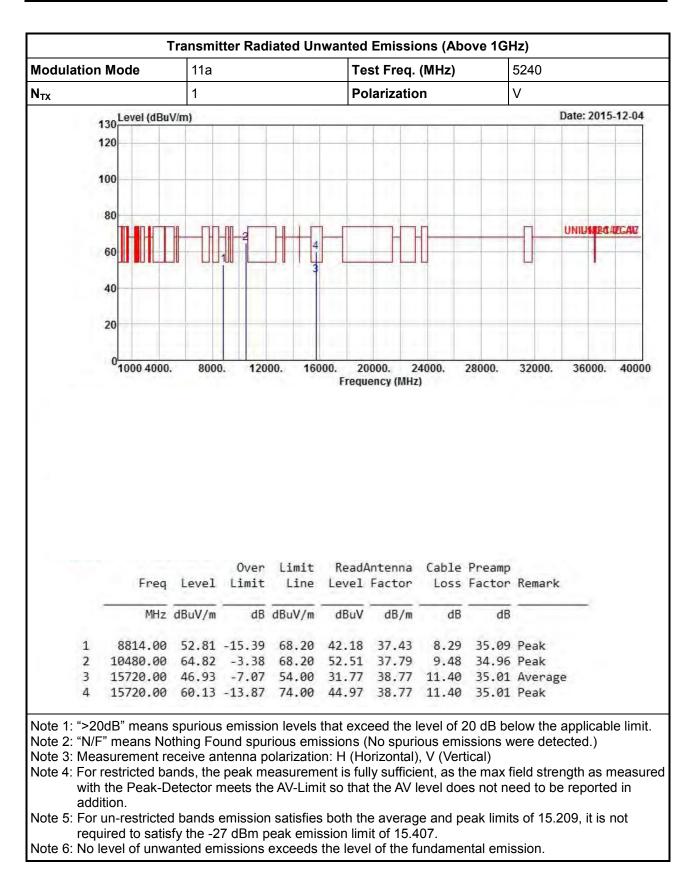
Operating Mode		1			P	olarizat	ion		V		
Operating Funct	ion	PoE Mo	de (DD	R:Nany	/a)						
	80 Level (dBu	V/m)							D	ate: 2015	
										NCC/IC/F	CC:B
	70										
	60										
	50						-	-		_	
							-	-		6	-
	4012 3								5		
	30				-	-	4				
	20							_			
			_								
	10										
	0				-		-				
	-10										
	-20 ₃₀ 100.	200.	300). 40		500. Jency (MHz	600.)	700.	800.	900.	100
		200.	300). 40				700.	800.	900.	100
		200.	- 300 Over		Frequ	iency (MHz)		800.	900.	100
	-20 <mark>30 100.</mark>	200. Level	Over	Limit	Frequ) Cable	Preamp		900.	100
	-20 <mark>30 100.</mark> Freq		Over Limit	Limit	Frequ	Antenna Factor) Cable	Preamp Factor		900.	100
1	-20 <mark>30 100.</mark> Freq	Level	Over Limit dB	Limit Line dBuV/m	Frequ Read, Level	Antenna Factor dB/m) Cable Loss	Preamp Factor dB	Remark	900.	100
1 2	-20 30 100. Freq MHz 33.88 41.64	Level dBuV/m 36.12 37.53	Over Limit 	Limit Line dBuV/m 40.00 40.00	Read, Level dBuV 55.52 61.28	Antenna Factor dB/m) Cable Loss dB	Preamp Factor dB 37.28	Remark	900.	100
	-20 30 100. Freq MHz 33.88 41.64 59.10	Level dBuV/m 36.12 37.53 34.12	Over Limit 	Limit Line dBuV/m 40.00 40.00 40.00	Read/ Level dBuV 55.52 61.28 64.53	Antenna Factor 	Cable Loss dB 0.34 0.38 0.47	Preamp Factor dB <u>37.28</u> <u>37.21</u> 37.07	QP QP Peak		100
2 3 4	-20 30 100. Freq MHz 33.88 41.64 59.10 600.36	Level dBuV/m 36.12 37.53 34.12 28.37	Over Limit 	Limit Line dBuV/m 40.00 40.00 40.00 40.00	Read/ Level dBuV 55.52 61.28 64.53 44.50	Antenna Factor 	Cable Loss dB 0.34 0.38 0.47 1.41	Preamp Factor dB <u>37.28</u> <u>37.21</u> 37.07 37.24	QP QP Peak Peak		100
2	-20 30 100. Freq MHz 33.88 41.64 59.10 600.36 765.26	Level dBuV/m 36.12 37.53 34.12	Over Limit 	Limit Line dBuV/m 40.00 40.00 40.00 40.00 46.00	Read/ Level dBuV 55.52 61.28 64.53 44.50 44.81	Antenna Factor 17.54 13.08 6.19 19.70 21.82	Cable Loss dB 0.34 0.38 0.47 1.41 1.62	Preamp Factor dB <u>37.28</u> <u>37.21</u> 37.07	QP QP Peak Peak Peak Peak	900.	100

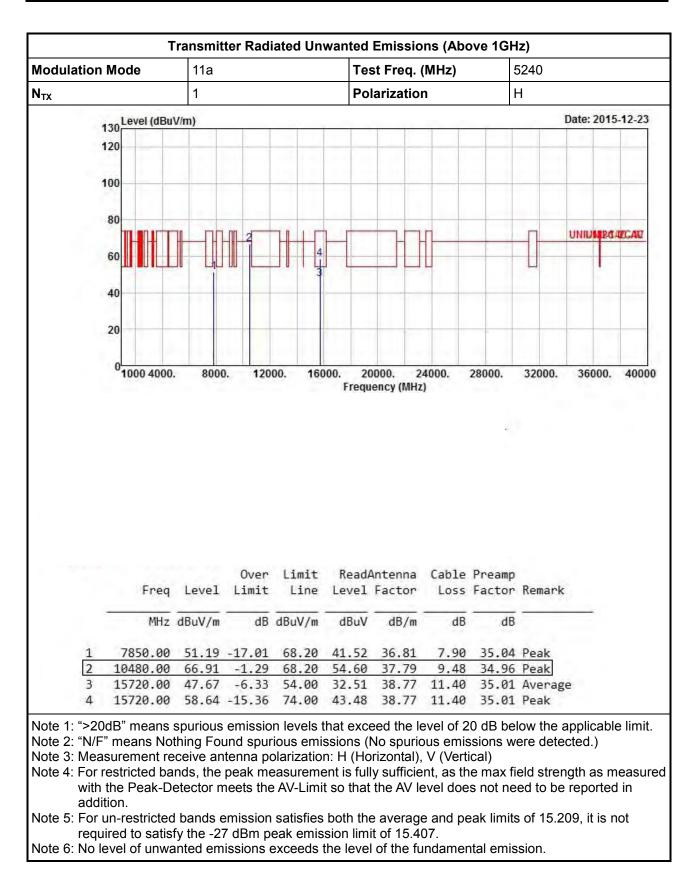
3.6.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

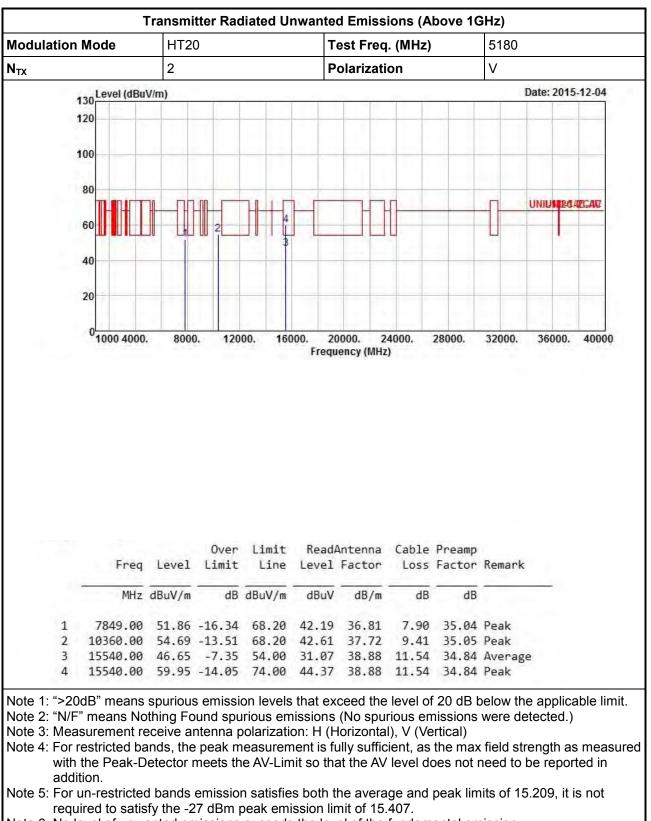


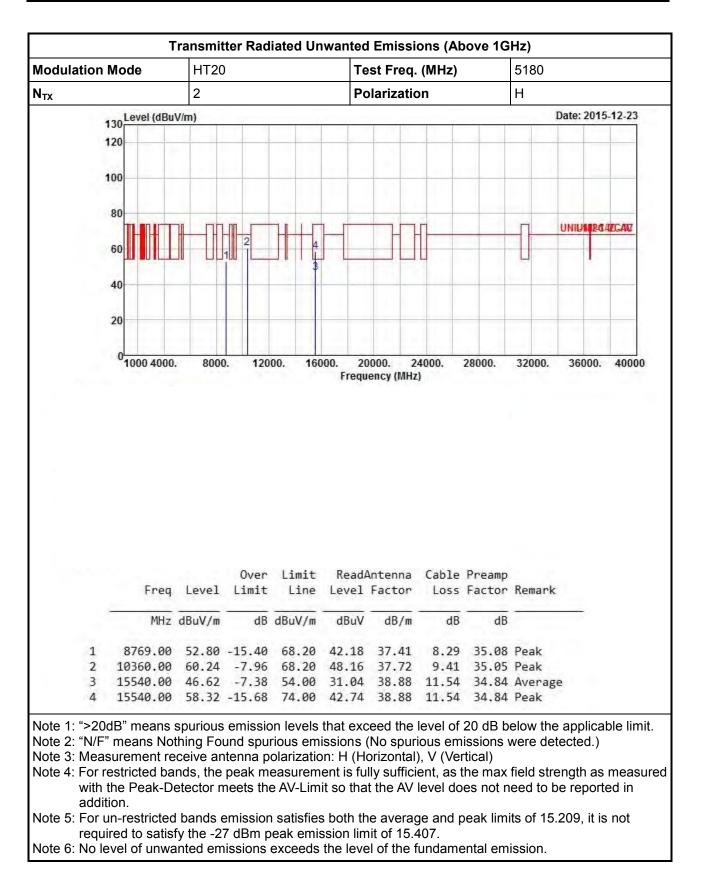


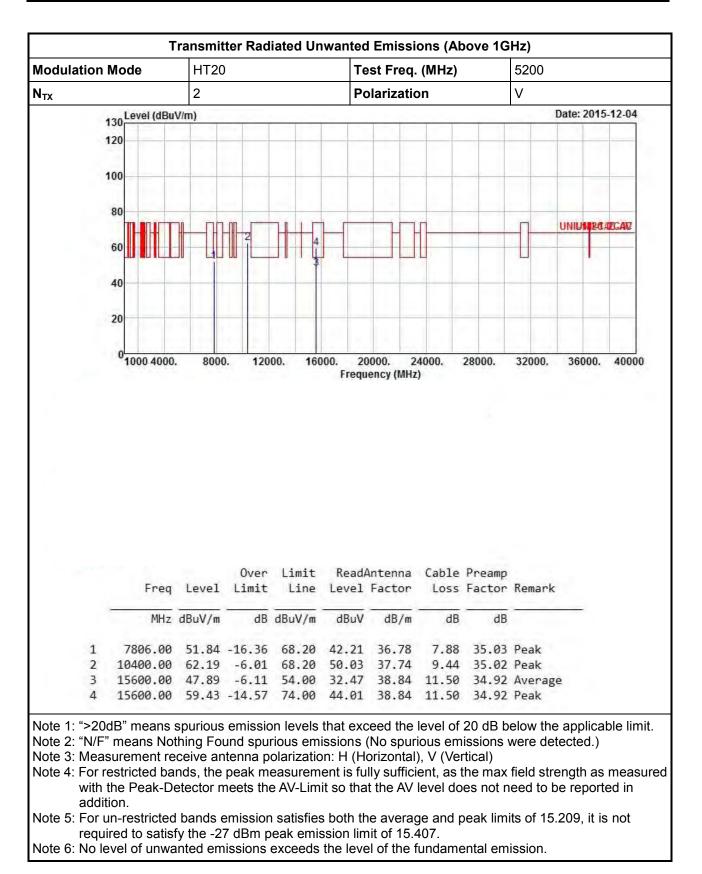

3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 5150-5250MHz

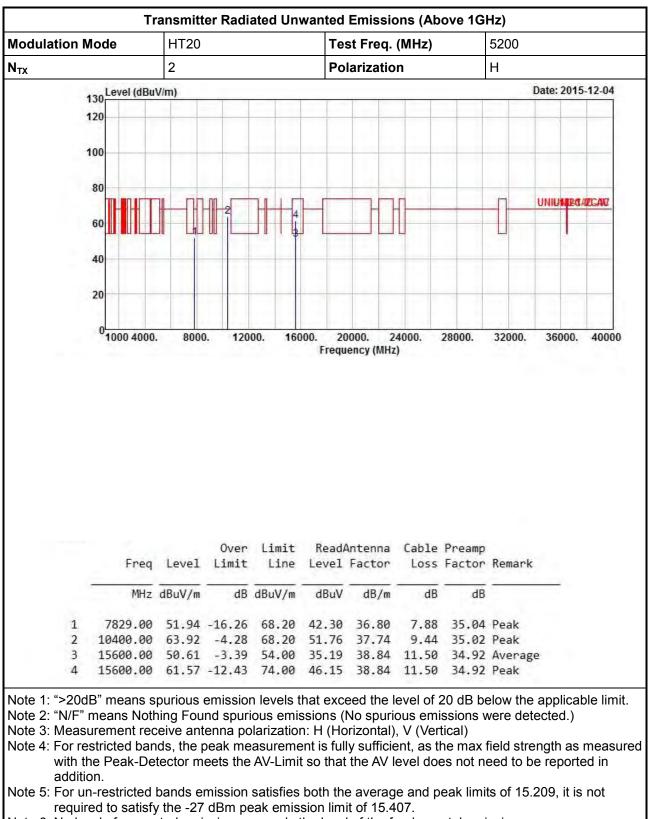


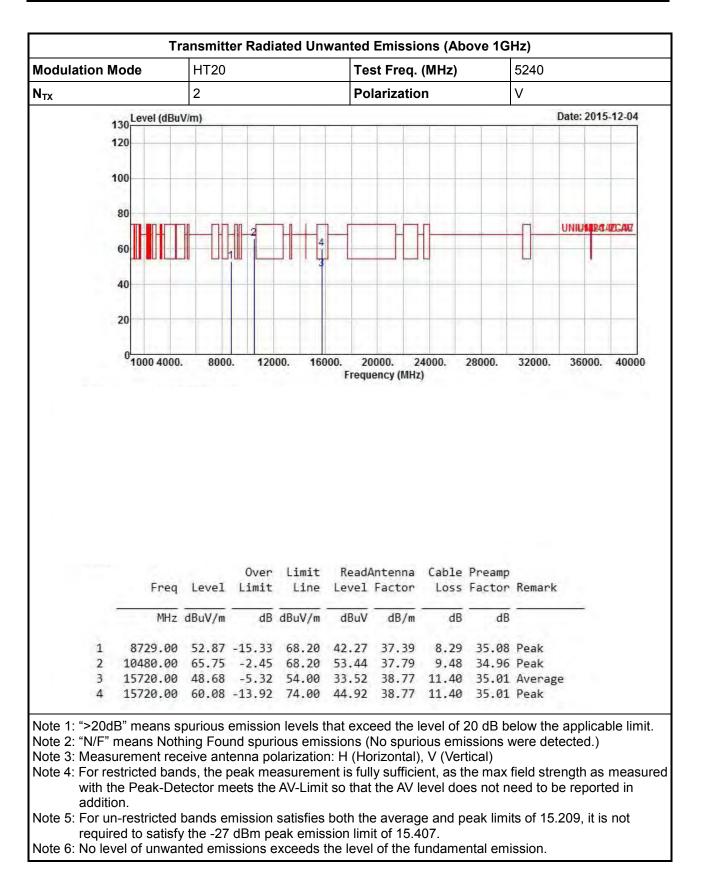


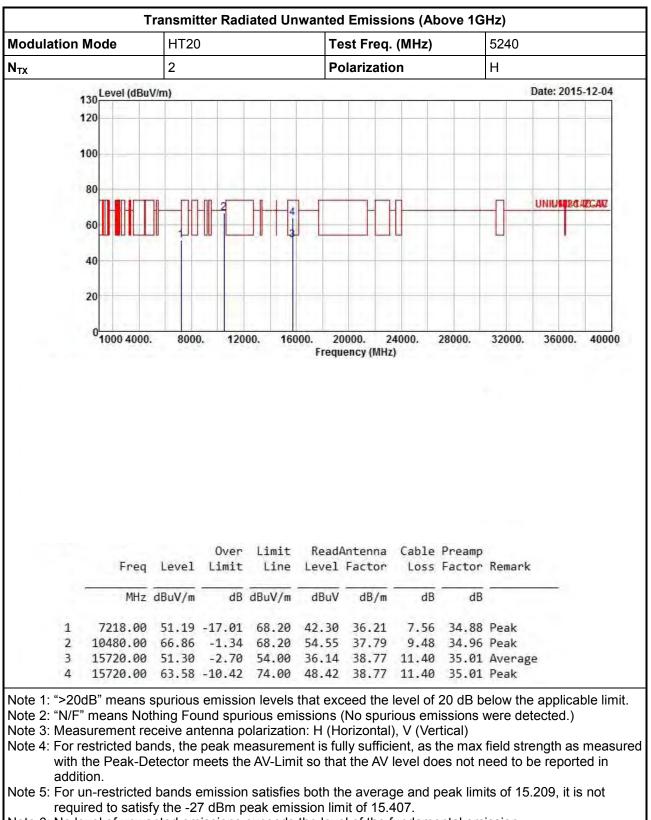


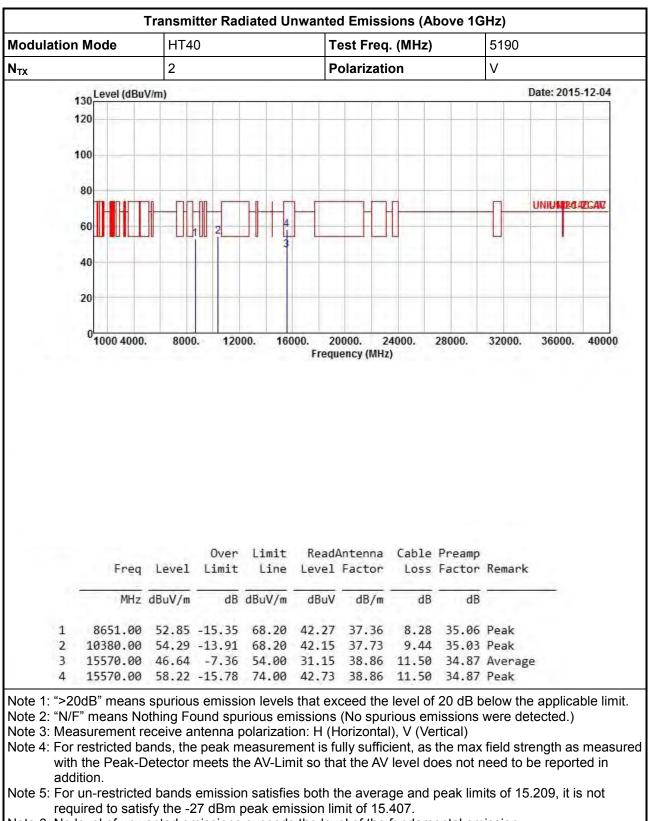


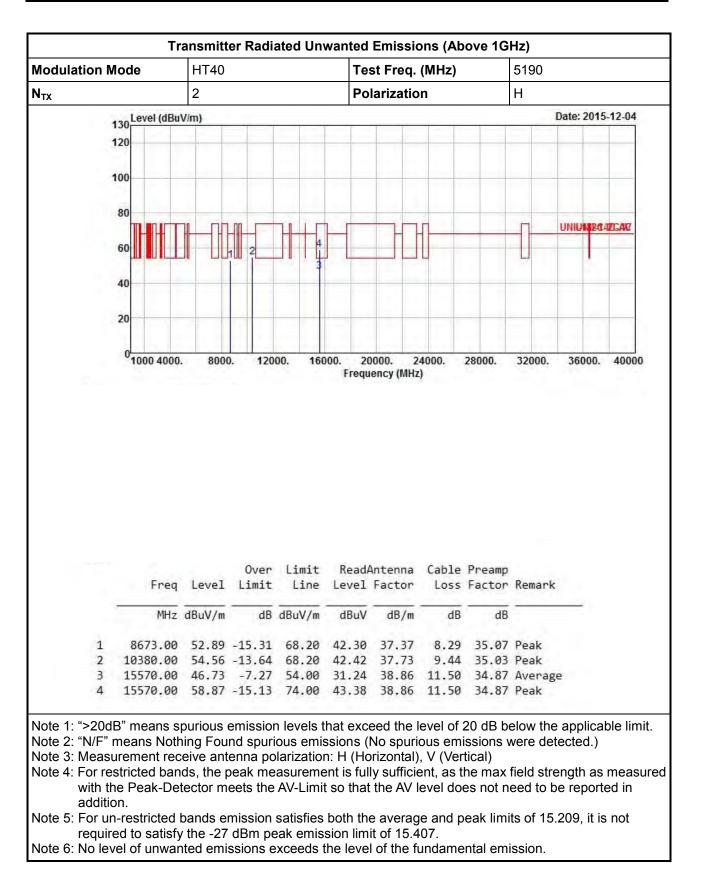


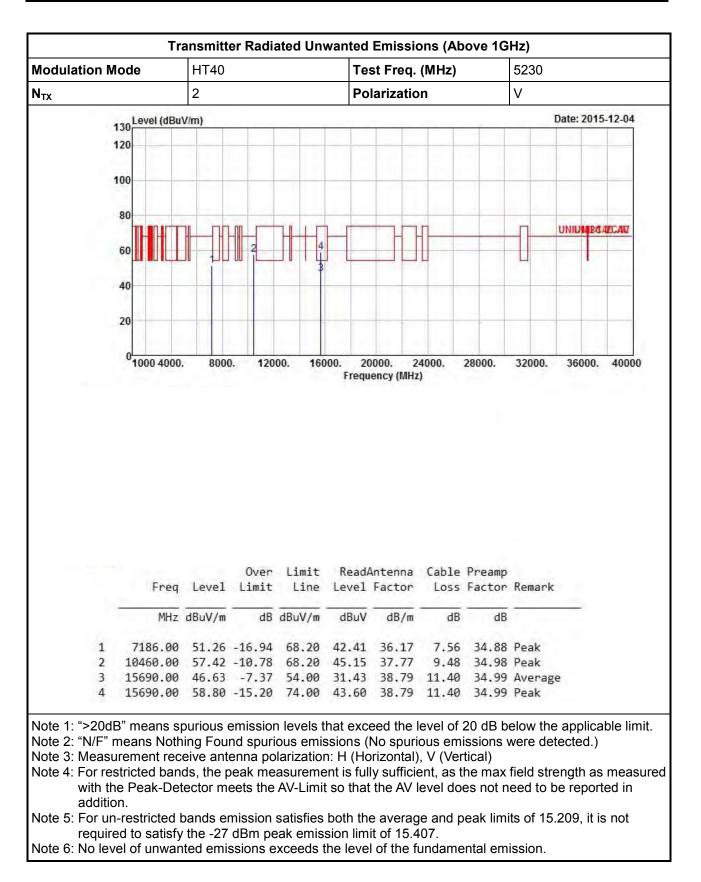


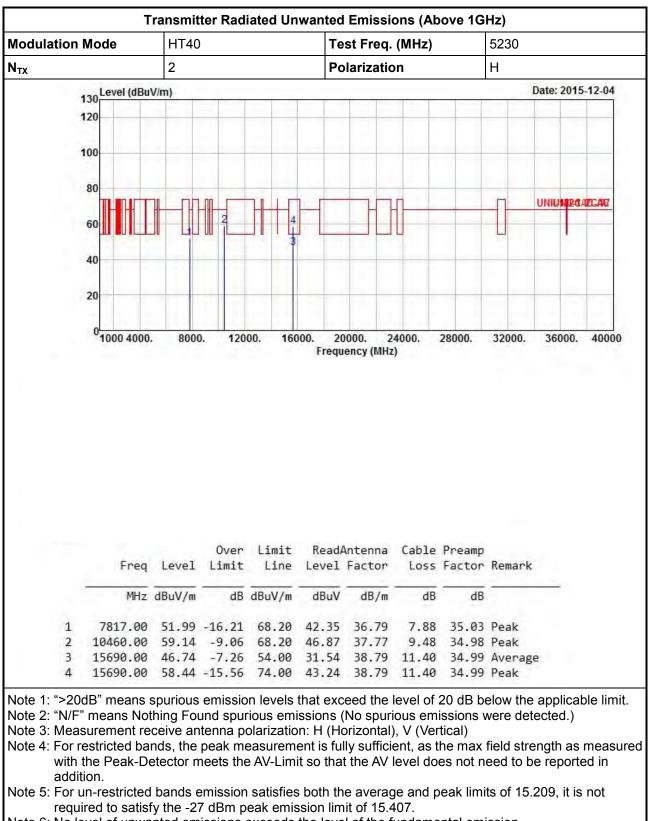


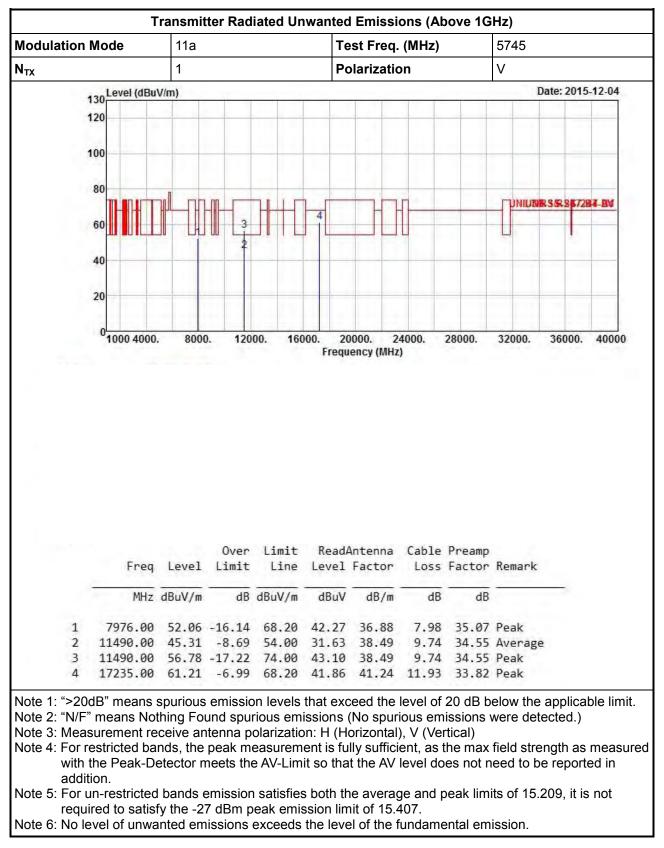


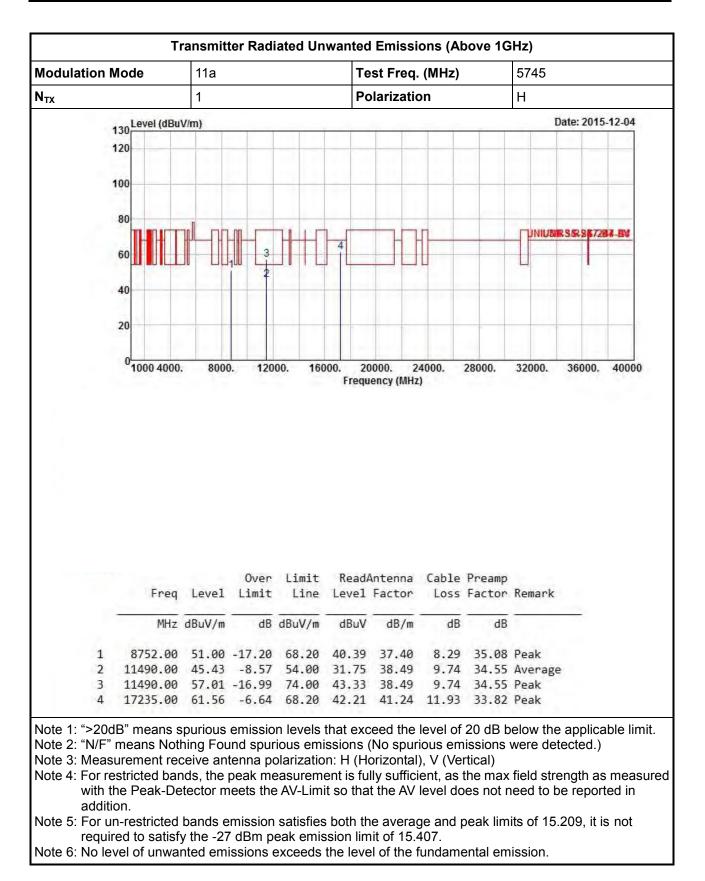


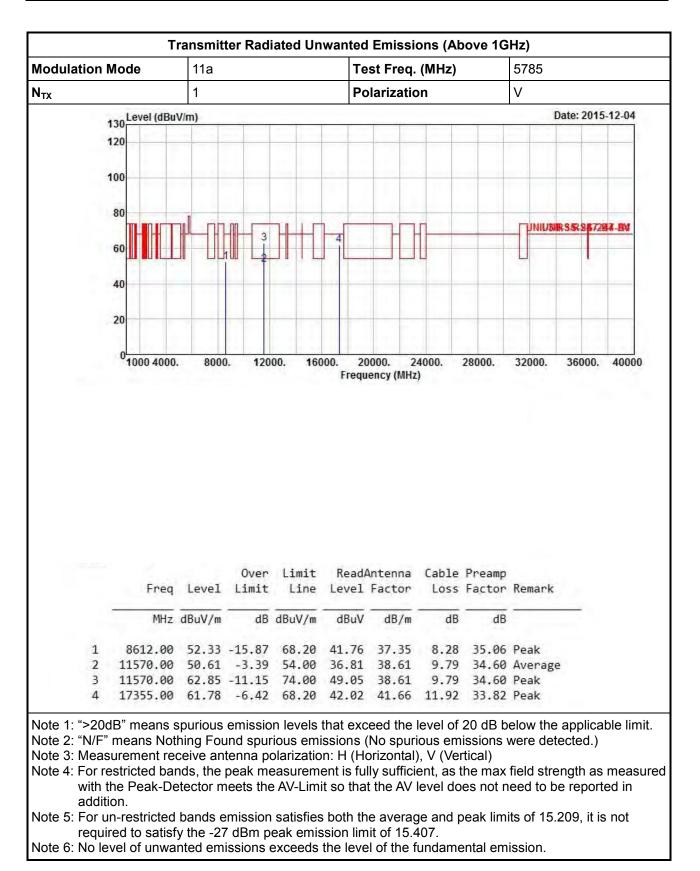


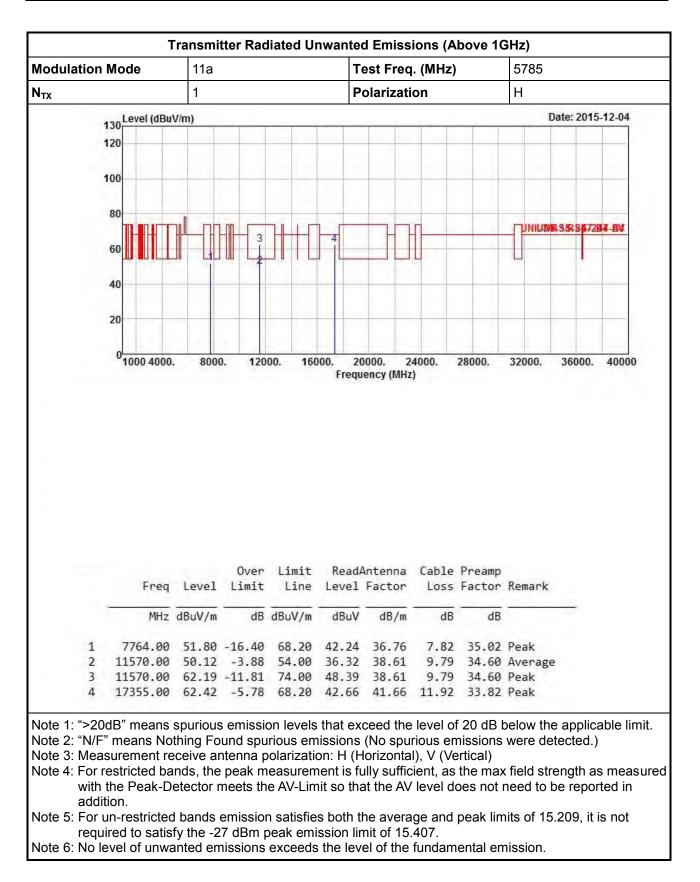


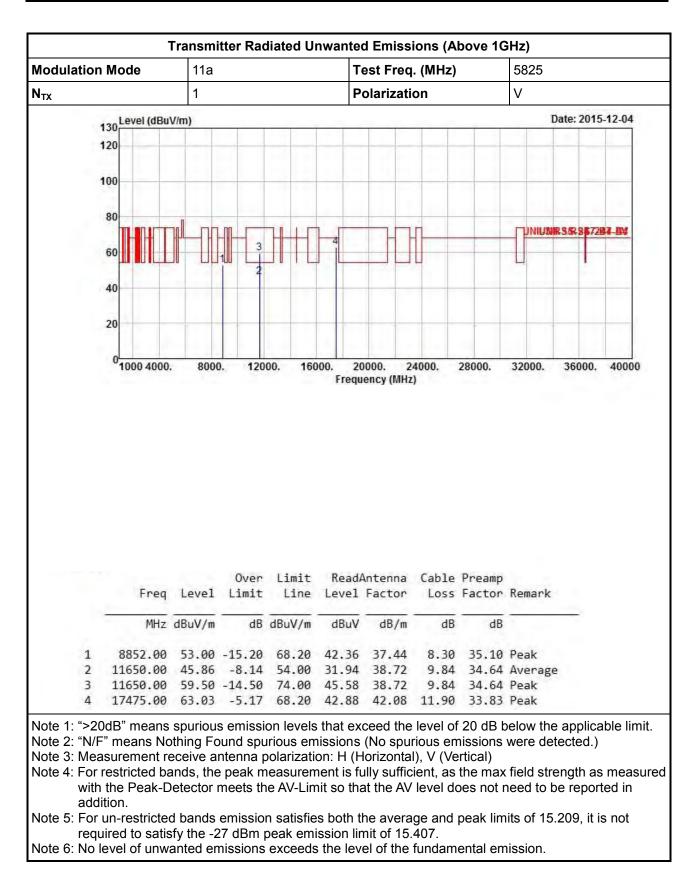


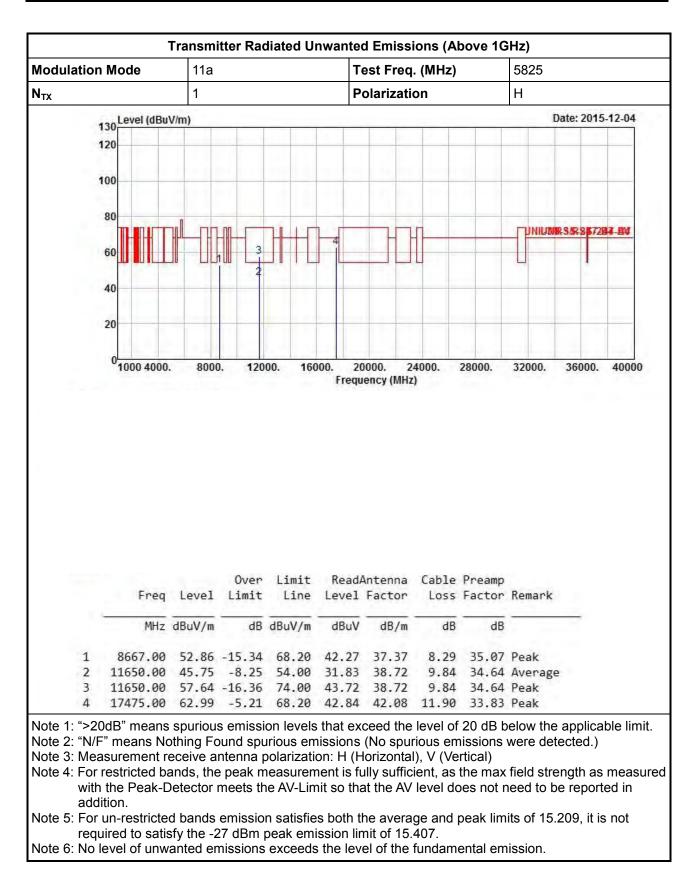


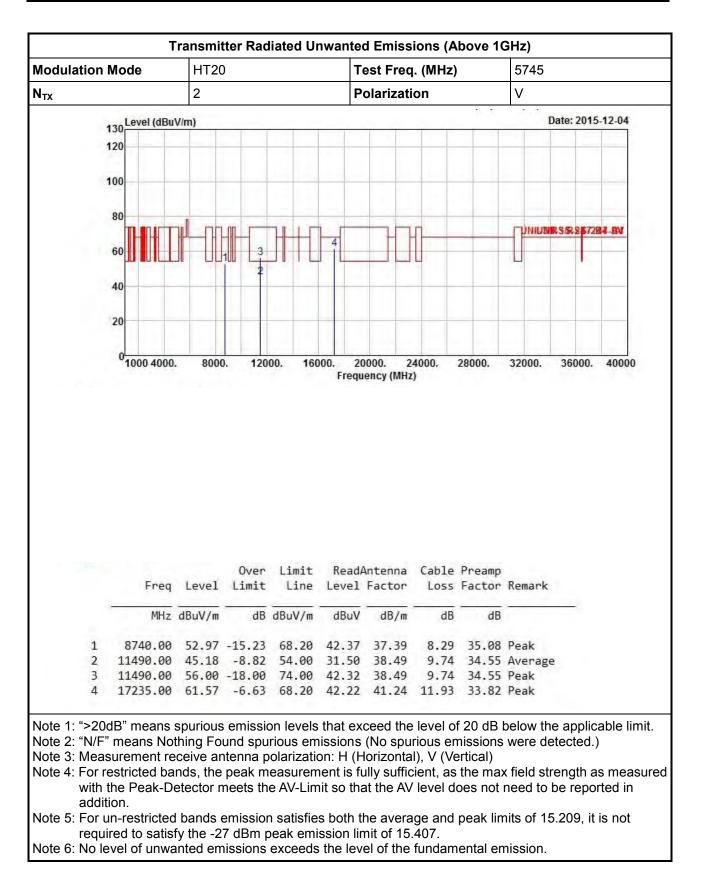


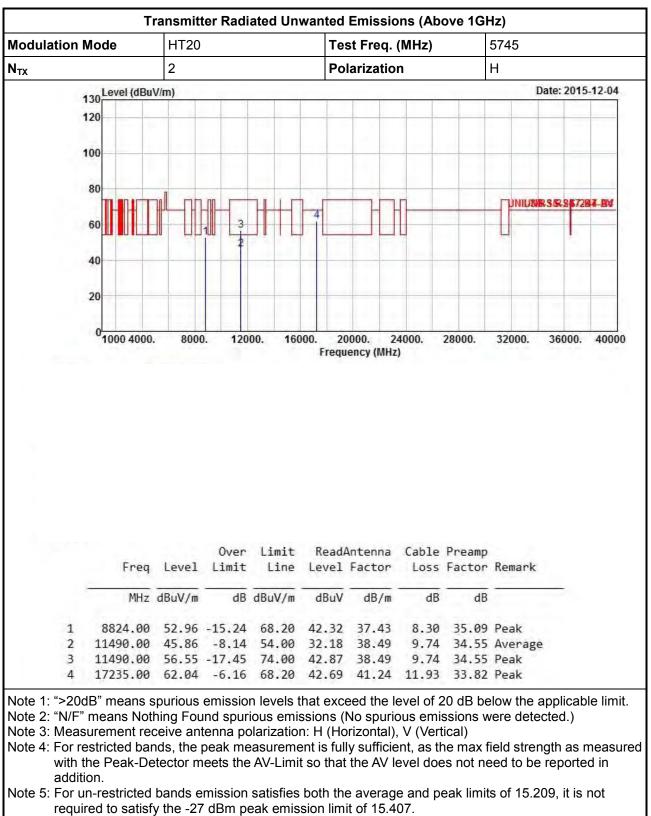

3.6.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 5725-5850MHz

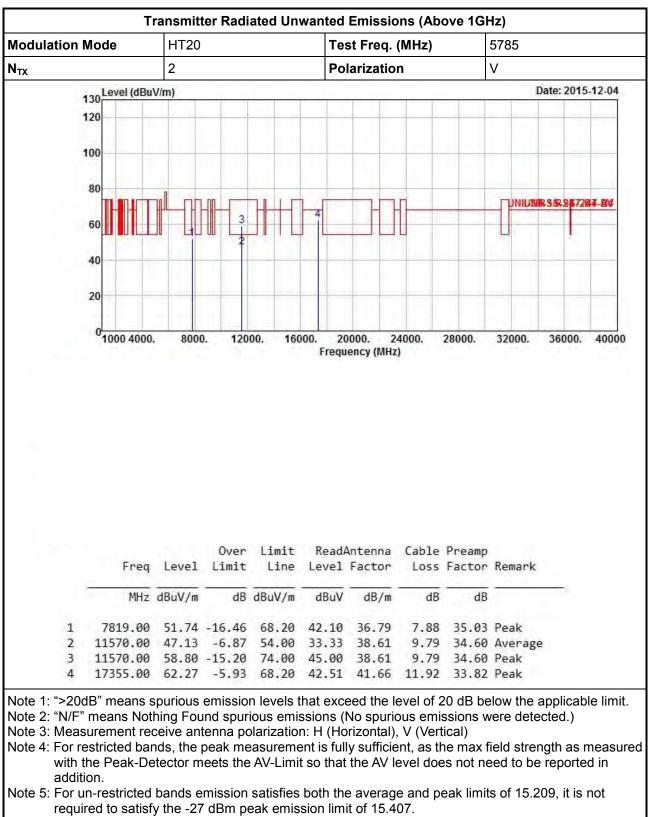


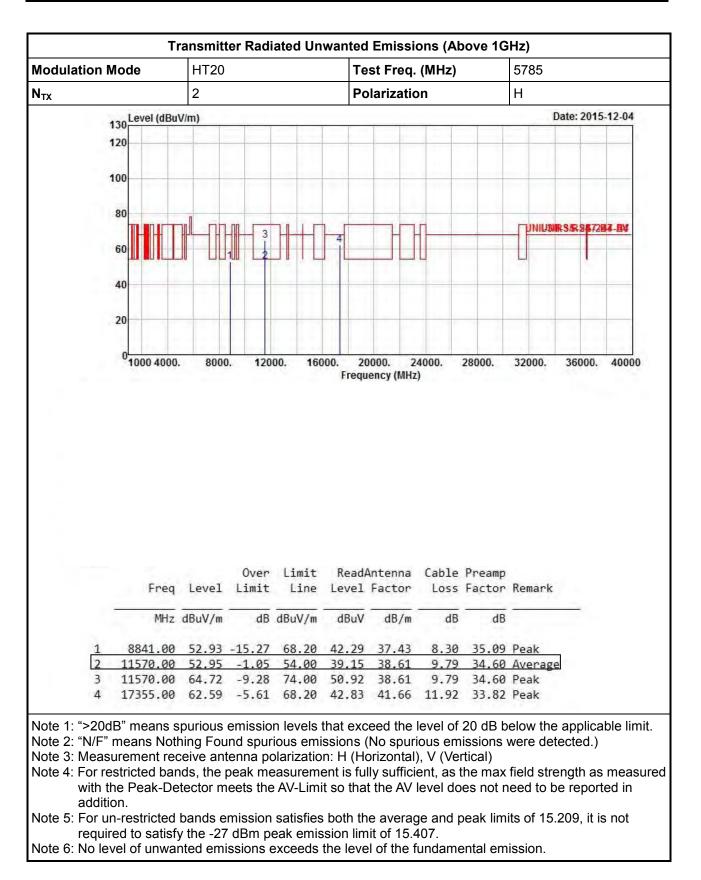


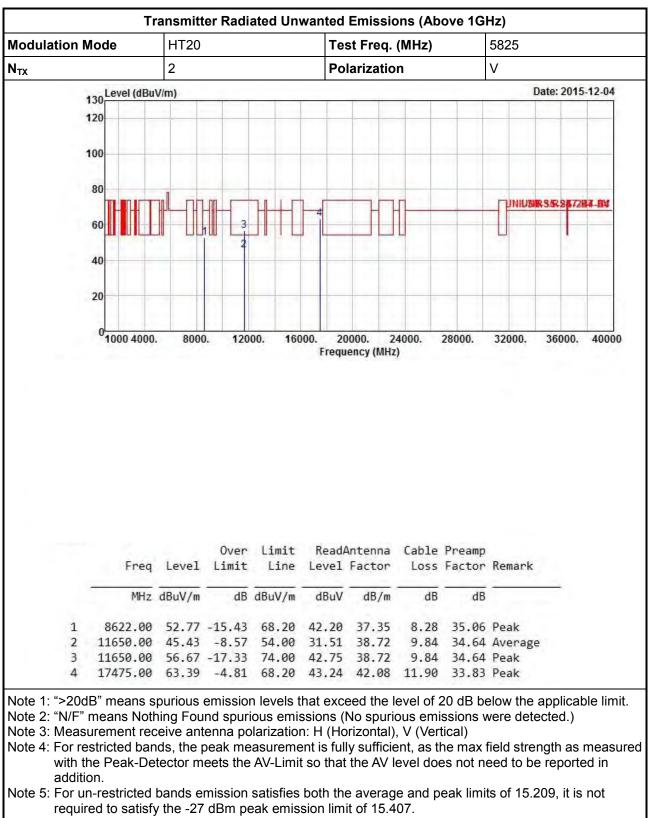




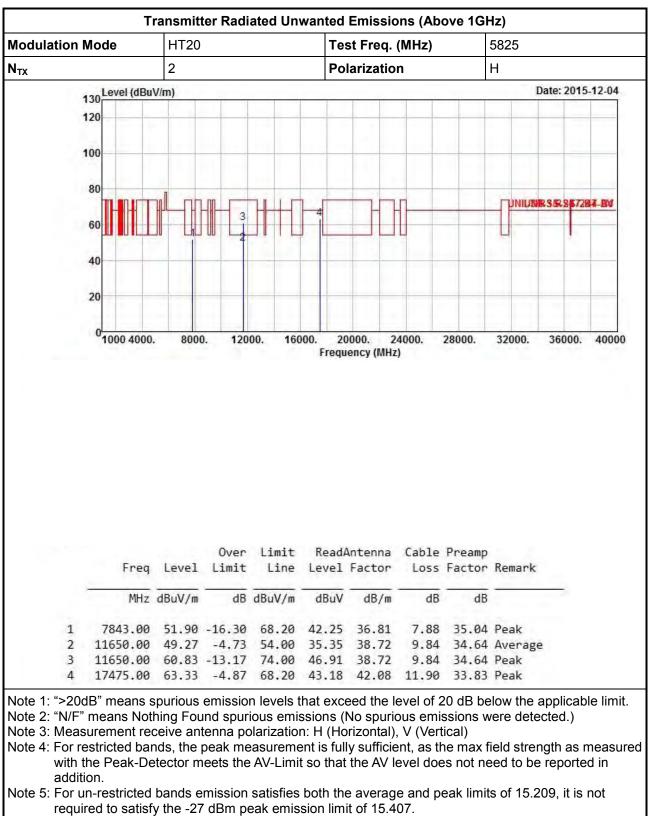


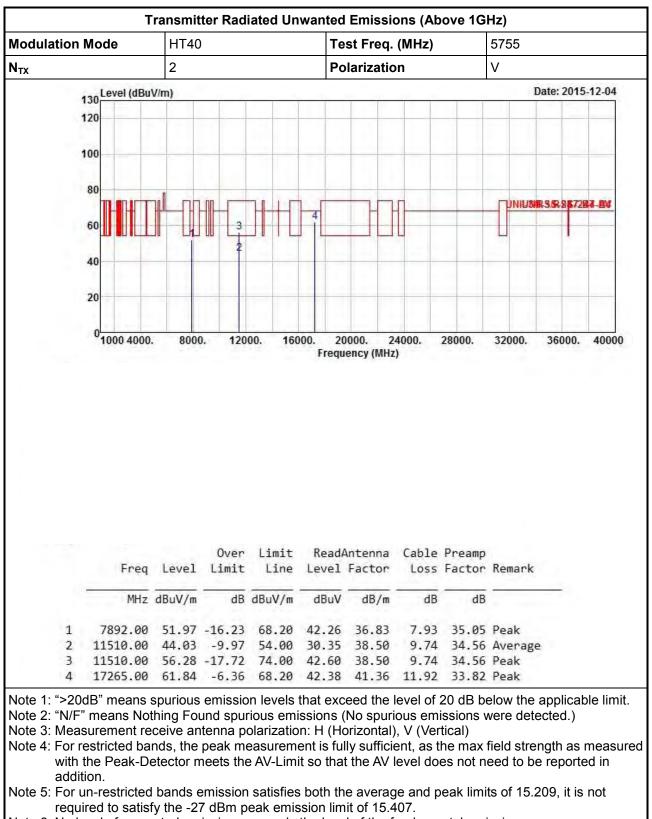


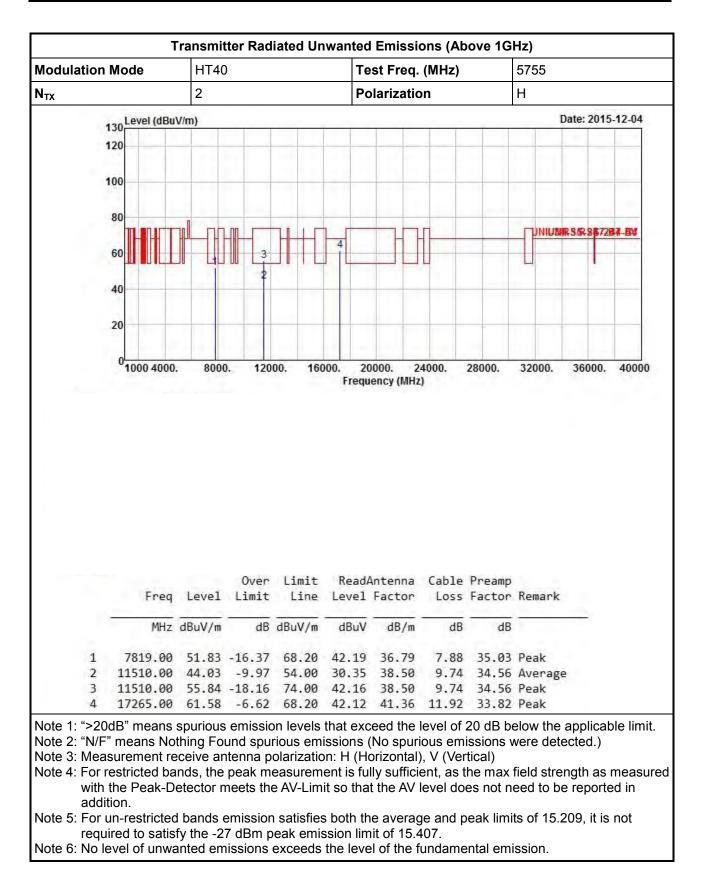

Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.



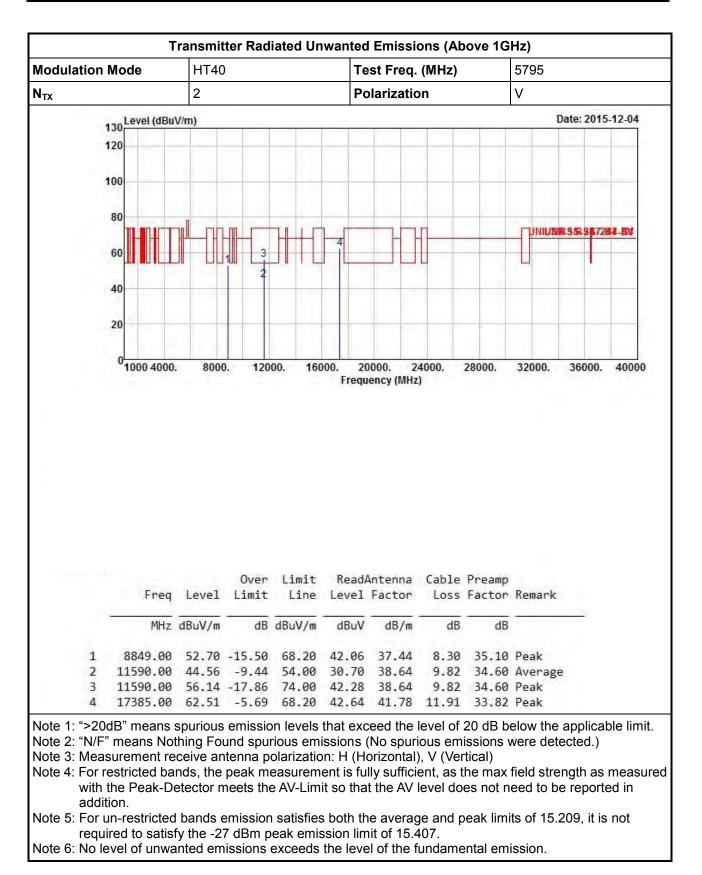
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

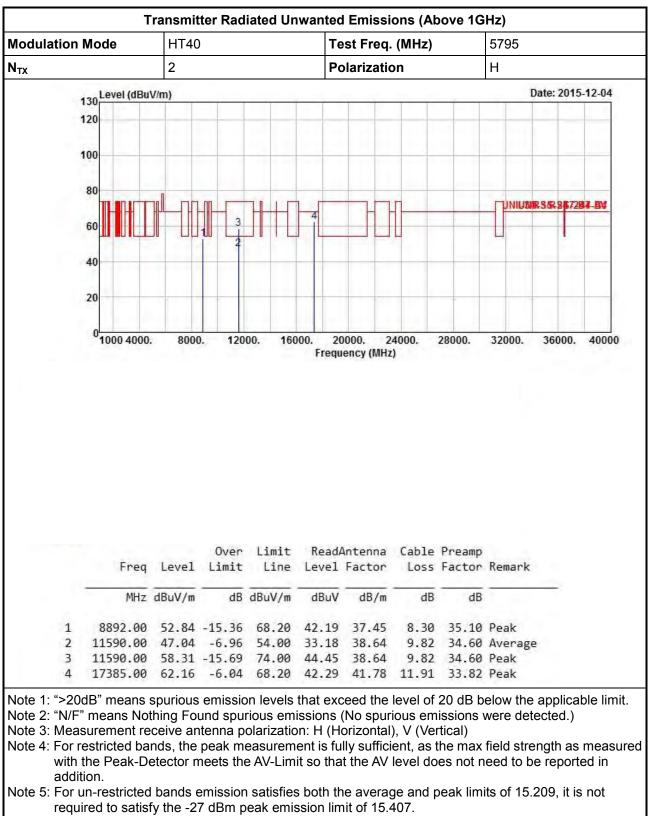






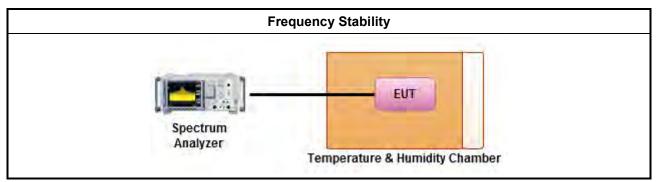
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.





3.7 Frequency Stability

3.7.1 Frequency Stability Limit


	Frequency Stability Limit						
UNI	UNII Devices						
	In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.						
IEE	E Std. 802.11n-2009						
	The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band and \pm 25 ppm maximum for the 2.4 GHz band.						
3.7.	3.7.2 Measuring Instruments						

Refer a test equipment and calibration data table in this test report.

3.7.3 Test Procedures

	Test Method								
\square	Refer as ANSI C63.10, clause 6.8 for frequency stability tests								
	\square	Frequency stability with respect to ambient temperature							
	\square	Frequency stability when varying supply voltage							
\boxtimes	For conducted measurement.								
	\boxtimes	For conducted measurements on devices with multiple transmit chains: Measurements need only to be performed on one of the active transmit chains (antenna outputs)							
		radiated measurement. The equipment to be measured and the test antenna shall be oriented to an the maximum emitted power level.							

3.7.4 Test Setup

Мо	de	Frequency Stability (ppm)					
Condition	Freq. (MHz)	0 min	2 min	5 min	10 min		
T _{20°C} Vmax	5180	1.8462	1.7308	1.3846	1.2692		
$T_{20^\circ C}Vmin$	5180	1.6154	1.5000	1.1538	1.0385		
T _{50°C} Vnom	5180	-6.1154	-6.3462	-6.4615	-6.5769		
T _{40°C} Vnom	5180	-5.4231	-5.5385	-5.7692	-6.0000		
T _{30°C} Vnom	5180	-1.1538	-1.2692	-1.3846	-1.6154		
T _{20°C} Vnom	5180	1.7308	1.5000	1.3846	1.1538		
T _{10°C} Vnom	5180	5.4231	5.1923	4.9615	4.8462		
$T_{0^{\circ}C}$ Vnom	5180	10.9615	10.8462	10.6154	10.3846		
T _{-10°C} Vnom	5180	14.6538	14.4231	14.3077	14.1923		
T _{-20°C} Vnom	5180	17.8846	18.1154	18.2308	18.4615		
Limit (ppm)	±20					
Res	ult	Complied					

3.7.5 Test Result of Frequency Stability

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Apr. 15. 2015	AC Conduction
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 22, 2015	AC Conduction
RF Cable-CON	HUBER+SUHNER	RG213/U	07611832020001	9kHz ~ 30MHz	Oct. 30, 2015	AC Conduction
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	AC Conduction

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSV 40	101500	9KHz~40GHz	May 06, 2015	RF Conducted
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jul. 28, 2015	RF Conducted
Temp. and Humidity Chamber	Giant Force	GTH-225-20-S	MAB0103-001	-20 ~ 100℃	Jun. 12, 2015	RF Conducted
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Jul. 22, 2015	RF Conducted

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH09-HY	30MHz ~ 1GHz 3m	Jul. 01, 2015	Radiation
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH09-HY	1GHz ~ 18GHz 3m	Jul. 01, 2015	Radiation
Amplifier	EMC	EMC9135	980232	9kHz ~ 1.0GHz	Jan 27, 2015	Radiation
Amplifier	Agilent	8449B	3008A02373	1GHz ~ 26.5GHz	Sep. 10, 2015	Radiation
Spectrum	KEYSIGHT	N9010A	MY54200885	10Hz ~ 44GHz	Jul. 15, 2015	Radiation
Bilog Antenna	TESEQ	CBL 6112D	35418	30MHz ~ 1GHz	Mar. 30, 2015	Radiation
Horn Antenna	AARONIA AG	POWERLOG 70180	05192	1GHz ~ 18GHz	Jan. 05, 2015	Radiation
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170614	18GHz ~ 40GHz	Dec. 29, 2014	Radiation
Antenna Mast	Chain Tek	MBS-400	1308049	1 ~ 4 m	N/A	Radiation

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Amplifier	MITEQ	JS44-18004000-33-8P	1840917	18GHz ~ 40GHz	Jun. 02.2015	Radiation
Loop Antenna	ROHDE&SCHWARZ	HFH2-Z2	100330	9 kHz~30 MHz	Nov. 10, 2014	Radiation

Note: Calibration Interval of instruments listed above is two years.