

TM-2406000153P TMWK2406001942KR FCC ID: RRK-ARSDA03

Page 1 / 46 Rev. 04

FCC 47 CFR PART 95 SUBPART M

TEST REPORT

For

77G Side Radar

Model: ARS-DA03

Trade Name: ALPHA

Issued to Alpha Networks Inc. No. 8, Li-Hsin 7th Rd., Hsinchu Science Park, Hsinchu 300094, Taiwan

Issued by

Compliance Certification Services Inc. Wugu Laboratory No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan. Issued Date: December 31, 2024

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Compliance Certification Services Inc. 程智科技股份有限公司 No.11, Wugong 6th Rd., Wugu Dist., New Taipei City , Taiwan /新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2299-9721 www.sgs.com.tw

TM-2406000153P TMWK2406001942KR

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	October 4, 2024	Initial Issue	ALL	Allison Chen
01	December 09, 2024	See the following Note Rev.(01)	P.5, 9-10, 16, 19-20, 22, 29-32, 34-36, 38-39, 45-46	Allison Chen
02	December 25, 2024	See the following Note Rev.(02)	P. 4-5, 8, 10-12, 15-16, 19, 20, 22, 45, 46	Allison Chen
03	December 30, 2024	See the following Note Rev.(03)	P.5	Allison Chen
04	December 31, 2024	See the following Note Rev.(04)	P.5	Allison Chen

Note:

Rev.(01)

1. Modify EUT description (DC current, frequency range, antenna designation, sweep characteristic) in section 2.

2. Modify measurement equipment used in section 5.2 and test program in section 7.4.

3. Modify test procedure, description, test data in section 8.1, 8.2 and 8.4.

Rev.(02)

1. Modify date of test in section 1.

2. Modify EUT description (power supply, antenna designation) in section 2.

3. Modify description of test modes in section 4.4 and measurement equipment used in section 5.2.

4. Modify support equipment and test setup diagram(s) in section 7.2 and 7.3.

5. Modify far field condition for EUT and test data in section 8.1

6. Modify test data in section 8.4.

Rev.(03)

1. Modify EUT description (frequency range, antenna designation) in section 2.

Rev.(04)

1. Modify EUT description (antenna designation) in section 2.

Project No.: TM-2 Report No.: TMW

TM-2406000153P TMWK2406001942KR

Page 3 / 46 Rev. 04

TABLE OF CONTENTS

1. TE	EST RESULT CERTIFICATION	4
2. El	UT DESCRIPTION	5
3. TE	EST SUMMARY	6
4. TE	EST METHODOLOGY	7
4.1	EUT CONFIGURATION	7
4.2	EUT EXERCISE	7
	GENERAL TEST PROCEDURES	
4.4	DESCRIPTION OF TEST MODES	8
4.5	FAR FIELD CONDITION FOR FREQUENCY ABOVE 40GHZ	9
5. IN	STRUMENT CALIBRATION1	0
5.1	MEASURING INSTRUMENT CALIBRATION1	0
5.2	MEASUREMENT EQUIPMENT USED1	0
5.3	MEASUREMENT UNCERTAINTY 1	3
6. F/	ACILITIES AND ACCREDITATIONS 1	4
6.1	FACILITIES 1	4
7. SI	ETUP OF EQUIPMENT UNDER TEST1	5
7.1	SETUP CONFIGURATION OF EUT 1	5
7.2	SUPPORT EQUIPMENT1	5
7.3	TEST SETUP DIAGRAM(S)1	6
8. TE	EST REQUIREMENTS1	7
8.1	EQUIVALENT ISOTROPICALLY RADIATED POWER (EIRP) 1	7
	SPURIOUS EMISSIONS2	
8.3	FREQUENCY STABILITY4	0
8.4	OCCUPIED BANDWIDTH (99%)4	3
APPE	ENDIX I PHOTOGRAPHS OF TEST SETUPA-	·1
APPE	ENDIX 1 - PHOTOGRAPHS OF EUT	

Page 4 / 46 Rev. 04

1. TEST RESULT CERTIFICATION

Applicant:	Alpha Networks Inc. No. 8, Li-Hsin 7th Rd., Hsinchu Science Park, Hsinchu 300094, Taiwan
Equipment Under Test:	77G Side Radar
Trade Name:	ALPHA
Model:	ARS-DA03
Date of Test:	July 29 ~ December 13, 2024

APPLICABLE STANDARDS					
STANDARD TEST RESULT					
FCC 47 CFR Part 95 Subpart M Compliance					
Statements of Conformity					
Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.					

We hereby certify that:

All test results conform to above mentioned standards.

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.26: 2015 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 95.3367, 95.3379 and FCC KDB 653005 D01.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

sehni. Hu

Sehni Hu Supervisor

2. EUT DESCRIPTION

Product	77G Side Radar			
Trade Name	ALPHA			
Model Number	ARS-DA03			
Model Discrepancy	N/A			
Received Date	June 13, 2024			
Power Supply	Power from Adapter. CWT / 2ABN036F I/P: 100-240 Vac, 50/60 Hz, 1.0A O/P: 12.0 Vdc, 3.0A			
DC current	280mA			
Frequency Range	76.5-76.74 GHz			
Modulation	FMCW			
Number of Channel	1			
Antenna Designation	Type: Patch Antenna (1) Antenna model: ARS-SA01B/TX1, Gain: 18.69 dBi ARS-SA01B/TX2, Gain: 17.75 dBi (2) Antenna model: ARS-SA07/TX5, Gain: 11.09 dBi ARS-SA07/TX6, Gain: 11.94 dBi			
H.W: Version	ARS-SA01B: 2A4G, ARS-SA07: 1A1G			
S.W Version	000001620.56202			
S/N	116M11O500043			
Sweep Characteristics	Sweep Bandwidth: 240 MHz Sweep Rate: 100 Hz/s Sweep Time: 27 us			

Remark:

1. The sample selected for test was production product and was provided by manufacturer.

2. Disclaimer: Antenna and sweep characteristics information is provided by the applicant, test results of this report are applicable to the sample EUT received.

3. TEST SUMMARY

Report Section	FCC Standard Section	Test Item	Result
8.1	§2.1046 95.3367	Equivalent Isotropically Radiated Power (EIRP)	Pass
8.2	§2.1053 95.3379(a)	Field Strength of Spurious Radiation	Pass
8.3	§2.1055 95.3379(b)	Frequency stability	Pass
8.4	§2.1049	Occupied bandwidth (99%)	Pass

Page 6 / 46 Rev. 04

Page 7 / 46 Rev. 04

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2020, ANSI 63.26:2015 and FCC CFR 47 Part 95.3367, 95.3379, FCC KDB 653005 D01.

4.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

4.3 GENERAL TEST PROCEDURES

Radiated Emissions

The EUT is placed on a turn table, which is 1.5 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made.

Page 8 / 46 Rev. 04

4.4 DESCRIPTION OF TEST MODES

The EUT (model: ARS-DA03) had been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting mode was programmed.

Thermostat Test Room				
Test Condition Thermostat test room				
Power supply Mode	Mode 1: EUT power by Power supply			
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4				

Radiated Emission Measurement Above 1G					
Test Condition	Radiated Emission Above 1G				
Power supply Mode	Mode 1: EUT power by Adapter				
Worst Mode	🖂 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4				
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 				

Radiated Emission Measurement Below 1G					
Test Condition	Radiated Emission Below 1G				
Power supply Mode Mode 1: EUT power by Adapter					
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4					

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, for radiated measurement. The worst case(Z-Plane) were recorded in this report

The sample supports two radars [Antenna model: ARS-SA01B and Antenna model: ARS-SA07] and has been fully evaluated for test items.

Page 9 / 46 Rev. 04

4.5 FAR FIELD CONDITION FOR FREQUENCY ABOVE 40GHZ

The equipment under test was transmitting while connected to its integral antenna and is placed on a turn table. The measurement antenna is in the far field of the EUT per formula $2D2/\lambda$ where D is the larger between the dimension of the measurement antenna and the transmitting antenna of the EUT.

In this case, "D" is the largest dimension of the measurement antenna. The EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

Model	Frequency Range (GH)	Largest Dimension of the Horn Antenna (mm)	Minimum Test Distance Rm (m)
RCHO19R	40~60	31	0.38
RCHO12R	60~90	21	0.26
RCHO08R	90~140	15	0.21
RCHO05R	140~220	10	0.15
FH-PP-325	220~325	8	0.14

Page 10 / 46 Rev. 04

5. INSTRUMENT CALIBRATION

5.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

5.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year.

Thermostat test room						
Name of Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal Due	
Constant Temperature	TERCHY	MHG-150LF	930619	2023-10-26	2024-10-25	
Humidity Chamber	TEROIT	WING-100EI	330013	2024-10-15	2025-10-14	
Cable	EMCI	EMC101G	221213+221011 +221012	2023-10-17	2024-10-16	
Cable				2024-10-11	2025-10-10	
STANDARD GAIN HORN ANTENNA	СМІ	RCHO12R	RCHO12R	2024-06-16	2025-06-15	
		NOODD	MY62291089	2023-10-13	2024-10-12	
Signal Analyzer	KEYSIGHT	N9030B		2024-10-04	2025-10-03	
SA EXTENSION MODULE	VDI	SAX WR12	SAX983	2024-06-14	2025-06-13	
DC Power	GWINSTEK	SPS-3610	GPE880163	2023-11-16	2024-11-15	
Supply	GWINSTER	3-3-3010		2024-11-06	2025-11-05	
Software			N/A			

TM-2406000153P TMWK2406001942KR

3M 966 Chamber Test Site						
Name of Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal Due	
	MITEO	AMF-6F-180040	005040	2023-08-23	2024-08-22	
Pre-Amplifier	MITEQ	00-37-8P	985646	2024-08-13	2025-08-12	
Active Loop Antenna	SCHWARZBEC K	FMZB 1513-60	1513-60-028	2023-12-13	2024-12-12	
Preamplifier	EMEC	EM330	060609	2024-02-21	2025-02-20	
Thermo-Hygro	WISEWIND	1206	D07	2023-12-08	2024-12-07	
Meter	WISEWIND	1206	D07	2024-11-26	2025-11-25	
Signal Analyzer	Agilent	N9010A	MY52220817	2024-03-15	2025-03-14	
Cine al Araak maa		NOODOD	MV(00004.000	2023-10-13	2024-10-12	
Signal Analyzer	KEYSIGHT	N9030B	MY62291089	2024-10-04	2025-10-03	
Preamplifier	HP	8449B	3008A00965	2023-12-22	2024-12-21	
0.11	EMOL	FNO1010	221213+221011	2023-10-17	2024-10-16	
Cable	EMCI	EMC101G	+221012	2024-10-11	2025-10-10	
Signal Generator	Agilent	E8257C	US42340383	2024-06-15	2025-06-14	
STANDARD GAIN HORN ANTENNA	СМІ	RCHO05R	RCHO05R	2024-06-22	2025-06-21	
STANDARD GAIN HORN ANTENNA	СМІ	RCHO08R	RCHO08R	2024-06-16	2025-06-15	
STANDARD GAIN HORN ANTENNA	СМІ	RCHO12R	RCHO12R	2024-06-16	2025-06-15	
STANDARD GAIN HORN ANTENNA	СМІ	RCHO19R	RCHO19R	2024-06-15	2025-06-14	
STANDARD GAIN HORN ANTENNA	RADIOMETER PHYSICS	FH-PP-325	FH-PP-325	2024-06-22	2025-06-21	
SA EXTENSION MODULE	VDI	SAX WR8.0	SAX982	2024-06-14	2025-06-13	
SA EXTENSION MODULE	VDI	SAX WR12	SAX983	2024-06-14	2025-06-13	
SA EXTENSION MODULE	VDI	SAX WR19	SAX993	2024-06-14	2025-06-13	
SA EXTENSION MODULE	VDI	SAX WR5.1	SAX995	2024-06-16	2025-06-15	
SA EXTENSION MODULE	VDI	SAX WR3.4	SAX996	2024-07-16	2025-07-15	

TM-2406000153P TMWK2406001942KR

3M 966 Chamber Test Site								
Name of Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal Due			
Bi-Log Antenna	Sunol Sciences	JB3	A030105	2024-07-12	2025-07-11			
Horn Antenna	ETC	MCTD 1209	DRH13M02003	2023-12-28	2024-12-27			
Horn Antonno	orn Antenna SCHWARZBEC K	BBHA9170	1047	2023-12-13	2024-12-12			
Hom Antenna			1047	2024-12-06	2025-12-05			
Dro Amplifior	EMCI	EN104040450E	980860	2023-12-12	2024-12-11			
Pre-Amplifier	EIVICI	EMC184045SE	900000	2024-12-02	2025-12-01			
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R			
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R			
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R			
Software	e3 V9-210616c							

TM-2406000153P TMWK2406001942KR Page 13 / 46 Rev. 04

5.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	± 2.213 dB
Channel Bandwidth	± 2.7 %
Radiated Emission_9kHz-30MHz	± 3.761 dB
Radiated Emission_30MHz-200MHz	± 3.473 dB
Radiated Emission_200MHz-1GHz	± 3.946 dB
Radiated Emission_1GHz-6GHz	± 4.797 dB
Radiated Emission_6GHz-18GHz	± 4.803 dB
Radiated Emission_18GHz-26GHz	± 3.459 dB
Radiated Emission_26GHz-40GHz	± 3.297 dB
Radiated Emission_40GHz-60GHz	± 2.317 dB
Radiated Emission_60GHz-90GHz	± 2.256 dB
Radiated Emission_90GHz-140GHz	± 2.278 dB
Radiated Emission_140GHz-220GHz	± 2.296 dB
Radiated Emission_220GHz-325GHz	± 2.356 dB

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 14 / 46 Rev. 04

6. FACILITIES AND ACCREDITATIONS

6.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan.

Tel: 886-2-2299-9720 / Fax: 886-2-2299-9721

Remark:

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC pubic Access Link (PAL) database, FCC Registration No. :444940, the FCC Designation No.:TW1309

Page 15 / 46 Rev. 04

7. SETUP OF EQUIPMENT UNDER TEST

7.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

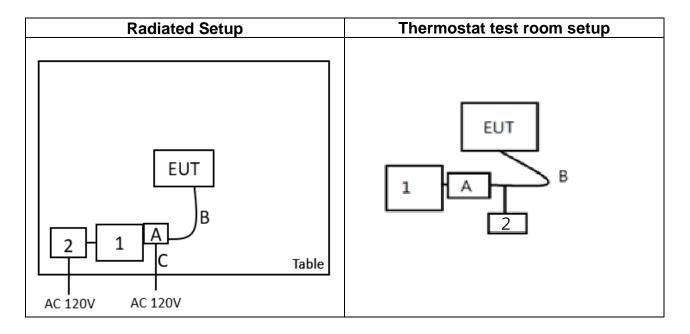
7.2 SUPPORT EQUIPMENT

	Radiated Support Equipment									
No.	No. Device Type Brand		Model	Series No.	FCC ID					
1	NB(D)	Lenovo	ThinkPad X260	N/A	N/A					
2	Adapter	Lenovo	ADLX45DLC3A	N/A	N/A					
А	Test Kit	N/A	N/A	N/A	N/A					
В	RS-232 Cable	N/A	N/A	N/A	N/A					
С	Adapter	CWT	2ABN036F	N/A	N/A					

	Thermostat test room Support Equipment								
No.	Io. Device Type Brand Model Serie				FCC ID				
1	NB(B)	Lenovo	T470	N/A	N/A				
2	DC Power Suppply	GW Instek	SPS-3610	GPE880163	N/A				
А	Test Kit	N/A	N/A	N/A	N/A				
В	RS-232 Cable	N/A	N/A	N/A	N/A				

Remark:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.


2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Report No.:

TM-2406000153P TMWK2406001942KR

7.3 TEST SETUP DIAGRAM(S)

7.4 TEST PROGRAM

This EUT uses "Realterm_2.0.0.70 " software to set the frequency, modulation, and power to allow the sample to continuously transmit.

For power setting: the default value

Page 17 / 46 Rev. 04

8. TEST REQUIREMENTS

8.1 EQUIVALENT ISOTROPICALLY RADIATED POWER (EIRP)

<u>LIMIT</u>

The fundamental radiated emission limits within the 76-81 GHz band are expressed in terms of Equivalent Isotropically Radiated Power (EIRP) and are as follows:

According to FCC 95.3367.

The maximum power (EIRP) within the 76-81 GHz band shall not exceed 50 dBm based on measurements employing a power averaging detector with a 1 MHz Resolution Bandwidth (RBW).

The maximum peak power (EIRP) within the 76-81 GHz band shall not exceed 55 dBm based on measurements employing a peak detector with a 1 MHz RBW.

Antenna tower Horn 1m €.. Ŵ antenna EUT 4m Spectrum analyzer Turntable 1.5m 1mPre-amp

TEST CONFIGURATION

Page 18 / 46 Rev. 04

TEST PROCEDURE

Refer to ANSI C63.26-2015 Clause 5.2.7, KDB 653005 D01 76-81 GHz Radars v01r02 Connect the test antenna for the fundamental frequency band to a spectrum analyzer via an external mixer.

Set spectrum analyzer RBW, VBW, detector, span, and so on, to the proper values. Maximize the fundamental emission, noting that multiple peaks may be found at different beam orientations and/or polarizations A pulse desensitization factor must be applied to the measured peak pulse power amplitude.

Consult the relevant instrumentation manufacturers' Application Note(s) for more detailed information, including how to determine the magnitude of the FMCW- and pulse-desensitization factors.

Calculate the EIRP from the measured field strength using equation as follows:

For Peak Measurement: EIRP (dBm) = E (dB μ V/m) + 20log(D) - 104.8+ Chirps Correction Factor

For Average Measurement: EIRP (dBm) = E (dB μ V/m) + 20log(D) - 104.8 EIRP is the equivalent isotropically radiated power E is the field strength of the emission at the measurement distance D is the measurement distance E (dB μ V/m) = Reading(dB μ V) + Factor(dB/m)

TEST RESULTS

Compliance.

Project No.:	TM-2406000153P
Report No.:	TMWK2406001942KR

Page 19 / 46 Rev. 04

Temperature:	24.6~24.8 ℃	Test date:	July 29~December 13, 2024
Humidity:	57~58% RH	Tested by:	Tony Chao

Far Field Condition for EUT

Model	Frequency Range (GHz)	Largest Dimension of the Horn Antenna (mm)	Minimum Test Distance Rm (m)
ARS-SA01B	77.00	40.00	0.82
ARS-SA07	77.00	25.00	0.32
RCHO12R	77.00	21.00	0.23

Note:

1. Minimum Test Distance Rm (m) follow sec 4.5

(1) Antenna model: ARS-SA01B

Mode	Frequency (GHz)	SA Reading (dBuV)	Antenna Factor	Mixer	Cable	Distance (m)	Level (dBuV/m)	FMCW desensit- ization factor	EIRP (dBm)	Limit (dBm)	Margin (dB)	Remark	Result
NTNV	76.60	64.65	46.20	10.79	2.06	1	123.70	-6.07	25.00	55.00	-30.00	Peak	Pass
	76.60	53.73	46.20	10.79	2.06	1	112.79	0.00	8.01	50.00	-41.99	AVG	Pass

(2) Antenna model: ARS-SA07

Mode		SA Reading (dBuV)	Antenna Factor	Mixer	Cable	Distance (m)	Level (dBuV/m)	FMCW desensit- ization factor	EIRP (dBm)	Limit (dBm)	Margin (dB)	Remark	Result
NTNV	76.73	58.55	46.30	10.78	2.06	1	117.70	-6.07	19.00	55.00	-36.00	Peak	Pass
	76.73	51.64	46.30	10.78	2.06	1	110.79	0.00	6.02	50.00	-43.98	AVG	Pass

Note:

1. Level=Reading+antenna factor+mixer loss+cable EIRP=Level +20log(d)[d=1m]-104.77 - desensitization factor

2. Follow Annex L of the C63.10-2020 standard. FMCW desensitization factor =20 * Log(α)

$$\alpha = \frac{1}{\left(1 + \left[\left(\frac{2 \times \ln(2)}{\pi}\right)^2 \times \left(\frac{BW_{\text{Chip}}}{T_{\text{Chip}} \times RBW^2}\right)^2\right]\right)^{0.25}}$$

*BW*_{chirp}: follow report sec 2 *T*_{Chirp}: Follow manufacturer's declaration 27us *RBW*:1MHz

Test Data

(1) Antenna model: ARS-SA01B

Duty

Baty			
Duty Cycle	Duty Cycle	Duty Cycle	Duty Factor
On (ms)	On+Off (ms)	(%)	(dB)
4.25	100.00	4.25%	13.72

Note: The signal at the second altitude is another radar signal, so this signal is not evaluated.



TM-2406000153P TMWK2406001942KR

Peak Power

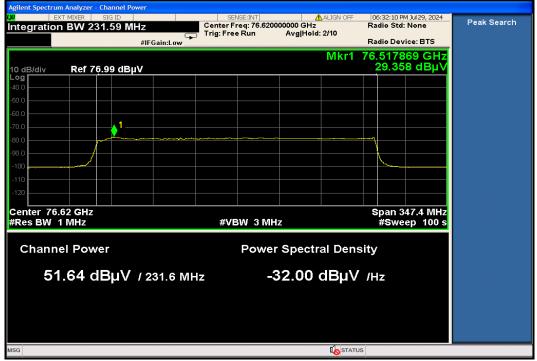
RMS Power

(2) Antenna model: ARS-SA07

Duty

Daty			
Duty Cycle	Duty Cycle	Duty Cycle	Duty Factor
On (ms)	On+Off (ms)	(%)	(dB)
4.25	100.00	4.25%	13.72

Note: The signal at the second altitude is another radar signal, so this signal is not evaluated.



TM-2406000153P TMWK2406001942KR

Peak Power

RMS Power

8.2 SPURIOUS EMISSIONS

8.2.1 Radiated Emissions

<u>LIMIT</u>

1. According to FCC PART 95.3379(a), Radiated emissions below 40 GHz shall not exceed the field strength as shown in the following emissions table.

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

- For radiated emissions outside the 76-81 GHz band between 40 GHz and 200 GHz from field disturbance sensors and radar systems operating in the 76-81 GHz band: 600 pW/cm² at a distance of 3 meters from the exterior surface of the radiating structure.
- 3. For radiated emissions above 200 GHz from field disturbance sensors and radar systems operating in the 76-81 GHz band: 1000 pW/cm² at a distance of 3 meters from the exterior surface of the radiating structure.

Notes:

Calculate correction Power density (mW/m2)X $4\pi(r)2=P(mW)$ P(mW)-20log(d)+104.77=dBuV/m 600 pW/cm2= -1.7dBm @ 3m = 93.54dBuV/m@3m 1000 pW/cm2= 0.5 dBm @ 3m = 95.76dBuV/m@3m P: Power r: measurement distance(m)

Page 25 / 46 Rev. 04

Field Strength = Reading + Factor EIRP (dBm) = Field Strength (dB μ V/m) + 20log(D) - 104.8 D is the measurement distance

$$\text{EIRP}_{\text{Linear}} = 10^{\left[\left(\text{EIRP}_{\text{Log}}-30\right)/10\right]}$$

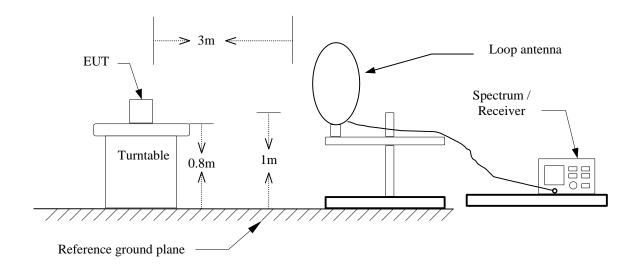
where

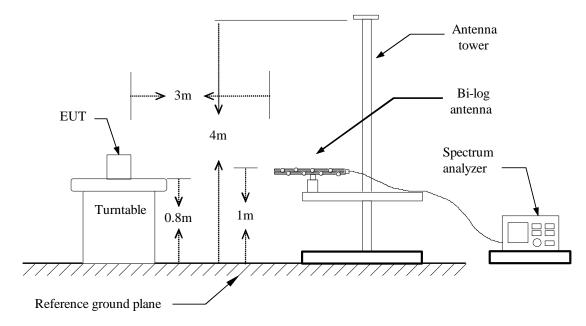
EIRP _{Linear}	is the equivalent isotropically radiated power, in watts
$EIRP_{Log}$	is the equivalent isotropically radiated power, in dBm

$$PD = \frac{EIRP_{Linear}}{4\pi d^2}$$

where

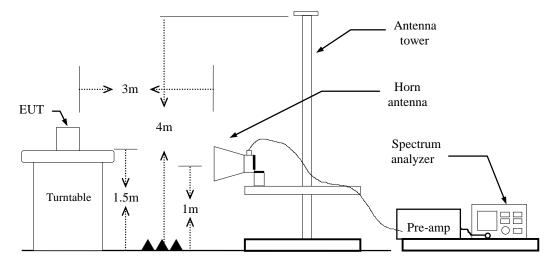
PD	is the power density at the distance specified by the limit, in W/m ²
EIRP _{Linear}	is the equivalent isotropically radiated power, in watts
d	is the distance at which the power density limit is specified, in m

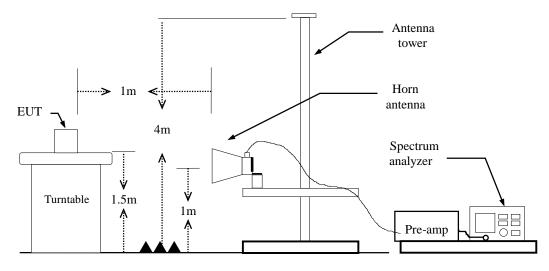

The Specified distance is 3m.


Page 26 / 46 Rev. 04

TEST CONFIGURATION

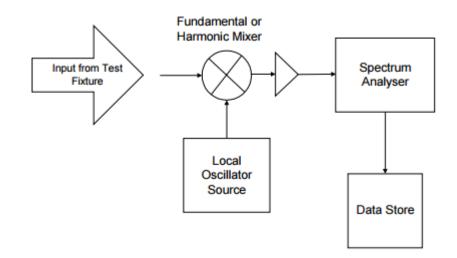
9kHz ~ 30MHz


30MHz ~ 1 GHz



TM-2406000153P TMWK2406001942KR

Above 1 GHz ~ 18GHz


18GHz ~ 40GHz

Page 28 / 46 Rev. 04

Above 40 GHz

Page 29 / 46 Rev. 04

TEST PROCEDURE

- 1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.26: 2015, and the EUT set in a continuous mode.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m or 1m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. The system was investigated from 9kHz to 243 GHz.

During the radiated emission test, the Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W
9kHz-150kHz	300 Hz	1 kHz
150 kHz-30MHz	10 kHz	30 kHz
30MHz-1000MHz	100 kHz	300 kHz
1-40GHz	1 MHz	3 MHz
Above 40GHz	1 MHz	3 MHz

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

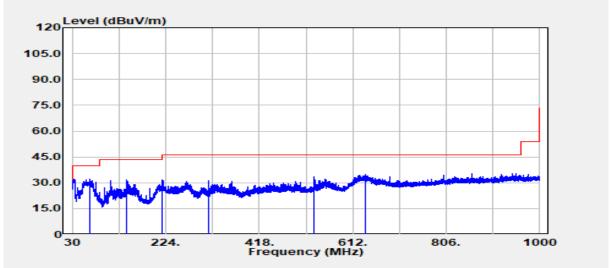
- 7. Repeat above procedures until the measurements for all frequencies are complete.
- No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).
- 9. Radiated emission below 30MHz is measured in a 9m*6m*6m semi-ane choic chamber, the measurements correspond to those obtained at an open-field test site. There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

Below 1 GHz

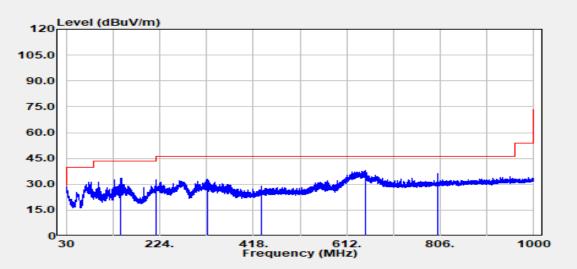
(1) Antenna model: ARS-SA01B

Test Mode:	ТХ	Antenna Pol.:	Vertical / Horizontal
Temperature:	24.6 ℃	Tested by:	July 29, 2024
Humidity:	57% RH	Test Date:	Tony Chao

Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin	Ant.
	Mode	Reading Level		FS	@3m		Pol.
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB	(H/V)
66.25	Peak	47.93	-15.58	32.35	40.00	-7.65	V
143.98	Peak	42.09	-10.20	31.89	43.50	-11.61	V
216.00	Peak	43.65	-11.87	31.78	43.50	-11.72	V
312.03	Peak	39.28	-8.15	31.12	46.00	-14.88	V
532.10	Peak	36.15	-2.76	33.39	46.00	-12.61	V
637.10	Peak	35.41	-0.49	34.93	46.00	-11.07	V
143.98	Peak	43.91	-10.20	33.71	43.50	-9.79	Н
216.00	Peak	44.47	-11.87	32.60	43.50	-10.90	Н
324.40	Peak	41.00	-7.99	33.02	46.00	-12.98	Н
435.34	Peak	33.51	-4.60	28.91	46.00	-17.09	Н
651.89	Peak	38.44	-0.40	38.04	46.00	-7.96	Н
799.94	Peak	34.26	1.88	36.13	46.00	-9.87	Н


Remark:

- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).
- 2. Radiated emissions measured were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).
- 6. Factor=antenna factor-amp gain+ cable loss
- 7. Actual FS=Reading level+factor



Page 31 / 46 Rev. 04

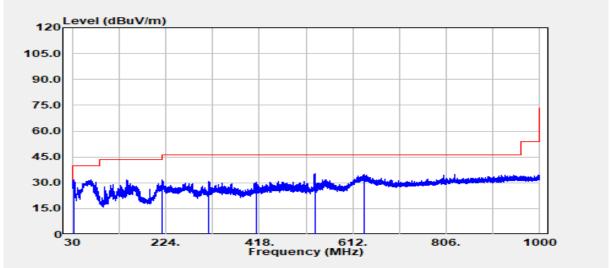
Polarity: Vertical

Polarity: Horizontal

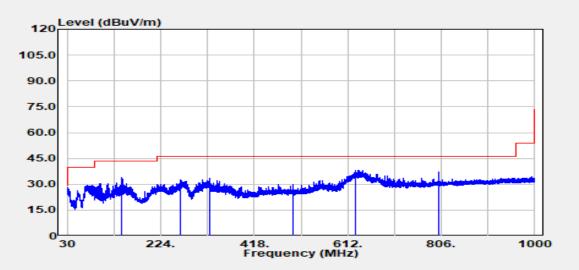
(2) Antenna model: ARS-SA07

Test Mode:	ТХ	Antenna Pol.:	Vertical / Horizontal
Temperature:	24.6 ℃	Tested by:	July 29, 2024
Humidity:	57% RH	Test Date:	Tony Chao

Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin	Ant.
	Mode	Reading Level		FS	@3m		Pol.
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB	(H/V)
34.24	Peak	37.38	-5.54	31.84	40.00	-8.16	V
216.00	Peak	43.72	-11.87	31.85	43.50	-11.65	V
312.03	Peak	39.12	-8.15	30.97	46.00	-15.03	V
413.03	Peak	35.61	-5.29	30.32	46.00	-15.68	V
533.07	Peak	38.08	-2.75	35.33	46.00	-10.67	V
636.74	Peak	35.16	-0.49	34.67	46.00	-11.33	V
143.98	Peak	43.95	-10.20	33.75	43.50	-9.75	Н
264.01	Peak	42.08	-9.36	32.71	46.00	-13.29	Н
325.73	Peak	41.43	-7.95	33.49	46.00	-12.51	Н
498.63	Peak	33.35	-3.29	30.06	46.00	-15.94	Н
628.25	Peak	38.88	-0.66	38.22	46.00	-7.78	Н
799.94	Peak	35.09	1.88	36.97	46.00	-9.03	Н


Remark:

- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).
- 2. Radiated emissions measured were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).
- 6. Factor=antenna factor-amp gain+ cable loss
- 7. Actual FS=Reading level+factor



Page 33 / 46 Rev. 04

Polarity: Vertical

Polarity: Horizontal

1GHz~40GHz

(1) Antenna model: ARS-SA01B

Test Mode:	ТХ	Antenna Pol.:	Vertical / Horizontal
Temperature:	24.6 ℃	Tested by:	July 29, 2024
Humidity:	57% RH	Test Date:	Ray Li

Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin	Ant.
	Mode	Reading Level		FS	@3m		Pol.
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB	(H/V)
1124.00	Peak	50.63	-8.58	42.05	54.00	-11.95	V
19175.00	Peak	53.57	-12.95	40.63	54.00	-13.37	V
N/A							
3859.00	Peak	39.56	0.65	40.21	54.00	-13.79	Н
19170.00	Peak	57.71	-12.94	44.77	54.00	-9.23	Н
N/A							

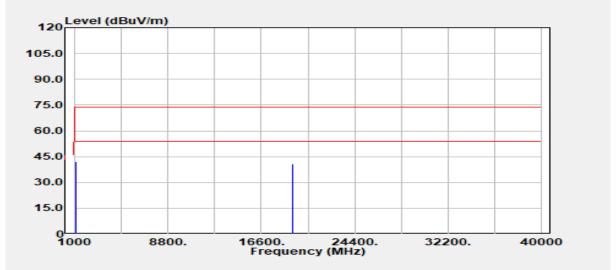
Note:

1. Actual FS (dBuV/m) = Factor + Spectrum Reading Level

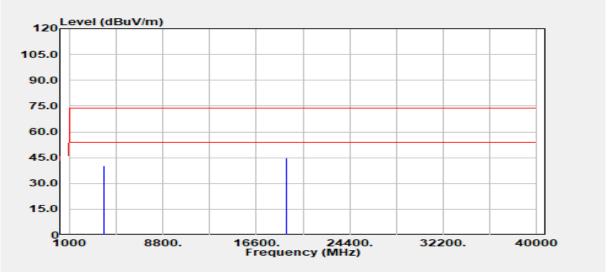
2. Margin (dB) = Actual FS – Limit

3. measurement distance: 3m@1-18G > measurement distance: 1m@18-40G

4. Factor:


Antenna factor+Cable loss -amp gain @1-18GHz

Antenna factor+Cable loss -amp gain + distance factor [20LOG(3/1)=9.54]@18-40GHz 5. The measurement result is PK, but it also meets the RMS limit value.



Page 35 / 46 Rev. 04

Polarity: Vertical

Polarity: Horizontal

(2) Antenna model: ARS-SA07

Test Mode:	ТХ	Antenna Pol.:	Vertical / Horizontal
Temperature:	24.6 ℃	Tested by:	July 29, 2024
Humidity:	57% RH	Test Date:	Ray Li

Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin	Ant.
	Mode	Reading Level		FS	@3m		Pol.
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB	(H/V)
1123.00	Peak	51.40	-8.60	42.80	54.00	-11.2	V
19149.00	Peak	51.77	-12.92	38.84	54.00	-15.16	V
N/A							
3796.00	Peak	39.31	0.54	39.85	54.00	-14.15	Н
22718.00	Peak	46.53	-8.61	37.92	54.00	-16.08	Н
N/A							

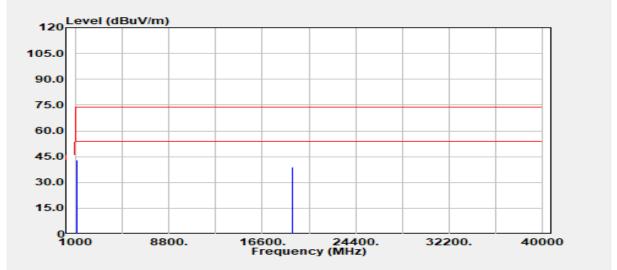
Note:

1. Actual FS (dBuV/m) = Factor + Spectrum Reading Level

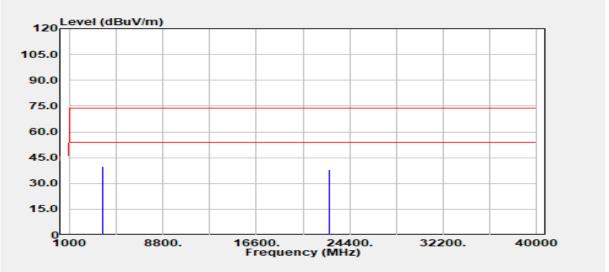
2. Margin (dB) = Actual FS – Limit

3. measurement distance: 3m@1-18G
measurement distance: 1m@18-40G

4. Factor:

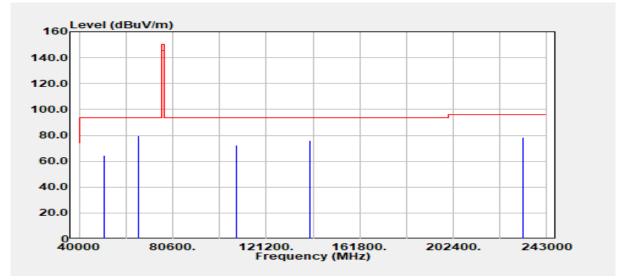

Antenna factor+Cable loss -amp gain @1-18GHz

Antenna factor+Cable loss -amp gain + distance factor [20LOG(3/1)=9.54]@18-40GHz 5. The measurement result is PK, but it also meets the RMS limit value.



Page 37 / 46 Rev. 04

Polarity: Vertical

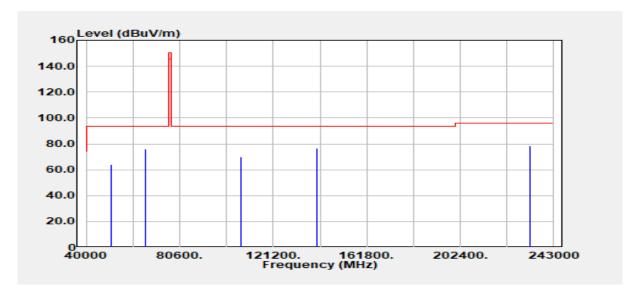

Polarity: Horizontal

40GHz~243GHz

(1) Antenna model: ARS-SA01B						
Test Mode:	ТХ	Antenna Pol.:	Vertical			
Temperature:	24.6 °C	Tested by:	August 7, 2024			
Humidity:	57% RH	Test Date:	Tony Chao			

Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
50580.00	Peak	16.30	48.42	64.72	93.54	-28.82
65690.00	Peak	29.25	50.19	79.44	93.54	-14.10
108150.00	Peak	18.68	53.67	72.35	93.54	-21.19
140120.00	Peak	16.70	59.41	76.11	93.54	-17.43
232826.00	Peak	23.15	55.23	78.38	95.76	-17.38

Note:


- 1. Actual FS (dBuV/m) = Factor + Spectrum Reading Level
- 2. Margin (dB) = Actual FS Limit
- 3. Factor = antenna factor+cable loss+mixer loss+ distance factor [20LOG(3/1)=9.54]
- 4. Measurement distance: above 40G@1m
- 5. After pre-scanning, the worst mode (Pol: V) is recorded in the report.

Page 39 / 46 Rev. 04

(2) Antenna model: ARS-SA07

Test Mode:	ТХ	Antenna Pol.:	Vertical
Temperature:	24.6 ℃	Tested by:	August 7, 2024
Humidity:	57% RH	Test Date:	Tony Chao

Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
50910.00	Peak	15.75	48.33	64.09	93.54	-29.45
65630.00	Peak	25.96	50.31	76.27	93.54	-17.27
107280.00	Peak	16.44	53.34	69.78	93.54	-23.76
140150.00	Peak	17.06	59.36	76.42	93.54	-17.12
232696.00	Peak	23.05	55.26	78.31	95.76	-17.45

Note:

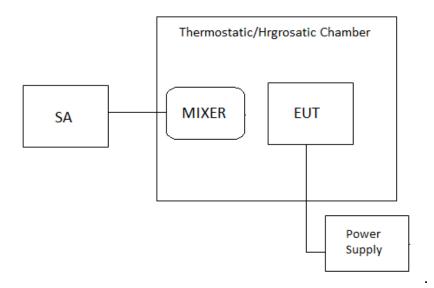
1. Actual FS (dBuV/m) = Factor + Spectrum Reading Level

2. Margin (dB) = Actual FS – Limit

3. Factor = antenna factor+cable loss+mixer loss+ distance factor [20LOG(3/1)=9.54]

4. Measurement distance: above 40G@1m

5. After pre-scanning, the worst mode (Pol: V) is recorded in the report.


Page 40 / 46 Rev. 04

8.3 FREQUENCY STABILITY

<u>LIMIT</u>

According to FCC 95.3379(b), Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -40 to +85 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

Test Configuration

TEST PROCEDURE

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -40° C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +85°C reached.

Page 41 / 46 Rev. 04

TEST RESULTS

Compliance.

Temperature:	22.1~23.9 ℃	Test date:	July 30~August 9, 2024
Humidity:	50~61% RH	Tested by:	Jerry Chang

(1) Antenna model: ARS-SA01B

Operating Frequency						
Environment Temperature(°C)	Voltage (V)	FL (GHz)	FH (GHz)	Limit Range (GHz)	Test Result	
85		76.506093008	76.733112123		Pass	
80		76.506001404	76.732800459		Pass	
70		76.505992559	76.732852906		Pass	
60		76.505915454	76.732786095		Pass	
50		76.506033377	76.732842521		Pass	
40		76.506081019	76.732909423		Pass	
30	10	76.505951758	76.732722847	70.04	Pass	
20	12	76.506164115	76.733225598	76-81	Pass	
10		76.506047671	76.732888465		Pass	
0		76.506119790	76.732995008		Pass	
-10		76.506085509	76.733006890		Pass	
-20		76.506108321	76.733003249		Pass	
-30		76.506087946	76.733000319		Pass	
-40		76.506137553	76.330685240		Pass	

Operating Frequency						
Environment Temperature(°C)	Voltage (V)	FL (GHz)	FH (GHz)	Limit Range (GHz)	Test Result	
	13.8	76.506067737	76.733144951		Pass	
25	12	76.506154755	76.733266649	76-81	Pass	
	10.2	76.505990533	76.733082651		Pass	

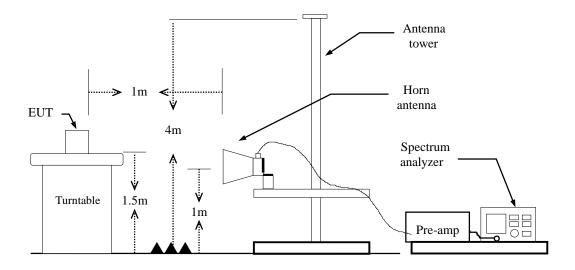
Note: The extreme voltage and extreme temperature is specified by the manufacturer

(2) Antenna model: ARS-SA07

Operating Frequency						
Environment Temperature(°C)	Voltage (V)	FL (GHz)	FH (GHz)	Limit Range (GHz)	Test Result	
85		76.504375125	76.733958250		Pass	
80		76.504369401	76.733622695		Pass	
70		76.504515105	76.733633080		Pass	
60		76.504552754	76.733660925		Pass	
50		76.504505534	76.733667448		Pass	
40		76.504511032	76.733550530	- 76-81	Pass	
30	10	76.504527656	76.733659409		Pass	
20	12	76.504887726	76.733759440		Pass	
10		76.504324238	76.733602639		Pass	
0		76.504302382	76.733585832		Pass	
-10		76.504377219	76.733557650	-	Pass	
-20		76.504661919	76.733572630		Pass	
-30		76.504837500	76.733545371		Pass	
-40		76.504545560	76.733993736		Pass	

Operating Frequency					
EnvironmentVoltageFLFHLimit RangeTemperature(°C)(V)(GHz)(GHz)(GHz)					Test Result
	13.8	76.504920476	76.733607614		Pass
25	12	76.504805595	76.733743316	76-81	Pass
	10.2	76.504737032	76.733608707		Pass

Note: The extreme voltage and extreme temperature is specified by the manufacturer


8.4 OCCUPIED BANDWIDTH (99%)

According to FCC 2.1049

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. 653005 D01 76-81 GHz Radars v01r02 clause 4 d)

The occupied bandwidth of the radar device shall be measured, reported, and shown to be fully contained within the designated 76-81 GHz frequency band under normal operating conditions as well as under those extreme ambient temperature and input voltage conditions as described in Section 2.1057.

TEST CONFIGURATION

TM-2406000153P TMWK2406001942KR Page 44 / 46 Rev. 04

TEST PROCEDURE

C63.26-2015, Clause 5.4.4

The OBW is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

The following procedure shall be used for measuring (99%) power bandwidth:

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of 1.5 × OBW is sufficient).
- b) The nominal IF filter 3 dB bandwidth (RBW) shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set ≥ 3 × RBW.
- c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. See guidance provided in 4.2.3.
- NOTE—Step a), step b), and step c) may require iteration to adjust within the specified tolerances.
- d) Set the detection mode to peak, and the trace mode to max-hold.
- e) If the instrument does not have a 99% OBW function, recover the trace data points and sum directly in linear power terms. Place the recovered amplitude data points, beginning at the lowest frequency, in a running sum until 0.5% of the total is reached. Record that frequency as the lower OBW frequency. Repeat the process until 99.5% of the total is reached and record that frequency as the upper OBW frequency. The 99% power OBW can be determined by computing the difference these two frequencies.
- f) The OBW shall be reported and plot(s) of the measuring instrument display shall be provided with the test report. The frequency and amplitude axis and scale shall be clearly labeled. Tabular data can be reported in addition to the plot(s).

TEST RESULTS

Compliance.

Project No.:	TM-2406000153P
Report No.:	TMWK2406001942KR

Temperature:	22.1~23.9 ℃	Test date:	July 30~December 13, 2024
Humidity:	50~61% RH	Tested by:	Jerry Chang

(1) Antenna model: ARS-SA01B

	Freq(GHz)	Limit Range (GHz)	OBW (MHz)	Test Result
FL	76.50506	FL ≧ 76GHz	229.05	DASS
FH	76.73311	FH ≦ 81GHz	228.05	PASS

(2) Antenna model: ARS-SA07

	Freq(GHz)	Limit Range (GHz)	OBW (MHz)	Test Result
FL	76.50535	FL ≧ 76GHz	229.09	PASS
FH	76.73444	FH ≦ 81GHz	229.09	PA33

- End of Test Report -