

FCC PART 15.247 TEST REPORT

For

Thundercomm Technology Co., Ltd

4F, Taixiang Building, 1A Longxiang Rd Haidian Dist, Beijing, China, 100191

FCC ID: 2AOHHTURBOXSOMD820

Report Type: **Product Type:**

Class II Permissive Change Thundersoft TurboX-D820-SoM

Report Number: RSZ190131004-00BA1

Report Date: 2019-03-01

Rocky Kang

RF Engineer Reviewed By:

Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen)

6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone,

Rocky Kang

Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

The information marked # is provided by the applicant, the laboratory is not responsible for its authenticity.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
Measurement Uncertainty Test Facility	
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	5
EUT Exercise Software	5
SPECIAL ACCESSORIES	
EQUIPMENT MODIFICATIONS	5
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	7
TEST EQUIPMENT LIST	8
FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
APPLICABLE STANDARD	9
Result	9
FCC §15.203 – ANTENNA REQUIREMENT	11
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUPEMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	12
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST NESOLIS SUNIVIARI	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Thundersoft TurboX-D820-SoM
Tested Model	TurboX-D820
Multiple Model [#]	TurboX
Frequency Range	Bluetooth: 2402~2480MHz
Transmit Power	0.008 W
Modulation Technique	Bluetooth: GFSK, π/4-DQPSK, 8DPSK
Antenna Specification	IPEX3, 2 dBi
Voltage Range	DC 4.0V
Date of Test	Feb 21, 2019
Sample serial number	190131004
Received date	2019-01-31
Sample/EUT Status	Good condition

Report No.: RSZ190131004-00BA1

Notes: This series products model: TurboX and TurboX-D820 are electrically identical; the differences between them are the model number. Model TurboX-D820 was selected for fully testing, the detailed information can be referred to the declaration which was stated and guaranteed by the applicant.

Objective

This test report is prepared on behalf of *Thundercomm Technology Co., Ltd* in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

This is a CIIPC application of the device; the differences between the original device and the current one are as follows:

- 1. Change some capacitance in main board which don't effect RF characteristic.
- 2. Adding an BT&WIFI antenna, change the antenna type to FPC.

For the change made to the device, the test item "Spurious Emissions" were performed.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DTS and Part 15.407 NII submissions with FCC ID: 2AOHHTURBOXSOMD820.

FCC Part 15.247 Page 3 of 19

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

Report No.: RSZ190131004-00BA1

For Radiated Emissions testing, please refer to DA 00-705 Released March 30, 2000, Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Channel Bandwidth		±5%
RF Output Power	with Power meter	±0.5dB
RF conducted test with spectrum		±1.5dB
AC Power Lines Conducted Emissions		±1.95dB
Radiated	Below 1GHz	±4.75dB
Emissions	Above 1GHz	±4.88dB
Temp	erature	±3℃
Humidity		±6%
Supply	voltages	±0.4%

Note: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

FCC Part 15.247 Page 4 of 19

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

"QRCT" software was used, and the power level was set at 9.

Special Accessories

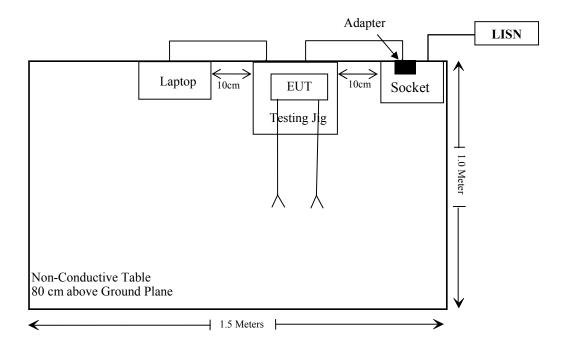
No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Thundersoft	Testing Jig	N/A	N/A
STH	STH Adapter		N/A
BULL	BULL Socket		5503290068073
Compaq	Laptop	CQ45	CND9524JMW
N/A	N/A Antenna 0		N/A
N/A	Antenna 1	N/A	N/A


Report No.: RSZ190131004-00BA1

External I/O Cable

Cable Description	Length (m)	From/Port	То
Unshielded un-detachable AC cable	1.2	Socket	mains
Unshielded un-detachable DC cable	1.4	Adapter	Testing Jig
Unshielded detachable USB cable	1.4	Testing Jig	Laptop

FCC Part 15.247 Page 5 of 19

Block Diagram of Test Setup

FCC Part 15.247 Page 6 of 19

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1091	Maximum Permissible Exposure(MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance*
\$15.205, \$15.209 & \$15.247(d)	Radiated Emissions	Compliance
§15.247(a)(1)	20 dB Emission Bandwidth	Compliance*
§15.247(a)(1)	Channel Separation Test	Compliance*
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance*
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance*
§15.247(b)(1)	Peak Output Power Measurement	Compliance*
§15.247(d)	Band edges	Compliance*

Report No.: RSZ190131004-00BA1

Compliance*: Please referred to FCC ID: 2AOHHTURBOXSOMD820 granted on 2018-09-19.Report No.: RSZ180710003-00B, which was tested by Bay Area Compliance Laboratories Corp. (Shenzhen).

FCC Part 15.247 Page 7 of 19

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	R	Radiated Emission T	est		
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2019-01-11	2020-01-11
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2017-12-22	2020-12-21
Sonoma instrument	Amplifier	310N	186238	2018-11-12	2019-11-12
Rohde & Schwarz	Signal Analyzer	FSEM	845987/005	2018-06-23	2019-06-23
COM-POWER	Pre-amplifier	PA-122	181919	2018-11-12	2019-11-12
A.H. System	Horn Antenna	SAS-200/571	135	2018-09-01	2021-08-31
UTiFLEX MICRO-C0AX	RF Cable	UFA147A-2362- 100100	MFR64639 231029-003	2018-07-11	2021-07-10
Ducommun technologies	RF Cable	104PEA	218124002	2018-11-12	2019-11-12
Ducommun technologies	RF Cable	RG-214	1	2018-11-19	2019-05-21
Ducommun technologies	RF Cable	RG-214	2	2018-11-12	2019-11-12
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726-04	2017-12-29	2020-12-28
Heatsink Required	Amplifier	QLW-18405536- J0	15964001002	2018-11-12	2019-11-12
Sinoscite	Band Reject Filter	BSF2402- 2480MN-0898- 001	99632	2018-11-12	2019-11-12
Rohde & Schwarz	Auto test software	EMC 32	V9.10	NCR	NCR

FCC Part 15.247 Page 8 of 19

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure

Report No.: RSZ190131004-00BA1

Limits for General Population/Uncontrolled Exposure							
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (Minutes)			
0.3-1.34	614	1.63	*(100)	30			
1.34-30	824/f	2.19/f	$*(180/f^2)$	30			
30-300	27.5	0.073	0.2	30			
300-1500	/	/	f/1500	30			
1500-100,000	/	/	1.0	30			

f = frequency in MHz

* = Plane-wave equivalent power density

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).
G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency	Antenna Gain		Turn up conducted power		Evaluation Distance	Power Density	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	$ (cm) \qquad (mW/cm^2) $	(mW/cm ²)
2402-2480	2	1.58	9.5	11.22	20	0.004	1.0

FCC Part 15.247 Page 9 of 19

Simultaneous transmitting consideration: (referring to the DTS &NII report, the highest MPE for 5G WiFi is 0.007mW/cm^2 , for 2.4 G WiFi is 0.05mW/cm^2)

The ratio=MPE/limit_{DSS}+MPE/limit_{NII}=0.004+0.007=0.011<1.0, simultaneous exposure is not required.

The ratio=MPE/limit_{DSS}+MPE/limit_{DTS}=0.004+0.05=0.054<1.0, simultaneous exposure is not required.

Note: 2.4GHz and 5GHz WiFi can't transmit simultaneously for this device.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliance

FCC Part 15.247 Page 10 of 19

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

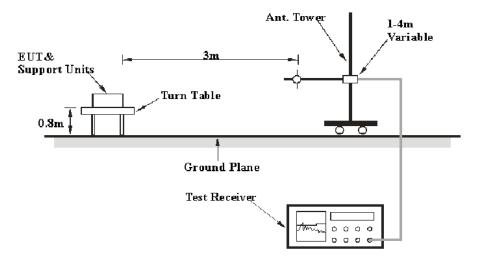
Report No.: RSZ190131004-00BA1

Antenna Connector Construction

The EUT has two FPC antennas arrangement, which were connected to board with an unique connector and the antenna gain is 2 dBi, one for Bluetooth and wifi(antenna 0), the other for wifi only(antenna 1), fulfill the requirement of this section. Please refer to the EUT photos.

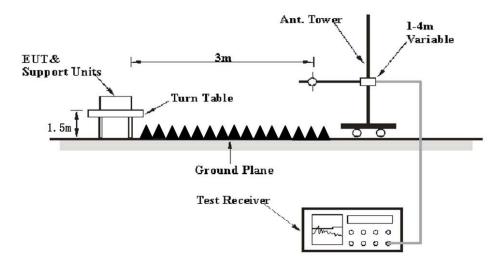
Result: Compliance.

FCC Part 15.247 Page 11 of 19


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard

FCC §15.205; §15.209; §15.247(d)


EUT Setup

Below 1 GHz:

Report No.: RSZ190131004-00BA1

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

FCC Part 15.247 Page 12 of 19

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	PK
Above 1 GHz	1 MHz	10 Hz	/	Average

Report No.: RSZ190131004-00BA1

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C</u>, section 15.205, 15.209 and 15.247.

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

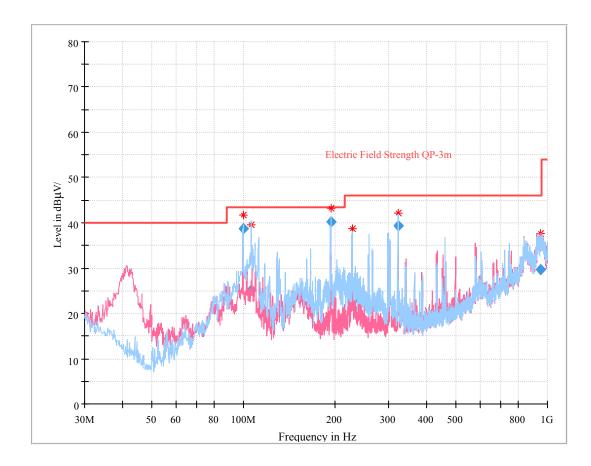
$$L_{\rm m} + U_{(L{\rm m})} \le L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

FCC Part 15.247 Page 13 of 19

Test Data

Environmental Conditions


Temperature:	25 ℃
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Baston Chen on 2019-02-21.

EUT operation mode: Transmitting (Scan with GFSK, $\pi/4$ -DQPSK, 8-DPSK mode, the worst case is GFSK Mode)

Report No.: RSZ190131004-00BA1

30 MHz~1 GHz: (the worst case is GFSK Mode, High channel)

FCC Part 15.247 Page 14 of 19

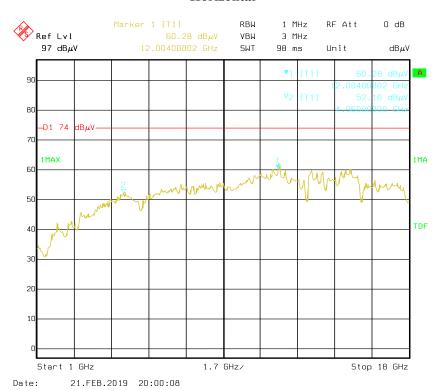
Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBμV/m)	Margin (dB)
99.951000	38.72	238.0	Н	72.0	-17.2	43.50	4.78
105.807625	25.23	291.0	Н	224.0	-16.2	43.50	18.27
193.790125	40.21	108.0	Н	102.0	-14.7	43.50	3.29
227.617875	22.81	148.0	Н	85.0	-14.0	46.00	23.19
322.982125	39.43	108.0	Н	82.0	-10.7	46.00	6.57
952.593125	29.69	164.0	V	230.0	9.8	46.00	16.31

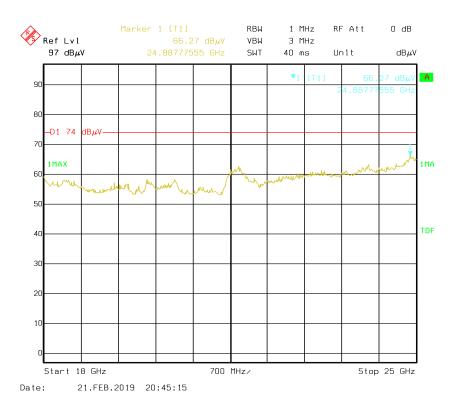
1 GHz - 25 GHz:

Frequency (MHz)	Receiver		T (11	Rx Antenna		Corrected	Corrected	T **4	3.4
	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)		Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Low Channel (2402 MHz)									
2390.00	27.53	PK	45	1.4	Н	33.00	60.53	74	13.47
2390.00	13.86	Ave.	45	1.4	Н	33.00	46.86	54	7.14
2483.50	27.48	PK	37	2.4	Н	33.20	60.68	74	13.32
2483.50	13.79	Ave.	37	2.4	Н	33.20	46.99	54	7.01
4804.00	43.15	PK	254	1.7	Н	7.88	51.03	74	22.97
4804.00	29.05	Ave.	254	1.7	Н	7.88	36.93	54	17.07
Middle Channel (2441 MHz)									
4884.00	42.33	PK	10	2.1	Н	9.21	51.54	74	22.46
4884.00	28.42	Ave.	10	2.1	Н	9.21	37.63	54	16.37
High Channel (2480 MHz)									
2390.00	27.95	PK	356	1.3	Н	33.00	60.95	74	13.05
2390.00	14.11	Ave.	356	1.3	Н	33.00	47.11	54	6.89
2483.50	31.02	PK	282	1.0	Н	33.20	64.22	74	9.78
2483.50	16.05	Ave.	282	1.0	Н	33.20	49.25	54	4.75
4960.00	43.03	PK	269	1.2	Н	9.07	52.10	74	21.90
4960.00	28.95	Ave.	269	1.2	Н	9.07	38.02	54	15.98

Note:

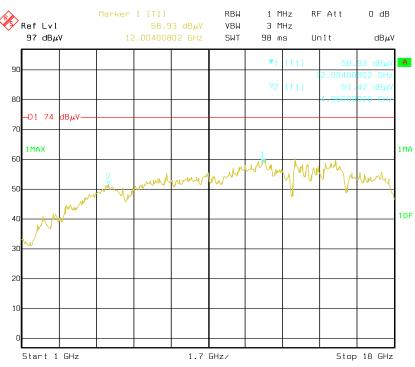
Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

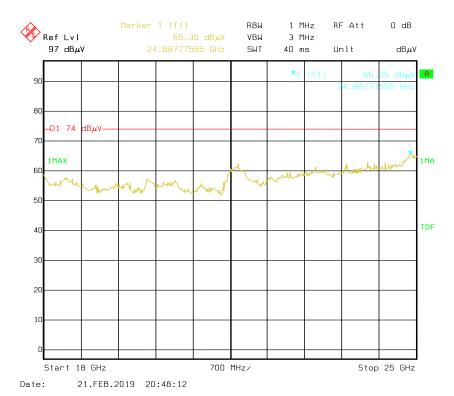

Corrected Amplitude = Corrected Factor + Reading


Margin = Limit - Corrected. Amplitude

The other spurious emission which is 20dB to the limit was not recorded. And for the pre-scan is performed with the 2400-2483.5MHz band filter.

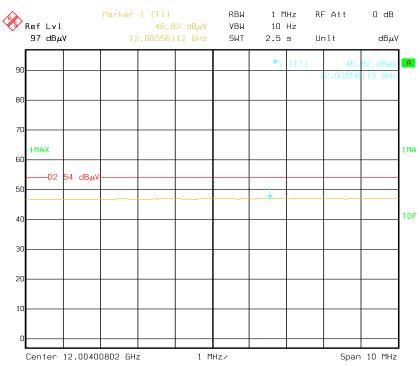
FCC Part 15.247 Page 15 of 19


Pre-scan with high channel Peak Horizontal

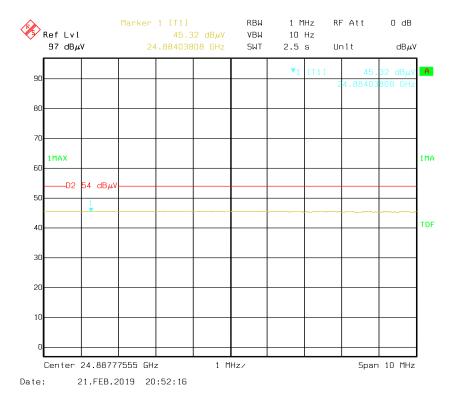


FCC Part 15.247 Page 16 of 19

Vertical

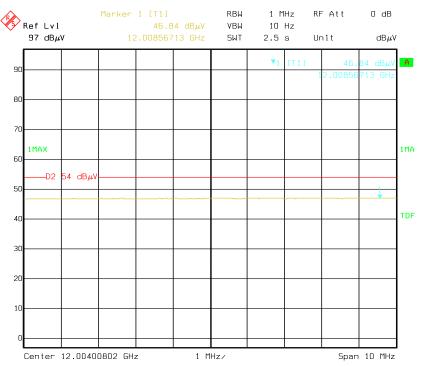


Date: 21.FEB.2019 20:03:27

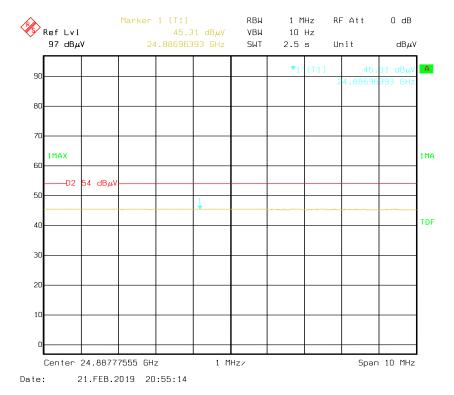


FCC Part 15.247 Page 17 of 19

Pre-scan for Average Horizontal



Date: 21.FEB.2019 20:06:09



FCC Part 15.247 Page 18 of 19

Vertical

Date: 21.FEB.2019 20:09:12

***** END OF REPORT *****

FCC Part 15.247 Page 19 of 19