

FCC Test Report

Report Reference No.....: HK2501150317-2E FCC ID.....: 2BLWP-PH970G

Compiled by

(position+printed name+signature)..: Testing Engineer Len Liao

Supervised by

(position+printed name+signature)..: Technical Manager Sliver Wan

Approved by

(position+printed name+signature)...: Authorized Signatory Jason

Zhou

Date of issue....: Feb. 26, 2025

Shenzhen HUAK Testing Technology Co., Ltd. Testing Laboratory Name

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park,

Address Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong,

China

Applicant's name..... Shenzhen Zecre Technology CO.,Ltd

RM 501 BLDG B AREA C SHANGXUE INDUSTRIAL PARK. Address

XINXUE COMMUNITY, BANTIAN, LONGGANG, SHENZHEN,

China

Test specification:

FCC CFR Title 47 Part 2. Part 27 Standard:

TRF Originator..... Shenzhen HUAK Testing Technology Co., Ltd.

Shenzhen HUAK Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd.takess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: Trail Camera

Trade Mark:

Manufacturer..... Shenzhen Zecre Technology CO.,Ltd

Model/Type reference..... ph970G

Series Models N/A

Modulation Type: QPSK, 16QAM

DC5V From Type-C or DC3.7V From Battery Rating:

Hardware version: V2.0

Software version: V2.0

Page 2 of 71

TEST REPORT

To at Designation	111/0504450047.05	Feb. 26, 2025
Test Report No. :	HK2501150317-2E	Date of issue

Equipment under Test Trail Camera

ph970G Model /Type

N/A Series Models

Shenzhen Zecre Technology CO.,Ltd **Applicant**

RM 501 BLDG B AREA C SHANGXUE INDUSTRIAL Address

PARK, XINXUE COMMUNITY, BANTIAN, LONGGANG,

Report No.: HK2501150317-2E

SHENZHEN, China

Shenzhen Zecre Technology CO.,Ltd Manufacturer

RM 501 BLDG B AREA C SHANGXUE INDUSTRIAL

Address PARK, XINXUE COMMUNITY, BANTIAN, LONGGANG,

SHENZHEN, China

	- ulpus	
Test result	Pass	

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1</u>	Summary	5
1,1 TMG	Test Standards	TESTING 5
1.2	Test Description	HUAR 5
1.3	Information of The Test Laboratory	6
1.4	Statement of The Measurement Uncertainty	6
<u>2</u>	General Information	7
2.1	Environmental Conditions	7
2.2	Description of Test Modes	7
2.3	Test frequency list	TESTING 799
2.4	Equipments Used During The Test	8
2.5	Related Submittal(s) / Grant (s)	10
2.6	Modifications	10
3 STING	Test Conditions and Results	5m ⁶ 11
3.1	Output Power	11
3.2	Peak-to-Average Ratio (PAR)	16
3.3	Occupied Bandwidth and Emission Bandwidth	23
3.4	Band Edge Compliance	30
3.5	Spurious Emission	35
3.6	Frequency Stability Under Temperature & Voltage Variations	68
	W.TESTIN	
4	Test Setup Photos of the EUT	70
"IAK TES	HARTES HUARTES HUARTES IN THE STATE OF THE S	AKTO
5	Photos of the EUT	71

** Modified History **

Revision	Description	Issued Data	Remark	
Revision 1.0	Initial Test Report Release	Feb. 26, 2025	Jason Zhou	
-1G	G	-16	AG.	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com. Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

1 <u>Summary</u>

1.1 Test Standards

The tests were performed according to following standards:

FCC Part 27: Miscellaneous Wireless Communications Services.

TIA/EIA 603 D June 2010:Land Mobile FM or PM Communications Equipment Measurement and Performance Standards 47 CFR FCC Part 15 Subpart B: - Unintentional Radiators.

FCC Part 2: Frequency Alloca-Tions And Radio Treaty Mat-Ters; General Rules And Reg-Ulations.

KDB971168 D01:v03r01 Measurement Guidance For Certification Of Licensed Digital Transmitters.

1.2 Test Description

Test Item	Section in CFR 47	Result
RF Output Power	Part 2.1046 Part 27.50(d)(4)	Pass
Peak-to-Average Ratio	Part 27.50(d)(4)	Pass
99% & -26 dB Occupied Bandwidth	Part 2.1049 Part 27.53(h)	Pass
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 27.53(h)	Pass
Field Strength of Spurious Radiation	Part 2.1053 Part 27.53(h)	Pass
Out of band emission, Band Edge	Part 2.1051 Part 27.53(h)	Pass
Frequency stability	Part 2.1055 Part 27.54	Pass

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

1.3 Information of The Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd. Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

1.4 Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4:Uncertainty in EMC Measurements" and is documented in the Shenzhen HUAK Testing Technology Co., Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen HUAK Testing Technology Co., Ltd.is reported:

Test Range		Measurement Uncertainty	Notes
Radiated Emission	Radiated Emission 30~1000MHz		(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2 General Information

2.1 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2 Description of Test Modes

The EUT has been tested under typical operating condition. The CMW500 used to control the EUT staying in continuous transmitting and receiving mode for testing. Regards to the frequency band operation: the lowest middle and highest frequency of channel were selected to perform the test, then shown on this report.

- 1. For the ERP/EIRP and radiated emission test, every axis (X, Y, Z) was verified, and show the worst resulton this report.
- 2. Test method and refer to 3GPP TS136521.

2.3 Test frequency list

Note:

0	0	0,
TX Channel Bandwidth	Frequency (MHz)	channel
1.4 MHz	1710.7	19957
1. 4 IVITZ	1732.5	20175
	1754.3	20393
	1711.5	19965
3 MHz	1732.5	20175
	1753.5	20385
	1712.5	19975
5 MHz	1732.5	20175
TOG	1752.5	20375
AKTES	1715.0	20000
10 MHz	1732.5	20175
	1750.0	20350
57"	1717.5	20025
15 MHz	1732.5	20175
	1747.5	20325
	1720.0	20050
20 MHz	1732.5	20175
	1745.0	20300

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.4 Equipments Used During The Test

TING.	- CLINE SEES	-mV					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date	
1	L.I.S.N.	R&S	ENV216	HKE-002	2024/02/20	2025/02/19	
TESTIZ	L.I.S.N.	R&S	ENV216	HKE-059	2024/02/20	2025/02/19	
3	EMI Test Receiver	R&S	ESR	HKE-005	2024/02/20	2025/02/19	
4	Spectrum analyzer	Agilent	N9020A	HKE-117	2024/02/20	2025/02/19	
5	Spectrum analyzer	R&S	FSV3044	HKE-126	2024/02/20	2025/02/19	
6,110	Preamplifier	EMCI	EMC051845S	HKE-006	2024/02/20	2025/02/19	
7	Preamplifier	Preamplifier Schwarzbeck	BBV 9743	HKE-016	2024/02/20	2025/02/19	
8	Preamplifier	A.H. Systems	SAS-574	[©] HKE-182	2024/02/20	2025/02/19	
9	6dB Attenuator	Pasternack	6db	HKE-184	2024/02/20	2025/02/19	
10 mg	EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	2024/02/20	2025/02/19	
11	Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	2024/02/21	2026/02/20	
12	Loop Antenna	COM-POWER	AL-130R	HKE-014	2024/02/21	2026/02/20	
13	Horn Antenna	Schwarzbeck	9120D	HKE-013	2024/02/21	2026/02/20	
14	EMI Test Software	Tonscend	JS32-CE 2.5.0.6	HKE-081	HUAKTES	HUAKTE	
15	EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	1	/	
16	RF Automatic control unit	Tonscend	JS0806-1	∘ HKE-096	2024/02/20	2025/02/19	
17	High pass filter unit	Tonscend	JS0806-F	HKE-055	2024/02/20	2025/02/19	
18	Wireless Communication Test Set	R&S	CMU200	HKE-026	2024/02/20	2025/02/19	
19	Wireless Communication Test Set		CMW500	HKE-027	2024/02/20	2025/02/19	
20	High-low temperature chamber	Guangke	HT-80L	HKE-118	2024/06/10	2025/06/09	
21	Temperature and humidity meter	Boyang	HTC-1	HKE-075	2024/06/10	2025/06/09	
22	RF Test Software	Tonscend	JS1120 Version 3.1.46	, HKE-183	TESTIN 1	/ TESTING	
23	RSE Test Software	Tonscend	JS36-RSE 5.0.0	HKE-184	1	MATTER 1	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date			
1	L.I.S.N.	R&S	ENV216	HKE-002	2025/02/19	2026/02/18			
2	L.I.S.N.	R&S	ENV216	HKE-059	2025/02/19	2026/02/18			
3	EMI Test Receiver	R&S	ESR	HKE-005	2025/02/19	2026/02/18			
¹ 4	Spectrum analyzer	Agilent	N9020A	HKE-117	2025/02/19	2026/02/18			
5	Spectrum analyzer	R&S	FSV3044	HKE-126	2025/02/19	2026/02/18			
6	Preamplifier	EMCI	EMC051845S	HKE-006	2025/02/19	2026/02/18			
NAKTESTING 7	Preamplifier	Schwarzbeck	BBV 9743	HKE-016	2025/02/19	2026/02/18			
8	Preamplifier	A.H. Systems	SAS-574	HKE-182	2025/02/19	2026/02/18			
TESTING	6d Attenuator	Pasternack	6db	HKE-184	2025/02/19	2026/02/18			
10	EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	2024/02/20	2025/02/19			
11	Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	2024/02/21	2026/02/20			
12	Loop Antenna	COM-POWER	AL-130R	HKE-014	2024/02/21	2026/02/20			
13	Horn Antenna	Schwarzbeck	9120D	HKE-013	2024/02/21	2026/02/20			
14	EMI Test Software	Tonscend	JS32-CE 2.5.0.6	HKE-081	TESANG	INKTEST IS O			
15	EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	HUAN /	1			
16	RF Automatic control unit	Tonscend	JS0806-1	HKE-096	2025/02/19	2026/02/18			
17	High pass filter unit	Tonscend	JS0806-F	HKE-055	2025/02/19	2026/02/18			
18	Wireless Communication R&S Test Set Wireless	Wireless 18 Communication	18 Communication R&S		CMU200	HKE-026	2025/02/19	2026/02/18	
19		R&S	CMW500	HKE-027	2025/02/19	2026/02/18			
20	High-low temperature chamber	Guangke	HT-80L	HKE-118	2024/06/10	2025/06/09			
21	Temperature and humidity meter	Boyang	HTC-1	HKE-075	2024/06/10	2025/06/09			
22	RF Test Software	Tonscend	JS1120 Version 3.1.46	HKE-183	1	1			
23	RSE Test Software	Tonscend	JS36-RSE 5.0.0	HKE-184	UNITESTINE!	HUAK TO THE			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.5 Related Submittal(s) / Grant (s)

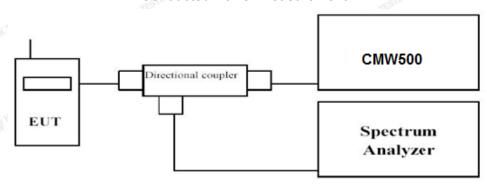
This submittal(s) (test report) is intended for FCC ID: 2BLWP-PH970G filing to comply with of the FCC Part 27 Rules.

2.6 Modifications

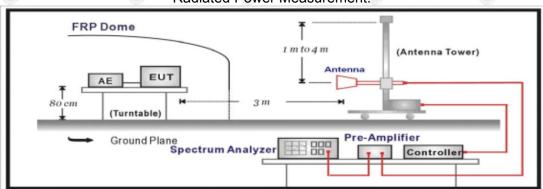
No modifications were implemented to meet testing criteria.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

3 Test Conditions and Results


3.1 Output Power

LIMIT


According to §27.50 (d) (4): Fixed, mobile, and portable (hand- held) stations operating in the 1710–1755 MHz band are limited to 1 watt EIRP.

TEST CONFIGURATION

Conducted Power Measurement

Radiated Power Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D.

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- EUT Communicate with CMW500, then select a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- a. The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to thefrequency of the transmitter.
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal

- level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal leve is detected by the measuring receiver.
- g. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- i. The transmitter shall be replaced by a substitution antenna.
- j. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- I. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- g. Test site anechoic chamber refer to ANSI C63.4.

TEST RESULTS

Conducted Measurement:

-G	G	LTE FDD Band 4	- JG	
TX Channel	Frequency	RB Size/Offset	Average Po	
Bandwidth	(MHz)	TESTI	QPSK	16QAM
HUAR HUAR		1 RB low	23.26	22.20
(6)	1710.7	1 RB high	23.19	22.66
	17 10.7	50% RB mid	23.03	22.06
	IG HUAR	100% RB	23.12	22.97
TESTING		1 RB low	23.04	22.98
1.4 MHz	1732.5	1 RB high	23.19	22.34
1.4 IVITZ	1732.3	50% RB mid	23.07	22.01
		100% RB	23.02	22.05
		1 RB low	22.28	21.49
TING	1754.3	1 RB high	22.51	21.36
ES. AKTE	1704.3	50% RB mid	22.39	21.88
O III		100% RB	22.47	21.14
		1 RB low	22.98	22.22
G	1711.5	1 RB high	22.89	21.97
SING	1711.5	50% RB mid	22.90	21.89
"IAK TES		100% RB	21.96	21.12
	A779	1 RB low	23.17	22.25
3 MHz	1732.5	1 RB high	23.00	21.87
3 IVITZ	1732.5	50% RB mid	23.00	22.20
TING		100% RB	22.11	21.20
AKTES.	, IAK	1 RB low	22.43	21.54
	1753.5	1 RB high	22.39	21.52
	1755.5	50% RB mid	22.60	21.67
		100% RB	21.40	21.34
, NG	n/G	1 RB low	22.91	22.08
ESTIN	1712.	1 RB high	22.99	22.02
5 MHz	1712.	50% RB mid	22.98	21.92
S IVITZ		100% RB	21.95	21.09
(G	1720 E	1 RB low	23.18	22.18
-G	1732.5	1 RB high	23.12	21.91

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

50% RB mid 23.05 22.01 100% RB 22.06 21.30 1 RB low 21.52 22.58 1 RB high 22.67 21.54 1752.5 50% RB mid 22.49 21.73 100% RB 21.57 20.54 1 RB low 22.87 21.92 1 RB high 22.84 22.13 1715.0 22.77 22.02 50% RB mid 100% RB 22.04 21.08 1 RB low 23.27 22.56 1 RB high 23.70 23.00 10 MHz 1732.5 50% RB mid 23.22 22.59 100% RB 22.33 22.04 1 RB low 22.96 22.05 22.42 1 RB high 23.03 1750.0 50% RB mid 22.93 21.99 100% RB 22.98 21.07 1 RB low 23.18 22.28 22.92 22.01 1 RB high 1717.5 50% RB mid 22.92 21.95 100% RB 22.11 22.23 1 RB low 23.08 22.09 1 RB high 23.18 21.98 15 MHz 1732.5 50% RB mid 23.01 22.06 100% RB 22.20 22.11 1 RB low 23.04 22.19 1 RB high 23.01 22.17 1747.5 50% RB mid 22.89 22.16 22.77 22.34 100% RB 23.30 22.16 1 RB low 1 RB high 23.38 22.19 1720.0 21.81 50% RB mid 23.28 100% RB 22.30 1 RB low 22.33 22.65 1 RB high 22.29 23.15 20 MHz 1732.5 22.38 23.34 50% RB mid 23.17 100% RB 1 RB low 23.67 22.40 1 RB high 23.26 22.51 1745.0 50% RB mid 21.50 22.24

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

100% RB

22.24

Radiated Measurement

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 4; recorded worst case for each Channel Bandwidth of LTE FDD Band 4.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_a(dBi)$

LTE FDD Band 4_Channel Bandwidth 1.4MHz_QPSK

HI	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1	1710.7	-16.75	3.06	9.68	34.80	24.67	30.00	5.33	V
1	1732.5	-16.93	3.17	9.68	34.80	24.38	30.00	5.62	TING V
Ī	1754.3	-15.69	3.22	9.75	34.80	25.64	30.00	4.36	V

LTE FDD Band 4 Channel Bandwidth 3MHz QPSK

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1711.5	-16.61	3.06	9.68	34.80	24.81	30.00	5.19	V
T	1732.5	-16.67	3.17	9.68	34.80	24.64	30.00	5.36	V
Ī	1753.5	-15.98	3.22	9.75	34.80	25.35	30.00	4.65	V

LTE FDD Band 4_Channel Bandwidth 5MHz_QPSK

HUIF	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1800	1712.5	-16.53	3.06	9.68	34.80	24.89	30.00	5.11	V
	1732.5	-16.71	3.17	9.68	34.80	24.60	30.00	5.40	V V
	1752.5	-15.29	3.22	9.75	34.80	26.04	30.00	3.96	V

LTE FDD Band 4 Channel Bandwidth 10MHz QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1715.0	-16.17	3.06	9.68	34.80	25.25	30.00	4.75	V
1732.5	-17.46	3.17	9.68	34.80	23.85	30.00	6.15	V
1750.0	-15.4	3.22	9.75	34.80	25.93	30.00	4.07	V

LTE FDD Band 4_Channel Bandwidth 15MHz_QPSK

HI	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
11	1717.5	-16.55	3.06	9.68	34.80	24.87	30.00	5.13	THE V
	1732.5	-17.37	3.17	9.68	34.80	23.94	30.00	6.06	V
	1747.5	-15.23	3.22	9.75	34.80	26.10	30.00	3.90	V

LTE FDD Band 4_Channel Bandwidth 20MHz_QPSK

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
4	1720.0	-16.47	3.06	9.68	34.80	24.95	30.00	5.05	V
	1732.5	-17.28	3.17	9.68	34.80	24.03	30.00	5.97	V
	1745.0	-14.77	3.22	9.75	34.80	26.56	30.00	3.44	V

Page 15 of 71

Report No.: HK2501150317-2E

LTE FDD Band 4_Channel Bandwidth 1.4MHz_16QAM

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
9	1710.7	-16.84	3.06	9.68	34.80	24.58	30.00	5.42	V
	1732.5	-17.38	3.17	9.68	34.80	23.93	30.00	6.07	V
	1754.3	-15.97	3.22	9.75	34.80	25.36	30.00	4.64	V

LTE FDD Band 4_Channel Bandwidth 3MHz_16QAM

1	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1711.5	-16.58	3.06	9.68	34.80	24.84	30.00	5.16	STRIES V
	1732.5	-16.67	3.17	9.68	34.80	24.64	30.00	5.36	V
	1753.5	-15.79	3.22	9.75	34.80	25.54	30.00	4.46	V

LTE FDD Band 4_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1712.5	-16.69	3.06	9.68	34.80	24.73	30.00	5.27	V
1732.5	-17.13	3.17	9.68	34.80	24.18	30.00	5.82	V
1752.5	-16.01	3.22	9.75	34.80	25.32	30.00	4.68	VG

LTE FDD Band 4_Channel Bandwidth 10MHz_16QAM

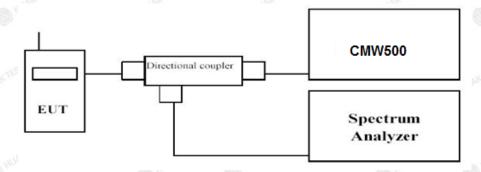
TE	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1715.0	-16.72	3.06	9.68	34.80	24.70	30.00	5.30	V V
	1732.5	-16.85	3.17	9.68	34.80	24.46	30.00	5.54	V
	1750.0	-15.89	3.22	9.75	34.80	25.44	30.00	4.56	V

LTE FDD Band 4 Channel Bandwidth 15MHz 16QAM

				13	CAYA BRUDGAT		- 11.2	ACMA BENGE
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1717.5	-16.75	3.06	9.68	34.80	24.67	30.00	5.33	V
1732.5	-17.49	3.17	9.68	34.80	23.82	30.00	6.18	V
1747.5	-15.41	3.22	9.75	34.80	25.92	30.00	4.08	V

LTE FDD Band 4_Channel Bandwidth 20MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1720.0	-16.39	3.06	9.68	34.80	25.03	30.00	4.97	V
1732.5	-17.18	3.17	9.68	34.80	24.13	30.00	5.87	V
1745.0	-14.59	3.22	9.75	34.80	26.74	30.00	3.26	V



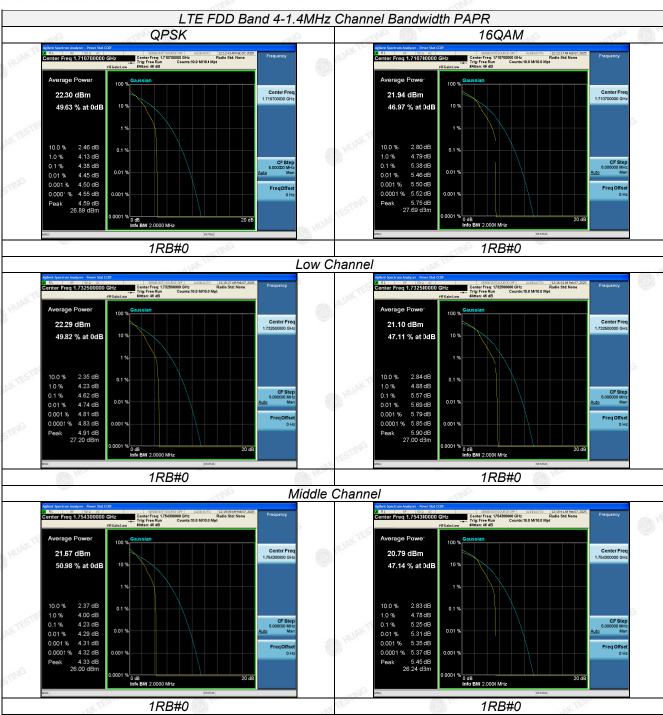
3.2 Peak-to-Average Ratio (PAR)

LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

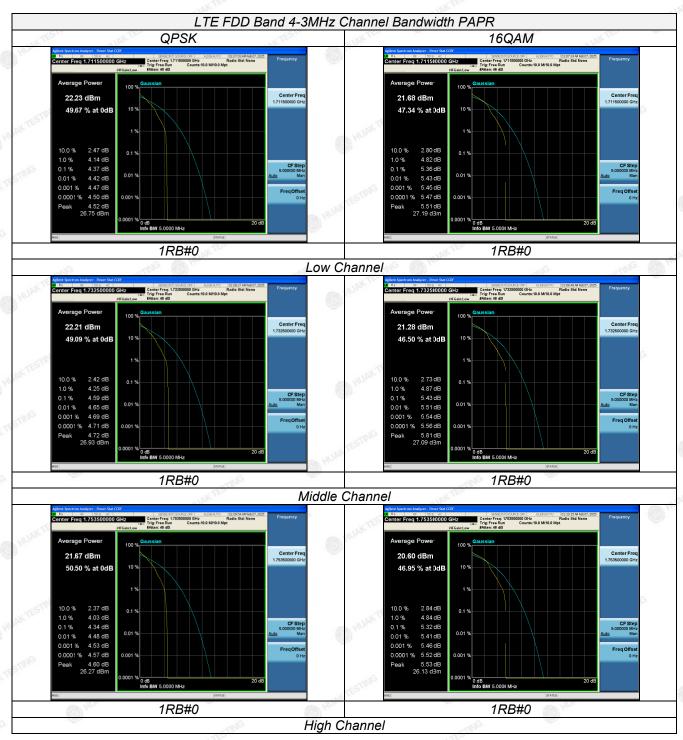
TEST CONFIGURATION

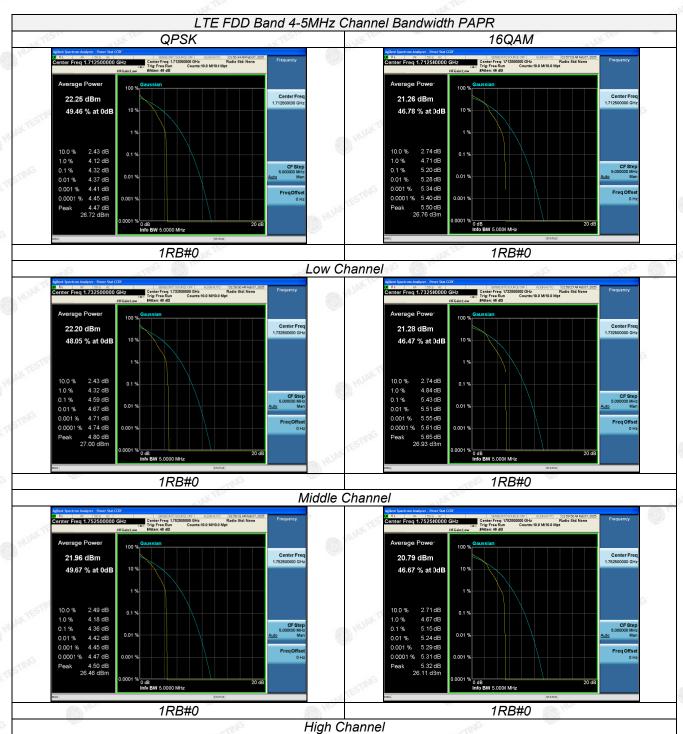
TEST PROCEDURE

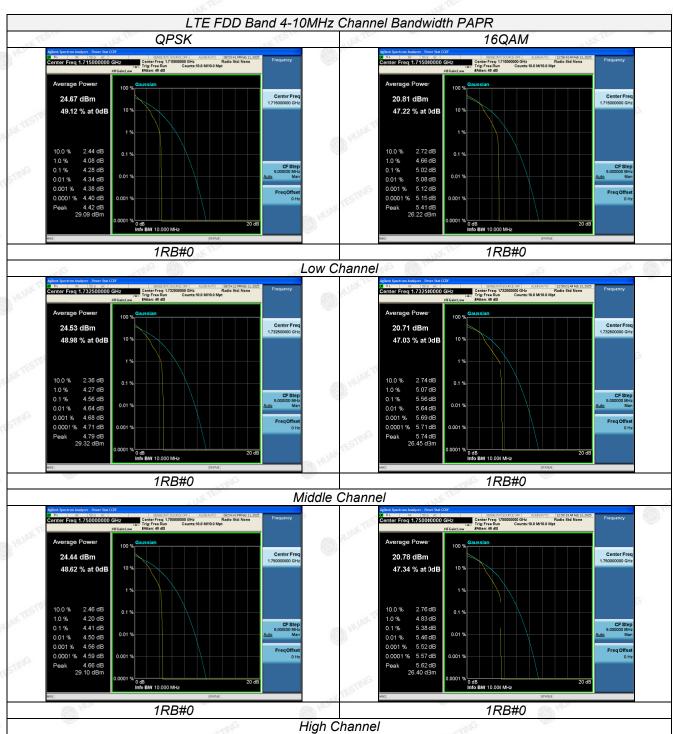

- Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- 2. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms;
 - 2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 5. Record the maximum PAPR level associated with a probability of 0.1%.

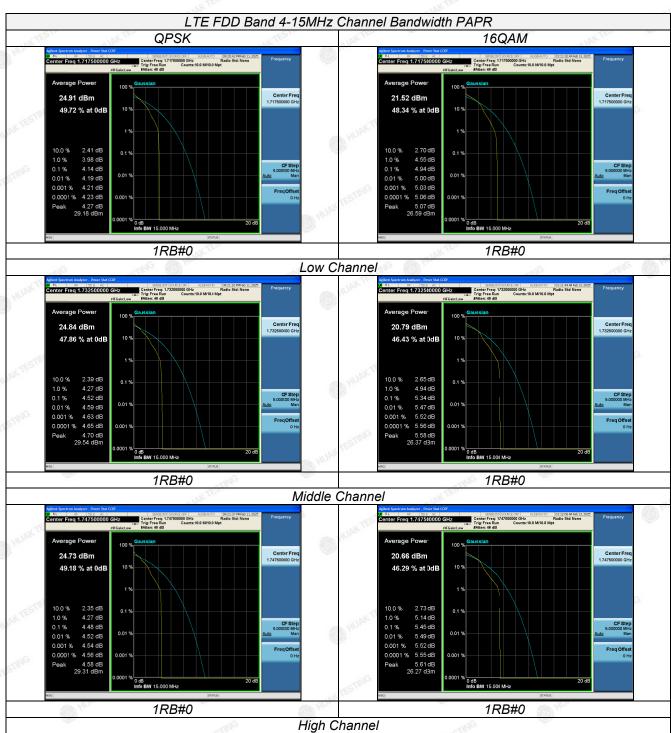
TEST RESULTS

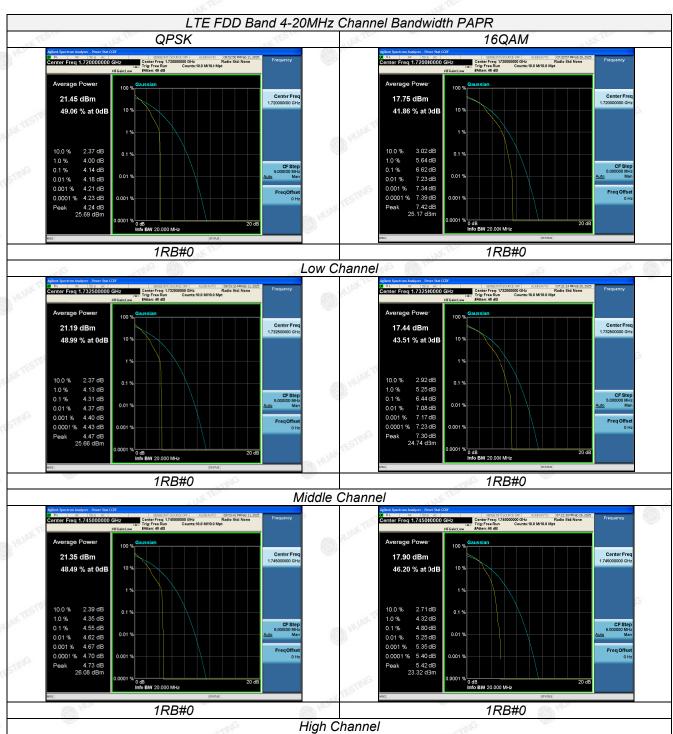
Remark:

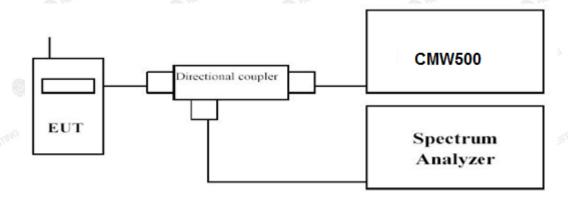

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 4; recorded worst case for each Channel Bandwidth of LTE FDD Band 4.


W.TESTI	ES.	LTE FDD Band 4	N TEST	KTEST
TX Channel	Frequency	RB Size/Offset	PAP	R (dB)
Bandwidth	(MHz)	RB Size/Oliset	QPSK	16QAM
TING	1710.7	(NG	4.38	5.38
1.4 MHz	1732.5	1RB#0	4.62	5.57
NK TESTI	1754.3	OKTEST	4.23	5.25
M HO.	1711.5	HO	4.37	5.36
3 MHz	1732.5	1RB#0	4.59	5.43
	1753.5		4.34	5.32
-olG	1712.5	1RB#0	4.32	5.20
5 MHz	1732.5		4.59	5.43
HOM.	1752.5	POP.	4.36	5.15
	1715.0		4.28	5.02
10 MHz	1732.5	1RB#0	4.56	5.56
	1750.0		4.41	5.38
TESTINE	1717.5	TESTING TESTING	4.14	4.94
15 MHz	1732.5	1RB#0	4.52	5.34
	1747.5		4.48	5.45
a)G	1720.0	NG.	4.14	6.62
20 MHz	1732.5	1RB#0	4.31	6.44
TESTIN	1745.0	TESTING	4.55	4.80




The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


High Channel



3.3 Occupied Bandwidth and Emission Bandwidth

LIMIT

N/A

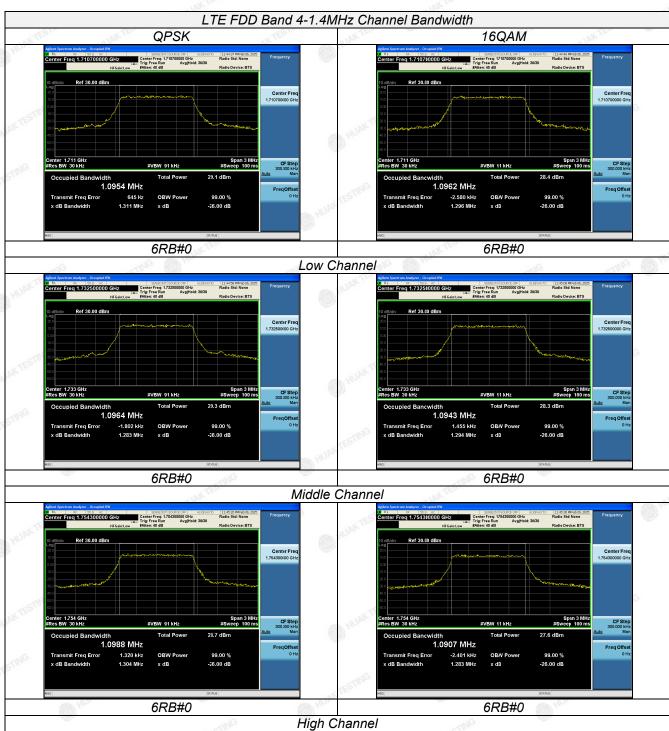
TEST CONFIGURATION

TEST PROCEDURE

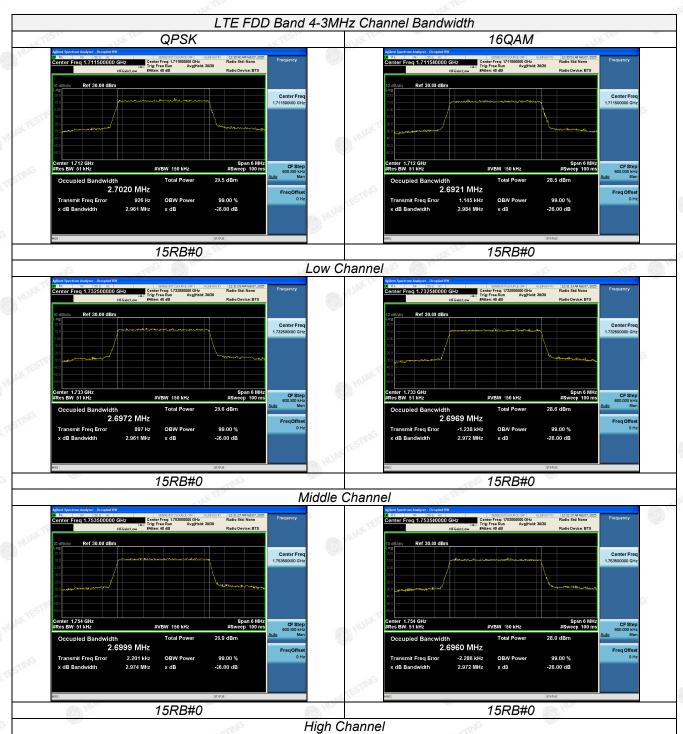
The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded. Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

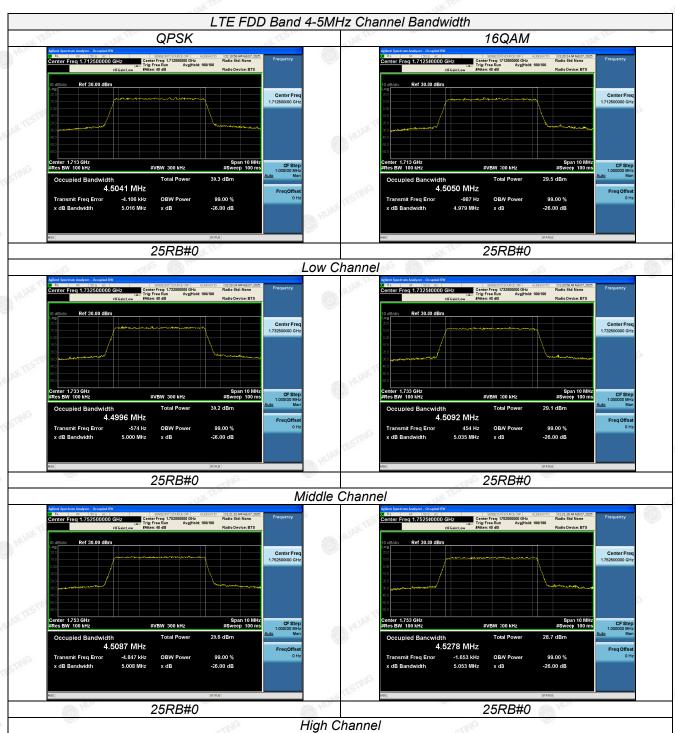
-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS


Remark:

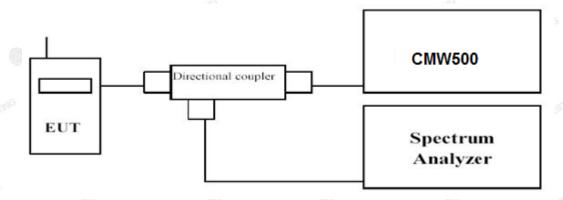
1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 4; recorded worst case for each Channel Bandwidth of LTE FDD Band 4.


		LTE FDD	Band 4			
TX Channel	RB Size/Offset	RB Size/Offset Frequency bandwidth (MHz			99% Occupied bandwidth (MHz)	
Bandwidth		(MHz)	QPSK	16QAM	QPSK	16QAM
		1710.7	1.311	1.296	1.0954	1.0962
1.4 MHz	6RB#0	1732.5	1.283	1.294	1.0964	1.0943
		1754.3	1.304	1.283	1.0988	1.0907
3 MHz	15RB#0	1711.5	2.961	2.984	2.7020	2.6921
		1732.5	2.961	2.972	2.6972	2.6969
		1753.5	2.974	2.972	2.6999	2.6960
5 MHz	25RB#0	1712.5	5.016	4.979	4.5041	4.5050
		1732.5	5.000	5.035	4.4996	4.5092
		1752.5	5.008	5.053	4.5087	4.5278
),,	50RB#0	1715.0	9.910	1	8.9587	/
10 MHz		1732.5	9.899		8.9504	
		1750.0	9.864		8.9687	
15 MHz	75RB#0	1717.5	14.77		13.449	NAKTESTING
		1732.5	14.77	1 000	13.438	
		1747.5	14.61	HOM.	13.388	
	100RB#0	1720.0	19.29		17.883	
20 MHz		1732.5	19.46	/ STIN	17.926	/
		1745.0	19.64	MAKTES	17.927	TING


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

FICATION

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

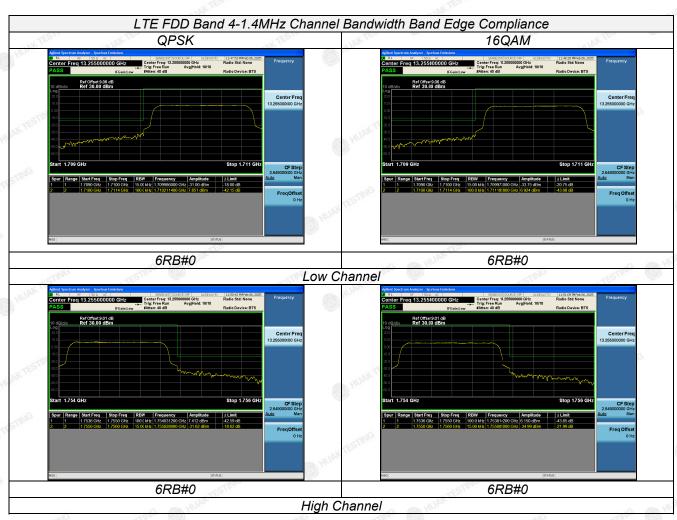


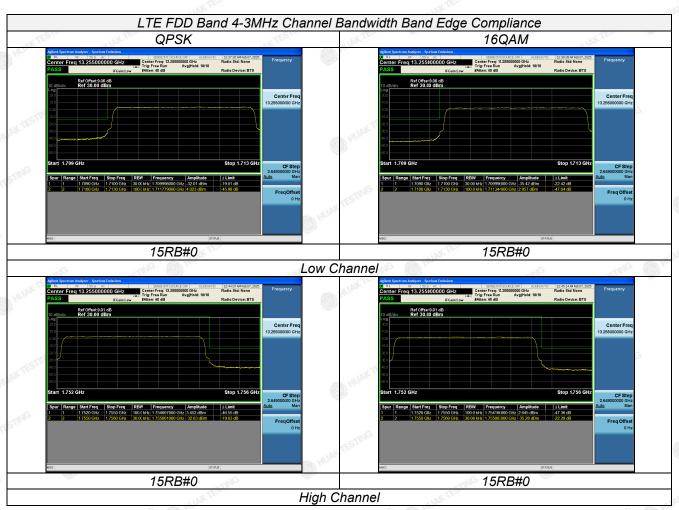
3.4 Band Edge Compliance

LIMIT

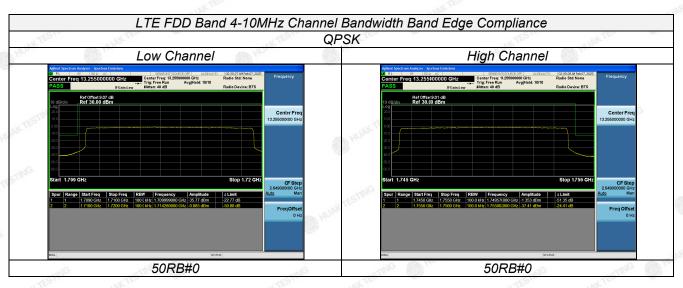
According to §27.53 (h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

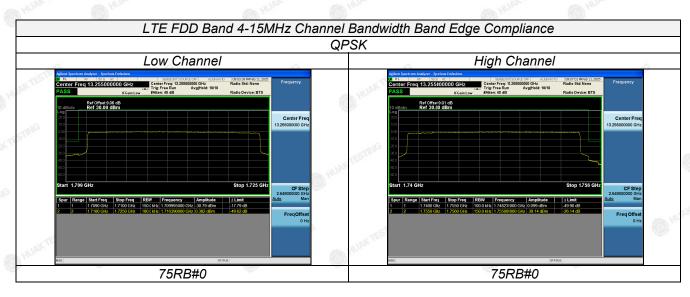
TEST CONFIGURATION

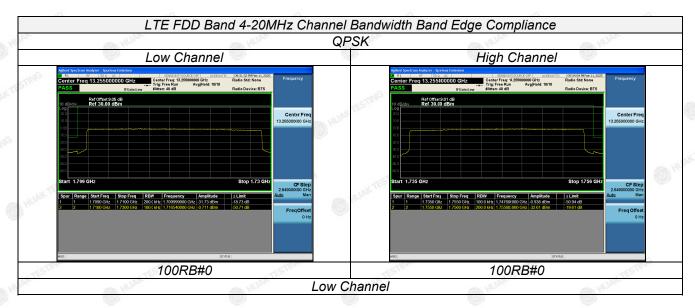

TEST PROCEDURE

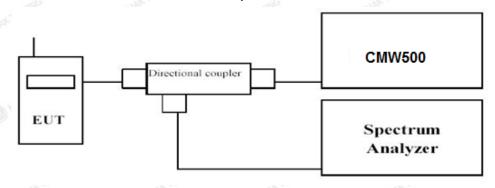

- 1. The transmitter output port was connected to base station.
- The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest and highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum.

TEST RESULTS

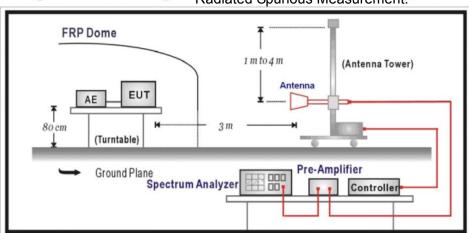

Remark:


 We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 4; recorded worst case for each Channel Bandwidth of LTE FDD Band 4. AFICATION.




3.5 Spurious Emission

LIMIT


According to §27.53 (h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

TEST CONFIGURATION

Conducted Spurious Measurement:

Radiated Spurious Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D.

Conducted Spurious Measurement:

- Place the EUT on a bench and set it in transmitting mode.
- Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c. EUT Communicate with CMW500, then select a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was set sufficient scans were taken to show the out of band Emission if any up to10th harmonic.

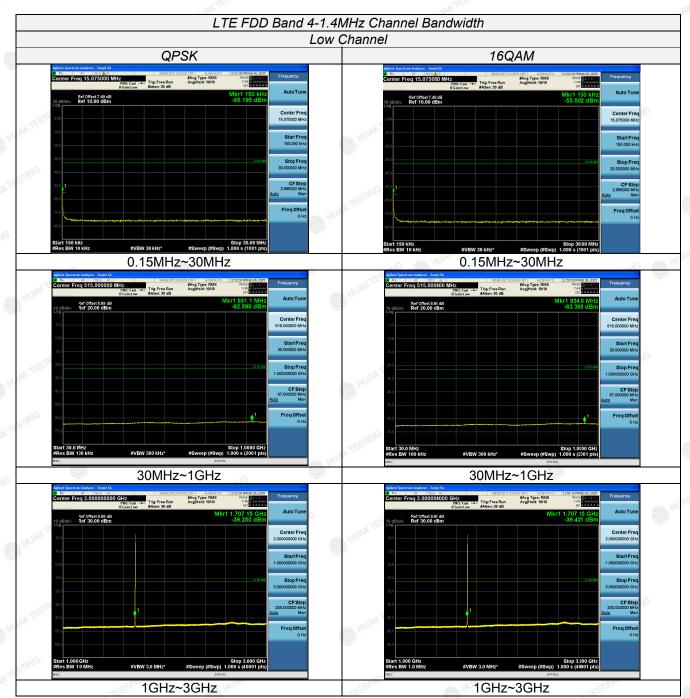
f. Please refer to following tables for test antenna conducted emissions.

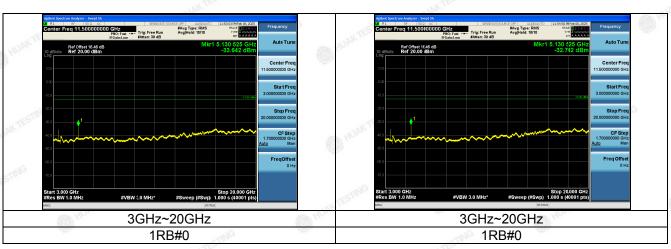
Working Frequency	Sub range (GHz)	RBW	VBW	Sweep time (s)
	0.000015~0.03	10KHz	30KHz	Auto
LTE FDD Band 4	0.03~1	100KHz	300KHz	Auto
A)G	1~20	1 MHz	3 MHz	Auto

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

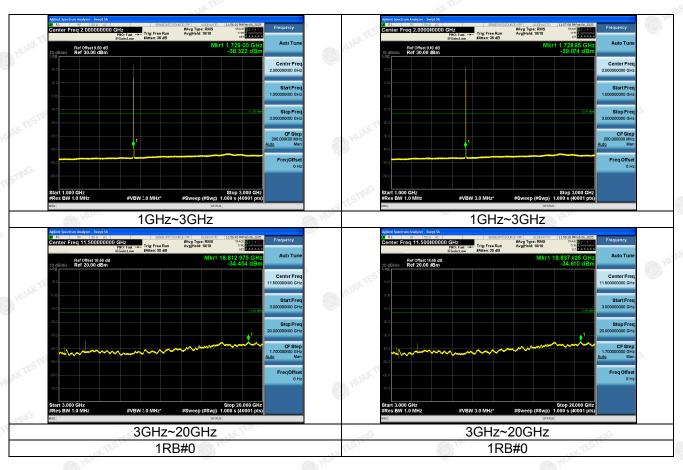
Radiated Spurious Measurement:

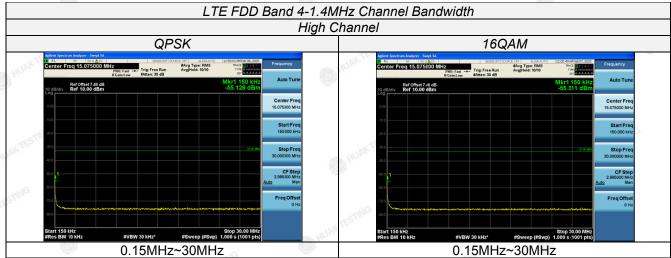
- The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter.
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- i. The transmitter shall be replaced by a substitution antenna.
- j. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- I. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for Part 24. The frequency range was checked up to 10th harmonic.
- r. Test site anechoic chamber refer to ANSI C63.

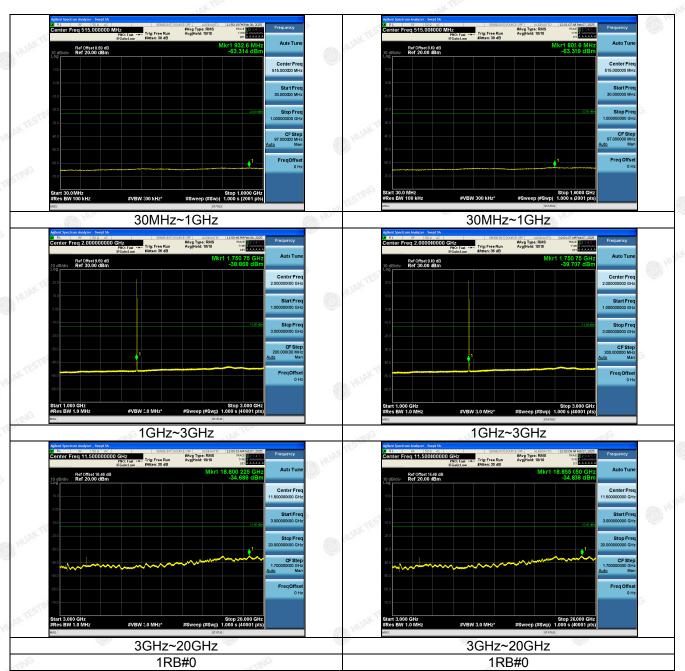

TEST RESULTS

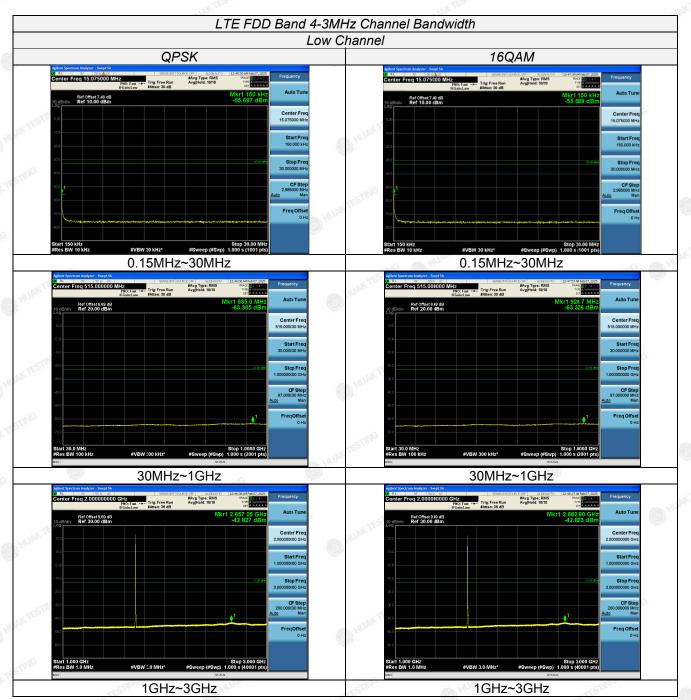

Remark:

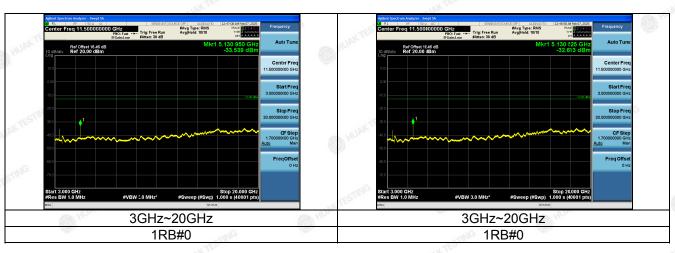

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 4; recorded worst case for each Channel Bandwidth of LTE FDD Band 4.

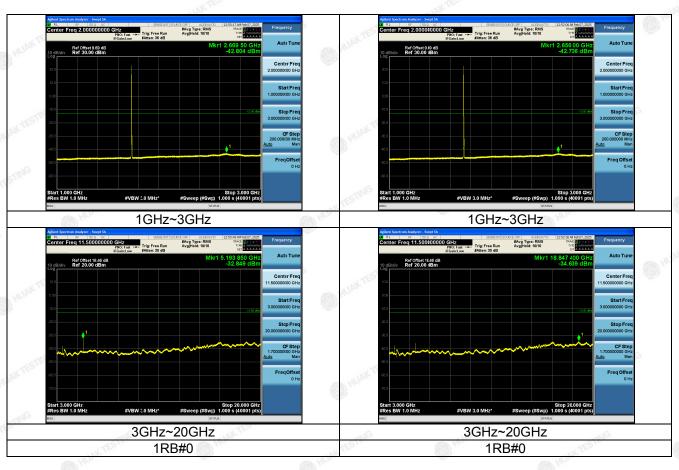

Conducted Measurement:

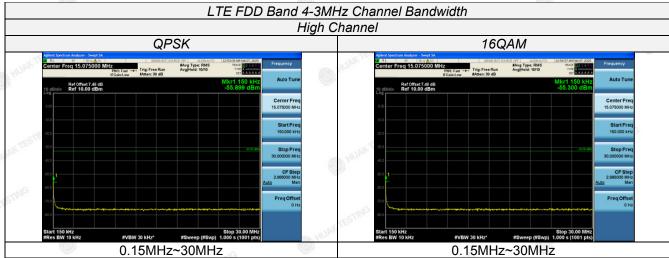


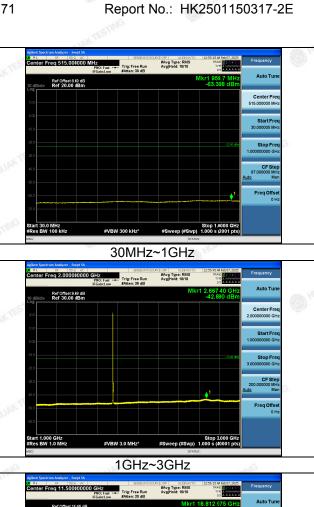


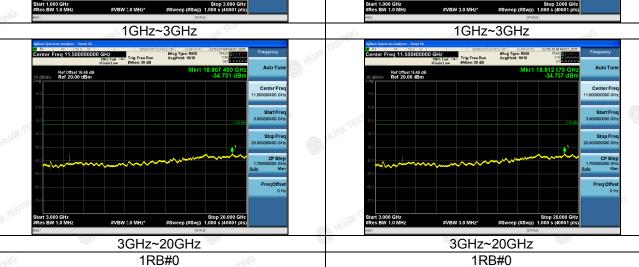









Ref Offset 8.69 dB Ref 20.00 dBm


RL RF | 50 R AC | Center Freq 2.0000000000 GH

> Ref Offset 9.69 dB Ref 30.00 dBm

30MHz~1GHz

#Avg Type: RMS Avg|Hold: 10/10

