Shenzhen GUOREN Certification Technology Service Co., Ltd.

101#, Building K & Building T, The Second Industrial Zone, Jiazitang Community, Fenghuang Street, Guangming District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

Report Reference No.....: GRCTR250402017-01

FCC ID.....: 2BPAK-CH311

Compiled by

(position+printed name+signature)..: Testing Engineer Jimmy Wang

Supervised by

(position+printed name+signature)..: Project Engineer Kelley Zhang

Approved by

(position+printed name+signature)..: Manager Sam Wang

Date of issue...... Apr. 30, 2025

Testing Laboratory Name...... Shenzhen GUOREN Certification Technology Service Co., Ltd.

101#, Building K & Building T, The Second Industrial Zone,

Shenzhen, China

Applicant's name...... Shenzhen Yongshi Technology Co., Ltd.

Shenzhen Shi Longgang Qu Bantian Jiedao Nankeng Shequ Wuhe

Address...... Dadao (Nan) 2 Hao Wanke Xinghuo 7 Dong 1 Ceng 107 Danyuan -

Α

Test specification....:

Standard...... FCC Rules and Regulations Part 15 Subpart C (Section 15.209),

ANSI C63.10: 2020

Shenzhen GUOREN Certification Technology Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purpses as long as the Shenzhen GUOREN Certification Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen GUOREN Certification Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: Wireless charger

Trade Mark.....: /

Manufacturer...... Shenzhen Yongshi Technology Co., Ltd.

Model/Type reference.....: CH311

Listed Models CH307,CH3071,CH308,CH309,CH312,CH313,CH314,CH315,CH3

16,CH317,CH318

Modulation Type.....: ASK

Operation Frequency.....: From 110KHz~148.5KHz

Rating...... Input:DC 5V/2A,9V/1A,9V/2A

Result..... PASS

TEST REPORT

Equipment under Test : Wireless charger

Model /Type : CH311

Listed Models : CH307,CH3071,CH308,CH309,CH312,CH313,CH314,CH315,C

H316,CH317,CH318

Applicant : Shenzhen Yongshi Technology Co., Ltd.

Address : Shenzhen Shi Longgang Qu Bantian Jiedao Nankeng Shequ

Wuhe Dadao (Nan) 2 Hao Wanke Xinghuo 7 Dong 1 Ceng 107

Danyuan - A

Manufacturer : Shenzhen Yongshi Technology Co., Ltd.

Address : Shenzhen Shi Longgang Qu Bantian Jiedao Nankeng Shequ

Wuhe Dadao (Nan) 2 Hao Wanke Xinghuo 7 Dong 1 Ceng 107

Danyuan - A

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1 TEST ST	TANDARDS	4
2 SUMMAR	RY	5
2.1 General R	Remarks	5
	Description	
	on of the test mode	
	Accessories	
2.5 Modification	tions	6
3 TEST EN	NVIRONMENT	7
3.1 Address o	of the test laboratory	7
	ility	
	y of measurement results	
3.4 Statement	nt of the measurement uncertainty	7
3.5 Equipmen	nts Used during the Test	8
4 TEST CC	ONDITIONS AND RESULTS	1 0
	er Conducted Emission	
	Emission	
	d Bandwidth	
4.4 Antenna R	Requirement	16
5 TEST SE	ETUP PHOTOS OF THE EUT	17
6 РНОТОЅ	S OF THE EUT	18

Report No.: GRCTR250402017-01 Page 4 of 21

1 TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules and Regulations Part 15 Subpart C (Section 15.207):</u> Conducted limits. <u>FCC Rules and Regulations Part 15 Subpart C (Section 15.209):</u> Radiated emission limits; general requirements.

ANSI C63.10: 2020: American National Standard for Testing Unlicensed Wireless Devices

Report No.: GRCTR250402017-01 Page 5 of 21

2 SUMMARY

2.1 General Remarks

Date of receipt of test sample	:	Apr. 15, 2025
Testing commenced on	:	Apr. 15, 2025
Testing concluded on	:	Apr. 30, 2025

2.2 Product Description

Product Name:	Wireless charger
Model/Type reference:	CH311
Listed Models:	CH307,CH3071,CH308,CH309,CH312,CH313,CH314,CH315,CH316,CH317,CH 318
Power supply:	Input:DC 5V/2A,9V/1A,9V/2A Wireless Output:5W/7.5W/10W/15W
Car Charger information:	M/N:TE-092 Input:DC 12-32V Output:DC 5V/6.2A,9V/2A,12V/1.6A
Test samples ID:	GRCTR250402017-1#
Operation frequency:	110KHz~148.5KHz
Modulation type:	ASK
Antenna type:	Loop coil antenna
Remark:The products are different.	identical in interior structure, electrical circuits and components, just model name is

2.3 Description of the test mode

Equipment under test was operated during the measurement under the following conditions:

☐ Charging and communication mode

Test Mo	Test Modes:				
Mode 1	Input DC 5V/2A + EUT + Without load	Pre-tested			
Mode 2	Input DC 5V/2A + EUT + Wireless charger tester (Half Load)	Pre-tested			
Mode 3	Input DC 5V/2A + EUT + Wireless charger tester (Full Load)	Pre-tested			
Mode 4	Input DC 9V/1A + EUT + Without load	Pre-tested			
Mode 5	Input DC 9V/1A + EUT + Wireless charger tester (Half Load)	Pre-tested			
Mode 6	Input DC 9V/1A + EUT + Wireless charger tester (Full Load)	Pre-tested			
Mode 7	Input DC 9V/2A + EUT + Without load	Pre-tested			
Mode 8	Input DC 9V/2A + EUT + Wireless charger tester (Half Load)	Pre-tested			
Mode 9	Input DC 9V/2A + EUT + Wireless charger tester (Full Load)	Record			
Note: All test modes were pre-tested, but we only recorded the worst case in this report.					

Report No.: GRCTR250402017-01 Page 6 of 21

2.4 Special Accessories

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Technical Parameters	Certificate	Provided by
Intelligent wireless charging full function test module	1	YBZ	5W/7.5W/9W/10W/12W/15W	1	Lab

2.5 Modifications

No modifications were implemented to meet testing criteria.

Report No.: GRCTR250402017-01 Page 7 of 21

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen GUOREN Certification Technology Service Co., Ltd.

101#, Building K & Building T, The Second Industrial Zone, Jiazitang Community, Fenghuang Street, Guangming District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 920798 Designation Number: CN1304

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6202.01

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

ISED#: 27264 CAB identifier: CN0115

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

CNAS-Lab Code: L15631

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories for the Competence of Testing and Calibration Laboratories.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Summary of measurement results

DESCRIPTION OF TEST	RESULT
CONDUCTED EMISSIONS TEST	COMPLIANT
RADIATED EMISSION TEST	COMPLIANT
OCCUPIED BANDWIDTH MEASUREMENT	COMPLIANT
ANTENNA REQUIREMENT	COMPLIANT

3.4 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen GUOREN Certification Technology Service Co., Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GUOREN Certification Technology Service Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

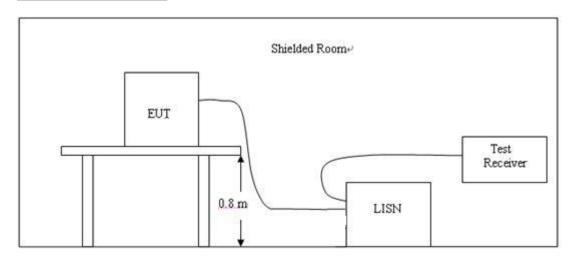
⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.5 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	GRCTEE009	2024/09/19	2025/09/18
LISN	R&S	ENV216	GRCTEE010	2024/09/19	2025/09/18
EMI Test Receiver	R&S	ESPI	GRCTEE017	2024/09/19	2025/09/18
EMI Test Receiver	R&S	ESCI	GRCTEE008	2024/09/19	2025/09/18
Spectrum Analyzer	Agilent	N9020A	GRCTEE002	2024/09/19	2025/09/18
Spectrum Analyzer	R&S	FSP	GRCTEE003	2024/09/20	2025/09/19
Vector Signal generator	Agilent	N5181A	GRCTEE007	2024/09/19	2025/09/18
Analog Signal Generator	R&S	SML03	GRCTEE006	2024/09/19	2025/09/18
Climate Chamber	QIYA	LCD-9530	GRCTES016	2024/09/19	2025/09/18
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	GRCTEE018	2023/09/28	2026/09/27
Horn Antenna	Schwarzbeck	BBHA 9120D	GRCTEE019	2023/09/28	2026/09/27
Loop Antenna	Zhinan	ZN30900C	GRCTEE020	2023/10/15	2026/10/14
Horn Antenna	Beijing Hangwei Dayang	OBH100400	GRCTEE049	2023/09/28	2026/09/27
Amplifier	Schwarzbeck	BBV 9745	GRCTEE021	2024/09/19	2025/09/18
Amplifier	Taiwan chengyi	EMC051845B	GRCTEE022	2024/09/19	2025/09/18
Temperature/Humi dity Meter	Huaguan	HG-308	GRCTES037	2024/09/19	2025/09/18
Directional coupler	NARDA	4226-10	GRCTEE004	2024/09/19	2025/09/18
High-Pass Filter	XingBo	XBLBQ-GTA18	GRCTEE053	2024/09/19	2025/09/18
High-Pass Filter	XingBo	XBLBQ-GTA27	GRCTEE054	2024/09/19	2025/09/18
Automated filter bank	Tonscend	JS0806-F	GRCTEE055	2024/09/19	2025/09/18
Power Sensor	Agilent	U2021XA	GRCTEE070	2024/09/19	2025/09/18
Cable	Times	Cable-CE	GRCTEE086	2024/09/19	2025/09/18

Report No.: GRCTR250402017-01

Page 9 of 21


Cable	Times	Cable-RE-1	GRCTEE087	2024/09/19	2025/09/18
Cable	Times	Cable-RE-2	GRCTEE088	2024/09/19	2025/09/18
EMI Test Software	ROHDE & SCHWARZ	ESK1-V1.71	GRCTEE060	N/A	N/A
EMI Test Software	Fera	EZ-EMC	GRCTEE061	N/A	N/A

Report No.: GRCTR250402017-01 Page 10 of 21

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Fraguency range (MHz)	Limit (c	lBuV)		
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the frequency.				

TEST RESULTS

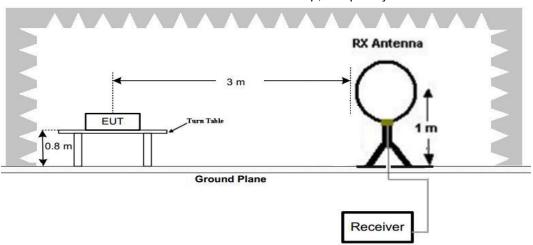
The EUT is powered by car battery, so this test item is not applicable for the EUT.

Report No.: GRCTR250402017-01 Page 11 of 21

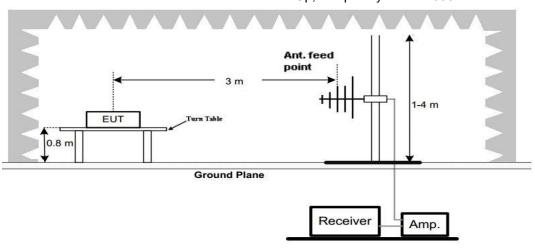
4.2 Radiated Emission

Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.


In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Radiated emission limits


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST CONFIGURATION

1. Radiated Emission Test Set-Up, Frequency Below 30MHz

2. Radiated Emission Test Set-Up, Frequency below 1000MHz

Report No.: GRCTR250402017-01 Page 12 of 21

Test Procedure

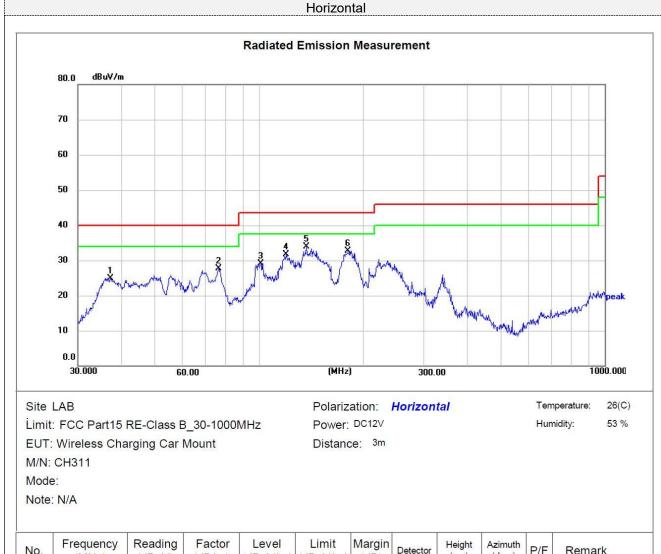
- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0 ℃ to 360 ℃ to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 1000MHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3

7. Setting test receiver/spectrum as following table states:

_	9		
	Test Frequency range	Test Receiver/Spectrum Setting	Detector
	9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
	150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
	30MHz-1GHz	RBW=120KHz/VBW=1000KHz.Sweep time=Auto	QP

TEST RESULTS

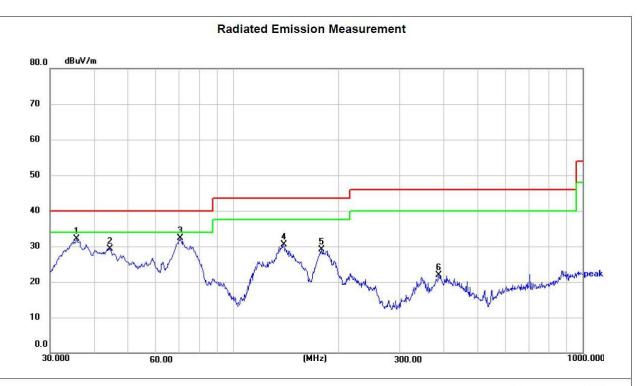

For 9 KHz-30MHz

Frequency	Reading	Polar	Antenna Factor	Cable Loss	Emission Levels	Limits at 3m	Margin	Detector Mode
(MHz)	(dBµV/m)	Loop	(dB/m)	(dB)	(dBµV/m)	βμV/m) (dBμV/m)		
0.11824(F)	55.60	Loop	23.65	0.01	79.26	105.88	26.62	PK
0.11824(F)	48.93	Loop	23.65	0.01	72.59	85.88	13.29	AV
0.124	31.57	Loop	23.55	0.01	55.13	106.78	51.65	PK
0.124	28.83	Loop	23.55	0.01	52.39	86.78	34.39	AV
0.527	17.22	Loop	24.82	-0.07	41.97	73.17	31.20	QP
2.462	24.71	Loop	24.12	-0.21	48.62	59.78	11.16	QP
3.175	23.47	Loop	24.06	-0.25	47.28	69.54	22.26	QP
		-						

Remark:

- 1. Data of measurement within this frequency range shown "-- in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits and not recorded.
- 2. The test limit distance is 3m limit.
- 3. PK means Peak Value, QP means Quasi Peak Value, AV means Average Value.
- 4. F means Fundamental Frequency.
- 5. Emission level (dBuV/m) =Reading + Antenna Factor + Cable Loss.
- 6. Margin value = Limit value- Emission level.

For 30MHz-1GHz



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	37.2854	43.78	-18.80	24.98	40.00	-15.02	peak	200	96	Р	
2	76.5119	49.87	-22.13	27.74	40.00	-12.26	peak	200	22	Р	
3	101.2883	48.16	-19.08	29.08	43.50	-14.42	peak	100	220	Р	
4	119.8555	51.68	-19.93	31.75	43.50	-11.75	peak	200	129	Р	
5 *	137.4200	56.00	-22.14	33.86	43.50	-9.64	peak	100	256	Р	
6	181.2834	53.44	-20.64	32.80	43.50	-10.70	peak	100	194	Р	

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Vertical

Site LAB Limit: FCC Part15 RE-Class B_30-1000MHz

EUT: Wireless Charging Car Mount

M/N: CH311 Mode: Note: N/A Polarization: Vertical

Power: DC12V

Distance: 3m

Temperature: 26(C) Humidity: 53 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	35.7490	51.37	-19.33	32.04	40.00	-7.96	peak	100	168	Р	
2	44.4307	46.97	-17.60	29.37	40.00	-10.63	peak	200	356	Р	
3 *	70.5835	53.02	-20.64	32.38	40.00	-7.62	peak	100	199	Р	
4	139.3610	52.49	-21.99	30.50	43.50	-13.00	peak	100	256	Р	
5	179.3863	49.95	-20.76	29.19	43.50	-14.31	peak	200	99	Р	
6	387.9917	37.87	-15.91	21.96	46.00	-24.04	peak	200	16	Р	

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: GRCTR250402017-01 Page 15 of 21

4.3 Occupied Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equip compliance with the 20dB attenuation specification may base on measurement at the intentional radiator's antenna output terminal unless the intentional radiator uses a permanently attached antenna, in which case compliance shall be deomonstrated by measuring the radiated emissions.

LIMIT

The 20dB bandwidth shall be less than 80% of the permitted frequency band.

TEST RESULTS

Mode	Freq (KHz)	20dB Bandwidth (KHz)	Conclusion		
Tx Mode	120.15	2.913	PASS		

Report No.: GRCTR250402017-01 Page 16 of 21

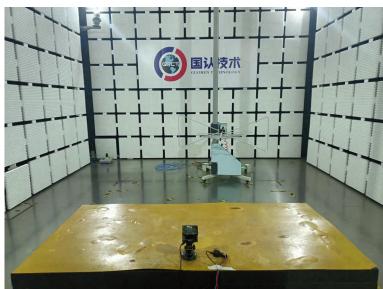
4.4 Antenna Requirement

Standard Applicable

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


Antenna Information

The antenna used in this product is a Coil Antenna, The directional gains of antenna used for transmitting is 0dBi

Remark:The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen GUOREN Certification Technology Service Co., Ltd. does not assume any responsibility.

5 Test Setup Photos of the EUT

6 PHOTOS OF THE EUT

