Company: Rockwell Collins Test of: IMS-6010

To: FCC 15.247 (DTS) & ISED RSS-247

Report No.: ROCK28 - U2 Rev A

Test of: Rockwell Collins IMS-6010

To: FCC 15.247 (DTS) & ISED RSS-247

Addendum Test Report Serial No.: ROCK28-U2 Rev A

This report supersedes: None

Manufacturer: Rockwell Collins 400 Collins Road NE Cedar Rapids, IA 52498 USA

Product Function: Wireless connectivity for aircraft systems

Copy No: pdf Issue Date: 20th June, 2018

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	
1.1. TESTING ACCREDITATION	4
1.2. RECOGNITION	
1.3. PRODUCT CERTIFICATION	6
2. DOCUMENT HISTORY	
3. TEST RESULT CERTIFICATE	8
4. REFERENCES AND MEASUREMENT UNCERTAINTY	
4.1. Normative References	
4.2. Test and Uncertainty Procedure	10
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	
5.1. Technical Details	
5.2. Scope Of Test Program	
5.3. Equipment Model(s) and Serial Number(s)	13
5.4. Antenna Details	
5.5. Cabling and I/O Ports	
5.6. Test Configurations	
5.7. Equipment Modifications	14
5.8. Deviations from the Test Standard	14
6. TEST SUMMARY	15
7. TEST EQUIPMENT CONFIGURATION(S)	
7.1. Conducted	
7.2. Radiated Emissions - 3m Chamber	18
8. MEASUREMENT AND PRESENTATION OF TEST DATA	
9. TEST RESULTS	22
9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth	22 22
9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power	22 22 25
9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Power Spectral Density	22 22 25 29
9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Power Spectral Density 9.4. Emissions	22 22 25 29 32
9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Power Spectral Density 9.4. Emissions 9.4.1. Conducted Emissions	22 25 29 32 32
9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Power Spectral Density 9.4. Emissions 9.4.1. Conducted Emissions 9.4.1.1. Conducted Spurious Emissions	22 25 29 32 32 32
9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Power Spectral Density 9.4. Emissions 9.4.1. Conducted Emissions 9.4.1.1. Conducted Spurious Emissions 9.4.1.2. Conducted Band-Edge Emissions	22 25 29 32 32 32 35
9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Power Spectral Density 9.4. Emissions 9.4.1. Conducted Emissions 9.4.1.1. Conducted Spurious Emissions 9.4.1.2. Conducted Band-Edge Emissions 9.4.2. Radiated Emissions	22 25 29 32 32 32 35 40
 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Power Spectral Density 9.4. Emissions 9.4.1. Conducted Emissions 9.4.1.1. Conducted Spurious Emissions 9.4.1.2. Conducted Band-Edge Emissions 9.4.2. Radiated Emissions 9.4.2.3. TX Spurious & Restricted Band Emissions 	22 25 29 32 32 35 40 40
 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Power Spectral Density 9.4. Emissions 9.4.1. Conducted Emissions 9.4.1.1. Conducted Spurious Emissions 9.4.1.2. Conducted Band-Edge Emissions 9.4.2.3. TX Spurious & Restricted Band Emissions 9.4.2.4. Restricted Edge & Band-Edge Emissions 	22 25 29 32 32 35 40 40 40
 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Power Spectral Density 9.4. Emissions 9.4.1. Conducted Emissions 9.4.1.1. Conducted Spurious Emissions 9.4.1.2. Conducted Band-Edge Emissions 9.4.2. Radiated Emissions 9.4.2.3. TX Spurious & Restricted Band Emissions 9.4.2.4. Restricted Edge & Band-Edge Emissions 9.4.2.4. Restricted Edge & Band-Edge Emissions 	22 25 29 32 32 35 40 40 40 40 40 40
 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Power Spectral Density 9.4. Emissions 9.4.1. Conducted Emissions 9.4.1.1. Conducted Spurious Emissions 9.4.1.2. Conducted Band-Edge Emissions 9.4.2.3. TX Spurious & Restricted Band Emissions 9.4.2.4. Restricted Edge & Band-Edge Emissions 9.4.2.6. GRAPHICAL IMAGES A.1. 6 dB & 99% Bandwidth 	22 25 29 32 32 35 40 40 40 40 40 40 40 40 53
 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Power Spectral Density 9.4. Emissions 9.4.1. Conducted Emissions 9.4.1.1. Conducted Spurious Emissions 9.4.1.2. Conducted Band-Edge Emissions 9.4.2. Radiated Emissions 9.4.2.3. TX Spurious & Restricted Band Emissions 9.4.2.4. Restricted Edge & Band-Edge Emissions 9.4.2.4. Restricted Edge & Band-Edge Emissions 	22 25 29 32 32 35 40 40 40 40 40 40 53 59
 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Power Spectral Density 9.4. Emissions 9.4.1. Conducted Emissions 9.4.1.1. Conducted Spurious Emissions 9.4.1.2. Conducted Band-Edge Emissions 9.4.2.3. TX Spurious & Restricted Band Emissions 9.4.2.4. Restricted Edge & Band-Edge Emissions 9.4.2.4. Restricted Edge & Band-Edge Emissions 9.4.2.5. TX Spurious & Restricted Band Emissions 9.4.2.6. Restricted Edge & Band-Edge Emissions 9.4.2.7. Restricted Edge & Band-Edge Emissions 9.4.2.8. Restricted Edge & Band-Edge Emissions 9.4.2.9. Power Spectral Density 	22 25 29 32 32 35 40 40 40 40 40 40 53 59 71
 9. TEST RESULTS	22 25 29 32 32 35 40 40 40 40 40 53 59 71
 9. TEST RESULTS	22 25 29 32 32 32 35 40 40 40 40 53 59 71 71
 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Power Spectral Density 9.4. Emissions 9.4.1. Conducted Emissions 9.4.1.1. Conducted Spurious Emissions 9.4.1.2. Conducted Band-Edge Emissions 9.4.2.3. TX Spurious & Restricted Band Emissions 9.4.2.4. Restricted Edge & Band-Edge Emissions 9.4.2.5. TX Spurious & Restricted Band Emissions 9.4.2.6. Restricted Edge & Band-Edge Emissions 9.4.2.7. Restricted Edge & Band-Edge Emissions 9.4.2.8. Restricted Edge & Band-Edge Emissions 9.4.2.9. Conducted Emissions A.1.6 dB & 99% Bandwidth A.2. Power Spectral Density A.3. Emissions A.3.1.1. Conducted Spurious Emissions A.3.1.2. Conducted Band-Edge Emissions A.3.2. Radiated Emissions 	22 25 29 32 32 32 32 35 40 40 40 40 40 40 53 59 71 71 71 71 71 71
 9. TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Power Spectral Density 9.4. Emissions 9.4.1. Conducted Emissions 9.4.1.1. Conducted Spurious Emissions 9.4.1.2. Conducted Band-Edge Emissions 9.4.2.3. TX Spurious & Restricted Band Emissions 9.4.2.4. Restricted Edge & Band-Edge Emissions 9.4.2.4. Restricted Edge & Band-Edge Emissions 9.4.2.6 GRAPHICAL IMAGES A.1. 6 dB & 99% Bandwidth A.2. Power Spectral Density A.3. Emissions A.3.1.1. Conducted Emissions A.3.1.2. Conducted Band-Edge Emissions 	22 25 29 32 35 40 40 53 59 71 71 71 71 71 71 71

 Title:
 Rockwell Collins IMS-6010

 To:
 FCC 15.247 (DTS) & ISED RSS-247

 Serial #:
 ROCK28–U2 Rev A

 Issue Date:
 20th June 2018

 Page:
 4 of 89

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Innovation, Science and Economic Development (ISED)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	Europe European Commission		EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	САВ	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	САВ	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	САВ	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA – European Union Mutual Recognition Agreement.

NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II - recognition for both product testing and certification

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This product certification body also meets the A2LA R322 – Specific Requirements – Notified Body Accreditation Requirements and A2LA R308 - Specific Requirements - ISO-IEC 17065 - Telecommunication Certification Body Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 14th day of May 2018

President and CEO For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2019

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

2. DOCUMENT HISTORY

Document History						
Revision	Date	Comments				
Draft	15 th June 2018	Draft report for client review.				
Rev A	20 th June 2018	Initial Release. The scope of testing for this program and report is limited to 802.11n HT20 and HT40 modes which are now available on the product. These modes were not available when the product was originally tested in 802.11b and 11g modes by MiCOM Labs. Results of original testing of the product are reported in MiCOM Labs Report MIKO05-U3 Rev A referenced below. This report is issued as an addendum to test report MIKO05-U3 Rev A.				
Test report initially issued	Test report initially issued as: ROCK05-U3 Rev A Rockwell Collins IMS-6010 FCC 15.247					
Rev A	12 th March 2015	Initial release. Product testing limited to 802.11b and 11g modes.				

3. TEST RESULT CERTIFICATE

Manufacturer:	Rockwell Collins 400 Collins Road NE Cedar Rapids, IA 52498 USA	Tested By:	MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA
Model:	IMS-6010	Telephone:	+1 925 462 0304
Type Of Equipment:	Wireless connectivity for aircraft systems	Fax:	+1 925 462 0306
S/N's:	40D9YKT		
Test Date(s):	06 th – 11 th June 2018	Website:	www.micomlabs.com

STANDARD(S)

FCC 15.247 (DTS) & ISED RSS-247

TEST RESULTS

EQUIPMENT COMPLIES

ACCREDITED

TESTING CERT #2381.01

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Gordon Hurst President & CEO MiCOM Labs, Inc.

4. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911 D01 & D02	Oct 31 2013	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band
II	KDB 558074 D01 v04	5th April 2017	Guidance for performing compliance measurements on Digital Transmission Systems (DTS) operating under section 15.247.
Ш	A2LA	August 2017	R105 - Requirement's When Making Reference to A2LA Accreditation Status
IV	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
V	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VI	CISPR 32	2015	Electromagnetic compatibility of multimedia equipment - Emission requirements
VII	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VIII	FCC 47 CFR Part 15.247	2016	Radio Frequency Devices; Subpart C – Intentional Radiators
IX	ICES-003	Issue 6 Jan 2016; Updated April 2017	Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.
X	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
XI	RSS-247 Issue 2	Feb 2017	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XII	RSS-Gen Issue 5	April 2018	General Requirements for Compliance of Radio Apparatus
XIII	FCC 47 CFR Part 2.1033	2016	FCC requirements and rules regarding photographs and test setup diagrams.
XIV	KDB 789033 D02 V02r01	14th December, 2017	Guidelines For Compliance Testing Of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the Rockwell Collins IMS-6010 to FCC 15.247 (DTS) &
	ISED RSS-247.
Applicant	Radio Frequency Devices; Subpart C – Intentional Radiators
Applicant:	Rockwell Collins 400 Collins Road NE
	Cedar Rapids, IA 52498
	USA
	Same as applicant
Laboratory performing the tests:	
	575 Boulder Court
	Pleasanton California 94566 USA
Test report reference number:	
Date EUT received:	
Standard(s) applied:	FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
Dates of test (from - to):	
No of Units Tested:	
Product Trade Name:	
	IMS-6010
Location for use:	
Declared Frequency Range(s):	
	Per 802.11 –CCK, BPSK, QPSK, DSSS, OFDM
EUT Modes of Operation:	
	802.11b; 802.11g; 802.11HT-20; 802.11HT-40
Declared Nominal Output Power (dBm):	
Transmit/Receive Operation:	
Rated Input Voltage and Current:	
Operating Temperature Range:	, i i i i i i i i i i i i i i i i i i i
ITU Emission Designator:	11b - 16M0G1D
	11g - 18M8D1D 11n HT20 – 17M6D1D
	11 n HT40 - 36M9D1D
Equipment Dimensions:	
Weight:	
Hardware Rev:	
	IMSOS - 810-0334-XXX
	IMSA - 810-0331-XXX

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

5.2. Scope Of Test Program

Rockwell Collins IMS-6010

The scope of the test program was to test the Rockwell Collins IMS-6010 802.11n HT-20 and HT-40 configurations in the frequency ranges 2400 - 2483.5 MHz; for compliance against the following specification:

FCC CFR 47 Part 15 Subpart C 15.247 (DTS) and ISED RSS-247.

Radio Frequency Devices; Subpart C – Intentional Radiators

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Rockwell Collins IMS-6010

5.3. Equipment Model(s) and Serial Number(s)

Model: IMS-6010, Serial Number: 40D9YKT

5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
external	Sensor Systems, Inc.	865- 5366-715	Dipole	0.0	-	360	-	2400 - 2483.5
external	Sensor Systems, Inc.	865- 5366-71S	Dipole	4.8	-	360	-	2400 - 2483.5
BF Gain - Beamforming Gain Dir BW - Directional BeamWidth X-Pol - Cross Polarization								

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# Of Ports	Screened	Conn Type	Data Type
Ethernet	100m	8	Y	Aircraft Specific	Aircraft Specific
USB	15m	1	N	USB	USB
Antenna	>10m	!	Y	TNC	RF

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational Mode(s)	Data Rate with Highest Power	Channel Frequency (MHz)					
(802.11a/b/g/n/ac)	MBit/s	Low Mid High					
	2400 - 2483.5 MHz						
HT-20	6.5	2,412.00	2,437.00	2,462.00			
HT-40	13.5	2,422.00	2,437.00	2,452.00			

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

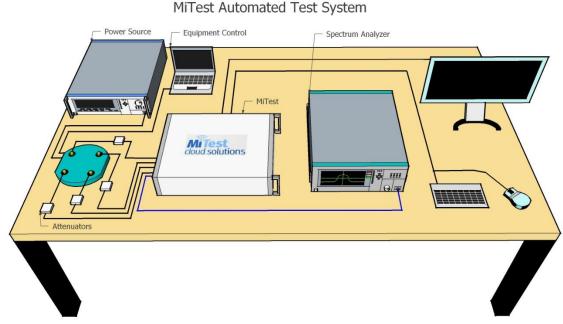
5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

6. TEST SUMMARY

List of Measurements		
Test Header	Result	Data Link
6 dB & 99% Bandwidth	Complies	View Data
Conducted Output Power	Complies	View Data
Power Spectral Density	Complies	View Data
Emissions	Complies	-
(1) Conducted Emissions	Complies	-
(i) Conducted Spurious Emissions	Complies	View Data
(ii) Conducted Band-Edge Emissions	Complies	View Data
(2) Radiated Emissions	Complies	-
(i) TX Spurious & Restricted Band Emissions	Reference ROO	CK05-U3 Rev A
(ii) Restricted Edge & Band-Edge Emissions	Complies	View Data
(3) Digital Emissions (0.03 - 1 GHz)		
(4) AC Wireline Emissions	- Reference ROCK05-U3 Rev A	
Maximum Permissible Exposure	Reference ROC	SKUD-US KEV A
RF Unique Connector		



7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Conducted

Conducted RF Emission Test Set-up(s). The following tests were performed using the conducted test setup shown in the diagram below.

- 1. Occupied channel bandwidth
- 2. RF Output Power
- 3. Power density
- 4. Conducted Spurious Emissions
- 5. Receiver spurious emissions

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

 Title:
 Rockwell

 To:
 FCC 15.24

 Serial #:
 ROCK28

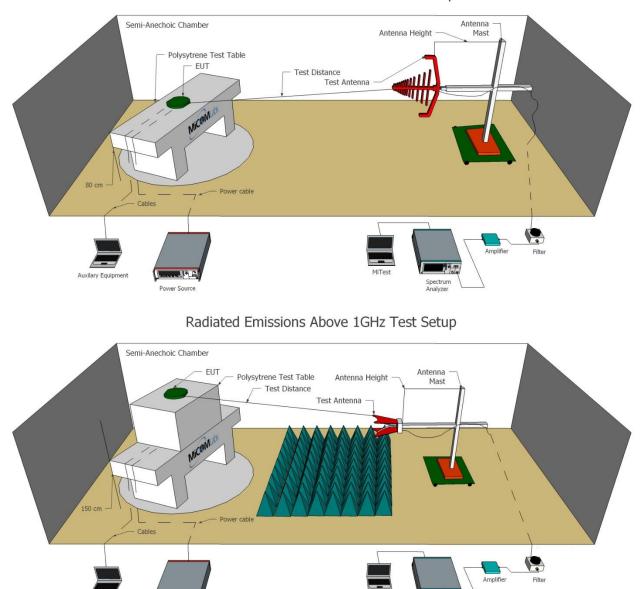
 Issue Date:
 20th June

 Page:
 17 of 89

Rockwell Collins IMS-6010 FCC 15.247 (DTS) & ISED RSS-247 ROCK28–U2 Rev A 20th June 2018 17 of 89

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
127	Power Supply	HP	6674A	US36370530	Cal when used
248	Resistance Thermometer	Thermotronics	GR2105-02	9340 #1	30 Oct 2018
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2018
398	MiTest RF Conducted Test Software	MiCOM	MiTest ATS	Version 4.1	Not Required
419	Laptop with Labview Software	Lenova	W520	TS02	Not Required
420	USB to GPIB Interface	National Instruments	GPIB-USB HS	1346738	Not Required
440	USB Wideband Power Sensor	Boonton	55006	9178	22 Sep 2018
442	USB Wideband Power Sensor	Boonton	55006	9181	6 Oct 2018
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
460	Dell Computer with installation of MiTest executable.	Dell	Optiplex330	BC944G1	Not Required
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	20 Sep 2018
493	USB Wideband Power Sensor	Boonton	55006	9634	10 Sep 2018
494	USB Wideband Power Sensor	Boonton	55006	9726	10 Sep 2018
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2018
512	MiTest Cloud Solutions RF Test Box	MiCOM	2nd Gen with DFS	512	22 Jun 2018
74	Environmental Chamber Chamber 3	Tenney	ттс	12808-1	28 Sep 2018
RF#2 GPIB#1	GPIB cable to Power Supply	HP	GPIB	None	Not Required
RF#2 SMA#1	EUT to Mitest box port 1	Flexco	SMA Cable port1	None	22 Jun 2018
RF#2 SMA#2	EUT to Mitest box port 2	Flexco	SMA Cable port2	None	22 Jun 2018
RF#2 SMA#3	EUT to Mitest box port 3	Flexco	SMA Cable port3	None	22 Jun 2018
RF#2 SMA#4	EUT to Mitest box port 4	Flexco	SMA Cable port4	None	22 Jun 2018
RF#2 SMA#SA	Mitest box to SA	Flexco	SMA Cable SA	None	22 Jun 2018
RF#2 USB#1	USB Cable to Mitest Box	Dynex	USB Cable	None	Not Required

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


7.2. Radiated Emissions - 3m Chamber

Auxilary Equipment

Power Source

The following tests were performed using the radiated test set-up shown in the diagram below.

Radiated Emissions Below 1GHz Test Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Spectrum Analyzer

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
298	3M Radiated Emissions Chamber Maintenance Check	MiCOM	3M Chamber	298	27 Jul 2018
330	Variac 0-280 Vac	Staco Energy Co	3PN1020B	0546	Cal when used
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	4 Apr 2019
373	26III RMS Multimeter	Fluke	Fluke 26 series III	76080720	21 Sep 2018
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2018
396	2.4 GHz Notch Filter	Microtronics	BRM50701	001	6 Oct 2018
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	12 Oct 2018
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	12 Oct 2018
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	12 Oct 2018
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	4 Oct 2018
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	4 Oct 2018
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	4 Oct 2018
467	2495 to 2650 MHz notch filter	MicroTronics	BRM50709	011	6 Oct 2018
480	Cable - Bulkhead to	SRC Haverhill	157-3050360	480	6 Oct 2018

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

	Amp				
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	6 Oct 2018
482	Cable - Amp to Antenna	SRC Haverhill	157-3051574	482	6 Oct 2018
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2018
87	Uninterruptible Power Supply	Falcon Electric	ED2000-1/2LC	F3471 02/01	Cal when used

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

9. TEST RESULTS

9.1. 6 dB & 99% Bandwidth

Conducted Test Conditions for 6 dB and 99% Bandwidth							
Standard:	FCC CFR 47:15.247 & IC RSS-247	Ambient Temp. (°C):	24.0 - 27.5				
Test Heading:	6 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.247 (a)(2) & RSS-247 (5.2)	Pressure (mBars):	999 - 1001				
Reference Document(s):	See Normative References						

Test Procedure for 6 dB and 99% Bandwidth Measurement

The bandwidth at 6 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 6 dB and 99% Bandwidth

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(2) Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11n HT-20	Duty Cycle (%):	99
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	OC
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured 6 dB Bandwidth (MHz) Port(s)				6 dB Bandv	width (MHz)	Limit	Lowest Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2412.0	<u>17.555</u>				17.555	17.555	≥500.0	-17.06
2437.0	<u>17.635</u>				17.635	17.635	≥500.0	-17.14
2462.0	<u>17.635</u>				17.635	17.635	≥500.0	-17.14

Test Frequency	Measured 99% Bandwidth (MHz) Port(s)				Maximum 99% Bandwidth	
MHz	а	b	С	d	(MHz)	
2412.0	<u>22.124</u>				22.124	
2437.0	<u>20.521</u>				20.521	
2462.0	<u>21.082</u>				21.082	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11n HT-40	Duty Cycle (%):	99
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	OC
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured 6 dB Bandwidth (MHz) Port(s)				6 dB Bandv	width (MHz)	Limit	Lowest Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2422.0	<u>36.393</u>				36.393	36.393	≥500.0	-35.89
2437.0	<u>36.393</u>				36.393	36.393	≥500.0	-35.89
2452.0	<u>36.072</u>				36.072	36.072	≥500.0	-35.57

Test Frequency	Measured 99% Bandwidth (MHz) Port(s)				Maximum 99% Bandwidth	
MHz	а	b	C	d	(MHz)	
2422.0	<u>37.836</u>				37.836	
2437.0	<u>38.477</u>				38.477	
2452.0	<u>39.439</u>				39.439	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

9.2. Conducted Output Power

Conducted Test Conditions for Fundamental Emission Output Power							
Standard:	FCC CFR 47:15.247 & IC RSS-247	Ambient Temp. (°C):	24.0 - 27.5				
Test Heading:	Output Power	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.247 (b) & (c) & RSS-247 (5.4)	Pressure (mBars):	999 - 1001				
Reference Document(s):	See Normative References						

Test Procedure for Fundamental Emission Output Power Measurement In the case of average power measurements an average power sensor was utilized.

For peak power measurements the spectrum analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Testing was performed under ambient conditions at nominal voltage only. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured, summed (Σ) and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document. Supporting Information

Calculated Power = A + G + Y+ 10 log (1/x) dBm

A = Total Power $[10^{*}Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})]$

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits for Fundamental Emission Output Power

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following for non-frequency hopping systems:

(3) For systems using digital modulation in the 902-928 MHz and 2400-2483.5 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

(i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

(iii) Fixed, point-to-point operation, as used in paragraphs (c)(1)(i) and (c)(1)(ii) of this section, excludes the use of point-tomultipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

instructions informing the operator and the installer of this responsibility.

(2) In addition to the provisions in paragraphs (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

(i) Different information must be transmitted to each receiver.

(ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:

(A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

(B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.

(iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section and the provent of the power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.

(iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

Equipment Configuration for Peak Output Power						
Variant: 802.11n HT-20 Duty Cycle (%): 99.0						
6.50 MBit/s	Antenna Gain (dBi):	0.00				
OFDM	Beam Forming Gain (Y)(dB):	Not Applicable				
Not Applicable Tested By: OC						
Reduced power due to TX Conducted Bandedge						
	802.11n HT-20 6.50 MBit/s OFDM Not Applicable	802.11n HT-20 Duty Cycle (%): 6.50 MBit/s Antenna Gain (dBi): OFDM Beam Forming Gain (Y)(dB): Not Applicable Tested By:				

Test Measurement Results

Test Frequency	N	leasured Outp Por	ut Power (dBn rt(s)	n)	Calculated Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	
2412.0	17.54				17.54	30.00	-12.46	24.00
2437.0	17.61				17.61	30.00	-12.39	24.00
2462.0	18.08				18.08	30.00	-11.92	24.00

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-01 MEASURING RF OUTPUT POWER

 Measurement Uncertainty:
 ±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Equipment Configuration for Peak Output Power								
Variant:	802.11n HT-40	Duty Cycle (%):	99.0					
Data Rate:	13.50 MBit/s	0.00						
Modulation:	: OFDM Beam Forming Gain (Y)(dB): Not Applicable							
TPC:	Not Applicable Tested By: OC							
Engineering Test Notes:	Reduced power due to TX Radiated Bandedge							

Test Measurement Results

Test Frequency	N	leasured Outp Por	ut Power (dBn t(s)	n)	Calculated Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	3
2422.0	15.66				15.66	30.00	-14.34	22.50
2437.0	16.04				16.04	30.00	-13.96	22.50
2452.0	16.71				16.71	30.00	-13.29	22.50

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-01 MEASURING RF OUTPUT POWER

 Measurement Uncertainty:
 ±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

9.3. Power Spectral Density

Conducted Test Conditions for Power Spectral Density								
Standard:	FCC CFR 47:15.247 & IC RSS-247	Ambient Temp. (°C):	24.0 - 27.5					
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45					
Standard Section(s):	15.247 (e) & RSS-247 (5.2)	Pressure (mBars):	999 - 1001					
Reference Document(s):	See Normative References							

Test Procedure for Power Spectral Density

The transmitter output was connected to a spectrum analyzer and the measured made in a 3 kHz resolution bandwidth using the analyzer auto-coupled sweep-time. A peak value was found over the full emission bandwidth and the spectrum downloaded for post processing purposes.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. The Peak Power Spectral Density is the highest level found across the emission bandwidth. With multiple antenna port measurements the numerical analyzer data from each port is summed (å) and a link to this additional graphic is provided.

Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with multiple transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 0 is summed with that in the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were post processed and the resulting numerical and graphical data presented.

NOTE:

It may be observed that the spectrum in some antenna port plots break the limit line however this in itself does NOT constitute a failure. In all cases a spectrum summation plot is provided in order to prove compliance. A failure occurs only after the summation of all spectrum plots have been summed and are found to be greater than the limit line.

Supporting Information

Calculated Power = A + 10 log (1/x) dBm A = Total Power Spectral Density [10 Log10 ($10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10}$)] x = Duty Cycle

Limits Power Spectral Density

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Equipment Configuration for Power Spectral Density - Peak								
802.11n HT-20	Duty Cycle (%):	99.0						
6.50 MBit/s	Antenna Gain (dBi):	0.00						
OFDM	Beam Forming Gain (Y)(dB):	Not Applicable						
Not Applicable	Tested By:	OC						
	802.11n HT-20 6.50 MBit/s OFDM	802.11n HT-20 Duty Cycle (%): 6.50 MBit/s Antenna Gain (dBi): OFDM Beam Forming Gain (Y)(dB):						

Test Frequency	CY Measured Power Spectral Density CY Port(s) (dBm/3KHz)					Limit	Margin
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2412.0	<u>-8.262</u>				<u>-8.262</u>	8.0	-16.3
2437.0	<u>-8.696</u>				<u>-8.696</u>	8.0	-16.7
2462.0	<u>-6.123</u>				<u>-6.123</u>	8.0	-14.1

 Work Instruction:
 WI-03 MEASURING RF SPECTRUM MASK

 Measurement Uncertainty:
 ±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Power Spectral Density - Peak							
Variant: 802.11n HT-40 Duty Cycle (%): 99.0							
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	0.00				
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable				
TPC:	Not Applicable	Tested By:	OC				
Engineering Test Notes:							

Test Measurement Results

Test	Test Measured Power Spectral Density					Limit	Margin
Frequency	Port(s) (dBm/3KHz)				Summation	Linin	wargin
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2422.0	<u>-14.645</u>				<u>-14.645</u>	8.0	-22.6
2437.0	<u>-11.364</u>				<u>-11.364</u>	8.0	-19.4
2452.0	<u>-8.476</u>				<u>-8.476</u>	8.0	-16.5

 Work Instruction:
 WI-03 MEASURING RF SPECTRUM MASK

 Measurement Uncertainty:
 ±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

9.4. Emissions

9.4.1. Conducted Emissions

9.4.1.1. Conducted Spurious Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions								
Standard:	Ambient Temp. (ºC):	24.0 - 27.5						
Test Heading:	Max Unwanted Emission Levels	Rel. Humidity (%):	32 - 45					
Standard Section(s):	15.247 (d) & RSS-247 (5.5) Pressure (mBars): 999 - 1001							
Reference Document(s):	See Normative References							

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Equipment Configuration for Conducted Spurious Emissions - Peak					
Variant:	802.11n HT-20	Duty Cycle (%):	99		
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	Not Applicable		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable	Tested By:	OC		
Engineering Test Notes:					

Test Measurement Results

Test	Frequency			Conduct	ed Spurious	Emissions - Peak (dBm)			
Frequency	Range	P	ort a	Po	rt b	Po	rt c	Po	rt d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
2412.0	30.0 - 26000.0	<u>-45.004</u>	-14.15						
2437.0	30.0 - 26000.0	-44.250	-14.40						
2462.0	30.0 - 26000.0	<u>-44.443</u>	-15.01						

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Conducted Spurious Emissions - Peak					
Variant:	802.11n HT-40	Duty Cycle (%):	99		
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	Not Applicable		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable	Tested By:	OC		
Engineering Test Notes:					

Test Measurement Results

Frequency			Conducted Spurious Emissions - Peak (dBm)					
Range	P	ort a	Po	rt b	Po	rt c	Po	rt d
MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
30.0 - 26000.0	<u>-44.548</u>	-18.63						
30.0 - 26000.0	<u>-43.805</u>	-17.95						
30.0 - 26000.0	<u>-45.033</u>	-17.45						
	Range MHz 30.0 - 26000.0 30.0 - 26000.0	Range P MHz SE 30.0 - 26000.0 -44.548 30.0 - 26000.0 -43.805	Range Point MHz SE Limit 30.0 - 26000.0 -44.548 -18.63 30.0 - 26000.0 -43.805 -17.95	Range Port a Po MHz SE Limit SE 30.0 - 26000.0 -44.548 -18.63 - 30.0 - 26000.0 -43.805 -17.95 -	Range Port a Port b MHz SE Limit SE Limit 30.0 - 26000.0 -44.548 -18.63 -17.95 -17.95	Range Port a Port b Port b MHz SE Limit SE Limit SE 30.0 - 26000.0 -44.548 -18.63	Range Port a Port b Port c MHz SE Limit SE Limit SE Limit 30.0 - 26000.0 -44.548 -18.63 -17.95 -17	Range Port a Port b Port c Port b MHz SE Limit SE Limit SE Limit SE SE

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

9.4.1.2. Conducted Band-Edge Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions					
Standard:	FCC CFR 47:15.247 & IC RSS-247	Ambient Temp. (ºC):	24.0 - 27.5		
Test Heading:	Max Unwanted Emission Levels	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.247 (d) & RSS-247 (5.5)	Pressure (mBars):	999 - 1001		
Reference Document(s):	See Normative References				

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Equipment Configuration for Conducted Low Band-Edge Emissions - Peak					
Variant:	802.11n HT-20	Duty Cycle (%):	99.0		
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	Not Applicable		
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	OC		
Engineering Test Notes:					
Engineering Test Notes:					

Test Measurement Results

Channel	2412.0 MHz					
Frequency:	2412.0 101112					
Band-Edge	2400.0 MHz					
Frequency:						
Test Frequency	2350 0 - 2422 0 M	2350.0 - 2422.0 MHz				
Range:	2000.0 2422.0 10	112				
	Band	Band-Edge Markers and Limit Revised Limit Margin				
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-13.87</u>	-13.43	2401.08			-1.100

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Conducted Low Band-Edge Emissions - Peak						
802.11n HT-40	Duty Cycle (%):	99.0				
13.50 MBit/s	Antenna Gain (dBi):	Not Applicable				
OFDM	Beam Forming Gain (Y)(dB):	Not Applicable				
Not Applicable	Tested By:	OC				
Engineering Test Notes:						
	802.11n HT-40 13.50 MBit/s OFDM	802.11n HT-40 Duty Cycle (%): 13.50 MBit/s Antenna Gain (dBi): OFDM Beam Forming Gain (Y)(dB):				

Test Measurement Results

Channel	2422.0 MHz					
Frequency:	2422.0 1011 12					
Band-Edge	2400.0 MHz					
Frequency:	2400.0 1011 12					
Test Frequency Range:	2292.0 - 2442.0 M	Hz				
	Band	-Edge Markers and	Limit	Revis	ed Limit	Margin
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	-20.87	-18.02	2402.00			-2.000

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Conducted High Band-Edge Emissions - Peak

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	OC
Engineering Test Notes:			

Test Measurement Results

Channel	2462.0 MHz					
Frequency:	2402.0 101112					
Band-Edge	2483.5 MHz					
Frequency:						
Test Frequency Range:	2452.0 - 2524.0 M	Hz				
	Band-Edge Markers and Limit Revised Limit Margin				Margin	
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-21.43</u>	-12.22	2472.50			-11.000

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Conducted High Band-Edge Emissions - Peak						
OFDM	. ,	11				
Not Applicable	Tested By:					
	· · · ·					
	802.11n HT-40 13.50 MBit/s OFDM	802.11n HT-40 Duty Cycle (%): 13.50 MBit/s Antenna Gain (dBi): OFDM Beam Forming Gain (Y)(dB):				

Test Measurement Results

Channel	2452.0 MHz					
Frequency:	2452.0 1011 12					
Band-Edge	2483.5 MHz					
Frequency:						
Test Frequency Range:	2432.0 - 2582.0 M	Hz				
Range:					-	
	Band	Band-Edge Markers and Limit Revised Limit Margin				Margin
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-19.79</u>	-17.39	2471.10			-12.400

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

9.4.2. Radiated Emissions

9.4.2.3. TX Spurious & Restricted Band Emissions

9.4.2.4. Restricted Edge & Band-Edge Emissions

Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions (Restricted Bands)						
Ambient Temp. (°C):	20.0 - 24.5					
Radiated Spurious and Band- Edge Emissions 32 - 45						
15.205, 15.209 Pressure (mBars): 999 - 1001						
Test Procedure for Radiated Spurious and Band-Edge Emissions (Restricted Bands) Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned. Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz.						
	Ambient Temp. (°C): Rel. Humidity (%): Pressure (mBars): ons (Restricted Bands) ed in the anechoic chamber at a 3- ded and maximized as a function o he frequency band spanned a noto is relative to the limit are listed for e bove 1 GHz are based on the use of					

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Limits for Restricted Bands Peak emission: 74 dBuV/m

Average emission: 54 dBuV/m

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data. FS = R + AF + CORR - FO

where:

FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL - AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

Example:

Given receiver input reading of 51.5 dBmV; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength (FS) of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 +1 = 36.3 dBmV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows: Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100 mV/m 48 dBmV/m = 250 mV/m **Restricted Bands of Operation (15.205)** (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Frequency Band				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
2.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
2.57675-12.57725	322-335.4	3600-4400	Above 38.6	
13.36-13.41				

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to §15.213.

(4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

(6) Transmitters operating under the provisions of subparts D or F of this part.

(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

Radiated Lower Band Edge Emissions.

Sensor Systems, Inc. 865-5366-715; 0dBi Antenna Gain

		Band-Edge Freq	Limit 74.0dBµV/m	Limit 54.0dBµV/m	Power Setting	
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m dBµV/m		Power Setting	
802.11n HT-20	2412.00	2390.00	62.15	47.74	24	
802.11n HT-40	2422.00	2390.00	66.11	50.24	22.5	

Sensor Systems, Inc. 865-5366-71S; 4.8dBi Antenna Gain

		Band-Edge Freq	Limit 74.0dBµV/m	Limit 54.0dBµV/m	Dower Cotting	
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	Power Setting	
802.11n HT-20	2412.00	2390.00	64.10	48.44	24	
802.11n HT-40	2422.00	2390.00	62.40	47.74	22.5	

Note: click the links in the above matrix to view the graphical image (plot).

Sensor Systems, Inc. 865-5366-715 0dBi Antenna Gain

Equipment Configuration for Radiated - Lower Restricted Band-Edge Emissions

Antenna:	Sensor Systems, Inc. 865-5366-715	Variant:	802.11n HT-20
Antenna Gain (dBi):	0.00	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2412.00	Data Rate:	6.50 MBit/s
Power Setting:	24	Tested By:	OC

Test Measurement Results

	2310.00 - 2422.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2389.90	27.93	2.26	31.96	62.15	Max Peak	Horizontal	151	95	74.0	-11.9	Pass
#2	2390.00	13.52	2.26	31.96	47.74	Max Avg	Horizontal	151	95	54.0	-6.3	Pass
#3	2390.00					Restricted- Band						
Test No	tes: 28VDC p	owered, p	placed 150	0cm non-	conductive	e table.						

Equipment Configuration for Radiated - Lower Restricted Band-Edge Emissions								
Antenna:	Sensor Systems, Inc. 865-5366-715	Variant:	802.11n HT-40					
Antenna Gain (dBi):	0.00	Modulation:	OFDM					
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99					
Channel Frequency (MHz):	2422.00	Data Rate:	13.50 MBit/s					
Power Setting:	22.5	Tested By:	OC					

Test Measurement Results

	2310.00 - 2422.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2384.29	31.92	2.26	31.93	66.11	Max Peak	Horizontal	151	52	74.0	-7.9	Pass
#2	2389.23	16.03	2.26	31.95	50.24	Max Avg	Horizontal	151	52	54.0	-3.8	Pass
#3	2390.00					Restricted- Band						
Test No	est Notes: 28VDC powered, placed 150cm non-conductive table.											

Sensor Systems, Inc. 865-5366-71S 4.8dBi Antenna Gain

Equipment Configuration for Radiated - Lower Restricted Band-Edge Emissions

Antenna:	Sensor Systems, Inc. 865- 5366-71S	Variant:	802.11n HT-20
Antenna Gain (dBi):	4.80	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2412.00	Data Rate:	6.50 MBit/s
Power Setting:	24	Tested By:	OC

Test Measurement Results

	2310.00 - 2422.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2388.56	29.89	2.26	31.95	64.10	Max Peak	Horizontal	151	234	74.0	-9.9	Pass
#2	2389.68	14.22	2.26	31.96	48.44	Max Avg	Horizontal	151	234	54.0	-5.6	Pass
#3	2390.00					Restricted- Band						
Test No	tes: 28VDC p	owered, p	est Notes: 28VDC powered, placed 150cm non-conductive table.									

Equipment Configuration for Radiated - Lower Restricted Band-Edge Emissions								
Antenna:	Antenna: Sensor Systems, Inc. 865- 5366-71S Variant:							
Antenna Gain (dBi):	4.80	Modulation:	OFDM					
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99					
Channel Frequency (MHz):	2422.00	Data Rate:	13.50 MBit/s					
Power Setting:	22.5	Tested By:	OC					

Test Measurement Results

	2310.00 - 2422.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2388.11	28.19	2.26	31.95	62.40	Max Peak	Horizontal	151	234	74.0	-11.6	Pass
#2	2389.23	13.53	2.26	31.95	47.74	Max Avg	Horizontal	151	234	54.0	-6.3	Pass
#3	2390.00					Restricted- Band						
Test No	tes: 28VDC p	owered, p	placed 15	0cm non-	conductive	e table.				•		

Radiated Upper Band Edge Emissions.

Sensor Systems, Inc. 865-5366-715; 0dBi Antenna Gain

Sensor Systems,	Inc. 865-5366-715	Band-Edge Freq	Limit 74.0dBµV/m	Limit 54.0dBµV/m	Dower Sotting	
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	Power Setting	
802.11n HT-20	2462.00	2483.50	64.60	48.82	24	
802.11n HT-40	2452.00	2483.50	67.13	52.56	22.5	

Sensor Systems, Inc. 865-5366-71S; 4.8dBi Antenna Gain

Sensor Systems,	Inc. 865-5366-71S	Band-Edge Freq	Limit 74.0dBµV/m	Limit 54.0dBµV/m	Dower Setting	
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	Power Setting	
802.11n HT-20	2462.00	2483.50	68.05	50.62	24	
802.11n HT-40	2452.00	2483.50	63.69	49.46	22.5	

Sensor Systems, Inc. 865-5366-715 0dBi Antenna Gain

Equipment Configuration for Radiated - Upper Restricted Band-Edge Emissions

Antenna:	Sensor Systems, Inc. 865- 5366-715	Variant:	802.11n HT-20
Antenna Gain (dBi):	0.00	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2462.00	Data Rate:	6.50 MBit/s
Power Setting:	24	Tested By:	OC

Test Measurement Results

	2452.00 - 2520.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2483.50	14.24	2.25	32.33	48.82	Max Avg	Horizontal	151	95	54.0	-5.2	Pass
#3	2483.89	30.02	2.25	32.33	64.60	Max Peak	Horizontal	151	95	74.0	-9.4	Pass
#2	2483.50					Restricted- Band						
Test No	est Notes: 28VDC powered, placed 150cm non-conductive table.											

Equipment Configuration for Radiated - Upper Restricted Band-Edge Emissions					
Antenna:	Sensor Systems, Inc. 865- 5366-715	Variant:	802.11n HT-40		
Antenna Gain (dBi):	0.00	Modulation:	OFDM		
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99		
Channel Frequency (MHz):	2452.00	Data Rate:	13.50 MBit/s		
Power Setting:	22.5	Tested By:	OC		

Test Measurement Results

	2452.00 - 2520.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#2	2483.64	17.98	2.25	32.33	52.56	Max Avg	Horizontal	151	52	54.0	-1.4	Pass
#3	2484.57	32.55	2.25	32.33	67.13	Max Peak	Horizontal	151	52	74.0	-6.9	Pass
#1	2483.50					Restricted- Band						
Test No	est Notes: 28VDC powered, placed 150cm non-conductive table.											

Sensor Systems, Inc. 865-5366-71S 4.8dBi Antenna Gain

Equipment Configuration for Radiated - Upper Restricted Band-Edge Emissions

Antenna:	Sensor Systems, Inc. 865- 5366-71S	Variant:	802.11n HT-20
Antenna Gain (dBi):	4.80	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2462.00	Data Rate:	6.50 MBit/s
Power Setting:	24	Tested By:	OC

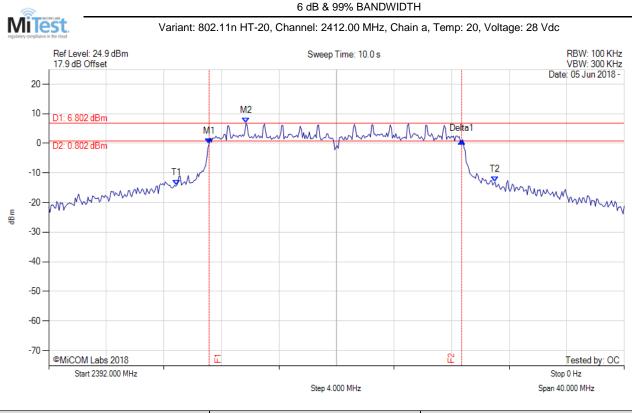
Test Measurement Results

	2452.00 - 2520.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2483.50	16.04	2.25	32.33	50.62	Max Avg	Horizontal	151	234	54.0	-3.4	Pass
#3	2483.62	33.47	2.25	32.33	68.05	Max Peak	Horizontal	151	234	74.0	-6.0	Pass
#2	2483.50					Restricted- Band						
Test No	est Notes: 28VDC powered, placed 150cm non-conductive table.											

Equipment Configuration for Radiated - Upper Restricted Band-Edge Emissions					
Antenna:	Sensor Systems, Inc. 865- 5366-71S	Variant:	802.11n HT-40		
Antenna Gain (dBi):	4.80	Modulation:	OFDM		
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99		
Channel Frequency (MHz):	2452.00	Data Rate:	13.50 MBit/s		
Power Setting:	22.5	Tested By:	OC		

Test Measurement Results

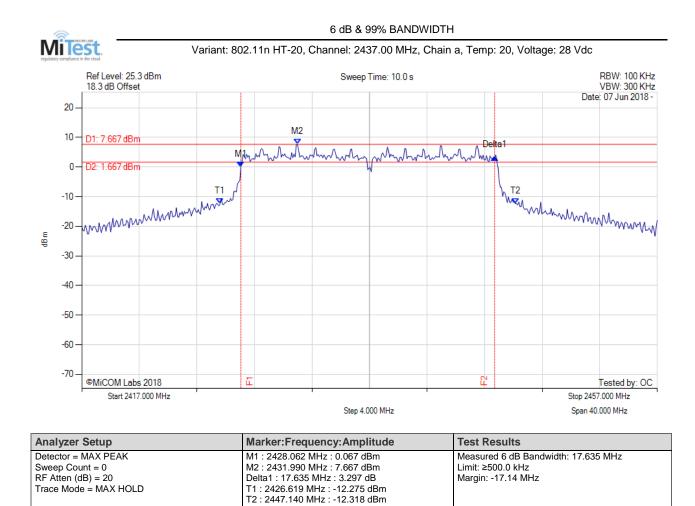
	2452.00 - 2520.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#2	2484.02	14.88	2.25	32.33	49.46	Max Avg	Horizontal	151	234	54.0	-4.5	Pass
#3	2484.84	29.11	2.25	32.33	63.69	Max Peak	Horizontal	151	234	74.0	-10.3	Pass
#1	2483.50					Restricted- Band						
Test No	est Notes: 28VDC powered, placed 150cm non-conductive table.											


A. APPENDIX - GRAPHICAL IMAGES

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

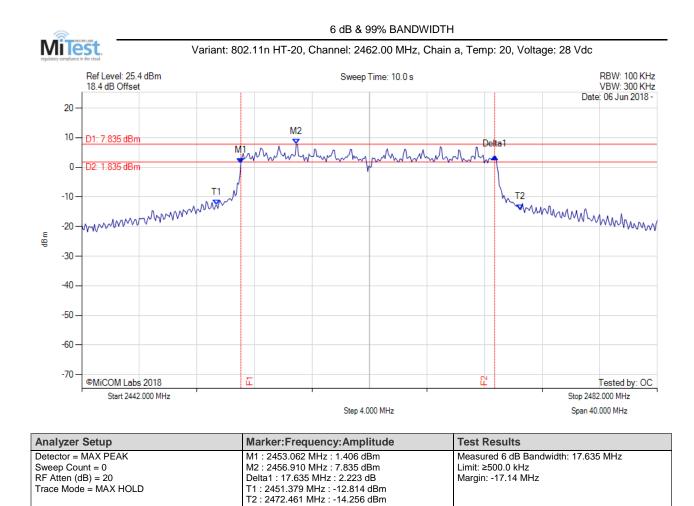
A.1. 6 dB & 99% Bandwidth



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2403.142 MHz : -0.127 dBm	Measured 6 dB Bandwidth: 17.555 MHz
Sweep Count = 0	M2 : 2405.707 MHz : 6.802 dBm	Limit: ≥500.0 kHz
RF Atten (dB) = 20	Delta1 : 17.555 MHz : 0.990 dB	Margin: -17.06 MHz
Trace Mode = MAX HOLD	T1 : 2400.898 MHz : -14.144 dBm	
	T2 : 2423.022 MHz : -13.040 dBm	
	OBW : 22.124 MHz	

back to matrix

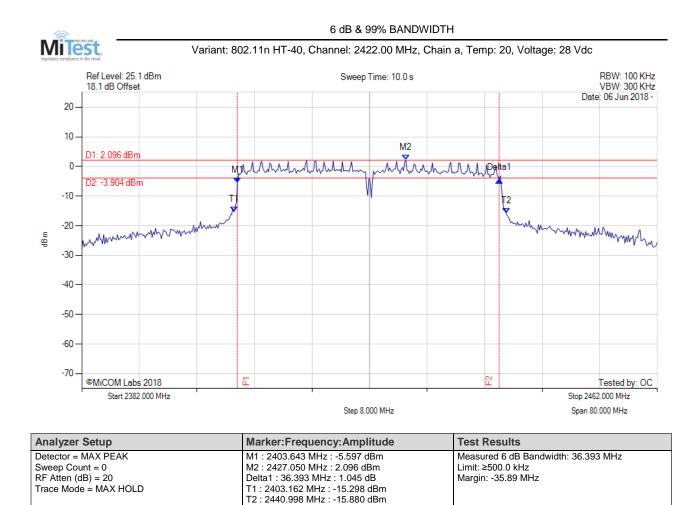
Title:Rockwell Collins IMS-6010To:FCC 15.247 (DTS) & ISED RSS-247Serial #:ROCK28–U2 Rev AIssue Date:20th June 2018Page:54 of 89



OBW : 20.521 MHz

back to matrix

Title:Rockwell Collins IMS-6010To:FCC 15.247 (DTS) & ISED RSS-247Serial #:ROCK28–U2 Rev AIssue Date:20th June 2018Page:55 of 89



OBW : 21.082 MHz

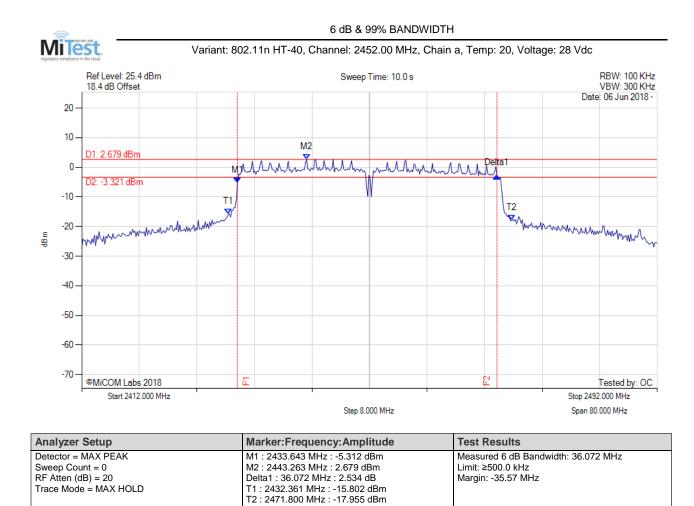
back to matrix

Title:Rockwell Collins IMS-6010To:FCC 15.247 (DTS) & ISED RSS-247Serial #:ROCK28–U2 Rev AIssue Date:20th June 2018Page:56 of 89

OBW : 37.836 MHz

back to matrix

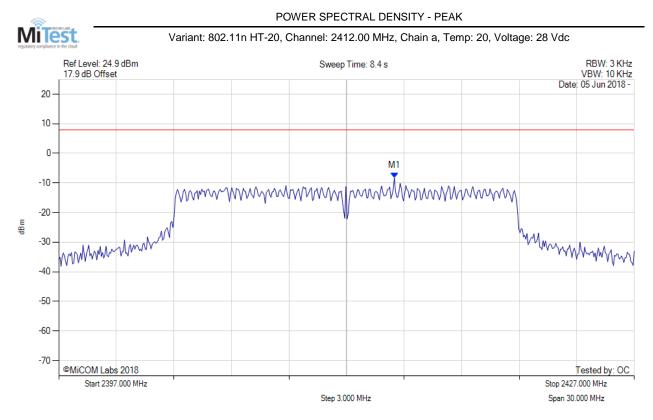
Title:Rockwell Collins IMS-6010To:FCC 15.247 (DTS) & ISED RSS-247Serial #:ROCK28–U2 Rev AIssue Date:20th June 2018Page:57 of 89



OBW : 38.477 MHz

back to matrix

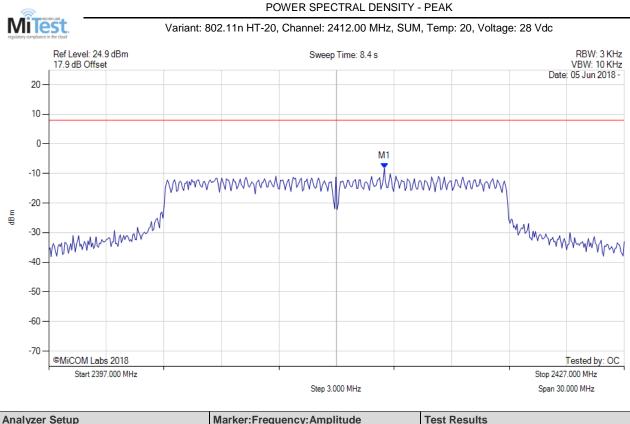
Title:Rockwell Collins IMS-6010To:FCC 15.247 (DTS) & ISED RSS-247Serial #:ROCK28–U2 Rev AIssue Date:20th June 2018Page:58 of 89



OBW : 39.439 MHz

back to matrix

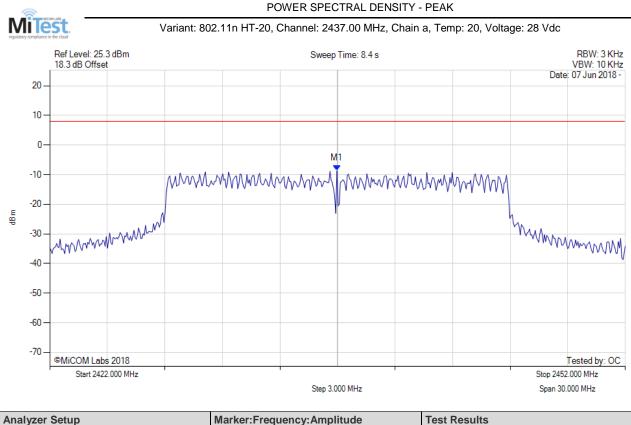
A.2. Power Spectral Density



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2414.495 MHz : -8.262 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		Margin: 16.26 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

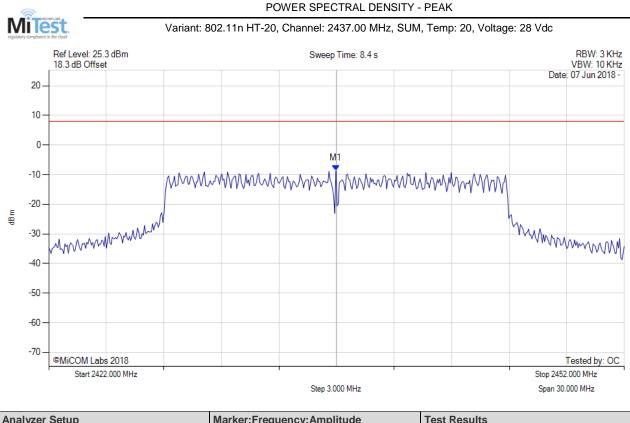
Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 60 of 89



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2414.495 MHz : -8.262 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0		Margin: -16.3 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

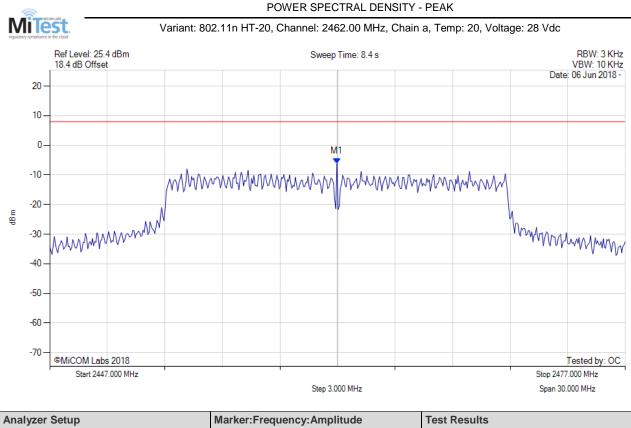
Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 61 of 89



Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 2436.970 MHz : -8.696 dBm	Limit: ≤ 8.000 dBm	
Sweep Count = 0		Margin: 16.70 dB	
RF Atten (dB) = 20			
Trace Mode = VIEW			

back to matrix

Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 62 of 89



Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 2436.970 MHz : -8.696 dBm	Limit: ≤ 8.0 dBm	
Sweep Count = 0		Margin: -16.7 dB	
RF Atten (dB) = 20			
Trace Mode = VIEW			

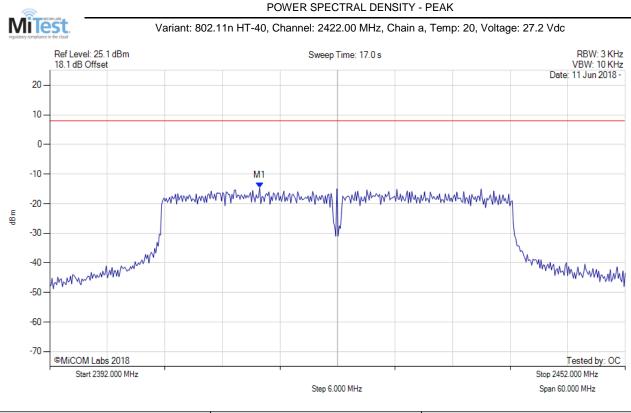
back to matrix

Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 63 of 89

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2461.970 MHz : -6.123 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		Margin: 14.12 dB
RF Atten (dB) = 20		-
Trace Mode = VIEW		

back to matrix

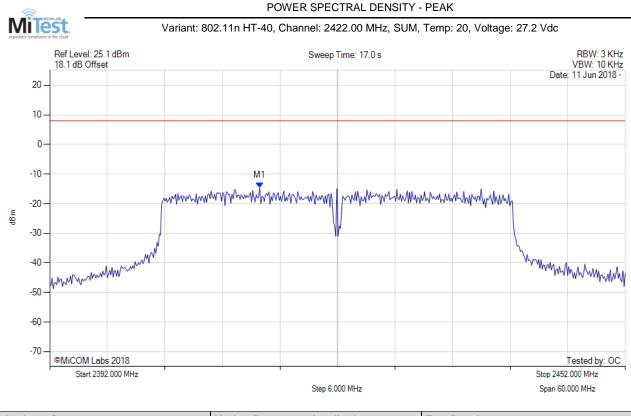
Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 64 of 89



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2461.970 MHz : -6.123 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0		Margin: -14.1 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

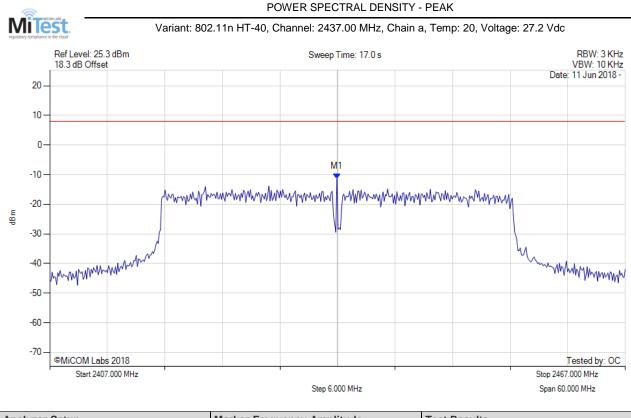
Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 65 of 89



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2413.884 MHz : -14.645 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		Margin: 22.65 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

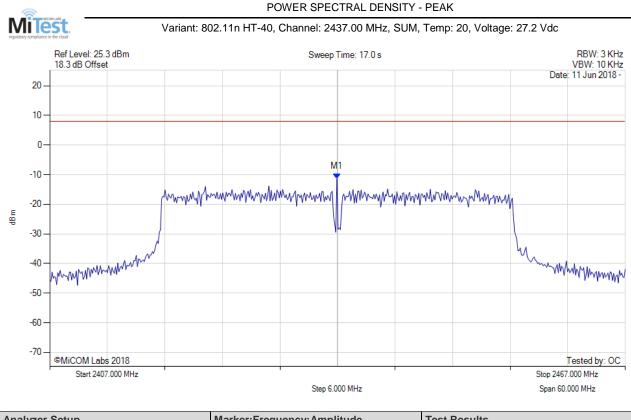
Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 66 of 89



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2413.884 MHz : -14.645 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0		Margin: -22.6 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

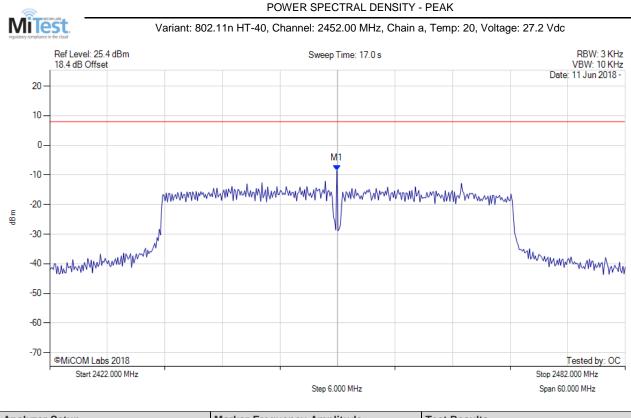
Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 67 of 89



Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 2436.940 MHz : -11.364 dBm	Limit: ≤ 8.000 dBm	
Sweep Count = 0		Margin: 19.36 dB	
RF Atten (dB) = 20			
Trace Mode = VIEW			

back to matrix

Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 68 of 89



Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 2436.940 MHz : -11.364 dBm	Limit: ≤ 8.0 dBm	
Sweep Count = 0		Margin: -19.4 dB	
RF Atten (dB) = 20			
Trace Mode = VIEW			

back to matrix

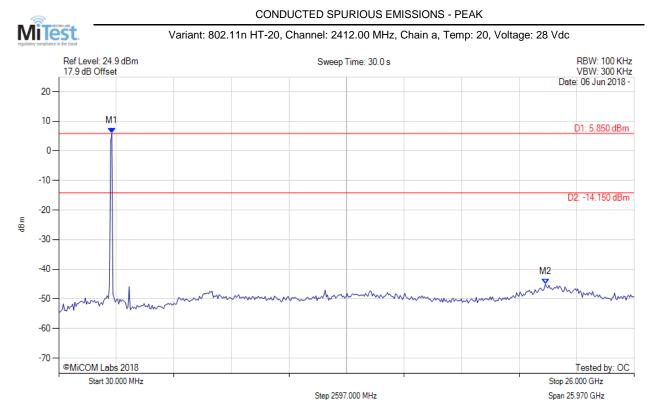
Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 69 of 89

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2451.940 MHz : -8.476 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		Margin: 16.48 dB
RF Atten (dB) = 20		_
Trace Mode = VIEW		

back to matrix

Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 70 of 89

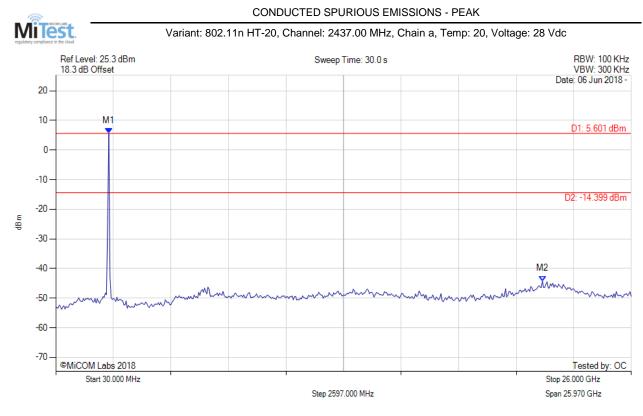
Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 2451.940 MHz : -8.476 dBm	Limit: ≤ 8.0 dBm	
Sweep Count = 0		Margin: -16.5 dB	
RF Atten (dB) = 20			
Trace Mode = VIEW			


back to matrix

A.3. Emissions

A.3.1. Conducted Emissions

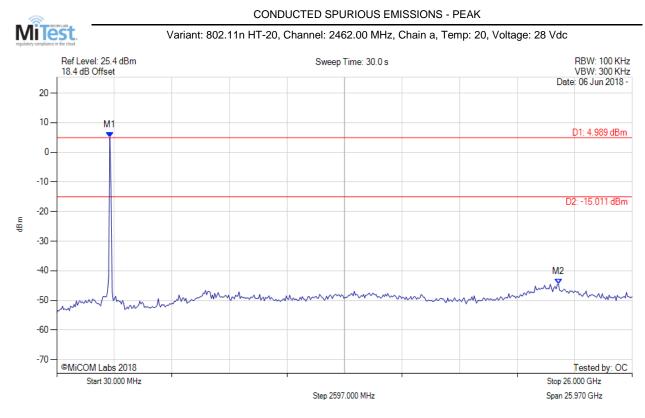
A.3.1.1. Conducted Spurious Emissions



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2424.028 MHz : 5.850 dBm	Limit: -14.15 dBm
Sweep Count = 0	M2 : 21.993 GHz : -45.004 dBm	Margin: -30.85 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

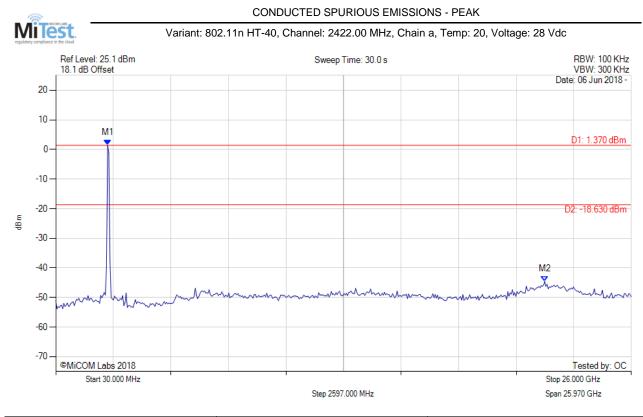
Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 72 of 89



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2424.028 MHz : 5.601 dBm	Limit: -14.40 dBm
Sweep Count = 0	M2 : 21.993 GHz : -44.250 dBm	Margin: -29.85 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

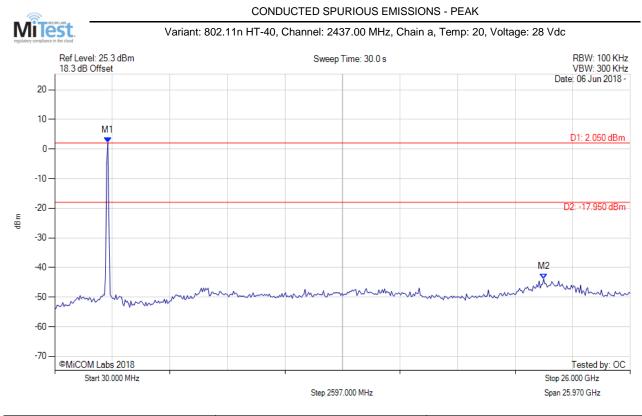
Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 73 of 89



Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 2424.028 MHz : 4.989 dBm	Limit: -15.01 dBm	
Sweep Count = 0	M2 : 22.669 GHz : -44.443 dBm	Margin: -29.43 dB	
RF Atten (dB) = 20			
Trace Mode = VIEW			

back to matrix

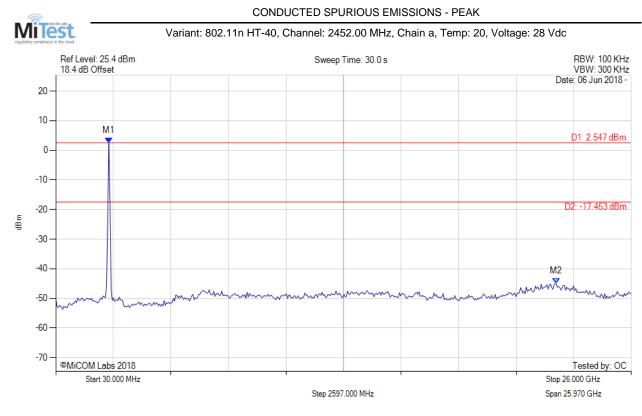
Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 74 of 89



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2371.984 MHz : 1.370 dBm	Limit: -18.63 dBm
Sweep Count = 0	M2 : 22.097 GHz : -44.548 dBm	Margin: -25.92 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 75 of 89



Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 2424.028 MHz : 2.050 dBm	Limit: -17.95 dBm	
Sweep Count = 0	M2 : 22.097 GHz : -43.805 dBm	Margin: -25.86 dB	
RF Atten (dB) = 20		-	
Trace Mode = VIEW			

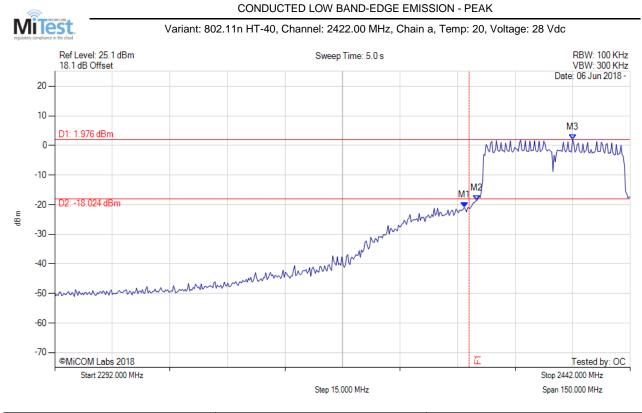
back to matrix

Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 76 of 89

Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 2424.028 MHz : 2.547 dBm	Limit: -17.45 dBm	
Sweep Count = 0	M2 : 22.617 GHz : -45.033 dBm	Margin: -27.58 dB	
RF Atten (dB) = 20			
Trace Mode = VIEW			

back to matrix

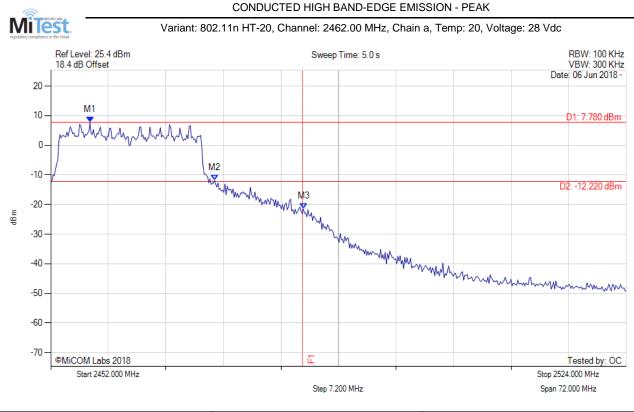
CONDUCTED LOW BAND-EDGE EMISSION - PEAK MiTest Variant: 802.11n HT-20, Channel: 2412.00 MHz, Chain a, Temp: 20, Voltage: 28 Vdc Ref Level: 24.9 dBm Sweep Time: 5.0 s RBW: 100 KHz 17.9 dB Offset VBW: 300 KHz Date: 05 Jun 2018 -20 М3 10 D1: 6.570 dBm MMMMMMMMMM 0-M2 -10 han were and have a second of the second of D2: -13.430 dBm -20 dBm -30 -40 -50 -60 -70 ©MiCOM Labs 2018 Tested by: OC Start 2350.000 MHz Stop 2422.000 MHz Step 7.200 MHz Span 72.000 MHz


A.3.1.2. Conducted Band-Edge Emissions

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2400.000 MHz : -13.865 dBm	Channel Frequency: 2412.00 MHz
Sweep Count = 0	M2 : 2401.078 MHz : -12.700 dBm	
RF Atten (dB) = 20	M3 : 2405.840 MHz : 6.570 dBm	
Trace Mode = VIEW		

back to matrix

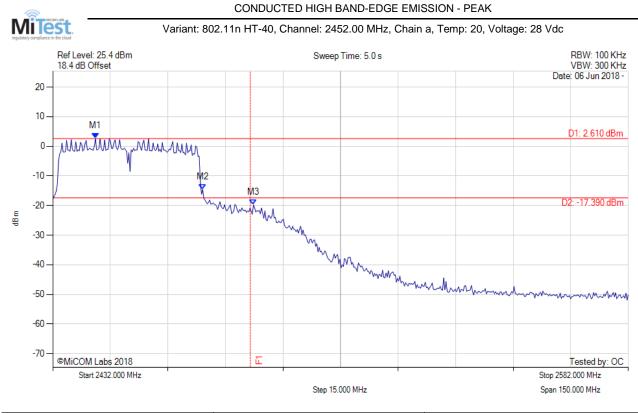
Title:Rockwell Collins IMS-6010To:FCC 15.247 (DTS) & ISED RSS-247Serial #:ROCK28–U2 Rev AIssue Date:20th June 2018Page:78 of 89



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2398.798 MHz : -20.871 dBm	Channel Frequency: 2422.00 MHz
Sweep Count = 0	M2 : 2402.020 MHz : -18.599 dBm	
RF Atten (dB) = 20	M3 : 2426.970 MHz : 1.976 dBm	
Trace Mode = VIEW		

back to matrix

Title:Rockwell Collins IMS-6010To:FCC 15.247 (DTS) & ISED RSS-247Serial #:ROCK28–U2 Rev AIssue Date:20th June 2018Page:79 of 89

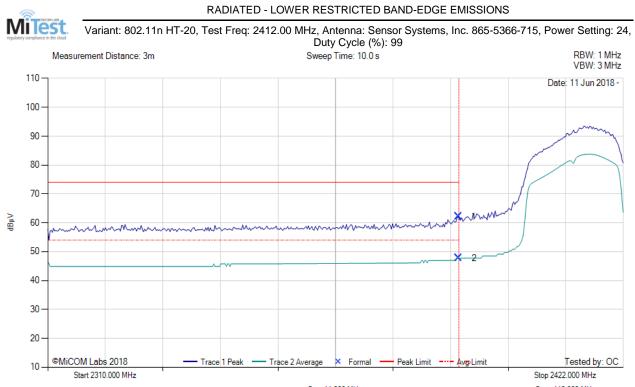


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2456.906 MHz : 7.780 dBm	Channel Frequency: 2462.00 MHz
Sweep Count = 0	M2 : 2472.489 MHz : -11.769 dBm	
RF Atten (dB) = 20	M3 : 2483.644 MHz : -21.433 dBm	
Trace Mode = VIEW		

back to matrix

Title:Rockwell Collins IMS-6010To:FCC 15.247 (DTS) & ISED RSS-247Serial #:ROCK28–U2 Rev AIssue Date:20th June 2018Page:80 of 89

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2443.122 MHz : 2.610 dBm	Channel Frequency: 2452.00 MHz
Sweep Count = 0	M2 : 2471.078 MHz : -14.549 dBm	
RF Atten (dB) = 20	M3 : 2484.305 MHz : -19.790 dBm	
Trace Mode = VIEW		


back to matrix

A.3.2. Radiated Emissions

A.3.2.3. TX Spurious & Restricted Band Emissions

A.3.2.4. Restricted Edge & Band-Edge Emissions

Step 11.200 MHz

Span 112.000 MHz

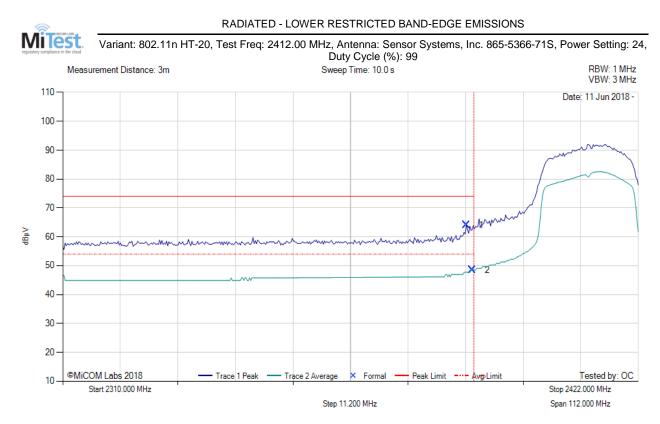
	2310.00 - 2422.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail		
1	2389.90	27.93	2.26	31.96	62.15	Max Peak	Horizontal	151	95	74.0	-11.9	Pass		
2	2390.00	13.52	2.26	31.96	47.74	Max Avg	Horizontal	151	95	54.0	-6.3	Pass		
3	2390.00					Restricted- Band								


Test Notes: 28VDC powered, placed 150cm non-conductive table.

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 82 of 89

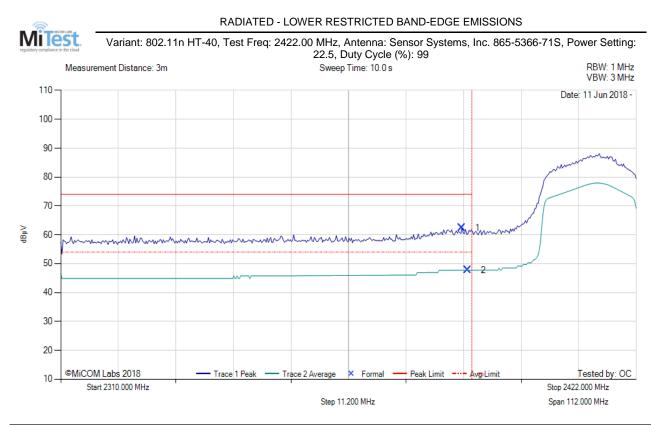

	2310.00 - 2422.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail		
1	2384.29	31.92	2.26	31.93	66.11	Max Peak	Horizontal	151	52	74.0	-7.9	Pass		
2	2389.23	16.03	2.26	31.95	50.24	Max Avg	Horizontal	151	52	54.0	-3.8	Pass		
3	2390.00					Restricted- Band								

Test Notes: 28VDC powered, placed 150cm non-conductive table. Reduced to 22.5PS.

back to matrix

Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 83 of 89

	2310.00 - 2422.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	2388.56	29.89	2.26	31.95	64.10	Max Peak	Horizontal	151	234	74.0	-9.9	Pass	
2	2389.68	14.22	2.26	31.96	48.44	Max Avg	Horizontal	151	234	54.0	-5.6	Pass	
3	2390.00					Restricted- Band							
3	2390.00												

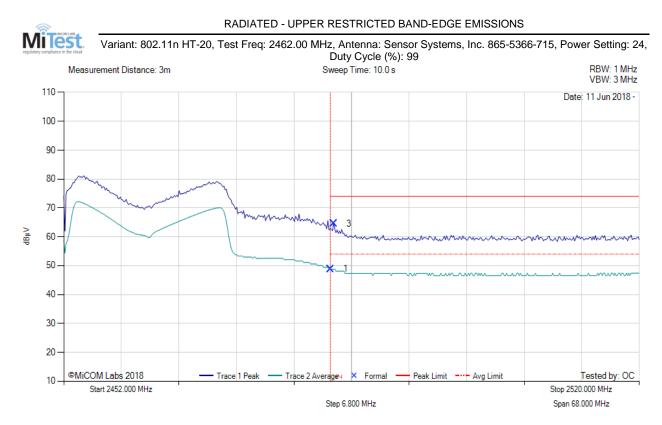

Test Notes: 28VDC powered, placed 150cm non-conductive table.

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 84 of 89

	2310.00 - 2422.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail		
1	2388.11	28.19	2.26	31.95	62.40	Max Peak	Horizontal	151	234	74.0	-11.6	Pass		
2	2389.23	13.53	2.26	31.95	47.74	Max Avg	Horizontal	151	234	54.0	-6.3	Pass		
3	2390.00					Restricted- Band								

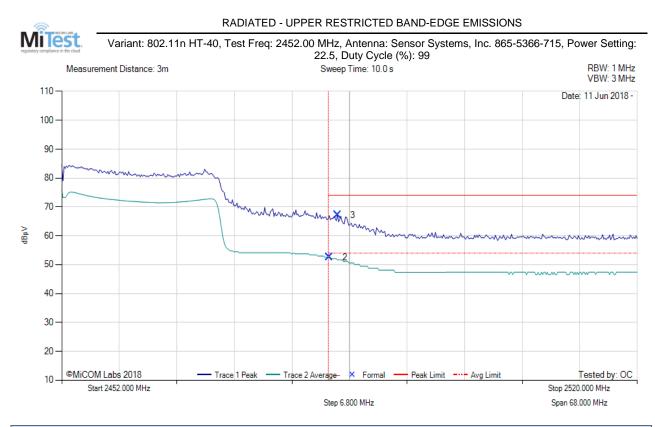

Test Notes: 28VDC powered, placed 150cm non-conductive table.

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 85 of 89

2452.00 - 2520.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2483.50	14.24	2.25	32.33	48.82	Max Avg	Horizontal	151	95	54.0	-5.2	Pass
3	2483.89	30.02	2.25	32.33	64.60	Max Peak	Horizontal	151	95	74.0	-9.4	Pass
2	2483.50					Restricted- Band						

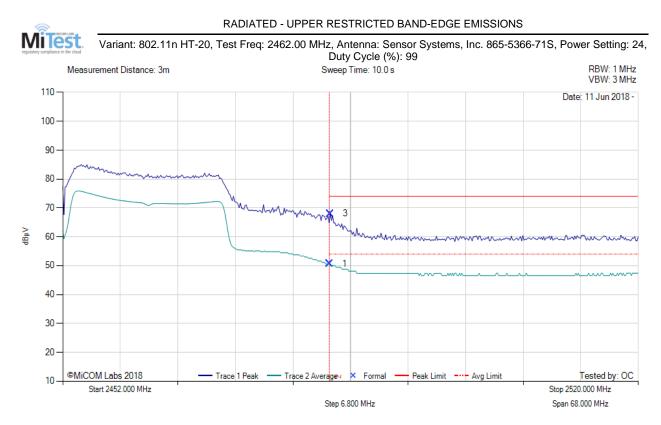

Test Notes: 28VDC powered, placed 150cm non-conductive table.

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 86 of 89

2452.00 - 2520.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
2	2483.64	17.98	2.25	32.33	52.56	Max Avg	Horizontal	151	52	54.0	-1.4	Pass
3	2484.57	32.55	2.25	32.33	67.13	Max Peak	Horizontal	151	52	74.0	-6.9	Pass
1	2483.50					Restricted- Band						

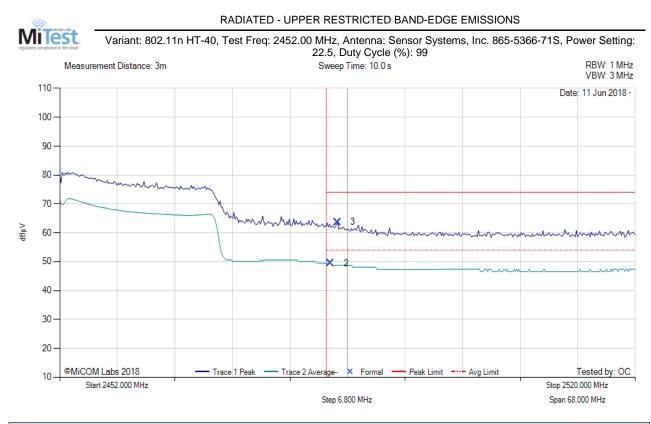

Test Notes: 28VDC powered, 150cm non-conductive table. Reduced from 23 to 22.5PS.

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 87 of 89

	2452.00 - 2520.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2483.50	16.04	2.25	32.33	50.62	Max Avg	Horizontal	151	234	54.0	-3.4	Pass
3	2483.62	33.47	2.25	32.33	68.05	Max Peak	Horizontal	151	234	74.0	-6.0	Pass
2	2483.50					Restricted- Band						


Test Notes: 28VDC powered, placed 150cm non-conductive table.

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: Rockwell Collins IMS-6010 To: FCC 15.247 (DTS) & ISED RSS-247 Serial #: ROCK28–U2 Rev A Issue Date: 20th June 2018 Page: 88 of 89

2452.00 - 2520.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
2	2484.02	14.88	2.25	32.33	49.46	Max Avg	Horizontal	151	234	54.0	-4.5	Pass
3	2484.84	29.11	2.25	32.33	63.69	Max Peak	Horizontal	151	234	74.0	-10.3	Pass
1	2483.50					Restricted- Band						

Test Notes: 28VDC powered, placed 150cm non-conductive table.

back to matrix

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com