

SAR EVALUATION REPORT

IEEE Std 1528-2013

For Gateway and Sensor

FCC ID: 2AHLC01856 (Gateway), 2AHLC01857 (Sensor) Model Name: Ventrilink Kardia III

> Report Number: 14275554-S1V2 Issue Date: 11/21/2023

Prepared for InfoBionic, Inc. 400 Totten Pond Rd Ste 315 Waltham, MA 02451, United States

> Prepared by UL LLC 12 LABORATORY DR RTP, NC 27709, U.S.A. TEL: (919) 549-1400

Revision History

		•	
Rev.	Date	Revisions	Revised By
V1	8/28/2023	Initial Issue	
V2	11/21/2023	 Changed DSS -> DTS, §1 and §12 Added equipment calibration dates, §4.3 Corrected cell formatting §12.3 and updated §12.2 to match formatting 	Sarah Kuhaneck

Table of Contents

1.	Attestation of Test Results	. 5
2.	Test Specification, Methods and Procedures	. 6
3.	Facilities and Accreditation	. 7
4.	SAR Measurement System & Test Equipment	. 8
4.1.	SAR Measurement System	. 8
4.2.	SAR Scan Procedures	. 9
4.3.	Test Equipment	11
5.	Measurement Uncertainty	13
6.	Device Under Test (DUT) Information	14
6.1.	DUT Description	14
6.2.	Wireless Technologies	15
6.3.	General LTE SAR Test and Reporting Considerations	16
7.	RF Exposure Conditions (Test Configurations)	18
7.1.	Testing Rationale	18
7.2.	Required Test Configurations	18
8.	Dielectric Property Measurements & System Check	19
8.1.	Dielectric Property Measurements	19
8.2.	System Check	22
9.	Conducted Output Power Measurements	24
9.1.	W-CDMA	24
9.2.	LTE	29
9.3.	Bluetooth	43
10.	Measured and Reported (Scaled) SAR Results	45
10.	1. W-CDMA Band II Gateway (with Sensor Docked)	46
10.2	2. W-CDMA Band IV Gateway (with Sensor Docked)	46
10.	3. W-CDMA Band V Gateway (with Sensor Docked)	46
10.4	4. LTE Band 2 (20MHz Bandwidth) Gateway (with Sensor Docked)	46
10.	5. LTE Band 5 (10MHz Bandwidth) Gateway (with Sensor Docked)	46
10.	5. LTE Band 12 (10MHz Bandwidth) Gateway (with Sensor Docked)	47
10.	7. LTE Band 13 (10MHz Bandwidth) Gateway (with Sensor Docked)	47
10.8	3. LTE Band 14 (10MHz Bandwidth) Gateway (with Sensor Docked)	47
10.9	D. LTE Band 66 (20MHz Bandwidth) Gateway (with Sensor Docked)	47
10.	10. LTE Band 71 (20MHz Bandwidth) Gateway (with Sensor Docked)	47

10.	D.11. Bluetooth	
11.	SAR Measurement Variability	
12.	Simultaneous Transmission Conditions	50
12.	2.1. Simultaneous transmission SAR test exclusion considerations	50
12.	2.2. Sum of the SAR for W-CDMA Band II & Bluetooth	50
12.	2.3. Total Exposure Ratio of WPT and Bluetooth	50
Appe	endixes	
	endixes opendix A: SAR Setup Photos	
Арр		
Арр Арр	opendix A: SAR Setup Photos	51 51
Арр Арр Арр	opendix A: SAR Setup Photos opendix B: SAR System Check Plots	
Арр Арр Арр Арр	opendix A: SAR Setup Photos opendix B: SAR System Check Plots opendix C: SAR Highest Test Plots	51 51 51 51 51

1. Attestation of Test Results

Applicant Name		InfoBionic, Inc.			
FCC ID		2AHLC01856 (Gateway), 2AHLC01857 (Sensor)			
Model Name		Ventrilink Kardia III (Gateway + Senso	r system)		
Applicable Standards		Published RF exposure KDB procedures IEEE Std 1528-2013			
		SAR Lim	its (W/Kg)		
Exposure Category		Peak spatial-average (1g of tissue)	Extremities (hands, wrists, ankles, etc.) (10g of tissue)		
General population / Uncontrolled exposure		1.6	4		
	Conditions	Equipment Class - Highest Reported SAR (W/kg)			
RF Exposure	Conditions	PCE	DTS		
Gateway	Body-worn*	1.430	0.001		
(FCC ID: 2AHLC01856)	Simultaneous TX	1.432	1.432		
Sensor	Body-worn*	N/A	0.022		
(FCC ID: 2AHLC01857)	Simultaneous Tx	N/A	1.432		
Date Tested		3/13/2023 to 8/23/2023			
Test Results		Pass			

*Note: The Body-worn minimum separation distance is 0 mm for both the Sensor alone and the Gateway + Sensor configuration tested in the belt clip accessory.

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested can demonstrate compliance with the requirements as documented in this report.

This report contains data provided by the customer which can impact the validity of results. UL LLC is only responsible for the validity of results after the integration of the data provided by the customer.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not considered unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL LLC and all revisions are noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the U.S. Government.

Approved & Released By:	Prepared By:	
Richard Jankowies	Jundsay Ryan	
Richard Jankovics	Lindsay Ryan	
Operations Leader	Engineer	
UL LLC	UL LLC	

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure <u>KDB</u> procedures:

- 447498 D04 General RF Exposure Guidance v01
- o 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- 865664 D02 RF Exposure Reporting v01r02
- o 941225 D01 3G SAR Procedures v03r01
- o 941225 D05 SAR for LTE Devices v02r05
- o 941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02

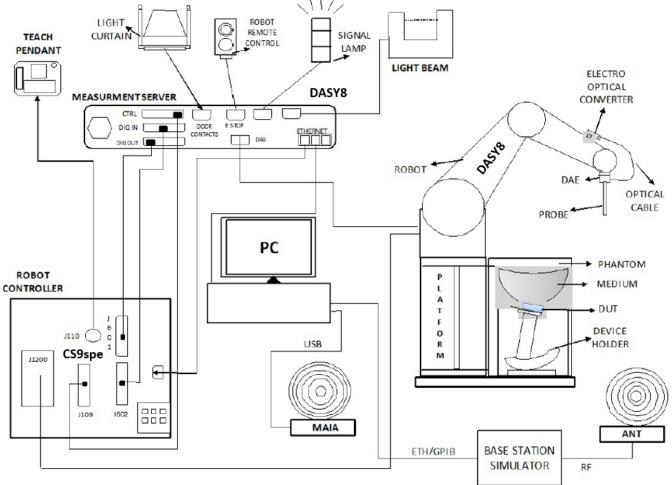
In addition to the above, the following information was used:

- o <u>TCB Workshop</u> October 2014; RF Exposure Procedures (Other LTE Considerations)
- o <u>TCB Workshop</u> April 2015; RF Exposure Procedures (Overlapping LTE Bands)
- TCB Workshop October 2015; RF Exposure Procedures (KDB 941225 D05A)
- <u>TCB Workshop</u> October 2016; RF Exposure Procedures (Bluetooth Duty Factor)
- o <u>TCB Workshop</u> October 2016; RF Exposure Procedures (DUT Holder Perturbations)
- o <u>TCB Workshop</u> April 2019; RF Exposure Procedures (Tissue Simulating Liquids (TSL))

3. Facilities and Accreditation

UL LLC is accredited by A2LA, cert. # 0751.06 for all testing performed within the scope of this report. Testing was performed at the locations noted below.

The test sites and measurement facilities used to collect data are located at 2800 Perimeter Park Dr, Morrisville, NC, USA.


- SAR Lab 1A
- SAR Lab 2A
- SAR Lab 2B

	Address	ISED CABID	ISED Company Number	FCC Registration
	Building: 12 Laboratory Dr RTP, NC 27709, U.S.A	US0067	2180C	825374
\boxtimes	Building: 2800 Perimeter Park Dr. Suite B Morrisville, NC 27560, U.S.A	US0067	27265	825374

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win10 and the DASY8¹ software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

¹ DASY8 software used: DASY16.2.2.1588 and older generations.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEC/IEEE 62209-1528, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^\circ\pm1^\circ$
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$3 - 4$ GHz: ≤ 12 mm $4 - 6$ GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test d measurement point on the test	on, is smaller than the above, must be \leq the corresponding evice with at least one

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

			\leq 3 GHz	> 3 GHz		
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm [*]	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$		
	uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	esolution,	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	$3 - 4$ GHz: ≤ 3 mm $4 - 5$ GHz: ≤ 2.5 mm $5 - 6$ GHz: ≤ 2 mm		
		∆z _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume x, y, z		$ \ge 30 \text{ mm} \qquad \begin{array}{c} 3-4 \text{ GHz:} \ge 28 \text{ mm} \\ 4-5 \text{ GHz:} \ge 25 \text{ mm} \\ 5-6 \text{ GHz:} \ge 22 \text{ mm} \end{array} $				
Note: δ is the penetration	Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE					

P1528-2011 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations and is traceable to recognized national standards.

Dielectric Property Measurements

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Date	Cal. Due Date			
Netw ork Analyzer	Keysight	E5063A	MY 54100681	9/30/2022	9/30/2023			
Dielectric Probe	SPEAG	DAKS-3.5	1051	10/17/2022	10/17/2023			
Shorting Block	SPEAG	DAK-3.5 Short	SM DAK 200 DA	10/17/2022	10/17/2023			
Thermometer ¹	Fisher Scientific	15-078-181	210204689	3/13/2021	3/31/2023			
Thermometer ²	Fisher Scientific	15-078-181	181705017	3/30/2023	3/30/2024			

Notes:

1. Equipment not used for calibrated measurements past calibration due date.

2. Equipment re-calibrated during the course of testing.

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Date	Cal. Due Date
Signal Generator ²	Keysight	N5181A	MY 50140788	8/3/2023	8/3/2024
3-Path Diode Pow er Sensor ¹	Rhode & Schwarz	NRP8S	112236	5/31/2022	5/31/2023
3-Path Diode Pow er Sensor ¹	Rhode & Schwarz	NRP8S	112237	5/31/2022	5/31/2023
Pow er Meter	Keysight	N1912A	MY 55116004	9/2/2022	9/02/2023
Pow er Sensor ¹	Keysight	N1921A	MY 55090023	4/3/2022	4/03/2023
Pow er Sensor ¹	Keysight	E9323A	MY 55110007	6/14/2022	6/14/2023
Pow er Sensor	Keysight	N1921A	MY 55090047	2/2/2023	2/02/2024
3-Path Diode Pow er Sensor ²	Rohde & Schwarz	NRP8S	112236	6/2/2023	6/02/2024
3-Path Diode Pow er Sensor ²	Rohde & Schwarz	NRP8S	112237	6/2/2024	6/02/2024
RF Pow er Source ²	Speag	Pow erSource1	4278	6/13/2023	6/13/2024

Notes:

1. Equipment not used for calibrated measurements past calibration due date.

2. Equipment re-calibrated during the course of testing.

Lab Equipment

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Date	Cal. Due Date
E-Field Probe ¹	SPEAG	EX3DV4	7587	4/27/2022	4/27/2023
E-Field Probe	SPEAG	EX3DV4	7709	12/12/2022	12/12/2023
E-Field Probe	SPEAG	EX3DV4	7710	2/3/2023	2/3/2024
E-Field Probe ²	SPEAG	EX3DV4	7711	3/30/2023	3/29/2024
Data Acquisition Electronics	SPEAG	DA E4	1673	9/15/2022	9/15/2023
Data Acquisition Electronics	SPEAG	DA E4	1714	11/23/2022	11/23/2023
Data Acquisition Electronics	SPEAG	DA E4	1715	1/23/2023	1/23/2024
Data Acquisition Electronics	SPEAG	DA E4	1716	3/16/2023	3/16/2024
System Validation Dipole	SPEAG	D750V3	1139	10/12/2022	10/12/2023
System Validation Dipole	SPEAG	D900V2	1d180	10/12/2022	10/12/2023
System Validation Dipole	SPEAG	D1750V2	1136	10/17/2022	10/17/2023
System Validation Dipole	SPEAG	D1900V2	5d202	10/12/2022	10/12/2023
System Validation Dipole	SPEAG	D2450V2	963	10/18/2022	10/18/2023
Environmental Indicator ¹	Fisher Scientific	Traceable	160938893	3/17/2022	3/17/2023
Environmental Indicator	Control Company	06-662-4	200037610	2/24/2023	2/24/2024
Environmental Indicator	Control Company	06-662-4	200037635	2/24/2023	2/24/2024

Notes:

1. Equipment not used for calibrated measurements past calibration due date.

2. Equipment re-calibrated during the course of testing.

Other					
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Date	Cal. Due Date
RF Pow er Meter ¹	Keysight	N1911a	MY55116001	7/7/2022	7/07/2023
RF Pow er Meter	Keysight	N1911a	MY55116003	9/10/2022	9/10/2023
RF Pow er Sensor	Keysight	N1921a	MY 55090047	2/2/2023	2/2/2024
Base Station Simulator	R&S	CMW 500	170733	12/14/2022	12/14/2023
Base Station Simulator	R&S	CMW 500	170193	1/6/2023	1/6/2024
Base Station Simulator ¹	Anritsu	MT8821C	6262116751	5/14/2022	5/14/2023
Base Station Simulator ²	Anritsu	MT8821C	6262116751	6/5/2023	6/5/2024

 Notes:
 1.
 Equipment not used for calibrated measurements parts
 2.
 Equipment re-calibrated during the course of testing.
 Equipment not used for calibrated measurements past calibration due date.

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEC/IEEE 62209-1528 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.

6. Device Under Test (DUT) Information

6.1. DUT Description

		Gateway – FCC ID: 2AHL	C01856							
Device Dimension	Overall Diagonal: 142	iverall (Length x Width x Depth): 123.18 mm x 70.98 mm x 26.78 mm iverall Diagonal: 142.18 mm his is a belt clip-worn device								
Back Cover	The Back Cover is not	removable								
Battery Options	The rechargeable batt	ery is not user accessible.								
Accessory	Sensor, Holster, and E	nsor, Holster, and Belt Clip (always used for body-worn conditions)								
	S/N	IMEI	Notes							
Test sample information	MIB2008	352176533772077	Conducted							
	MIA03142	354874603052184	Radiated/Conducted (Tuned to match MIB2008 in Conducted)							
Hardware Version	K3G001 Rev C									
Software Version	V00.1353									

		Sensor – FCC ID: 2AHLC018	57						
	Overall (Length x Width):	overall (Length x Width): 123.18 mm x 70.98 mm							
Device Dimension	Overall Diagonal: 69.97 r	Dverall Diagonal: 69.97 mm							
	This is a small wearable	device							
Back Cover	The Back Cover is not re	movable							
Battery Options	The rechargeable battery	he rechargeable battery is not user accessible.							
Accessory	Gateway and ECG pads	Gateway and ECG pads for leads							
Bluetooth Tethering	BT Tethering mode permit	ts the device to share its cellular	data connection with other devices.						
(Hotspot)	☑ BT Tethering (Bluetoot)	h 2.4 GHz)							
	S/N	IMEI	Notes						
Test sample information	SIA2008	N/A	Conducted						
	SIA03142	N/A	Radiated						
Hardware Version	K3S001 Rev C								
Software Version	V00.1355								

6.2. Wireless Technologies

<u>Gateway</u>

Wireless technologies	Frequency bands	Operating mode	Duty Cycle used for SAR testing
W-CDMA (UMTS)	Band II Band IV Band V	UMTS Rel. 99 (Voice & Data) HSDPA (Rel. 5) HSUPA (Rel. 6) DC-HSDPA (Rel. 9)	100%
LTE	FDD Band 2 FDD Band 4 FDD Band 5 FDD Band 12 FDD Band 13 FDD Band 14 FDD Band 66 FDD Band 71	QPSK 16QAM Rel. 10 Does not support Carrier Aggregation (CA)	100% (FDD) Refer to §6.4
	Does this device support SV-	LTE (1xRTT-LTE)? 🗆 Yes 🛛 No	
Bluetooth	2.4 GHz	LE	100% ¹

Notes:

1. Refer to Section 9.3 for Duty Cycle Measurement

Sensor Standalone

Wireless technologies	Frequency bands	Operating mode	Duty Cycle used for SAR testing
Bluetooth	2.4 GHz	LE	100% <mark>1</mark>

Notes:

1. Refer to Section 9.3 for Duty Cycle Measurement

6.3. General LTE SAR Test and Reporting Considerations

Item	Description									
Frequency range, Channel Bandwidth,			Frequency	range: 1850 - 1	1910 MHz (BV	V = 60 MHz)				
Numbers and Frequencies	Band 2			Channel E	Bandwidth					
		20 MHz	15 MHz	10 MHz	5 MHz	3 MHz	1.4 MHz			
	Low	18700	18675/	18650/	18625/	18615/	18607/			
	LOW	/1860	1857.5	1855	1852.5	1851.5	1850.7			
	Mid	18900/	18900/	18900/	18900/	18900/	18900/			
		1880	1880	1880	1880	1880	1880			
	High	19100/	19125/ 1902.5	19150/	19175/ 1007 5	19185/	19193/			
		1900 1902.5 1905 1907.5 1908.5 1909.3 Frequency range: 1710 - 1755 MHz (BW = 45 MHz)								
	Band 4	Channel Bandwidth								
	Dana 4	20 MHz ¹	15 MHz	10 MHz	5 MHz	3 MHz	1.4 MHz			
		20050/	20025/	20000/	19975/	19965/	19957/			
	Low	1720	1717.5	1715	1712.5	1711.5	1710.7			
		20175/	20175/	20175/	20175/	20175/	20175/			
	Mid	1732.5	1732.5	1732.5	1732.5	1732.5	1732.5			
	Lligh	20300/	20325/	20350/	20375/	20385/	20393/			
	High	1745	1747.5	1750	1752.5	1753.5	1754.3			
			Frequency	/ range: 824 - 8	849 MHz (BW	= 25 MHz)				
	Band 5			Channel E	Bandwidth					
		20 MHz	15 MHz	10 MHz ¹	5 MHz	3 MHz	1.4 MHz			
	Low			20450/	20425/	20415/	20407/			
	2011			829	826.5	825.5	824.7			
	Mid			20525/	20525/	20525/	20525/			
				836.5	836.5	836.5 20635/	836.5			
	High			20600/ 844	20625/ 846.5	847.5	20643/ 848.3			
			Frequency				040.0			
	Band 12	Frequency range: 699 – 716 MHz (BW = 17 MHz) Channel Bandwidth								
	Dana 12	20 MHz	15 MHz	10 MHz ¹	5 MHz	3 MHz	1.4 MHz			
		2011112	10 11112	23060/	23035/	23025/	23017/			
	Low			704	701.5	700.5	699.7			
	Mid			23095/	23095/	23095/	23095/			
	Mid			707.5	707.5	707.5	707.5			
	High			23130/	23155/	23165/	23173/			
	riigii			711	713.5	714.5	715.3			
			Frequency	/ range: 777 - 7		= 10 MHz)				
	Band 13				Bandwidth					
		20 MHz	15 MHz	10 MHz ¹	5 MHz ¹	3 MHz	1.4 MHz			
	Low				23205/ 779.5					
				23230/	23230/					
	Mid			782	782					
	Llink				23255/					
	High				784.5					
			Frequency	/ range: 788 - 7		= 10 MHz)				
	Band 14			Channel E	Bandwidth					
		20 MHz	15 MHz	10 MHz ¹	5 MHz ¹	3 MHz	1.4 MHz			
	Low				23305/					
					790.5					
	Mid			23330/ 793	23330/ 793					
				135	23355/					
	High				795.5					

Frequency range, Channel Bandwidth,		Frequency range: 1710 - 1780 MHz (BW = 70 MHz)								
Numbers and Frequencies	Band 66	Channel Bandwidth								
		20 MHz	15 MHz	10 MH	lz	5 MHz	3 MHz	1.4 MHz		
	Low	132072/	132047/	132022	2/ 1	131997/	131987/	131979/		
	Low	1720	1717.5	1715	i	1712.5	1711.5	1710.7		
	Mid	132322/	132322/	132322	2/ 1	32322/	132322/	132322/		
	IMIQ	1745	1745	1745		1745	1745	1745		
	High	132572/	132597/	132622	2/ 1	132647/	132657/	132665/		
	riigii	1770	1772.5	1775		1777.5	1778.5	1779.3		
			Frequency	y range: 66	63 - 698	MHz (BW	= 35 MHz)			
	Band 71			Chan	nnel Bano	dwidth				
		20 MHz ¹	15 MHz ¹	10 MH	lz	5 MHz	3 MHz	1.4 MHz		
	Low	133222/	133197/	13317	2/ 1	33147/				
	Low	673	670.5	668		665.5				
	Mid	133297/	133297/	13329	7/ 1	133297/				
	IMIG	680.5	680.5	680.5	5	680.5				
	High	133372/	133397/	13342	2/ 1	133447/				
	Tiigit	688	690.5	693		695.5				
implementation Maximum power reduction (MPR)	Refer to Appendix A. Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3									
	Modulation Channel bandwidth / Transmission bandwidth (N _{RB}) MP									
	Modulat							MPR (dB)		
	Modulat	1.4	3.0	5	10	15	20			
		1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	MPR (dB)		
	QPSK	1.4 MHz > 5	3.0 MHz > 4	5 MHz > 8	10 MHz > 12	15 MHz > 16	20 MHz > 18	MPR (dB) ≤ 1		
		1.4 MHz <	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	MPR (dB)		
	QPSK 16 QAI 16 QAI 64 QAI	$ \begin{array}{r} 1.4 \\ MHz \\ < > 5 \\ M \leq 5 \\ M > 5 \\ M \leq 5 \\ M \leq 5 \end{array} $	3.0 MHz > 4 ≤ 4 > 4 ≤ 4	5 MHz > 8 ≤ 8 > 8 ≤ 8	10 MHz > 12 ≤ 12 > 12 ≤ 12 ≤ 12	15 MHz > 16 ≤ 16 > 16 ≤ 16 > 16	20 MHz > 18 ≤ 18 > 18 ≤ 18 ≤ 18	MPR (dB) ≤ 1 ≤ 2 ≤ 2		
	QPSK 16 QAI 16 QAI 64 QAI 64 QAI	$\begin{array}{c c} & 1.4 \\ MHz \\ \hline \\ \hline \\ M & \leq 5 \\ \hline \\ M & > 5 \\ \hline \\ M & \leq 5 \\ \hline \\ M & > 5 \\ \hline \end{array}$	3.0 MHz > 4 ≤ 4 > 4	5 MHz > 8 ≤ 8 > 8 ≤ 8 ≤ 8 ≤ 8 > 8	10 MHz > 12 ≤ 12 > 12 ≤ 12 ≤ 12 > 12	15 MHz > 16 ≤ 16 > 16	20 MHz > 18 ≤ 18 > 18	MPR (dB) ≤ 1 ≤ 2 ≤ 2 ≤ 3		
	QPSK 16 QAI 16 QAI 64 QAI	$\begin{array}{c c} & 1.4 \\ MHz \\ \hline \\ \hline \\ M & \leq 5 \\ \hline \\ M & > 5 \\ \hline \\ M & \leq 5 \\ \hline \\ M & > 5 \\ \hline \end{array}$	3.0 MHz > 4 ≤ 4 > 4 ≤ 4	5 MHz > 8 ≤ 8 > 8 ≤ 8	10 MHz > 12 ≤ 12 > 12 ≤ 12 ≤ 12 > 12	15 MHz > 16 ≤ 16 > 16 ≤ 16 > 16	20 MHz > 18 ≤ 18 > 18 ≤ 18 ≤ 18	MPR (dB) ≤ 1 ≤ 2 ≤ 2		
	QPSK 16 QAI 16 QAI 64 QAI 64 QAI 256 QA MPR Built-ir	$\begin{array}{c c} & 1.4 \\ MHz \\ \hline \\ S & 5 \\ M & \leq 5 \\ M & \leq 5 \\ M & \leq 5 \\ M & > 5 \\ M & \\ M & \\ \end{array}$	3.0 MHz > 4 ≤ 4 > 4 ≤ 4 > 4 > 4 > 4	5 MHz ≥ 8 ≤ 8 ≥ 8 ≤ 8 ≥ 8 ≥ 8 ≥ 2	10 MHz > 12 ≤ 12 > 12 ≤ 12 > 12 1	15 MHz > 16 ≤ 16 > 16 ≤ 16 > 16	20 MHz > 18 ≤ 18 > 18 ≤ 18 ≤ 18 > 18	MPR (dB) ≤ 1 ≤ 2 ≤ 2 ≤ 3 ≤ 5		
	QPSK 16 QAI 16 QAI 64 QAI 64 QAI 256 QA MPR Built-ir	$\begin{array}{c c} & 1.4 \\ MHz \\ \hline \\ S \\ S \\ S \\ S \\ M \\ S \\ S \\ M \\ S \\ S$	3.0 MHz > 4 ≤ 4 > 4 ≤ 4 > 4 > 4 > 4	5 MHz ≥ 8 ≤ 8 ≥ 8 ≤ 8 ≥ 8 ≥ 8 ≥ 2	10 MHz > 12 ≤ 12 > 12 ≤ 12 > 12 1	15 MHz > 16 ≤ 16 > 16 ≤ 16 > 16	20 MHz > 18 ≤ 18 > 18 ≤ 18 ≤ 18 > 18	MPR (dB) ≤ 1 ≤ 2 ≤ 2 ≤ 2 ≤ 3 ≤ 5		
	QPSK 16 QAI 64 QAI 64 QAI 256 QA MPR Built-ir The manufa	$\begin{array}{c c} & 1.4 \\ MHz \\ \hline \\ S & 5 \\ M & \leq 5 \\ M & \leq 5 \\ M & \leq 5 \\ M & > 5 \\ M & \\ M & \\ \end{array}$	3.0 MHz > 4 ≤ 4 > 4 ≤ 4 > 4 ↓ 4 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	5 MHz ≥ 8 ≤ 8 ≥ 8 ≤ 8 ≥ 8 ≥ 8 ≥ 2	10 MHz > 12 ≤ 12 > 12 ≤ 12 > 12 1	15 MHz > 16 ≤ 16 > 16 ≤ 16 > 16	20 MHz > 18 ≤ 18 > 18 ≤ 18 ≤ 18 > 18	MPR (dB) ≤ 1 ≤ 2 ≤ 2 ≤ 2 ≤ 3 ≤ 5		
	QPSK 16 QAI 16 QAI 64 QAI 256 QA MPR Built-in The manufa not follow th	1.4 MHz ≤ 5 M ≤ 5 M ≤ 5 M ≤ 5 M ≤ 5 M > 5 M > 5 M > 5 M > 5 M > 5 M > 5 M N N	$\begin{array}{c c} 3.0 \\ \hline MHz \\ > 4 \\ \leq 4 \\ > 4 \\ \leq 4 \\ > 4 \\ \hline > 4 \\ \end{array}$ lues are alway values.	5 MHz ≥ 8 ≤ 8 ≥ 8 ≥ 8 ≥ ys within th	10 MHz > 12 ≤ 12 > 12 ≤ 12 > 12 > 12 1 ne 3GPP	15 MHz > 16 ≤ 16 > 16 ≤ 16 > 16	20 MHz > 18 ≤ 18 > 18 ≤ 18 ≤ 18 > 18	MPR (dB) ≤ 1 ≤ 2 ≤ 2 ≤ 2 ≤ 3 ≤ 5		
Power reduction	QPSK 16 QAI 16 QAI 64 QAI 256 QA MPR Built-in The manufa not follow th	1.4 MHz 5 $M \leq 5$ $M \leq $	$\begin{array}{c c} 3.0 \\ \hline MHz \\ > 4 \\ \leq 4 \\ > 4 \\ \leq 4 \\ > 4 \\ \hline > 4 \\ \end{array}$ lues are alway values.	5 MHz ≥ 8 ≤ 8 ≥ 8 ≥ 8 ≥ ys within th	10 MHz > 12 ≤ 12 > 12 ≤ 12 > 12 > 12 1 ne 3GPP	15 MHz > 16 ≤ 16 > 16 ≤ 16 > 16	20 MHz > 18 ≤ 18 > 18 ≤ 18 ≤ 18 > 18	MPR (dB) ≤ 1 ≤ 2 ≤ 2 ≤ 2 ≤ 3 ≤ 5		
	QPSK 16 QAI 64 QAI 64 QAI 256 QA MPR Built-ir The manufa not follow th A-MPR (add No	1.4 MHz 5 $M \leq 5$ $M \leq $	$\begin{array}{c c} 3.0 \\ \hline MHz \\ > 4 \\ \leq 4 \\ > 4 \\ \leq 4 \\ > 4 \\ > 4 \\ \end{array}$ lues are alway values. vas disabled d	5 MHz ≥ 8 ≤ 8 ≥ 8 ≥ 8 ≥ ys within the uring SAR	10 MHz > 12 ≤ 12 ≤ 12 > 12 ≤ 12 > 12 1 The 3GPP 2 testing	15 MHz > 16 ≤ 16 > 16 ≤ 16 > 16 ≤ 16 maximum	20 MHz > 18 ≤ 18 ≤ 18 ≥ 18 > 18			
Power reduction Spectrum plots for RB configurations	QPSK 16 QAI 64 QAI 64 QAI 64 QAI 256 QA MPR Built-ir The manufa not follow th A-MPR (add No A properly c	1.4 MHz 5 $M \leq 5$ $M \leq 6$ $M \leq 6$ $M \leq 6$ $M \leq 6$ $M \in 100$	3.0 MHz > 4 ≤ 4 $2 4$ > 4 > 4 > 4 > 4 > 4 > 4 > 4 > 4 > 4 > 4 > 4 > 4 > 4 > 4	5 MHz ≥ 8 ≤ 8 ≥ 8 ≥ 8 ≥ ys within the uring SAR ator was u	10 MHz > 12 < 12 < 12 < 12 < 12 < 12 < 12 < 12 <	15 MHz > 16 ≤ 16 > 16 ≤ 16 > 16	20 MHz > 18 ≤ 18 ≤ 18 ≤ 18 > 18 > 18	MPR (dB) ≤ 1 ≤ 2 ≤ 2 ≤ 3 ≤ 5 The but may asurements;		
	QPSK 16 QAI 64 QAI 64 QAI 64 QAI 256 QA MPR Built-ir The manufa not follow th A-MPR (add No A properly c	1.4 MHz 5 $M \leq 5$ $M \leq $	3.0 MHz > 4 ≤ 4 $2 4$ > 4 > 4 > 4 > 4 > 4 > 4 > 4 > 4 > 4 > 4 > 4 > 4 > 4 > 4	5 MHz ≥ 8 ≤ 8 ≥ 8 ≥ 8 ≥ ys within the uring SAR ator was u	10 MHz > 12 < 12 < 12 < 12 < 12 < 12 < 12 < 12 <	15 MHz > 16 ≤ 16 > 16 ≤ 16 > 16	20 MHz > 18 ≤ 18 ≤ 18 ≤ 18 > 18 > 18	$ \frac{\leq 1}{\leq 2} \\ \leq 2 \\ \leq 3 \\ \leq 5 $ There but may $ \frac{\leq 1}{\leq 2} \\ \leq 3 \\ \leq 5 $		

Notes:

Maximum bandwidth does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports
overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be
selected for testing per KDB 941225 D05 SAR for LTE Devices.

7. RF Exposure Conditions (Test Configurations)

Refer to Appendix A for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

7.1. Testing Rationale

The data covered in this report is comprised of two pieces of equipment: Gateway (FCC ID: 2AHLC01856) and Sensor (FCC ID: 2AHLC01857). The Sensor can be body worn on its own with a separation distance of 0 mm, or the Sensor can be body worn while docked in the Gateway and body-worn with belt clip. There is no portable use-case for the Gateway standalone, and it is therefore, not covered within the scope of this report.

SAR was performed on the Sensor Standalone and on the Gateway (with Sensor Docked).

7.2. Required Test Configurations

The table below identifies the standalone test configurations required for this device according to the findings in Section 7.1:

Antenna	Test Configurations	RF Exposure Condition	Back	Front ¹	Edge Top ¹	Edge Right ¹	Edge Bottom ¹	Edge Left ¹
			Gateway (with	Sensor Docked))			
	W-CDMA Band 2 Full Power		Yes	No	No	No	No	No
	W-CDMA Band 4 Full Power		Yes	No	No	No	No	No
	W-CDMA Band 5 Full Power		Yes	No	No	No	No	No
WWAN	LTE Band 2 Full Power		Yes	No	No	No	No	No
	LTE Band 5 Full Power	Body - Belt- worn with belt clip	Yes	No	No	No	No	No
WWAN	LTE Band 12 Full Power		Yes	No	No	No	No	No
	LTE Band 13 Full Power		Yes	No	No	No	No	No
	LTE Band 14 Full Power		Yes	No	No	No	No	No
	LTE Band 66 Full Power		Yes	No	No	No	No	No
	LTE Band 71 Full Power		Yes	No	No	No	No	No
BT	Bluetooth		Yes	No	No	No	No	No
			Sensor Docke	ed in Gateway				
Main	Bluetooth	Body	Yes	Yes	No	No	No	No
			Sensor S	tandalone				
Main	Bluetooth	Body	Yes	Yes	No	No	No	No

Note(s):

Yes = Testing is required.

No = Testing is not required.

1. Test configuration not required as the gateway is always in a belt clip for body-worn conditions.

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

The dielectric constant (ϵ r) and conductivity (σ) of typical tissue-equivalent media recipes are expected to

be within \pm 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEC/IEEE 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ε r and σ may be relaxed to \pm 10%. This is limited to frequencies \leq 3 GHz.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Torget Frequency (MHz)	Н	ead	Body			
Target Frequency (MHz)	ε _r	σ (S/m)	ε _r	σ (S/m)		
150	52.3	0.76	61.9	0.80		
300	45.3	0.87	58.2	0.92		
450	43.5	0.87	56.7	0.94		
835	41.5	0.90	55.2	0.97		
900	41.5	0.97	55.0	1.05		
915	41.5	0.98	55.0	1.06		
1450	40.5	1.20	54.0	1.30		
1610	40.3	1.29	53.8	1.40		
1800 – 2000	40.0	1.40	53.3	1.52		
2450	39.2	1.80	52.7	1.95		
3000	38.5	2.40	52.0	2.73		
5000	36.2	4.45	49.3	5.07		
5100	36.1	4.55	49.1	5.18		
5200	36.0	4.66	49.0	5.30		
5300	35.9	4.76	48.9	5.42		
5400	35.8	4.86	48.7	5.53		
5500	35.6	4.96	48.6	5.65		
5600	35.5	5.07	48.5	5.77		
5700	35.4	5.17	48.3	5.88		
5800	35.3	5.27	48.2	6.00		

IEC/IEEE 62209-1528

Frequency	Real part of the complex relative permittivity, z'	Conductivity, σ	Penetration depth (E-field), δ
MHz		S/m	mm
4	55,0	0,75	293,0
13	55,0	0,75	165,5
30	55,0	0,75	112,8
150	52,3	0,76	62,0
300	45,3	0,87	46,1
450	43,5	0,87	43,0
750	41,9	0,89	39,8
835	41,5	0,90	39,0
900	41,5	0,97	36,2
1 450	40,5	1,20	28,6
1 800	40,0	1,40	24,3
1 900	40,0	1,40	24,3
1 950	40,0	1,40	24,3
2 000	40,0	1,40	24,3
2 100	39,8	1,49	22,8
2 450	39,2	1,80	18,7
2 600	39,0	1,96	17,2
3 000	38,5	2,40	14,0
3 500	37,9	2,91	11,4
4 000	37,4	3,43	10,0
4 500	36,8	3,94	9,7
Frequency	Real part of the complex relative permittivity, c'	Conductivity, σ	Penetration depth (E-field), δ
MHz		S/m	mm
5 000	36,2	4,45	1,5
5 200	36,0	4,66	8,4
5 400	35,8	4,86	8,1
5 600	35,5	5,07	7,5
5 800	35,3	5,27	7,3
6 000	35,1	5,48	7,0
6 500	34,5	6,07	6,7
7 000	33,9	6,65	6,4
7 500	22.2	7.04	

Table 2 – Dielectric properties of the tissue-equivalent medium

NOTE For convenience, permittivity and conductivity values are linearly interpolated for frequencies that are not a part of the original data from Drossos et al. [2]. They are shown in italics in Table 2. The italicized values are linearly interpolated (below 5800 MHz) or extrapolated (above 5800 MHz) from the non-italicized values that are immediately above and below these values.

7,24

7,84

8,46

9,08

9,71

10,40

6,1

5,9

5,3

4,8

4,4

4,0

33,3

32,7

32,1

31,6

31,0

30,4

7 500

8 000

8 500

9 000

9 500

10 000

Dielectric Property Measurement Results

					Relativ	e Permittivity	(er)	Co	nductivity (σ)		
SAR Lab	Date	Band (MHz)	Tissue Type	Frequency (MHz)	Measured	Target	Delta (%)	Measured	Target	Delta (%)	
				750	43.4	42.0	3.38	0.89	0.89	-0.62	
1A	3/14/2023	750	Head	660	43.6	42.4	2.87	0.86	0.89	-3.43	
				800	43.2	41.7	3.66	0.90	0.90	0.38	
				750	42.9	42.0	2.14	0.88	0.89	-1.92	
1A	3/17/2023	750	Head	660	43.1	42.4	1.67	0.84	0.89	-4.66	
				800	42.7	41.7	2.48	0.89	0.90	-0.88	
				1750	40.5	40.1	1.04	1.34	1.37	-2.12	
1A	3/20/2023	1750	Head	1710	40.5	40.1	0.96	1.32	1.35	-2.33	
				1755	40.5	40.1	1.03	1.34	1.37	-2.10	
				1900	40.3	40.0	0.65	1.43	1.40	2.43	
1A	3/20/2023)/2023 1900	Head	1850	40.4	40.0	0.88	1.40	1.40	0.00	
					1920	40.3	40.0	0.63	1.45	1.40	3.43
				900	43.5	41.5	4.72	0.93	0.97	-4.20	
2A	3/13/2023	900	Head	820	43.7	41.6	4.97	0.90	0.90	-0.10	
					915	43.4	41.5	4.63	0.94	0.98	-4.29
				1750	38.5	40.1	-4.03	1.33	1.37	-3.07	
2A	8/1/2023	1750	Head	1710	38.5	40.2	-4.10	1.30	1.35	-3.15	
				1785	38.4	40.0	-4.02	1.35	1.39	-3.00	
				1900	38.2	40.0	-4.50	1.42	1.40	1.07	
2A	8/1/2023	1900	Head	1850	38.3	40.0	-4.25	1.38	1.40	-1.14	
				1980	38.0	40.0	-5.00	1.46	1.40	3.93	
				1900	39.3	40.0	-1.78	1.45	1.40	3.36	
2A	8/14/2023	1900	Head	1850	39.4	40.0	-1.60	1.41	1.40	1.00	
				1920	39.3	40.0	-1.82	1.46	1.40	4.14	
				2450	37.5	39.2	-4.46	1.76	1.80	-2.44	
2A	8/22/2023	2450	Head	2400	37.5	39.3	-4.52	1.72	1.75	-1.81	
				2480	37.4	39.2	-4.42	1.78	1.83	-3.08	
				1750	41.7	40.1	3.91	1.41	1.37	3.29	
2B	3/13/2023	1750	Head	1705	41.7	40.2	3.88	1.38	1.34	3.01	
				1755	41.6	40.1	3.90	1.42	1.37	3.22	
				1900	38.5	40.0	-3.87	1.43	1.40	2.00	
2B	3/16/2023	1900	Head	1845	38.5	40.0	-3.70	1.39	1.40	-0.79	
				1970	38.3	40.0	-4.22	1.47	1.40	5.00	

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
- The dipole input power (forward power) was recorded and the results were normalized to 1 W input power.

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within \pm 10% of the manufacturer calibrated dipole SAR target. Refer to Appendix B for the SAR System Check Plots.

	SAR					Measured Results for 1g SAR				Measured Results for 10g SAR				
SAR Lab	Date	Tissue Type	Dipole Type_Serial #	Dipole Cal. Due Data		Zoom Scan	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Zoom Scan	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.
1A	3/14/2023	Head	D750V3 SN: 1139	10/12/2023	17.0	0.417	8.32	8.12	2.47	0.274	5.47	5.41	1.05	1
1A	3/17/2023	Head	D750V3 SN: 1139	10/12/2023	17.0	0.412	8.22	8.12	1.24	0.272	5.43	5.41	0.32	
1A	3/20/2023	Head	D1750V2 SN: 1136	10/17/2023	17.0	1.800	35.91	34.44	4.28	0.955	19.05	18.63	2.28	2
1A	3/20/2023	Head	D1900V2 SN: 5d202	10/12/2023	17.0	2.060	41.10	37.86	8.56	1.060	21.15	20.26	4.39	3
2A	3/13/2023	Head	D900V2 SN: 1d180	10/12/2023	17.0	0.518	10.34	10.63	-2.77	0.338	6.74	6.97	-3.24	4
2A	8/1/2023	Head	D1750V2 SN: 1136	10/17/2023	17.0	1.790	35.72	36.10	-1.07	0.956	19.07	19.10	-0.13	5
2A	8/1/2023	Head	D1900V2 SN: 5d202	10/12/2023	17.0	2.010	40.10	39.20	2.31	1.050	20.95	20.40	2.70	
2A	8/14/2023	Head	D1900V2 SN: 5d202	10/12/2023	17.0	2.060	41.10	37.86	8.56	1.070	21.35	20.26	5.38	6
2A	8/22/2023	Head	D2450V2 SN: 963	10/18/2023	17.0	2.410	48.09	52.40	-8.23	1.130	22.55	24.50	-7.97	7
2B	3/13/2023	Head	D1750V2 SN: 1136	10/17/2023	17.0	1.850	36.91	34.44	7.18	0.982	19.59	18.63	5.17	8
2B	3/16/2023	Head	D1900V2 SN: 5d202	10/12/2023	17.0	1.990	39.71	39.20	1.29	1.020	20.35	20.40	-0.24	9

9. Conducted Output Power Measurements

Tune-Up Power Limits provided by the manufacturer are used to scale measured SAR values.

9.1. W-CDMA

Per KDB 941225 D01 3G SAR Procedures for W-CDMA:

Maximum output power is verified on the high, middle and low channels and using the appropriate 12.2 kbps RMC with TPC (transmit power control) set to all "1's"

Release 99 Setup Procedures used to establish the test signals

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1. A summary of these settings is illustrated below:

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 2
WCDMA Conorol Sottings	Rel99 RMC	12.2kbps RMC
WCDMA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

HSDPA Setup Procedures used to establish the test signals

The following 4 Sub-tests were completed according to procedures in table C.10.1.4 of 3GPP TS 34.121-1 A summary of these settings is illustrated below:

т	able C.10.	1.4:β valu	es for trans	smitter characte	eristics test	s with HS-DP	ССН
Sub-test	βε	βa	βd (SF)	β₀/βı	βHS (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5
Note 2: Fo Ma in β	the HS-DF agnitude (EV clause 5.13. $h_s = 24/15 *$	PCCH power /M) with HS- 1AA, $\Delta_{\sf ACK}$ a eta_c .	mask require DPCCH test and $\Delta_{NACK} = 3$	= 30/15 * β_c . ement test in clause in clause 5.13.1A 0/15 with β_{hc} = 30	, and HSDPA)/15 * eta_c , an	EVM with phas $\Delta_{CQI} = 24/15 \text{ v}$	e discontinuity vith
DF HS Note 4: Fo ac	PCCH the Mi SDPA in rele or subtest 2 t	PR is based ase 6 and la he β₀/β₀ rati	on the relation ater releases. o of 12/15 for	For all other combi ve CM difference. the TFC during th actors for the refer	This is applic ne measurem	able for only UE ent period (TF1,	s that support TF0) is

HSUPA Setup Procedures used to establish the test signals

The following 5 Sub-tests were completed according to procedures in table C.11.1.3 of 3GPP TS 34.121-1. A summary of these settings is illustrated below:

Table C 11 1 3	B values for transmitte	r characteristics tests	with HS-DPCCH and E-DCH

Sub- test	βα	βa	βα (SF)	βc/βd	βнs (Note1)	β _{ec}	β _{ed} (Note 4) (Note 5)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2) (Note 6)	AG Index (Note 5)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15	0	-	-	5/15	5/15	47/15	4	1	1.0	0.0	12	67
Note 1 Note 2	5/15 v :: CM =	vith eta_{hs} : 1 for eta_{c}/eta	= 5/15 3 _d =12/	* $β_c$. 15, β _{hs} /β _c	=24/15.	For all ot	5 with β_{hs} = 3 her combinations CM difference	ons of	, ,				
Note 3	: For su setting	ubtest 1 t g the sigr	he β _c /β nalled g	d ratio of ain facto	11/15 fo rs for the	r the TFC e reference	C during the m ce TFC (TF1,	easure TF1) te	ο β _c = 10/1	15 and β	d = 15/15	i.	l by
Note 4 Note 5	TS25.	306 Tab	le 5.1g.				cal Layer cate Grant Value.	gory 1	, Sup-test	3 IS OMI	tted acco	raing to	
Noto 6	- Ear a	ubtooto 2	2 and	1 11Em	av porfor			oling a	at max now	ver whie	h aquid r	ooulto in	alia

Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values.

DC-HSDPA Setup Procedures used to establish the test signals

The following 4 Sub-tests for DC-HSDPA were completed according to procedures in table C08.1.12 of 3GPP TS 34.121-1. A summary of subtest settings is illustrated below:

	Parameter	Unit	Value				
Nominal	Avg. Inf. Bit Rate	kbps	60				
Inter-TTI	Distance	TTI's	1				
Number	of HARQ Processes	Proces	6				
		ses	0				
Informati	on Bit Payload ($N_{{\scriptscriptstyle I\!N\!F}}$)	Bits	120				
Number	Code Blocks	Blocks	1				
Binary Cl	hannel Bits Per TTI	Bits	960				
Total Ava	ailable SML's in UE	SML's	19200				
Number of	of SML's per HARQ Proc.	SML's	3200				
Coding R	late		0.15				
Number	of Physical Channel Codes	Codes	1				
Modulatio	on		QPSK				
Note 1:	The RMC is intended to be used for	or DC-HSD	PA				
	mode and both cells shall transmit	with identi	cal				
	parameters as listed in the table.						
Note 2:	2: Maximum number of transmission is limited to 1, i.e.,						
	retransmission is not allowed. The redundancy and						
	constellation version 0 shall be use	ed.					

Table C.8.1.12: Fixed Reference Channel H-Set 12

Maximum Output Power (Tune-up Limit) for W-CDMA

SAR measurement is not required for the HSDPA, HSUPA, DC-HSDPA. When primary mode and the adjusted SAR is ≤ 1.2 W/kg and secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode

RF Air interface	Mode	Tune-up Power Limit (dBm) WWAN Antenna Maximum
	R99	22.4
W-CDMA	HSDPA	22.4
Band 2	HSUPA	22.4
	DC-HSDPA	22.4
	R99	23.8
W-CDMA	HSDPA	23.8
Band 4	HSUPA	23.8
	DC-HSDPA	23.8
	R99	25.0
W-CDMA	HSDPA	25.0
Band 5	HSUPA	25.0
	DC-HSDPA	25.0

Page 25 of 51

W-CDMA Band II Measured Results

Mode			Freq.	Maximum Average Power (dBm)			
Mc	ode	UL Ch No.	(MHz)	Measured Pwr	MPR	Tune-up Limit	
	Rel 99	9262	1852.4	22.4			
Release 99	(RMC, 12.2	9400	1880.0	22.4	N/A	22.4	
	kbps)	9538	1907.6	22.3			
		9262	1852.4	22.1			
	Subtest 1	9400	1880.0	22.2	0	22.4	
		9538	1907.6	22.0			
		9262	1852.4	22.1			
	Subtest 2	9400	1880.0	22.2	0	22.4	
HSDPA		9538	1907.6	22.0			
TISDI A		9262	1852.4	21.6			
	Subtest 3	9400	1880.0	21.6	0.5	21.9	
		9538	1907.6	21.4			
		9262	1852.4	21.5			
	Subtest 4	9400	1880.0	21.5	0.5	21.9	
		9538	1907.6	21.4			
		9262	1852.4	21.7		22.4	
	Subtest 1	9400	1880.0	21.1	0		
		9538	1907.6	21.5			
		9262	1852.4	20.2			
	Subtest 2	9400	1880.0	20.0	2	20.4	
		9538	1907.6	20.1			
		9262	1852.4	20.4		21.4	
HSUPA	Subtest 3	9400	1880.0	20.7	1		
		9538	1907.6	20.4			
		9262	1852.4	20.3			
	Subtest 4	9400	1880.0	20.4	2	20.4	
		9538	1907.6	20.4			
		9262	1852.4	21.4			
	Subtest 5	9400	1880.0	21.5	0	22.4	
		9538	1907.6	21.5			
		9262	1852.4	21.7			
	Subtest 1	9400	1880.0	21.8	0	22.4	
		9538	1907.6	21.7			
		9262	1852.4	21.8			
DC-HSDPA	Subtest 2	9400	1880.0	22.0	0	22.4	
		9538	1907.6	21.9			
		9262	1852.4	21.4			
	Subtest 3	9400	1880.0	21.5	0.5	21.9	
		9538	1907.6	21.4			
		9262	1852.4	21.4			
	Subtest 4	9400	1880.0	21.5	0.5	21.9	
		9538	1907.6	21.4			

Notes:

It is expected by the manufacturer that MPR for some HSPA subtests may be up to 3dB more than specified by 3GPP, but also as low as 0dB according to the chipset implementation in this model.

W-CDMA Band IV Measured Results

Mode			Freq.	Maximum Average Power (dBm)			
IVIC	ode	UL Ch No.	(MHz)	Measured Pwr	MPR	Tune-up Limit	
	Rel 99	1312	1712.4	23.4		23.8	
Release 99	(RMC, 12.2	1413	1732.6	23.7	N/A		
	kbps)	1513	1752.6	23.6			
		1312	1712.4	22.1			
	Subtest 1	1413	1732.6	22.2	0	23.8	
		1513	1752.6	22.1			
		1312	1712.4	22.2			
	Subtest 2	1413	1732.6	22.4	0	23.8	
HSDPA		1513	1752.6	22.3			
		1312	1712.4	21.7			
	Subtest 3	1413	1732.6	21.9	0.5	23.3	
		1513	1752.6	21.7			
		1312	1712.4	21.7			
	Subtest 4	1413	1732.6	21.8	0.5	23.3	
		1513	1752.6	21.7			
		1312	1712.4	21.8		23.8	
	Subtest 1	1413	1732.6	21.9	0		
		1513	1752.6	21.9			
		1312	1712.4	21.2			
	Subtest 2	1413	1732.6	21.2	2	21.8	
		1513	1752.6	20.7			
		1312	1712.4	21.1			
HSUPA	Subtest 3	1413	1732.6	20.9	1	22.8	
		1513	1752.6	21.1			
		1312	1712.4	21.6			
	Subtest 4	1413	1732.6	21.6	2	21.8	
		1513	1752.6	21.0			
		1312	1712.4	21.9			
	Subtest 5	1413	1732.6	22.1	0	23.8	
		1513	1752.6	21.8			
		1312	1712.4	22.2			
	Subtest 1	1413	1732.6	22.2	0	23.8	
		1513	1752.6	22.2			
DC-HSDPA		1312	1712.4	22.2			
	Subtest 2	1413	1732.6	22.3	0	23.8	
		1513	1752.6	22.2			
		1312	1712.4	21.7			
	Subtest 3	1413	1732.6	21.8	0.5	23.3	
		1513	1752.6	21.8			
		1312	1712.4	21.8			
	Subtest 4	1413	1732.6	21.8	0.5	23.3	
		1513	1752.6	21.7			

Notes:

It is expected by the manufacturer that MPR for some HSPA subtests may be up to 3dB more than specified by3GPP, but also as low as 0dB according to the chipset implementation in this model.

W-CDMA Band V Measured Results

Mode			Freq.	Maximum Average Power (dBm)			
IMC	de	UL Ch No. (MHz) Measure		Measured Pwr	MPR	Tune-up Limit	
	Rel 99	4132	826.4	23.2			
Release 99	(RMC, 12.2	4183	836.6	23.2	N/A	25.0	
	kbps)	4233	846.6	23.2			
		4132	826.4	21.7			
	Subtest 1	4183	836.6	21.8	0	25.0	
		4233	846.6	21.7			
		4132	826.4	21.8			
	Subtest 2	4183	836.6	21.9	0	25.0	
HSDPA		4233	846.6	21.7			
		4132	826.4	21.3			
	Subtest 3	4183	836.6	21.3	0.5	24.5	
		4233	846.6	21.2			
		4132	826.4	21.3			
	Subtest 4	4183	836.6	21.3	0.5	24.5	
		4233	846.6	21.2			
	Subtest 1	4132	826.4	21.1		25.0	
		4183	836.6	21.7	0		
		4233	846.6	21.2			
		4132	826.4	20.8			
	Subtest 2	4183	836.6	20.5	2	23.0	
		4233	846.6	20.6			
		4132	826.4	20.4			
HSUPA	Subtest 3	4183	836.6	20.6	1	24.0	
		4233	846.6	20.4			
		4132	826.4	20.9			
	Subtest 4	4183	836.6	20.7	2	23.0	
		4233	846.6	21.0			
		4132	826.4	21.4			
	Subtest 5	4183	836.6	21.4	0	25.0	
		4233	846.6	21.3			
		4132	826.4	21.7			
	Subtest 1	4183	836.6	21.8	0	25.0	
		4233	846.6	21.7			
DC-HSDPA		4132	826.4	21.8			
	Subtest 2	4183	836.6	21.9	0	25.0	
		4233	846.6	21.7			
	Subtest 3	4132	826.4	21.2			
		4183	836.6	21.3	0.5	24.5	
		4233	846.6	21.2			
		4132	826.4	21.3			
	Subtest 4	4183	836.6	21.4	0.5	24.5	
		4233	846.6	21.3			

Notes:

It is expected by the manufacturer that MPR for some HSPA subtests may be up to 3dB more than specified by3GPP, but also as low as 0dB according to the chipset implementation in this model.

9.2. LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Modulation	Channel bandwidth / Transmission bandwidth (NRB)						
	1.4	3.0	5	10	15	20	
	MHz	MHz	MHz	MHz	MHz	MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2
64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2
64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 3
256 QAM	256 QAM ≥ 1						

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A

Maximum Output Power (Tune-up Limit) for LTE

According to April 2015 TCB workshop, SAR test exclusion can be applied for testing overlapping LTE bands as follows:

- a) The maximum output power, including tolerance, for the smaller band must be ≤ the larger band to qualify for the SAR test exclusion.
- b) The channel bandwidth and other operating parameters for the smaller band must be fully supported by the larger band.
 - LTE Band 4 (1710-1755 MHz) is covered by LTE Band 66 (1710-1780 MHz)

For some LTE Bands, certain channel bandwidths do not support at least three non-overlapping channels. When a device supports overlapping channel assignments in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing per KDB 941225 D05 SAR for LTE Devices. Please refer to section 6.3. for a detailed list of LTE test channels.

- LTE Band 5 (824-849 MHz)
- LTE Band 12 (699-716 MHz)
- LTE Band 13 (777-787 MHz)
- LTE Band 14 (788-798 MHz)
- LTE Band 71 (663-698 MHz)

LTE QPSK configuration has the highest maximum average output power per 3GPP standard.

SAR measurement is not required for the 16QAM. When the highest maximum output power for 16QAM, is $\leq \frac{1}{2}$ dB higher than the QPSK or when the reported SAR for the QPSK configuration is ≤ 1.45 W/kg.

RF Air interface	Mode	Tune-up Power Limit (dBm) WWAN Antenna Maximum		
LTE Band 2	QPSK	22.1		
LTE Band 4	QPSK	25.0		
LTE Band 5	QPSK	25.0		
LTE Band 12	QPSK	25.0		
LTE Band 13	QPSK	25.0		
LTE Band 14	QPSK	25.0		
LTE Band 66	QPSK	25.0		
LTE Band 71	QPSK	25.0		

LTE Band 2 Measured Results

				Maximum Average Power (dBm)				
BW (MHz)	Mode	RB Allocation	RB	18700	18900	19100		Tune-up
		Allocation	offset	1860 MHz	1880 MHz	1900 MHz	MPR	Limit
		1	0	21.3	21.3	21.6	0	22.1
		1	49	21.8	21.8	22.0	0	22.1
		1	99	21.4	21.2	21.2	0	22.1
	QPSK	50	0	20.4	20.7	20.4	1	21.1
		50	24	20.5	20.7	20.5	1	21.1
		50	50	20.6	20.5	20.4	1	21.1
		100	0	20.6	20.7	20.5	1	21.1
20 MHz		1	0	19.9	20.2	19.9	1	21.1
		1	49	20.0	19.9	20.2	1	21.1
		1	99	19.9	19.6	19.5	1	21.1
	16QAM	12	0	19.7	20.1	20.1	2	20.1
		12	44	20.1	20.0	20.1	2	20.1
		12	88	20.0	20.0	19.8	2	20.1
		27	0	18.7	19.1	19.5	2	20.1
						erage Power (dB		
BW	Mode	RB	RB	18675	18900	19125		Tune-up
(MHz)		Allocation	offset	1857.5 MHz	1880 MHz	1902.5 MHz	MPR	Limit
		1	0	21.6	21.5	21.5	0	22.1
		1	37	21.9	22.1	21.6	0	22.1
		1	74	21.7	21.4	21.3	0	22.1
	QPSK	36	0	20.6	20.6	20.4	1	21.1
		36	20	20.6	20.6	20.4	1	21.1
		36	39	20.6	20.4	20.3	1	21.1
		75	0	20.5	20.6	20.3	1	21.1
15 MHz		1	0	20.5	20.2	19.8	1	21.1
		1	37	20.6	20.1	20.2	1	21.1
		1	74	20.8	20.1	19.6	1	21.1
	16QAM	12	0	19.7	20.0	20.0	2	20.1
		12	31	19.9	20.0	20.0	2	20.1
		12	63	20.0	19.9	20.0	2	20.1
		27	0	18.9	19.1	19.2	2	20.1
			<u> </u>	10.0		erage Power (dB		20.1
BW	Mode	RB	RB	18650	18900	19150		Tune-up
(MHz)	incut	Allocation	offset	1855 MHz	1880 MHz	1905 MHz	MPR	Limit
		1	0	21.5	21.6	21.3	0	22.1
		1	25	21.7	21.0	21.3	0	22.1
		1	49	21.6	21.6	21.0	0	22.1
	QPSK	25	0	20.4	20.7	20.4	1	21.1
		25	12	20.4	20.7	20.4	1	21.1
		25	25	20.5	20.7	20.4	1	21.1
		50	0	20.3	20.6	20.3	1	21.1
10 MHz		1	0	19.9	20.0	20.0	1	21.1
		1	25	20.0	20.6	20.1	1	21.1
		1	49	19.8	20.0	19.6	1	21.1
	16QAM	12	0	19.8	20.0	20.1	2	20.1
	10 GPUN	12	19	20.0	20.0	20.1	2	20.1
		12	38	20.0	20.1	19.9	2	20.1
		27	0	19.0	19.3	19.9	2	20.1
		21	0	19.0	19.5	19.0	2	20.1

Page 31 of 51

LTE Band 2 Measured Results (continued)

LIE Band	Zincusui			Maximum Average Power (dBm)														
BW (MUR)	Mode	RB	RB offset	18625	18900	19175		Tune-up										
(MHz)		Allocation		1852.5 MHz	1880 MHz	1907.5 MHz	MPR	Limit										
		1	0	21.1	21.6	21.5	0	22.1										
		1	12	21.2	21.7	21.5	0	22.1										
		1	24	21.1	21.4	21.4	0	22.1										
	QPSK	12	0	20.4	20.8	20.5	1	21.1										
		12	7	20.5	20.7	20.5	1	21.1										
		12	13	20.5	20.7	20.7	1	21.1										
		25	0	20.4	20.7	20.6	1	21.1										
5 MHz		1	0	19.8	19.9	20.0	1	21.1										
		1	12	19.7	19.6	19.8	1	21.1										
		1	24	19.7	19.6	19.6	1	21.1										
	16QAM	12	0	18.7	19.0	18.8	2	20.1										
		12	7	18.8	18.9	18.8	2	20.1										
		12	13	18.8	18.8	18.9	2	20.1										
		25	0	18.9	19.1	19.1	2	20.1										
					Maximum Ave	erage Power (dB	m)											
BW (MHz)	Mode	RB Allocation	RB offset	18615	18900	19185	MDD	Tune-up										
		Allocation	Unser	1851.5 MHz	1880 MHz	1908.5 MHz	MPR	Limit										
		1	0	21.3	21.5	21.0	0	22.1										
	QPSK	1	8	21.3	21.4	21.1	0	22.1										
		1	14	21.4	21.5	20.8	0	22.1										
		8	0	20.4	20.7	20.1	1	21.1										
		8	4	20.5	20.6	20.2	1	21.1										
		8	7	20.4	20.5	20.2	1	21.1										
		15	0	20.4	20.5	20.1	1	21.1										
3 MHz		1	0	19.9	20.1	20.0	1	21.1										
		1	8	20.2	19.9	20.0	1	21.1										
		1	14	20.0	20.1	19.7	1	21.1										
	16QAM	8	0	19.0	18.8	19.0	2	20.1										
		8	4	18.9	18.9	19.0	2	20.1										
		8	7	19.1	19.1	19.1	2	20.1										
		15	0	18.8	19.2	19.0	2	20.1										
					Maximum Ave	erage Power (dB	m)											
BW (MHz)	Mode							RB Allocation	RB Allocation				RB offset	18607	18900	19193	MDD	Tune-up
(11112)		7 moodion	011001	1850.7 MHz	1880 MHz	1909.3 MHz	MPR	Limit										
		1	0	21.7	21.7	21.5	0	22.1										
		1	3	21.5	21.7	21.6	0	22.1										
		1	5	21.4	21.7	21.3	0	22.1										
	QPSK	3	0	21.5	21.7	21.4	0	22.1										
		3	1	21.4	21.8	21.5	0	22.1										
		3	3	21.6	21.7	21.6	0	22.1										
1 4 141-		6	0	20.5	20.7	20.4	1	21.1										
1.4 MHz		1	0	19.9	19.9	19.6	1	21.1										
		1	3	20.3	20.2	19.6	1	21.1										
		1	5	20.1	19.8	19.4	1	21.1										
	16QAM	3	0	20.1	19.8	19.7	1	21.1										
		3	1	20.3	20.2	19.6	1	21.1										
		3	3	20.4	20.3	19.6	1	21.1										
		6	0	18.7	19.0	19.1	2	20.1										

LTE Band 5 Measured Results

				Maximum Average Power (dBm)					
BW (MHz)	Mode	RB Allocation	RB offset		20525		МОО	Tune-up	
(11112)		Allocation	UNSCE		836.5 MHz		MPR	Limit	
		1	0		23.4		0	25	
		1	25		23.3		0	25	
		1	49		23.5	-	0	25	
	QPSK	25	0		22.4		1	24	
		25	12		22.5		1	24	
		25	25		22.6		1	24	
10.000		50	0		22.3		1	24	
10 MHz		1	0		22.4		1	24	
		1	25		22.3		1	24	
		1	49		22.4		1	24	
	16QAM	12	0		22.1		2	23	
		12	12		22.5		2	23	
		12	25		22.5		2	23	
		27	0		21.4		2	23	
			-			erage Power (dB			
BW	Mode	RB	RB	20425	20525	20625		Tune-up	
(MHz)		Allocation	offset	826.5 MHz	836.5 MHz	846.5 MHz	MPR	Limit	
		1	0	23.1	23.7	23.4	0	25	
		1	12	24.0	23.6	23.6	0	25	
		1	24	23.4	23.5	23.1	0	25	
	QPSK	12	0	22.5	22.5	22.5	1	23	
		12	7	22.6	22.6	22.4	1	24	
		12	13	22.0	22.0	22.4	1	24	
5 MHz	16QAM	25	0	22.5	22.4	22.3	1	24	
		1	0	22.1	22.1	23.1	1	24	
		1	12	22.7	22.3	23.0	1	24	
		1	24	22.5	22.2	22.8	1	24	
		12	0	21.3	21.3	21.3	2	23	
		12	7	21.5	21.4	21.3	2	23	
		12	13	21.5	21.5	21.2	2	23	
		25	0	21.5	21.3	21.3	2	23	
BW		RB	RB	RB			erage Power (dB	m)	
(MHz)	Mode	Allocation	offset	20415	20525	20635	MPR	Tune-up Limit	
			0	825.5 MHz	836.5 MHz	847.5 MHz	0		
		1	0	23.5	23.5	23.5	0	25	
		1	8	23.5	23.3	23.3	0	25	
		1	14	23.5	23.2	23.4	0	25	
	QPSK	8	0	22.4	22.3	22.5	1	24	
		8	4	22.5	22.2	22.4	1	24	
		8	7	22.5	22.3	22.3	1	24	
3 MHz		15	0	22.5	22.3	22.4	1	24	
		1	0	22.2	22.1	22.8	1	24	
		1	8	22.8	22.0	22.7	1	24	
		1	14	22.8	22.1	22.7	1	24	
	16QAM	8	0	21.3	21.1	21.9	2	23	
		8	4	21.6	21.1	21.5	2	23	
		8	7	21.3	21.2	21.5	2	23	
		15	0	21.4	21.1	21.4	2	23	

LTE Band 5 Measured Results (continued)

DW					m)			
BW (MHz)	Mode	RB Allocation	RB offset	20407	20525	20643	MDD	Tune-up
		7 moodilon	011000	824.7 MHz	836.5 MHz	848.3 MHz		Limit
		1	0	23.6	23.1	23.3	0	25
		1	3	23.7	23.1	23.1	0	25
		1	5	23.5	23.2	23.1	0	25
	QPSK	3	0	23.4	23.1	23.3	0	25
		3	1	23.4	23.1	23.2	0	25
		3	3	23.4	23.0	23.3	0	25
1.4 MHz		6	0	22.6	22.0	22.2	1	24
		1	0	22.1	22.3	22.9	1	24
		1	3	22.5	22.4	22.7	MPR Limit 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 1 24	
		1	5	22.3	22.2	22.8	1	24
	16QAM	3	0	22.5	22.1	22.6	1	24
		3	1	22.6	22.0	22.2	1	24
		3	3	22.7	22.0	22.1	1	24
		6	0	21.5	21.1	21.4	2	23

LTE Band 12 Measured Results

Mode QPSK 16QAM	RB Allocation 1 1 25 25 25 50 1 1 1 1 1 2 1 2 5 2 5 0 1 1 1 2 1 2 5	RB offset 0 25 49 0 12 25 0 25 0 25 0 25 0 25 0 25 0 25		23095 707.5 MHz 23.9 23.8 23.9 22.8 22.8 22.8 22.8 22.8 22.8		MPR 0 0 0 1 1 1	Tune-up Limit 25 25 25 25 24	
	1 1 25 25 25 50 1 1 1 1	0 25 49 0 12 25 0 0 0 25		23.9 23.8 23.9 22.8 22.8 22.8 22.8		0 0 0 1 1	25 25 25 24	
	1 1 25 25 25 50 1 1 1 1	25 49 0 12 25 0 0 25		23.8 23.9 22.8 22.8 22.8 22.8		0 0 1 1	25 25 24	
	1 25 25 25 50 1 1 1	49 0 12 25 0 0 25		23.9 22.8 22.8 22.8 22.8		0 1 1	25 24	
	25 25 25 50 1 1 1	0 12 25 0 0 25		22.8 22.8 22.8		1	24	
	25 25 50 1 1 1	12 25 0 0 25		22.8 22.8		1		
16QAM	25 50 1 1 1	25 0 0 25		22.8			24	
16QAM	50 1 1 1	0 0 25				4	- 1	
16QAM	1 1 1	0 25		22.8		1	24	
16QAM	1	25				1	24	
16QAM	1			23.0		1	24	
16QAM		40		22.5		1	24	
16QAM	12	49		22.5		1	24	
		0		22.7		2	23	
	12	12		22.5		2	23	
	12	25		22.8		2	23	
	27	0		21.8		2	23	
				Maximum Av	erage Power (dB	m)		
Mode	RB	RB	23035		23155		Tune-up Limit	
	Allocation	offset	701.5 MHz		713.5 MHz	MPR		
	1	0				0	25	
QPSK							25	
							25	
							24	
							24	
							24	
							24	
16QAM							24	
		-						
							24	
							24	
							23	
							23	
							23	
	25	0	21.3				23	
	RB							
Mode	Allocation	offset				MPR	Tune-up	
							Limit	
							25	
							25	
							25	
QPSK						1	24	
							24	
							24	
	15	0		22.5	22.7	1	24	
	1	0	22.7	23.0	23.1	1	24	
	1	8	23.3	22.9	23.1	1	24	
	1	14	23.4	22.3	22.9	1	24	
16QAM	8	0	21.0	21.4	22.1	2	23	
	8	4	21.0	21.3	22.1	2	23	
	8	7	21.1	21.2	22.1	2	23	
	15	0	21.2	21.6	21.9	2	23	
	QPSK	Mode RB Allocation 1 1 1 1 12 12 12 12 12 1 12 1 12 1 12 1 16QAM RB Allocation Mode RB Allocation 11 1 12 25 Mode RB Allocation 11 1 12 1 15 1 15 1 16QAM 1 11 1 12 1 15 1 16QAM 8 8 1 16QAM 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Mode RB Allocation RB offset 1 0 1 12 1 24 12 0 12 1 12 0 12 7 12 13 25 0 12 13 25 0 1 24 12 7 12 13 25 0 1 24 12 13 25 0 12 7 12 13 25 0 12 13 25 0 Mode RB Allocation Mode RB Allocation 1 0 1 8 1 14 8 0 15 0 14 8 15 0 14 8	ModeRB AllocationRB offset23035 701.5 MHz1023.211223.412423.312423.312022.3121322.425022.3121322.425022.311222.3121322.425022.312422.112721.3121321.3121321.3121321.3121321.3121321.3121321.315022.111423.1111423.115022.116QAM722.3111423.115022.116QAM8715022.116QAM81016QAM8715022.1	Mode RB Allocation RB offset 23035 23095 1 0 23.2 23.5 1 12 23.4 23.8 1 12 23.4 23.8 1 12 23.4 23.8 1 24 23.3 23.8 1 24 23.3 23.8 1 24 23.3 22.5 12 0 22.3 22.6 12 13 22.4 22.4 25 0 22.3 22.5 1 12 22.3 22.5 1 12 23.3 22.5 1 12 21.3 21.5 1 24 22.1 22.3 12 7 21.3 21.6 12 13 21.3 21.6 12 13 21.3 21.5 Mode RB Allocation RB RB 2300 23.4 <tr< td=""><td>Mode RB Allocation RB offset 23035 23095 23155 701.5 MHz 707.5 MHz 707.5 MHz 713.5 MHz 1 0 23.2 23.5 23.4 1 12 23.4 23.8 23.5 1 24 23.3 23.3 23.3 12 0 22.3 22.5 22.5 12 1 22.3 22.6 22.5 12 13 22.4 22.4 22.5 25 0 22.3 22.5 22.6 12 13 22.4 22.4 22.6 12 13 22.1 22.5 22.6 1 24 22.1 22.3 22.2 1 12 7 21.3 21.6 12 7 21.3 21.6 21.8 12 13 21.3 21.6 21.8 12 7 21.3 21.6 21.7</td><td>Mode RB Allocation RB offset Maximum Average Power (dBm) 23035 23095 23155 MPR 701.5 MHz 707.5 MHz 713.5 MHz 0 1 0 23.2 23.5 23.4 0 1 12 23.4 23.8 23.5 0 1 24 23.3 23.3 0.1 0 12 0 22.3 22.5 22.5 1 12 7 22.3 22.6 22.6 1 12 7 22.3 22.5 22.6 1 12 13 22.4 22.4 22.6 1 12 7 22.3 22.5 22.6 1 12 7 21.3 22.5 22.2 1 14 0 22.2 22.5 22.2 1 12 7 21.3 21.6 21.8 2 12 7 21.3 21.6</td></tr<>	Mode RB Allocation RB offset 23035 23095 23155 701.5 MHz 707.5 MHz 707.5 MHz 713.5 MHz 1 0 23.2 23.5 23.4 1 12 23.4 23.8 23.5 1 24 23.3 23.3 23.3 12 0 22.3 22.5 22.5 12 1 22.3 22.6 22.5 12 13 22.4 22.4 22.5 25 0 22.3 22.5 22.6 12 13 22.4 22.4 22.6 12 13 22.1 22.5 22.6 1 24 22.1 22.3 22.2 1 12 7 21.3 21.6 12 7 21.3 21.6 21.8 12 13 21.3 21.6 21.8 12 7 21.3 21.6 21.7	Mode RB Allocation RB offset Maximum Average Power (dBm) 23035 23095 23155 MPR 701.5 MHz 707.5 MHz 713.5 MHz 0 1 0 23.2 23.5 23.4 0 1 12 23.4 23.8 23.5 0 1 24 23.3 23.3 0.1 0 12 0 22.3 22.5 22.5 1 12 7 22.3 22.6 22.6 1 12 7 22.3 22.5 22.6 1 12 13 22.4 22.4 22.6 1 12 7 22.3 22.5 22.6 1 12 7 21.3 22.5 22.2 1 14 0 22.2 22.5 22.2 1 12 7 21.3 21.6 21.8 2 12 7 21.3 21.6	

LTE Band 12 Measured Results (continued)

DIA				Maximum Average Power (dBm)					
BW (MHz)	Mode	RB Allocation	RB offset	23017	23095	23173	MPR	Tune-up	
(11112)		7 moodalon	onoor	699.7 MHz	707.5 MHz	715.3 MHz		Limit	
		1	0	24.0	23.5	23.6	0	25	
		1	3	23.8	23.6	23.7	0	25	
		1	5	23.8	23.7	23.5	0	25	
	QPSK	3	0	23.5	23.5	23.6	0	25	
		3	1	23.4	23.8	23.8	0	25	
		3	3	23.5	23.6	23.7	0	25	
1.4 MHz		6	0	22.5	22.5	22.7	1	24	
		1	0	22.5	22.3	23.4	1	24	
		1	3	22.4	22.6	23.1	1	24	
		1	5	22.5	22.4	22.8	1	24	
	16QAM	3	0	22.3	22.7	22.7	1	24	
		3	1	22.6	22.8	22.6	1	24	
		3	3	22.4	22.7	22.4	1	24	
		6	0	21.4	21.5	21.7	2	23	

LTE Band 13 Measured Results

				Maximum Ave	erage Power (dB	m)	
BW (MHz)	Mode	RB Allocation	RB offset	23230			Tune-up
(10172)		Allocation	Oliset	782 MHz		MPR	Limit
		1	0	23.1		0	25
		1	25	23.7		0	25
		1	49	23.4		0	25
	QPSK	25	0	22.4		1	24
		25	12	22.6		1	24
		25	25	22.7		1	24
10 MHz		50	0	22.7		1	24
		1	0	22.6		1	24
		1	25	23.7		1	24
		1	49	23.1		1	24
	16QAM	12	0	22.5		2	23
		12	12	22.8		2	23
		12	25	22.8		2	23
		27	0	21.5		2	23
BW/		RB	RB		erage Power (dB	m)	
BW (MHz)	Mode	RB Allocation	RB offset	23230	erage Power (dBi	-	Tune-up
BW (MHz)	Mode			23230 782 MHz	erage Power (dBi	m) MPR	Limit
	Mode	Allocation 1	offset 0	23230 782 MHz 23.1	erage Power (dB	MPR 0	Limit 25
	Mode	Allocation	0 0 12	23230 782 MHz	erage Power (dB	MPR	Limit
		Allocation 1 1 1	0 0 12 24	23230 782 MHz 23.1 23.7 23.5	erage Power (dB	MPR 0 0 0	Limit 25 25 25
	Mode QPSK	Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 12 24 0	23230 782 MHz 23.1 23.7 23.5 22.4	erage Power (dB	MPR 0 0 0 1	Limit 25 25 25 24
		Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 12 24 0 7	23230 782 MHz 23.1 23.7 23.5 22.4 22.6	erage Power (dB	MPR 0 0 0 1 1	Limit 25 25 25 24 24 24
		Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0ffset 0 12 24 0 7 13	23230 782 MHz 23.1 23.7 23.5 22.4 22.6 22.6	erage Power (dB	MPR 0 0 0 1 1 1 1	Limit 25 25 25 24 24 24 24
(MHz)		Allocation 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 5	0ffset 0 12 24 0 7 13 0	23230 782 MHz 23.1 23.7 23.5 22.4 22.6 22.6 22.6 22.6	arage Power (dB	MPR 0 0 0 1 1 1 1 1 1	Limit 25 25 25 24 24 24 24 24 24
		Allocation 1 1 1 1 1 1 1 1 1 1 1 2 1 2 5 1 1	offset 0 12 24 0 7 13 0 0	23230 782 MHz 23.1 23.7 23.5 22.4 22.6 22.6 22.6 22.6 22.6 22.6 23.0	erage Power (dB	MPR 0 0 1 1 1 1 1 1 1 1	Limit 25 25 24 24 24 24 24 24 24 24
(MHz)		Allocation 1 1 1 1 1 1 1 1 1 1 1 2 1 2 5 1 1 1 1 1	offset 0 12 24 0 7 13 0 12	23230 782 MHz 23.1 23.7 23.5 22.4 22.6 22.6 22.6 22.6 22.6 23.0 23.3	arage Power (dB	MPR 0 0 0 1 1 1 1 1 1 1 1 1 1	Limit 25 25 24 24 24 24 24 24 24 24 24
(MHz)	QPSK	Allocation 1 1 1 1 1 1 1 1 1 1 1 2 1 2 5 1 1 1 1 1	offset 0 12 24 0 7 13 0 12 24	23230 782 MHz 23.1 23.7 23.5 22.4 22.6 22.6 22.6 22.6 22.6 23.0 23.3 23.3	arage Power (dB	MPR 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	Limit 25 25 24 24 24 24 24 24 24 24 24 24 24
(MHz)		Allocation 1 1 1 1 1 1 1 1 1 1 1 2 5 1 1 1 1 1 1 1	offset 0 12 24 0 7 13 0 0 12 24 0 7 13 0 12 24 0 12 24 0	23230 782 MHz 23.1 23.7 23.5 22.4 22.6 22.6 22.6 22.6 22.6 23.0 23.3 23.4 23.4 21.5	erage Power (dB	MPR 0 0 1 1 1 1 1 1 1 1 1 1 2	Limit 25 25 24 24 24 24 24 24 24 24 24 24 24 23
(MHz)	QPSK	Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	offset 0 12 24 0 7 13 0 12 24 0 7 13 0 0 12 24 0 7	23230 782 MHz 23.1 23.7 23.5 22.4 22.6 22.6 22.6 22.6 23.0 23.3 23.4 21.5 21.6	erage Power (dB	MPR 0 0 1 1 1 1 1 1 1 1 1 1 2 2	Limit 25 25 24 24 24 24 24 24 24 24 24 24 24 24 23 23
(MHz)	QPSK	Allocation 1 1 1 1 1 1 1 1 1 1 1 2 5 1 1 1 1 1 1 1	offset 0 12 24 0 7 13 0 0 12 24 0 7 13 0 12 24 0 12 24 0	23230 782 MHz 23.1 23.7 23.5 22.4 22.6 22.6 22.6 22.6 22.6 23.0 23.3 23.4 23.4 21.5	arage Power (dB	MPR 0 0 1 1 1 1 1 1 1 1 1 1 2	Limit 25 25 24 24 24 24 24 24 24 24 24 24 24 23

LTE Band 14 Measured Results

				Ι	Maximum Ave	erage Power (dB	m)	
BW (MHz)	Mode	RB Allocation	RB offset		23330			Tune-up
		Allocation	Unser		793 MHz		MPR	Limit
		1	0		23.1		0	25
		1	25		23.1		0	25
		1	49		23.2		0	25
	QPSK	25	0		22.3		1	24
		25	12		22.4		1	24
		25	25		22.3		1	24
10 MHz		50	0		22.3		1	24
		1	0		23.0		1	24
		1	25		22.0		1	24
		1	49		22.8		1	24
	16QAM	12	0		22.4		2	23
		12	12		22.5		2	23
		12	25		22.3		2	23
		27	0		21.6		2	23
BW/		RB	RB	Π		erage Power (dB	m)	
BW (MHz)	Mode	RB Allocation	RB offset		Maximum Ave 23330	erage Power (dB	-	Tune-up
BW (MHz)	Mode				23330 793 MHz	erage Power (dBi	m) MPR	Limit
	Mode	Allocation 1	offset 0		23330 793 MHz 23.7	erage Power (dBi	MPR 0	Limit 25
	Mode	Allocation	0 0 12		23330 793 MHz	erage Power (dBi	MPR	Limit
		Allocation 1 1 1	0 0 12 24		23330 793 MHz 23.7 24.1 23.6	erage Power (dB	MPR 0 0 0	Limit 25 25 25
	Mode	Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 12 24 0		23330 793 MHz 23.7 24.1 23.6 22.8	erage Power (dB	MPR 0 0 0 1	Limit 25 25 25 24
		Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 12 24 0 7		23330 793 MHz 23.7 24.1 23.6 22.8 22.6	erage Power (dB	MPR 0 0 0 1 1	Limit 25 25 25 24 24 24
		Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0ffset 0 12 24 0 7 13		23330 793 MHz 23.7 24.1 23.6 22.8 22.6 22.6	erage Power (dB	MPR 0 0 0 1 1 1 1	Limit 25 25 25 24 24 24 24
(MHz)		Allocation 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 5	0ffset 0 12 24 0 7 13 0		23330 793 MHz 23.7 24.1 23.6 22.8 22.6 22.6 22.5	erage Power (dB	MPR 0 0 0 1 1 1 1 1 1	Limit 25 25 25 24 24 24 24 24 24
		Allocation 1 1 1 1 1 1 1 1 1 1 1 2 1 2 5 1 1	offset 0 12 24 0 7 13 0 0		23330 793 MHz 23.7 24.1 23.6 22.8 22.6 22.6 22.6 22.5 22.3	erage Power (dB	MPR 0 0 1 1 1 1 1 1 1 1	Limit 25 25 24 24 24 24 24 24 24 24
(MHz)		Allocation 1 1 1 1 1 1 1 1 1 1 1 2 1 2 5 1 1 1 1 1	offset 0 12 24 0 7 13 0 12		23330 793 MHz 23.7 24.1 23.6 22.8 22.6 22.6 22.6 22.5 22.3	erage Power (dB	MPR 0 0 0 1 1 1 1 1 1 1 1 1 1	Limit 25 25 24 24 24 24 24 24 24 24 24
(MHz)	QPSK	Allocation 1 1 1 1 1 1 1 1 1 1 1 2 1 2 5 1 1 1 1 1	offset 0 12 24 0 7 13 0 12 24		23330 793 MHz 23.7 24.1 23.6 22.8 22.6 22.6 22.5 22.3 22.5 22.3	erage Power (dB	MPR 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	Limit 25 25 24 24 24 24 24 24 24 24 24 24
(MHz)		Allocation 1 1 1 1 1 1 1 1 1 1 1 2 5 1 1 1 1 1 1 1	offset 0 12 24 0 7 13 0 0 12 24 0 7 13 0 12 24 0 12 24 0		23330 793 MHz 23.7 24.1 23.6 22.8 22.6 22.6 22.5 22.3 22.3 22.5 22.3 22.3 22.3	erage Power (dB	MPR 0 0 1 1 1 1 1 1 1 1 1 1 2	Limit 25 25 24 24 24 24 24 24 24 24 24 24 24 23
(MHz)	QPSK	Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	offset 0 12 24 0 7 13 0 12 24 0 7 13 0 0 12 24 0 7		23330 793 MHz 23.7 24.1 23.6 22.8 22.6 22.6 22.5 22.3 22.3 22.5 22.3 22.3 22.3 21.8	erage Power (dB	MPR 0 0 1 1 1 1 1 1 1 1 1 1 2 2	Limit 25 25 24 24 24 24 24 24 24 24 24 24 24 23 23
(MHz)	QPSK	Allocation 1 1 1 1 1 1 1 1 1 1 1 2 5 1 1 1 1 1 1 1	offset 0 12 24 0 7 13 0 0 12 24 0 7 13 0 12 24 0 12 24 0		23330 793 MHz 23.7 24.1 23.6 22.8 22.6 22.6 22.5 22.3 22.3 22.5 22.3 22.3 22.3	erage Power (dB	MPR 0 0 1 1 1 1 1 1 1 1 1 1 2	Limit 25 25 24 24 24 24 24 24 24 24 24 24 24 23

LTE Band 66 Measured Results

					Maximum Av	erage Power (dB	m)	
BW (MHz)	Mode	RB Allocation	RB offset	132072	132322	132572	MDD	Tune-up
		Allocation	Unser	1720 MHz	1745 MHz	1770 MHz	MPR	Limit
		1	0	23.4	23.9	23.8	0	25
		1	49	23.3	24.0	23.5	0	25
		1	99	23.1	23.7	23.3	0	25
	QPSK	50	0	22.3	22.9	22.8	1	24
		50	24	22.2	22.6	22.1	1	24
		50	50	22.3	22.7	22.6	1	24
00 MU-		100	0	22.2	22.6	22.4	1	24
20 MHz		1	0	22.8	23.1	23.2	1	24
		1	49	23.0	23.6	23.3	1	24
		1	99	22.7	23.1	22.8	1	24
	16QAM	12	0	22.4	22.5	22.2	2	23
		12	24	22.3	22.6	21.9	2	23
		12	50	22.3	22.4	21.8	2	23
		27	0	21.4	21.6	21.2	2	23
					Maximum Av	erage Power (dB	m)	
BW (MHz)	Mode	RB Allocation	RB offset	132047	132322	132597		Tune-up
(11112)		Allocation	Unser	1717.5 MHz	1745 MHz	1772.5 MHz	MPR	Limit
		1	0	23.6	24.1	23.3	0	25
		1	37	23.8	24.6	23.2	0	25
	QPSK	1	74	23.4	24.3	23.8	0	25
		36	0	22.4	23.2	22.6	1	24
		36	20	22.5	23.1	22.6	1	24
		36	39	22.4	22.4 23.0		1	24
		75	0	22.4	23.0	22.4	1	24
15 MHz		1	0	22.7	23.4	22.7	1	24
		1	37	23.7	23.1	22.9	1	24
		1	74	22.9	23.0	22.3	1	24
	16QAM	12	0	22.6	22.9	22.4	2	23
		12	20	22.6	22.9	22.4	2	23
		12	39	22.8	22.9	22.3	2	23
		27	0	21.8	21.8	21.5	2	23
					Maximum Av	erage Power (dB	m)	
BW (MHz)	Mode	RB Allocation	RB offset	132022	132322	132622		Tune-up
(11112)		Allocation	UNSCE	1715 MHz	1745 MHz	1775 MHz	MPR	Limit
		1	0	23.1	23.2	23.7	0	25
		1	25	23.3	23.3	23.6	0	25
		1	49	23.1	23.3	23.4	0	25
	QPSK	25	0	22.2	22.5	22.4	1	24
		25	12	22.2	22.3	22.4	1	24
		25	25	22.1	22.2	22.3	1	24
10 1411-		50	0	22.1	22.3	22.3	1	24
10 MHz		1	0	22.7	22.7	22.5	1	24
		1	25	23.3	23.2	23.0	1	24
		1	49	22.8	22.7	22.2	1	24
	16QAM	12	0	22.2	22.5	22.3	2	23
		12	12	22.3	22.5	22.2	2	23
		12	25	22.3	22.3	22.2	2	23
		27	0	21.5	21.4	21.3	2	23

LTE Band 66 Measured Results (continued)

LTE Band				Maximum Average Power (dBm)								
BW	Mode	RB	RB	131997	132322	132647		Tune-up				
(MHz)		Allocation	offset	1712.5 MHz	1745 MHz	1777.5 MHz	MPR	Limit				
		1	0	23.4	23.3	23.6	0	25				
		1	12	23.6	23.2	23.6	0	25				
		1	24	23.3	23.1	23.2	0	25				
	QPSK	12	0	22.5	22.3	22.3	1	24				
		12	7	22.4	22.3	22.3	1	24				
		12	13	22.3	22.4	22.2	1	24				
		25	0	22.4	22.3	22.2	1	24				
5 MHz		1	0	22.7	22.7	22.7	1	24				
		1	12	22.5	22.6	22.8	1	24				
		1	24	22.6	22.5	22.6	1	24				
	16QAM	12	0	21.4	21.6	21.1	2	23				
	1000	12	7	21.4	21.8	21.1	2	23				
		12	13	21.3	21.6	21.0	2	23				
		25	0	21.5	21.6	21.0	2	23				
		25	0	21.5		erage Power (dB		25				
BW	Mode	RB	RB	131987	132322	132657		Tune un				
(MHz)	Widde	Allocation	offset	1711.5 MHz	1745 MHz	1778.5 MHz	MPR	Tune-up Limit				
		1	0	23.2	23.3	23.3	0	25				
		1	8	23.2		-	0					
					23.1	23.3		25				
	QPSK	1	14	23.0	23.2	23.1	0	25				
		8	0	22.1	22.3	22.2	1	24				
		8	4	22.2	22.3	22.2	1	24				
		8	7	22.2	22.3	22.3	1	24				
3 MHz		15	0	22.1	22.4	22.2	1	24				
		1	0	22.7	22.8	22.4	1	24				
		1	8	22.7	22.6	22.6	1	24				
		1	14	22.6	22.5	22.3	1	24				
	16QAM	8	0	21.3	21.2	21.2	2	23				
		8	4	21.2	21.7	21.2	2	23				
		8	7	21.2	21.3	21.2	2	23				
		15	0	21.2	21.3	21.1	2	23				
BW		RB	RB			erage Power (dB	m)					
(MHz)	Mode	Allocation	offset	131979	132322	132665	MPR	Tune-up				
				1710.7 MHz	1745 MHz	1779.3 MHz		Limit				
		1	0	23.5	23.5	23.3	0	25				
		1	3	23.4	23.5	23.1	0	25				
		1	5	23.3	23.6	23.1	0	25				
	QPSK	3	0	23.4	23.2	23.3	0	25				
		3	1	23.4	23.3	23.1	0	25				
		3	3	23.5	23.3	23.0	0	25				
1.4 MHz		6	0	22.4	22.4	22.3	1	24				
		1	0	23.0	22.7	22.7	1	24				
		1	3	22.9	22.5	22.6	1	24				
		1	5	22.9	22.3	22.5	1	24				
	16QAM	3	0	22.6	22.5	22.3	1	24				
		3	1	22.2	22.6	22.1	1	24				
		3	3	22.7	22.4	22.2	1	24				
		6	0	21.1	21.2	21.4	2	23				

LTE Band 71 Measured Results

					Maximum Ave	erage Power (dB	m)	
BW (MHz)	Mode	RB Allocation	RB offset		133297		МОО	Tune-up
(11112)		Allocation	UISEL		680.5 MHz		MPR	Limit
		1	0		23.2		0	25
		1	49		23.6		0	25
		1	99		23.2		0	25
	QPSK	50	0		22.5		1	24
		50	24		22.5		1	24
		50	50		22.5		1	24
00.0411		100	0		22.5		1	24
20 MHz		1	0		22.6		1	24
		1	49		23.1		1	24
		1	99		22.7		1	24
	16QAM	12	0		22.6		2	23
		12	24		22.7		2	23
		12	50		22.4		2	23
		27	0		21.6		2	23
					Maximum Ave	erage Power (dB	m)	
BW (MHZ)	Mode	RB Allocation	RB offset		133297			Tune-up
(MHz)		Allocation	onset		680.5 MHz		MPR	Limit
		1	0		23.1		0	25
		1	37		23.3		0	25
	QPSK	1	74		23.1		0	25
		36	0		22.3		1	24
		36	20		22.1		1	24
		36	39		22.0		1	24
		75	0		22.2		1	24
15 MHz		1	0		22.3		1	24
		1	37		22.2		1	24
		1	74		22.3		1	24
	16QAM	12	0		22.2		2	23
	IOQAIVI	12	20		22.2		2	23
		12	39		21.9		2	23
		27	0		21.3		2	23
						erage Power (dB		
BW	Mode	RB	RB	133172	133297	133422	, 	Tune-up
(MHz)		Allocation	offset	668 MHz	680.5 MHz	693 MHz	MPR	Limit
		1	0	23.1	23.2	23.0	0	25
		1	25	23.0	23.1	23.4	0	25
		1	49	23.1	23.0	23.0	0	25
	QPSK	25	0	22.1	22.1	22.0	1	24
		25	12	22.1	22.0	22.1	1	24
		25	25	22.2	22.1	22.1	1	24
		50	0	22.2	22.1	22.1	1	24
10 MHz		1	0	22.7	22.5	22.3	1	24
		1	25	23.3	22.5	22.9	1	24
		1	49	23.1	22.6	22.3	1	24
	16QAM	12	49 0	23.1	22.0	22.1	2	24
	10 QAIN	12	12	22.2	22.2	22.3	2	23
		12	25	21.9	22.2	22.4	2	23
		27	0	22.1	21.9	22.3	2	23
		21	U	21.0	21.1	21.3	2	23

LTE Band 71 Measured Results (continued)

DW				Maximum Average Power (dBm)									
BW (MHz)	Mode	RB Allocation	RB offset	133147	133297	133447	MPR	Tune-up					
(11112)		, moodilon	onoor	665.5 MHz	680.5 MHz	695.5 MHz	WIPK	Limit					
		1	0	23.1	23.1	23.3	0	25					
		1	12	23.1	23.0	23.2	0	25					
		1	24	23.1	23.0	23.1	0	25					
	QPSK	12	0	22.2	22.2	22.2	1	24					
		12	7	22.2	22.2 22.1		1	24					
		12	13 22.1 22.1 22.1		22.1	1	24						
5 MHz		25	0	22.1	22.2	22.2	1	24					
		1	0	22.8	22.7	22.2	1	24					
		1	12	22.9	22.7	22.2	1	24					
		1	24	22.7	22.5	22.1	1	24					
	16QAM	12	0	21.0	21.0	21.1	2	23					
		12	7	21.1	21.1	21.2	2	23					
		12	13	21.0	21.2	21.0	2	23					
		25	0	21.1	21.2	21.1	2	23					

9.3. Bluetooth

Maximum Output Power (Tune-up Limit) for Bluetooth

SAR measurement is required for Bluetooth LE for both the gateway and the sensor since it is the sole supported mode.

Band	Mode	Channel	Frequency (MHz)	Tune-up Pow er Limit (dBm) BT Antenna Maximum
Divisionath		0	2402	4.0
Bluetooth 2.4 GHz	LE 19		2440	4.0
2.4 01 12		39	2480	4.0

Note:

The above tune-up applies to both the gateway and sensor.

Bluetooth Measured Results - Gateway

			Freq.	Maximum Average Power (dBm)				
Band	Mode	Ch #	(MHz)	Meas Pwr	Tune-up	SAR Test (Yes/No)		
		0	2402	2.8	4.0			
	LE 1Mbps, GFSK	19	2440	2.7	4.0	Yes		
Bluetooth	Gron	39	2480	2.7	4.0			
2.4 GHz	. =	0	2402	2.7	4.0			
	LE 2Mbps, GFSK	19	2440	2.7	4.0	No		
	Gron	39	2480	2.7	4.0			

Bluetooth Measured Results - Sensor

			Freq.	Maximum	n Average Pov	ver (dBm)
Band	Mode	Ch #	(MHz)	Meas Pwr	Tune-up	SAR Test (Yes/No)
		0	2402	3.1	4.0	
	LE 1Mbps, GFSK	19	2440	2.6	4.0	Yes
Bluetooth	oron	39	2480	2.2	4.0	
2.4 GHz		0	2402	3.0	4.0	
	LE 2Mbps, GFSK	19	2440	2.6	4.0	No
	S. OK	39	2480	2.1	4.0	

Duty Factor Measured Results - Gateway

Mode	Rate	T on (ms)	Period (ms)	Duty Cycle	Crest Factor (1/duty cycle)
GFSK	1Mbps	100	100	100%	1.00

Note(s):

Duty Cycle = (T on / period) * 100%

Duty Factor Measured Results - Sensor

Mode	Rate	T on (ms)	Period (ms)	Duty Cycle	Crest Factor (1/duty cycle)
GFSK	1Mbps	100	100	100%	1.00

Note(s):

Duty Cycle = (T on / period) * 100%

Page 43 of 51

Duty Cycle plots

Gateway, GFSK

🊺 Kej	ysight S	Spect				22.5.4,84	1740/443	389,															- # x
	L		RF		75 Ω	DC				Tria	SENSE			#Avg Avg	Туре	ALIGN AU CRMS			RACE TYPE	1 2 3 4 A www	5 6	Fred	luency
40 al	B/div		Pot	f 20.(FE		0: Fast ain:Lov			en: 30 c				ioia.		Δ	Mkr3	DET	PNNN	ns	A	uto Tune
10.0 10.0 0.00				20.0																	12		nter Freq 00000 GHz
-20.0 -30.0 -40.0																					_		Start Freq 00000 GHz
-50.0 -60.0 -70.0																					_		Stop Freq 00000 GHz
Res		81	MH:		0 GI	Hz		#∨	/BW	50 N	IHz		FUNCT	10N		Sweep		0.0 ms	s (1	an 0 001 p	Hz ts)	8.0 <u>Auto</u>	CF Step 00000 MHz Man
1 2 3 4 5 6	Δ2 Ν Δ2	1	t t	(Δ) (Δ)			0.0	0 ms 000 s 0 ms		-6.8	.015 dE 81 dBn .015 dE	1									E	Fr	e q Offset 0 Hz
7 8 9 10 11										11	1										•		
MSG																ST	TATUS						

Sensor, GFSK

							/44389,	AP2022.5.4,847				
Frequency	Aug 15, 2022 E 1 2 3 4 5 6 E A WWWWW	TRAC		#Avg Ty Avg Hole	NSE:INT		PNO: Fast 🔸	5Ω DC	F 75	RI	L	<u>(</u>
Auto Tun	00.0 ms .015 dB	Mkr3 1				#Atten: 3	FGain:Low	0 dBm	f 20.0	Re	B/div	10 d
Center Fre 2.442000000 GH	3∆2										2	-og 10.0 0.00
Start Fr 2.442000000 G												20.0 30.0 40.0
Stop Fr 2.442000000 G											-	50.0 50.0 70.0
CF Sto 8.000000 M <u>Auto</u> M	pan 0 Hz 1001 pts) NVALUE	00.0 ms (Sweep 1	CTION FL		50 MHz	#VBW	0 GHz ×		2.4420 8 MH	s BW	es
Freq Offs 01	E				dB 3m	0.015 -6.881 dl 0.015	00.0 ms (Δ) 0.000 s 00.0 ms (Δ)	^	(Δ)		Δ2 N	1 2 3 4 5 6
												7 9 10 11
t		s	STATUS									SG

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

Reported SAR(W/kg) for WWAN and Bluetooth = Measured SAR *Tune-up Scaling Factor

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.
- For LTE bands that do not support at least three non-overlapping channels in certain channel bandwidths, test the available non-overlapping channels instead. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the requirement for H, M and L channels may not fully apply.

10.1. W-CDMA Band II Gateway (with Sensor Docked)

RF Exposure			Dist.	Test	Sensor Cable			Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Position	Direction	Ch #.	Freq. (MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
						9262	1852.4	22.4	22.4	1.430	1.430	1
					Left	9400	1880.0	22.4	22.4	1.190	1.190	
Body-worn	Rel 99 RMC	WWAN	0	Back		9538	1907.6	22.4	22.3	1.220	1.248	
Body-worn	12.2 kbps	WWAN	0	Dack		9262	1852.4	22.4	22.4	1.190	1.190	
					Right	9400	1880.0	22.4	22.4	1.250	1.250	
						9538	1907.6	22.4	22.3	1.270	1.300	

10.2. W-CDMA Band IV Gateway (with Sensor Docked)

RF Exposure			Dist.	Test	Sensor Cable			Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Position	Direction	Ch #.	Freq. (MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
						1312	1712.4	23.8	23.4	1.060	1.162	2
					Left	1413	1732.6	23.8	23.7	1.090	1.115	
Dedu worn	Rel 99 RMC	WWAN	0	Back		1513	1752.6	23.8	23.6	1.090	1.141	
Body-worn	12.2 kbps	WWWAN	0	Dack		1312	1712.4	23.8	23.4	0.954	1.046	
					Right	1413	1732.6	23.8	23.7	1.060	1.085	
						1513	1752.6	23.8	23.6	1.070	1.120	

10.3. W-CDMA Band V Gateway (with Sensor Docked)

RF Exposure			Dist.	Test	Sensor Cable		Freq.	Pow er	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Position	Direction	Ch #.	(MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
Body-w orn	Rel 99 RMC	WWAN	0	Back	Left	4183	836.6	25.0	23.2	0.255	0.386	3
Body-worn	12.2 kbps	WWAN	0	Dack	Right	4183	836.6	25.0	23.2	0.241	0.365	

10.4. LTE Band 2 (20MHz Bandwidth) Gateway (with Sensor Docked)

RF Exposure			Dist.	Test	Sensor Cable			RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Position	Direction	Ch #.	Freq. (MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
						18700	1860.0	1	49	22.1	21.8	0.945	1.013	
						16700	1000.0	50	50	21.1	20.6	0.890	0.999	ĺ
								1	49	22.1	21.8	0.985	1.055	
					Left	18900	1880.0	50	0	21.1	20.7	0.946	1.037	
	Body-worn QPSK							100	0	21.1	20.7	0.862	0.945	
						40400	4000.0	1	49	22.1	22.0	0.998	1.021	
Destaura				Deals		19100	1900.0	50	24	21.1	20.5	0.957	1.099	
Body-worn		WWAN	0	Back		40700	4000.0	1	49	22.1	21.8	1.180	1.264	
						18700	1860.0	50	50	21.1	20.6	0.822	0.922	
								1	49	22.1	21.8	1.260	1.350	4
					Right	18900	1880.0	50	0	21.1	20.7	0.835	0.916	
						100	0	21.1	20.7	0.891	0.977			
						10100	4000.0	1	49	22.1	22.0	1.220	1.248	
						19100	1900.0	50	24	21.1	20.5	0.942	1.082	

10.5. LTE Band 5 (10MHz Bandwidth) Gateway (with Sensor Docked)

RF Exposure			Dist.	Test	Sensor Cable			RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Position	Direction	Ch #.	Freq. (MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
					1 - 4	20505	836.5	1	49	25.0	23.5	0.312	0.441	5
Darkunarr	ODOK		0	Deals	Left	20525	830.5	25	25	24.0	22.6	0.211	0.291	
Body-worn	QPSK	WWAN	0	Back	Disht	00505	000 5	1	49	25.0	23.5	0.298	0.421	
					Right	20525	836.5	25	25	24.0	22.6	0.232	0.320	

10.6. LTE Band 12 (10MHz Bandwidth) Gateway (with Sensor Docked)

RF Exposure			Dist.	Test	Sensor Cable			RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Position	Direction	Ch #.	Freq. (MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
					Left	23095	707.5	1	0	25.0	23.9	0.516	0.665	6
Detterm	QPSK	WWAN	0	Back	Leit	23095	707.5	25	0	24.0	22.8	0.414	0.546	
Body-worn	QPSK	WWWAN	0	васк	Disht	00005	707.5	1	0	25.0	23.9	0.449	0.578	
					Right	23095	707.5	25	0	24.0	22.8	0.377	0.497	

10.7. LTE Band 13 (10MHz Bandwidth) Gateway (with Sensor Docked)

RF Exposure			Dist.	Test	Sensor Cable			RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Position	Direction	Ch #.	Freq. (MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
					Left	23230	782.0	1	25	25.0	23.7	0.477	0.643	7
Darkunarra	QPSK	WWAN	0	Deals	Leit	23230	782.0	25	25	24.0	22.7	0.407	0.549	
Body-worn	QPSK	WWWAN	0	Back	Disht	00000	700.0	1	25	25.0	23.7	0.444	0.599	
					Right	23230	782.0	25	25	24.0	22.7	0.353	0.476	

10.8. LTE Band 14 (10MHz Bandwidth) Gateway (with Sensor Docked)

RF Exposure			Dist.	Test	Sensor Cable			RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Position	Direction	Ch #.	Freq. (MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
					Left	23330	793.0	1	49	25.0	23.2	0.473	0.716	8
Destruction	QPSK	WWAN	0	Deals	Leit	23330	793.0	25	12	24.0	22.4	0.389	0.562	
Body-worn	QPSK	WWWAN	0	Back	Disht	23330	793.0	1	49	25.0	23.2	0.424	0.642	
					Right	23330	793.0	25	12	24.0	22.4	0.343	0.496	

10.9. LTE Band 66 (20MHz Bandwidth) Gateway (with Sensor Docked)

RF Exposure			Dist.	Test	Sensor Cable			RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Position	Direction	Ch #.	Freq. (MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
						132072	1720.0	1	0	25.0	23.4	0.738	1.067	
						132072	1720.0	50	0	24.0	22.3	0.592	0.876	
								1	49	25.0	24.0	0.978	1.231	
					Left	132322	1745.0	50	0	24.0	22.9	0.749	0.965	
	Body-worn QPSK V							100	0	24.0	22.6	0.771	1.064	
						132572	1770.0	1	0	25.0	23.8	1.030	1.358	9
Rody wom		WWAN	0	Back		132572	1770.0	50	0	24.0	22.8	0.805	1.061	
Body-worn		WWWAN	0	Dack		132072	1720.0	1	0	25.0	23.4	0.827	1.195	
						132072	1720.0	50	0	24.0	22.3	0.630	0.932	
								1	49	25.0	24.0	0.885	1.114	
					Right	132322	1745.0	50	0	24.0	22.9	0.680	0.876	
				Kight			100	0	24.0	22.6	0.765	1.056		
					400570	132572	1770.0	1	0	25.0	23.8	0.937	1.235	
						132372	1770.0	50	0	24.0	22.8	0.792	1.044	

10.10. LTE Band 71 (20MHz Bandwidth) Gateway (with Sensor Docked)

RF Exposure			Dist.	Test	Sensor Cable			RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Position	Direction	Ch #.	Freq. (MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
					Left	133297	600 F	1	49	25.0	23.6	0.419	0.578	10
D a du una m	ODOK		0	Deals	Leit	133297	680.5	50	0	24.0	22.5	0.322	0.455	
Body-worn	QPSK	WWAN	0	Back	Disht	133297	680.5	1	49	25.0	23.6	0.387	0.534	
					Right	155297	000.5	50	0	24.0	22.5	0.296	0.418	

10.11. Bluetooth

Gateway (with Sensor Docked)

RF Exposure			Dist.	Test	Sensor Cable			Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Position	Direction	Ch #.	Freq. (MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
Body-worn	LE 1Mbps	вт	0	Back	Left	0	2402	4.0	2.8	<0.001	<0.001	11
Body-worn	GFSK	ы	0	DACK	Right	0	2402	4.0	2.8	<0.001	<0.001	

Sensor Docked in Gateway

RF Exposure			Dist.	Test	Sensor Cable	Ch #. Freq. (MHz)		Power (dBm)		1-g SAR (W/kg)		Plot
Conditions	Mode	Antenna	(mm)	Position	Direction		Tune-up Limit	Meas.	Meas.	Scaled	No.	
Pody worp	Body-wom LE Mbps Main GFSK	Main	Main 0	Back	Left	0	2402	4.0	3.1	<0.001	<0.001	12
		IVIAIII			Right	0	2402	4.0	3.1	<0.001	<0.001	

Sensor Standalone

RF Exposure Conditions Mode			Dist.	Test			Power (dBm)		1-g SAR (W/kg)		Plot
	Antenna	(mm)	Position	Ch #.	Freq. (MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.	
LE Body-worn 1Mbps GFSK		Main 0	0	Back	0	2402	4.0	3.1	0.016	0.020	
			0	Front	0	2402	4.0	3.1	0.018	0.022	13

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Frequency		RF Exposure Conditions	Test Position	Repeated	Highest	First Repeated		Second Repeated		Third Repeated
Band (MHz)	Air Interface			SAR	Measured	Measured	Largest to	Measured	Largest to	Measured
				(Yes/No)	SAR (W/kg)	SAR	Smallest	SAR	Smallest	SAR
						(W/kg)	SAR Ratio	(W/kg)	SAR Ratio	(W/kg)
	Gateway (with Sensor Docked)									
1700	WCDMA Band IV	Body-worn	Back	Yes	1.090	1.120	1.03	N/A	N/A	N/A
1700	LTE Band 66	Body-worn	Back	Yes	1.030	1.020	1.01	N/A	N/A	N/A
1900	WCDMA Band II	Body-worn	Back	Yes	1.430	1.270	1.13	N/A	N/A	N/A
1300	LTE Band 2	Body-worn	Back	Yes	1.260	1.190	1.06	N/A	N/A	N/A

Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is < 1.20.

12. Simultaneous Transmission Conditions

Gateway (with Sensor Docked)

RF Exposure Condition	ltem	Capable Transmit Configurations						
			Sensor					
Body-w orn	1	PCE	+	DTS	+	DTS		
Notes:								
1. RF Exposure from Gatew ay only when worn with sensor. Otherwise RF Exposure > 20 cm.								

12.1. Simultaneous transmission SAR test exclusion considerations

KDB 447498 D01 General RF Exposure Guidance provides two procedures for determining simultaneous transmission SAR test exclusion: Sum of SAR and SAR to Peak Location Ratio (SPLSR)

Sum of SAR

To qualify for simultaneous transmission SAR test exclusion based upon Sum of SAR the sum of the reported standalone SARs for all simultaneously transmitting antennas shall be below the applicable standalone SAR limit. If the sum of the SARs is above the applicable limit then simultaneous transmission SAR test exclusion may still apply if the requirements of the SAR to Peak Location Ratio (SPLSR) evaluation are met.

12.2. Sum of the SAR for W-CDMA Band II & Bluetooth

RF Exposure	Test Position	Star	ndalone SAR (W	∑ 1-g SAR (W/kg)	
		Gateway (with S	Sensor Docked)	Sensor Docked in Gateway	Gateway + Sensor
conditions		WWAN	DTS	DTS	WWAN + DTS
		wwan 1	вт 2	Main 3	1 + 2 + 3
Body-Worn	Back	1.430	0.001	0.001	1.432

12.3. Total Exposure Ratio of WPT and Bluetooth

		Field (A/m)	SAR (W/kg)	Total Exposure Ratio
Test Position		WPT	Gatew ay (w ith Sensor Docked) BLE	Sensor Docked in Gatew ay	1 + 2 + 3
		1	2	3	
	Measured	1.115	0.001	0.001	
Back	Limit	1.630	1.600	1.600	
	Ratio	0.684	0.001	0.001	0.686

Note(s):

1. Total Exposure Ratio must not exceed 1.0

2. WPT field value is referenced from R14275554-E10

Appendixes

Refer to separated files for the following appendixes.

- Appendix A: SAR Setup Photos
- Appendix B: SAR System Check Plots
- Appendix C: SAR Highest Test Plots
- Appendix D: SAR Tissue Ingredients
- Appendix E: SAR Probe Certificates
- Appendix F: SAR Dipole Certificates

END OF REPORT