

Appendix C. Maximum Permissible Exposure

FCC ID: Q87-EA9200 Page No. : C1 of C4

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	, , , ,		Averaging Time E ², H ² or S (minutes)	
0.3-3.0	614	1.63	(100)*	6	
3.0-30	1842 / f	4.89 / f	(900 / f)*	6	
30-300	61.4	0.163	1.0	6	
300-1500			F/300	6	
1500-100,000			5	6	

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Power Density (S) Strength (H) (A/m) (mW/ cm²)		Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.27m, as well as the gain of the used antenna, the RF power density can be obtained.

FCC ID: Q87-EA9200 Page No. : C2 of C4

Report No.: FR482206

1.3. Calculated Result and Limit

Exposure Environment: General Population / Uncontrolled Exposure

For 5GHz UNII Band:

Antenna Type: PCB Antenna

Conducted Power for IEEE 802.11ac MCS0/Nss1 VHT40: 24.69 dBm

	Distance (m)	Directional Gain (dBi)	Antenna Gain	The maximum Average O	m combined utput Power	Density (S)	Limit of Power Density (S) (mW/cm²)	Test Result
	(11)	Gairi (abi)	(numeric)	(dBm)	(mW)	(mW/cm²)		
	0.27	7.87	6.1252	24.6851	294.1097	0.196749	1	Complies

Note: Directional gain=

 $10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{AMT}} \mathcal{G}_{j,k} \right\}^{2}}{N_{ANT}} \right]$

For 5GHz ISM Band:

Antenna Type: Dipole Antenna

Conducted Power for IEEE 802.11ac MCS0/Nss1 VHT20: 26.95 dBm

Distance	Directional	Antenna Gain	The maximum combined Average Output Power		Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
(m) Gain (dBi)	(numeric)	(dBm)	(mW)				
0.27	7.82	6.0551	26.9505	495.5064	0.327683	1	Complies

Note: Directional gain=

 $10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$

For 2.4GHz Band:

Antenna Type: Dipole Antenna

Conducted Power for IEEE 802.11ac MCS0/Nss1 VHT20: 26.70 dBm

Distance (m)	Directional Gain (dBi)	Antenna Gain (numeric)	The maximum combined Average Output Power		Power Density (S)	Limit of Power	Test Result
			(dBm)	(mW)	(mW/cm²)	Density (S) (mW/cm²)	loor Roodii
0.27	6.58	4.5512	26.6979	467.5039	0.232375	1	Complies

Note: Directional gain=

$$10 \cdot \log \left[\frac{\sum_{j=1}^{N_{\text{SS}}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$$

FCC ID: Q87-EA9200 Page No. : C3 of C4

Report No.: FR482206

CONCULSION:

Both of the 2.4GHz WLAN function, 5GHz Band 1 WLAN function and 5GHz Band 4 WLAN function can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.196749 / 1 + 0.327683 / 1 + 0.232375 / 1 = 0.756807, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

FCC ID: Q87-EA9200 Page No. : C4 of C4