

| FCC PART 15 SUBPART C TEST REPORT                 |                                                                                                                                                            |                           |  |  |  |  |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|
|                                                   |                                                                                                                                                            |                           |  |  |  |  |
| FCC PART 15.247                                   |                                                                                                                                                            |                           |  |  |  |  |
| Report Reference No                               | BSL24110172P01-R01                                                                                                                                         |                           |  |  |  |  |
| FCC ID :                                          | 2BFKI-530                                                                                                                                                  |                           |  |  |  |  |
| Compiled by ( position+printed name+signature):   | Engineer/ Cindy Zheng                                                                                                                                      | Cindy theng               |  |  |  |  |
| Supervised by ( position+printed name+signature): | Manager/Haley Wen                                                                                                                                          | Haley wen                 |  |  |  |  |
| Approved by ( position+printed name+signature):   | Engineer/ Cindy ZhengCindy ZhengManager/Haley WenHaley wenRF Manager/ Vivian JiangVivian Jiang                                                             |                           |  |  |  |  |
| Date of issue                                     | December 18, 2024                                                                                                                                          | V                         |  |  |  |  |
| Testing Laboratory Name                           | BSL Testing Co., Ltd.                                                                                                                                      |                           |  |  |  |  |
| Address                                           | 1/F, Building B, Xinshidai GR Park,Shiyan Street, Bao'an District,<br>Shenzhen,Guangdong, 518052, People's Republic of China                               |                           |  |  |  |  |
| Applicant's name:                                 | Zhongshan Haohan Hardware Technology Co., Ltd.                                                                                                             |                           |  |  |  |  |
| Address                                           | Floor 4,Tuofeng Street 2,Yumin seven Cun, Dongsheng Town,<br>Zhongshan City,Guangdong,China                                                                |                           |  |  |  |  |
| Test specification:                               |                                                                                                                                                            |                           |  |  |  |  |
| Standard:                                         | FCC Part 15.247:<br>ANSI C63.10-2013<br>KDB558074 D01 V05r02: April 2, 2019                                                                                |                           |  |  |  |  |
| BSL Testing Co., Ltd. All rights rese             | rved.                                                                                                                                                      |                           |  |  |  |  |
| Testing Co., Ltd. is acknowledged as c            | whole or in part for non-commercial purp<br>opyright owner and source of the materia<br>assume liability for damages resulting fro<br>acement and context. | al. BSL Testing Co., Ltd. |  |  |  |  |
| Test item description                             | digital knob lock                                                                                                                                          |                           |  |  |  |  |
| Trade Mark                                        | N/A                                                                                                                                                        |                           |  |  |  |  |
| Manufacturer                                      | Zhongshan Haohan Hardware Technolo                                                                                                                         | ogy Co., Ltd              |  |  |  |  |
| Model/Type reference:                             | 530ZML                                                                                                                                                     |                           |  |  |  |  |
| Listed Models:                                    | 530, 525ZML, 530ZML, 535ZML, 540ZML, 545ZML                                                                                                                |                           |  |  |  |  |
| Modulation:                                       | GFSK, IT/4DQPSK, 8DPSK                                                                                                                                     |                           |  |  |  |  |
| Frequency                                         | From 2402MHz to 2480MHz                                                                                                                                    |                           |  |  |  |  |
| Rating:                                           | DC 6V From Battery                                                                                                                                         |                           |  |  |  |  |
| Result:                                           | PASS                                                                                                                                                       |                           |  |  |  |  |



# **TEST REPORT**

| Equipment under Test | : | digital knob lock                                                                                                                                                                          |
|----------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model /Type          | : | 530ZML                                                                                                                                                                                     |
| Listed Models        | : | 530, 525ZML, 530ZML, 535ZML, 540ZML, 545ZML                                                                                                                                                |
| Model Declaration    | : | All the models are electrical identical including the same software parameter and hardware design, same mechanical structure and design, the only difference is the model named different. |
| Applicant            | : | Zhongshan Haohan Hardware Technology Co., Ltd.                                                                                                                                             |
| Address              | : | Floor 4,Tuofeng Street 2,Yumin seven Cun, Dongsheng Town,<br>Zhongshan City,Guangdong,China                                                                                                |
| Manufacturer         | : | Zhongshan Haohan Hardware Technology Co., Ltd.                                                                                                                                             |
| Address              | : | Floor 4,Tuofeng Street 2,Yumin seven Cun, Dongsheng Town,<br>Zhongshan City,Guangdong,China                                                                                                |

| Test Result: | PASS |
|--------------|------|
|--------------|------|

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.



# Contents

| 1           | TEST STANDARDS                                                 | 4        |
|-------------|----------------------------------------------------------------|----------|
| 2           | SUMMARY                                                        | 5        |
| 2.1         | General Remarks                                                | 5        |
| 2.2         | Product Description                                            | 5        |
| 2.3         | Equipment Under Test                                           | 5        |
| 2.4         | Short description of the Equipment under Test (EUT)            | 5        |
| 2.5         | EUT operation mode                                             | 5        |
| 2.6         | Block Diagram of Test Setup                                    | 6        |
| 2.7         | Related Submittal(s) / Grant (s)                               | 6        |
| 2.8         | Modifications                                                  | 6        |
| 3           | TEST ENVIRONMENT                                               | 7        |
|             |                                                                | _        |
| 3.1         | Address of the test laboratory                                 | 7        |
| 3.2         | Test Facility                                                  | 7        |
| 3.3         | Environmental conditions                                       | 7        |
| 3.4         | Summary of measurement results                                 | 8        |
| 3.5         | Statement of the measurement uncertainty                       | 8<br>9   |
| 3.6         | Equipments Used during the Test                                | 9        |
| 4           | TEST CONDITIONS AND RESULTS                                    | 11       |
| 4.1         | AC Power Conducted Emission                                    | 11       |
| 4.2         | Radiated Emission                                              | 12       |
| 4.3         | Maximum Peak Output Power                                      | 18       |
| 4.4         | 20dB Bandwidth                                                 | 21       |
| 4.5         | Frequency Separation                                           | 24       |
| 4.6         | Number of hopping frequency                                    | 26       |
| 4.7         | Time of Occupancy (Dwell Time)                                 | 28       |
| 4.8         | Out-of-band Emissions                                          | 31       |
| 4.9<br>4.10 | Pseudorandom Frequency Hopping Sequence<br>Antenna Requirement | 37<br>38 |
| 5           | TEST SETUP PHOTOS OF THE EUT                                   | 39       |
| 6           | PHOTOS OF THE EUT                                              | 4.0      |
| 0           |                                                                |          |



# 1 TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2020</u>: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission

Systems (DTS) Operating Under §15.247



## 2 <u>SUMMARY</u>

## 2.1 General Remarks

| Date of receipt of test sample |   | November 22, 2024 |
|--------------------------------|---|-------------------|
|                                |   |                   |
| Testing commenced on           | : | November 22, 2024 |
|                                |   |                   |
| Testing concluded on           | : | December 18, 2024 |

## 2.2 **Product Description**

| Product Name:         | digital knob lock                                                                |  |
|-----------------------|----------------------------------------------------------------------------------|--|
| Model/Type reference: | 530ZML                                                                           |  |
| Power supply:         | DC 6V from battery                                                               |  |
| Hardware version:     | 1                                                                                |  |
| Software version:     | 1                                                                                |  |
| Testing sample ID:    | BSL24110172P01-R01-1# (Engineer sample)<br>BSL24110172P01-R01-2# (Normal sample) |  |
| Bluetooth :           |                                                                                  |  |
| Supported Type:       | Bluetooth BR/EDR                                                                 |  |
| Modulation:           | GFSK, π/4DQPSK, 8DPSK                                                            |  |
| Operation frequency:  | 2402MHz~2480MHz                                                                  |  |
| Channel number:       | 79                                                                               |  |
| Channel separation:   | 1MHz                                                                             |  |
| Antenna type:         | PCB Antenna                                                                      |  |
| Antenna gain:         | 0dBi                                                                             |  |

## 2.3 Equipment Under Test

#### Power supply system utilised

| Power supply voltage             | : | 0 | 230V / 50 Hz | Ο | 120V / 60Hz |
|----------------------------------|---|---|--------------|---|-------------|
|                                  |   | 0 | 12 V DC      | 0 | 24 V DC     |
| Other (specified in blank below) |   |   |              |   |             |
| DC 6V From Battery               |   |   |              |   |             |

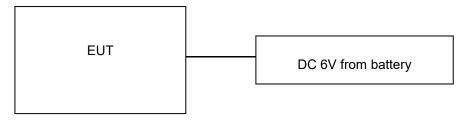
## 2.4 Short description of the Equipment under Test (EUT)

This is a digital knob lock .

There are 1 pairs of headphones inside the headphone charging case. The left and right ears are consistent and tested on the right ear.

For more details, refer to the user's manual of the EUT.

## 2.5 EUT operation mode


The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.



#### **Operation Frequency:**

| Channel | Frequency (MHz) |
|---------|-----------------|
| 00      | 2402            |
| 01      | 2403            |
| ÷       | :               |
| 38      | 2440            |
| 39      | 2441            |
| 40      | 2442            |
| ÷       | :               |
| 77      | 2479            |
| 78      | 2480            |

## 2.6 Block Diagram of Test Setup



## 2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

#### 2.8 Modifications

No modifications were implemented to meet testing criteria.



## 3 <u>TEST ENVIRONMENT</u>

## 3.1 Address of the test laboratory

#### BSL Testing Co., Ltd.

1/F, Building B, Xinshidai GR Park, Shiyan Street, Bao'an District, Shenzhen, Guangdong, 518052, People's Republic of China

## 3.2 Test Facility

#### FCC-Registration No.: 562200 Designation Number: CN1338

BSL Testing Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

#### Industry Canada Registration Number. Is: 11093A CAB identifier: CN0019

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

#### A2LA-Lab Cert. No.: 4707.01

BSL Testing Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

## 3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

| Temperature:          | 24 ° C       |
|-----------------------|--------------|
|                       |              |
| Humidity:             | 45 %         |
|                       |              |
| Atmospheric pressure: | 950-1050mbar |

#### AC Power Conducted Emission:

| Temperature:          | 25 ° C       |
|-----------------------|--------------|
|                       |              |
| Humidity:             | 46 %         |
|                       |              |
| Atmospheric pressure: | 950-1050mbar |

Conducted testing:

| Temperature:          | 25 ° C       |
|-----------------------|--------------|
|                       |              |
| Humidity:             | 44 %         |
|                       |              |
| Atmospheric pressure: | 950-1050mbar |



## 3.4 Summary of measurement results

| Test<br>Specification<br>clause | Test case                                                | Test<br>Mode Test Channel |                                                               | Recorded<br>In Report     |                                                                   | Test result |
|---------------------------------|----------------------------------------------------------|---------------------------|---------------------------------------------------------------|---------------------------|-------------------------------------------------------------------|-------------|
| §15.247(a)(1)                   | Carrier<br>Frequency<br>separation                       | GFSK<br>Π/4DQPSK<br>8DPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | GFSK<br>Π/4DQPSK<br>8DPSK | 🛛 Middle                                                          | Compliant   |
| §15.247(a)(1)                   | Number of<br>Hopping<br>channels                         | GFSK<br>Π/4DQPSK<br>8DPSK | ⊠ Full                                                        | GFSK                      | 🛛 Full                                                            | Compliant   |
| §15.247(a)(1)                   | Time of<br>Occupancy<br>(dwell time)                     | GFSK<br>Π/4DQPSK<br>8DPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | GFSK<br>Π/4DQPSK<br>8DPSK | ⊠ Middle                                                          | Compliant   |
| §15.247(a)(1)                   | Spectrumbandwidth<br>of aFHSS<br>system20dB<br>bandwidth | GFSK<br>∏/4DQPSK<br>8DPSK | ⊠ Lowest<br>⊠ Middle<br>⊠ Highest                             | GFSK<br>∏/4DQPSK<br>8DPSK | ⊠ Lowest<br>⊠ Middle<br>⊠ Highest                                 | Compliant   |
| §15.247(b)(1)                   | Maximum output<br>peak power                             | GFSK<br>Π/4DQPSK<br>8DPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | GFSK<br>Π/4DQPSK<br>8DPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul>     | Compliant   |
| §15.247(d)                      | Band<br>edgecompliance<br>conducted                      | GFSK<br>Π/4DQPSK<br>8DPSK | ⊠ Lowest<br>⊠ Highest                                         | GFSK<br>Π/4DQPSK<br>8DPSK | ⊠ Lowest<br>⊠ Highest                                             | Compliant   |
| §15.205                         | Band<br>edgecompliance<br>radiated                       | GFSK<br>Π/4DQPSK<br>8DPSK | ⊠ Lowest<br>⊠ Highest                                         | GFSK<br>Π/4DQPSK<br>8DPSK | ⊠ Lowest<br>⊠ Highest                                             | Compliant   |
| §15.247(d)                      | TX<br>spuriousemissions<br>conducted                     | GFSK<br>Π/4DQPSK<br>8DPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | GFSK<br>Π/4DQPSK<br>8DPSK | <ul> <li>☑ Lowest</li> <li>☑ Middle</li> <li>☑ Highest</li> </ul> | Compliant   |
| §15.247(d)                      | TX<br>spuriousemissions<br>radiated                      | GFSK<br>Π/4DQPSK<br>8DPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | GFSK                      | <ul> <li>☑ Lowest</li> <li>☑ Middle</li> <li>☑ Highest</li> </ul> | Compliant   |
| §15.209(a)                      | TX spurious<br>Emissions<br>radiated<br>Below 1GHz       | GFSK<br>Π/4DQPSK<br>8DPSK | ⊠ Lowest<br>⊠ Middle<br>⊠ Highest                             | GFSK                      | 🛛 Middle                                                          | Compliant   |
| §15.107(a)<br>§15.207           | Conducted<br>Emissions<br>9KHz-30 MHz                    | Charging                  | /                                                             | Charging                  | 1                                                                 | N/A         |

Remark:

1. The measurement uncertainty is not included in the test result.

2. We tested all test mode and recorded worst case in report

#### 3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the BSL Testing Co., Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for BSL Testing Co., Ltd.:

| Test                        | Range      | Measurement<br>Uncertainty | Notes |
|-----------------------------|------------|----------------------------|-------|
| Radiated Emission           | 9KHz~30MHz | 3.82 dB                    | (1)   |
| Radiated Emission           | 30~1000MHz | 4.06 dB                    | (1)   |
| Radiated Emission           | 1~18GHz    | 5.14 dB                    | (1)   |
| Radiated Emission           | 18-40GHz   | 5.38 dB                    | (1)   |
| Conducted Disturbance       | 0.15~30MHz | 2.14 dB                    | (1)   |
| Transmitter power conducted | 1~40GHz    | 0.57 dB                    | (1)   |
| Conducted spurious emission | 1~40GHz    | 1.60 dB                    | (1)   |
| OBW                         | 1~40GHz    | 25 Hz                      | (1)   |



(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

## 3.6 Equipments Used during the Test

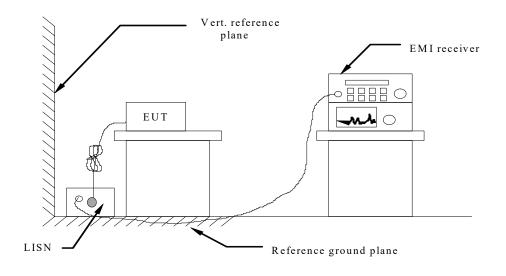
| Conducted Emissio             | Conducted Emission                      |                      |              |            |            |  |  |  |  |
|-------------------------------|-----------------------------------------|----------------------|--------------|------------|------------|--|--|--|--|
| Test Equipment                | Equipment Manufacturer Model Serial No. |                      | Date of Cal. | Due Date   |            |  |  |  |  |
| Shielding Room                | ZhongYu Electron                        | 7.3(L)x3.1(W)x2.9(H) | BSL252       | 2024-10-27 | 2025-10-26 |  |  |  |  |
| EMI Test Receiver             | R&S                                     | ESCI 7               | BSL552       | 2024-10-27 | 2025-10-26 |  |  |  |  |
| Coaxial Switch                | ANRITSU CORP                            | MP59B                | BSL225       | 2024-10-27 | 2025-10-26 |  |  |  |  |
| ENV216 2-L-V-<br>NETZNACHB.DE | ROHDE&SCHWARZ                           | ENV216               | BSL226       | 2024-10-27 | 2025-10-26 |  |  |  |  |
| Coaxial Cable                 | BSL                                     | N/A                  | BSL227       | N/A        | N/A        |  |  |  |  |
| EMI Test Software             | AUDIX                                   | E3                   | N/A          | N/A        | N/A        |  |  |  |  |
| Thermo meter                  | КТЈ                                     | TA328                | BSL233       | 2024-10-27 | 2025-10-26 |  |  |  |  |
| Absorbing clamp               | Elektronik-<br>Feinmechanik             | MDS21                | BSL229       | 2024-10-27 | 2025-10-26 |  |  |  |  |
| LISN                          | R&S                                     | ENV216               | 308          | 2024-10-27 | 2025-10-26 |  |  |  |  |
| LISN                          | R&S                                     | ENV216               | 314          | 2024-10-27 | 2025-10-26 |  |  |  |  |

| Radiation Test equip             | oment                          |                             |            |              |            |
|----------------------------------|--------------------------------|-----------------------------|------------|--------------|------------|
| Test Equipment                   | Manufacturer                   | Model                       | Serial No. | Date of Cal. | Due Date   |
| 3m Semi- Anechoic<br>Chamber     | ZhongYu Electron               | 9.2(L)*6.2(W)* 6.4(H)       | BSL250     | 2024-10-27   | 2025-10-26 |
| Control Room                     | ZhongYu Electron               | 6.2(L)*2.5(W)* 2.4(H)       | BSL251     | N/A          | N/A        |
| EMI Test Receiver                | Rohde & Schwarz                | ESU26                       | BSL203     | 2024-10-27   | 2025-10-26 |
| BiConiLog Antenna                | SCHWARZBECK<br>MESS-ELEKTRONIK | VULB9163                    | BSL214     | 2024-10-27   | 2025-10-26 |
| Double -ridged<br>waveguide horn | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA 9120 D                 | BSL208     | 2024-10-27   | 2025-10-26 |
| Horn Antenna                     | ETS-LINDGREN                   | 3160                        | BSL217     | 2024-10-27   | 2025-10-26 |
| EMI Test Software                | AUDIX                          | E3                          | N/A        | N/A          | N/A        |
| Coaxial Cable                    | BSL                            | N/A                         | BSL213     | 2024-10-27   | 2025-10-26 |
| Coaxial Cable                    | BSL                            | N/A                         | BSL211     | 2024-10-27   | 2025-10-26 |
| Coaxial cable                    | BSL                            | N/A                         | BSL210     | 2024-10-27   | 2025-10-26 |
| Coaxial Cable                    | BSL                            | N/A                         | BSL212     | 2024-10-27   | 2025-10-26 |
| Amplifier(100kHz-<br>3GHz)       | HP                             | 8347A                       | BSL204     | 2024-10-27   | 2025-10-26 |
| Amplifier(2GHz-<br>20GHz)        | HP                             | 84722A                      | BSL206     | 2024-10-27   | 2025-10-26 |
| Amplifier (18-26GHz)             | Rohde & Schwarz                | AFS33-18002<br>650-30-8P-44 | BSL218     | 2024-10-27   | 2025-10-26 |
| Band filter                      | Amindeon                       | 82346                       | BSL219     | 2024-10-27   | 2025-10-26 |
| Power Meter                      | Anritsu                        | ML2495A                     | BSL540     | 2024-10-27   | 2025-10-26 |
| Power Sensor                     | Anritsu                        | MA2411B                     | BSL541     | 2024-10-27   | 2025-10-26 |
| Wideband Radio<br>Communication  | Rohde & Schwarz                | CMW500                      | BSL575     | 2024-10-27   | 2025-10-26 |



Report No.: BSL24110172P01-R01

| Tester              |                 |           |        |            |            |  |
|---------------------|-----------------|-----------|--------|------------|------------|--|
| Splitter            | Agilent         | 11636B    | BSL237 | 2024-10-27 | 2025-10-26 |  |
| Loop Antenna        | ZHINAN          | ZN30900A  | BSL534 | 2024-10-27 | 2025-10-26 |  |
| Breitband           | SCHWARZBECK     |           |        | 2024 40 27 | 2025-10-26 |  |
| hornantenne         | SUNWARZDEUK     | BBHA 9170 | BSL579 | 2024-10-27 | 2025-10-20 |  |
| Amplifier           | TDK             | PA-02-02  | BSL574 | 2024-10-27 | 2025-10-26 |  |
| Amplifier           | TDK             | PA-02-03  | BSL576 | 2024-10-27 | 2025-10-26 |  |
| PSA Series Spectrum | Dahda & Caburan | FOD       |        | 0004 40 07 | 0005 40 00 |  |
| Analyzer            | Rohde & Schwarz | FSP       | BSL578 | 2024-10-27 | 2025-10-26 |  |


| RF Conducted Test:                                   |              |                  |            |              |            |  |  |
|------------------------------------------------------|--------------|------------------|------------|--------------|------------|--|--|
| Test Equipment                                       | Manufacturer | Model            | Serial No. | Date of Cal. | Due Date   |  |  |
| MXA Signal Analyzer                                  | Agilent      | N9020A           | BSL566     | 2024-10-27   | 2025-10-26 |  |  |
| EMI Test Receiver                                    | R&S          | ESCI 7           | BSL552     | 2024-10-27   | 2025-10-26 |  |  |
| Spectrum Analyzer                                    | Agilent      | E4440A           | BSL533     | 2024-10-27   | 2025-10-26 |  |  |
| MXG vector Signal<br>Generator                       | Agilent      | N5182A           | BSL567     | 2024-10-27   | 2025-10-26 |  |  |
| ESG Analog Signal<br>Generator                       | Agilent      | E4428C           | BSL568     | 2024-10-27   | 2025-10-26 |  |  |
| USB RF Power<br>Sensor                               | DARE         | RPR3006W         | BSL569     | 2024-10-27   | 2025-10-26 |  |  |
| RF Switch Box                                        | Shongyi      | RFSW3003328      | BSL571     | 2024-10-27   | 2025-10-26 |  |  |
| Programmable<br>Constant Temp &<br>Humi Test Chamber | WEWON        | WHTH-150L-40-880 | BSL572     | 2024-10-27   | 2025-10-26 |  |  |



## 4 TEST CONDITIONS AND RESULTS

## 4.1 AC Power Conducted Emission

#### TEST CONFIGURATION



#### TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

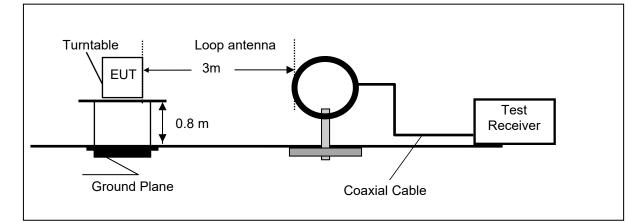
8 During the above scans, the emissions were maximized by cable manipulation.

#### AC Power Conducted Emission Limit

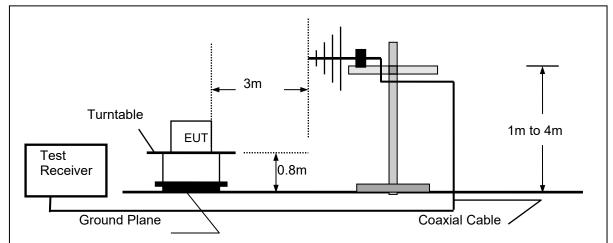
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

| Frequency range (MHz)                            | Limit (d   | dBuV)     |  |  |
|--------------------------------------------------|------------|-----------|--|--|
|                                                  | Quasi-peak | Average   |  |  |
| 0.15-0.5                                         | 66 to 56*  | 56 to 46* |  |  |
| 0.5-5                                            | 56         | 46        |  |  |
| 5-30                                             | 60         | 50        |  |  |
| * Decreases with the logarithm of the frequency. |            |           |  |  |

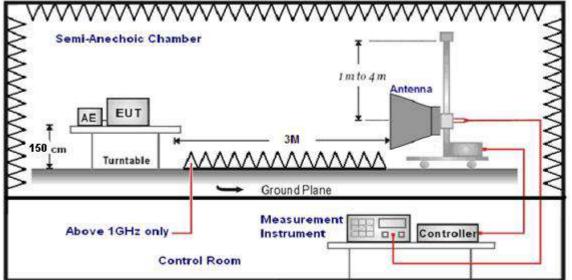
#### TEST RESULTS


N/A EUT powered by cell batteries




## 4.2 Radiated Emission

## **TEST CONFIGURATION**


Frequency range 9KHz - 30MHz



Frequency range 30MHz – 1000MHz



Frequency range above 1GHz-25GHz





1

#### TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.

| 6. | The distance between test a | antenna and EUT as following tabl | e states:     |
|----|-----------------------------|-----------------------------------|---------------|
|    | Test Frequency range        | Test Antenna Type                 | Test Distance |
|    | 9KHz-30MHz                  | Active Loop Antenna               | 3             |
|    | 30MHz-1GHz                  | Ultra-Broadband Antenna           | 3             |
|    | 1GHz-18GHz                  | Double Ridged Horn Antenna        | 3             |

 18GHz-25GHz
 Horn Anternna

 7.
 Setting test receiver/spectrum as following table states:

| Setting test receiver/spectrum as following table states. |                                                                                                           |          |  |  |  |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------|--|--|--|
| Test Frequency range                                      | Test Receiver/Spectrum Setting                                                                            | Detector |  |  |  |
| 9KHz-150KHz                                               | QP                                                                                                        |          |  |  |  |
| 150KHz-30MHz                                              | QP                                                                                                        |          |  |  |  |
| 30MHz-1GHz                                                | RBW=120KHz/VBW=1000KHz,Sweep time=Auto                                                                    | QP       |  |  |  |
| 1GHz-40GHz                                                | Peak Value: RBW=1MHz/VBW=3MHz,<br>Sweep time=Auto<br>Average Value: RBW=1MHz/VBW=10Hz,<br>Sweep time=Auto | Peak     |  |  |  |

#### Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

#### FS = RA + AF + CL - AG

| Where FS = Field Strength | CL = Cable Attenuation Factor (Cable Loss) |
|---------------------------|--------------------------------------------|
| RA = Reading Amplitude    | AG = Amplifier Gain                        |
| AF = Antenna Factor       |                                            |

Transd=AF +CL-AG

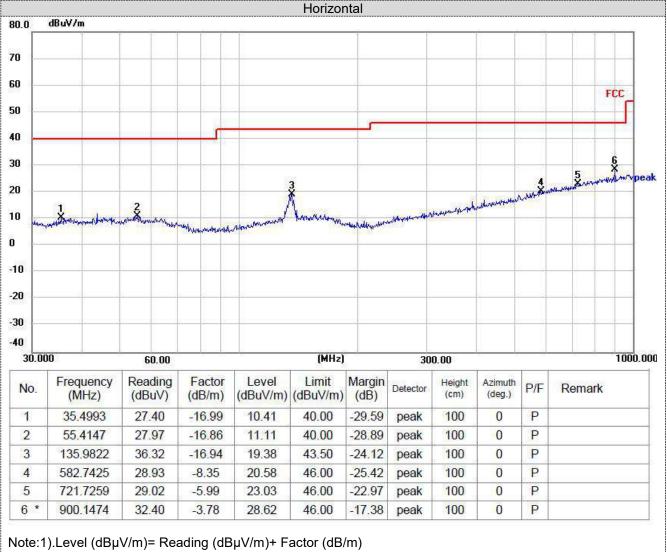
#### RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

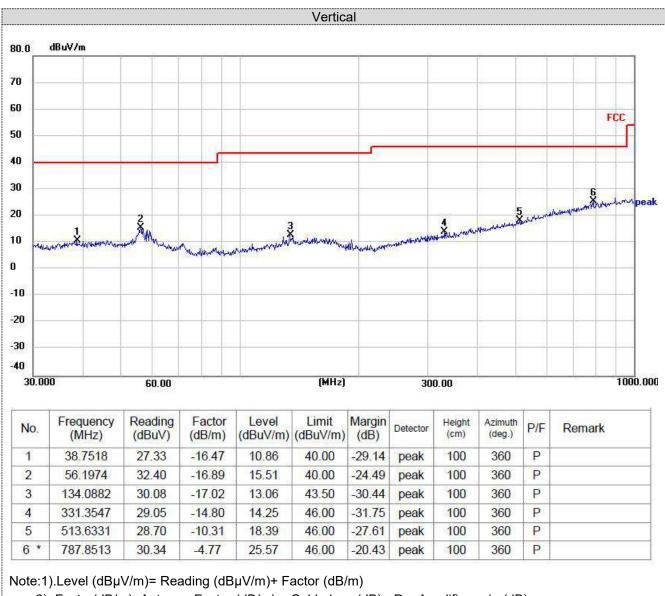
| Frequency (MHz) | Distance<br>(Meters) | Radiated (dBµV/m)                | Radiated (µV/m) |
|-----------------|----------------------|----------------------------------|-----------------|
| 0.009-0.49      | 3                    | 20log(2400/F(KHz))+40log(300/3)  | 2400/F(KHz)     |
| 0.49-1.705      | 3                    | 20log(24000/F(KHz))+ 40log(30/3) | 24000/F(KHz)    |
| 1.705-30        | 3                    | 20log(30)+ 40log(30/3)           | 30              |
| 30-88           | 3                    | 40.0                             | 100             |
| 88-216          | 3                    | 43.5                             | 150             |
| 216-960         | 3                    | 46.0                             | 200             |




| Above 960 | 3 | 54.0 | 500 |
|-----------|---|------|-----|

#### TEST RESULTS

Remark:


- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- We measured Radiated Emission at GFSK, π/4 DQPSK and 8-DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- 3. For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- 4. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

#### For 30MHz-1GHz



- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB $\mu$ V/m) Level (dB $\mu$ V/m)





- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dBµV/m) Level (dBµV/m)



#### For 1GHz to 25GHz

Note: GFSK,  $\pi/4$  DQPSK and 8-DPSK all have been tested, only worse case GFSK is reported. GFSK (above 1GHz)

| GFSK (above 1GHz)  |          |                      |                   |                |                        |                             |                         |                           |                                |
|--------------------|----------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Freque             | ncy(MHz) | ):                   | 2402 Polarity:    |                | н                      | HORIZONTAL                  |                         |                           |                                |
| Frequency<br>(MHz) |          | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4804.00            | 57.49    | PK                   | 74                | 16.51          | 61.85                  | 32.40                       | 5.11                    | 41.87                     | -4.36                          |
| 4804.00            | 47.06    | AV                   | 54                | 6.94           | 51.42                  | 32.40                       | 5.11                    | 41.87                     | -4.36                          |
| 7206.00            | 55.24    | PK                   | 74                | 18.76          | 55.87                  | 36.58                       | 6.43                    | 43.64                     | -0.63                          |
| 7206.00            | 44.93    | AV                   | 54                | 9.07           | 45.56                  | 36.58                       | 6.43                    | 43.64                     | -0.63                          |

| Freque             | Frequency(MHz): |                      | 2402              |                | Polarity:              |                             | VERTICAL                |                           |                                |
|--------------------|-----------------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) |                 | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4804.00            | 56.09           | PK                   | 74                | 17.91          | 60.45                  | 32.40                       | 5.11                    | 41.87                     | -4.36                          |
| 4804.00            | 45.88           | AV                   | 54                | 8.12           | 50.24                  | 32.40                       | 5.11                    | 41.87                     | -4.36                          |
| 7206.00            | 54.83           | PK                   | 74                | 19.17          | 55.46                  | 36.58                       | 6.43                    | 43.64                     | -0.63                          |
| 7206.00            | 45.23           | AV                   | 54                | 8.77           | 45.86                  | 36.58                       | 6.43                    | 43.64                     | -0.63                          |

| Freque             | Frequency(MHz):      |     | 2441              |                | Polarity:              |                             | HORIZONTAL              |                           |                                |
|--------------------|----------------------|-----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Lev<br>(dBu) | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4882.00            | 57.59                | PK  | 74                | 16.41          | 61.54                  | 32.56                       | 5.34                    | 41.85                     | -3.95                          |
| 4882.00            | 47.03                | AV  | 54                | 6.97           | 50.98                  | 32.56                       | 5.34                    | 41.85                     | -3.95                          |
| 7323.00            | 54.98                | PK  | 74                | 19.02          | 55.34                  | 36.54                       | 6.81                    | 43.71                     | -0.36                          |
| 7323.00            | 45.45                | AV  | 54                | 8.55           | 45.81                  | 36.54                       | 6.81                    | 43.71                     | -0.36                          |

| Freque             | Frequency(MHz):      |    | 2441              |                | Polarity:              |                             | VERTICAL                |                           |                                |
|--------------------|----------------------|----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Lev<br>(dBu) |    | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4882.00            | 56.89                | PK | 74                | 17.11          | 60.84                  | 32.56                       | 5.34                    | 41.85                     | -3.95                          |
| 4882.00            | 46.70                | AV | 54                | 7.30           | 50.65                  | 32.56                       | 5.34                    | 41.85                     | -3.95                          |
| 7323.00            | 55.38                | PK | 74                | 18.62          | 55.74                  | 36.54                       | 6.81                    | 43.71                     | -0.36                          |
| 7323.00            | 45.05                | AV | 54                | 8.95           | 45.41                  | 36.54                       | 6.81                    | 43.71                     | -0.36                          |

| Freque             | Frequency(MHz): |                     | 2480              |                | Polarity:              |                             | HORIZONTAL              |                           |                                |
|--------------------|-----------------|---------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) |                 | sion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4960.00            | 57.41           | PK                  | 74                | 16.59          | 60.87                  | 32.73                       | 5.64                    | 41.83                     | -3.46                          |
| 4960.00            | 47.29           | AV                  | 54                | 6.71           | 50.75                  | 32.73                       | 5.64                    | 41.83                     | -3.46                          |
| 7440.00            | 55.40           | PK                  | 74                | 18.60          | 55.46                  | 36.50                       | 7.23                    | 43.79                     | -0.06                          |
| 7440.00            | 45.20           | AV                  | 54                | 8.80           | 45.26                  | 36.50                       | 7.23                    | 43.79                     | -0.06                          |

| Freque             | ncy(MHz) | ):                   | 2480              |                | Polarity:              |                             | VERTICAL                |                           |                                |
|--------------------|----------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Le       | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4960.00            | 56.96    | PK                   | 74                | 17.04          | 60.42                  | 32.73                       | 5.64                    | 41.83                     | -3.46                          |
| 4960.00            | 47.28    | AV                   | 54                | 6.72           | 50.74                  | 32.73                       | 5.64                    | 41.83                     | -3.46                          |
| 7440.00            | 55.56    | PK                   | 74                | 18.44          | 55.62                  | 36.50                       | 7.23                    | 43.79                     | -0.06                          |
| 7440.00            | 45.20    | AV                   | 54                | 8.80           | 45.26                  | 36.50                       | 7.23                    | 43.79                     | -0.06                          |



#### REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

#### Results of Band Edges Test (Radiated)

Note: GFSK, Pi/4 DQPSK and 8-DPSK all have been tested, only worse case GFSK is reported.

|                    | GFSN                 |                      |                   |                |                        |                             |                         |                           |                                |  |
|--------------------|----------------------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|--|
| Test Freq          | Test Frequency(MHz): |                      |                   | Lowest channel |                        | Polarity:                   |                         | HORIZONTAL                |                                |  |
| Frequency<br>(MHz) | Le                   | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |  |
| 2310.00            | 50.43                | PK                   | 74                | 23.57          | 60.85                  | 27.42                       | 4.31                    | 42.15                     | -10.42                         |  |
| 2310.00            | 40.12                | AV                   | 54                | 13.88          | 50.54                  | 27.42                       | 4.31                    | 42.15                     | -10.42                         |  |
| 2390.00            | 47.16                | PK                   | 74                | 26.84          | 57.45                  | 27.55                       | 4.35                    | 42.19                     | -10.29                         |  |
| 2390.00            | 37.33                | AV                   | 54                | 16.67          | 47.62                  | 27.55                       | 4.35                    | 42.19                     | -10.29                         |  |
| 2400.00            | 45.46                | PK                   | 74                | 28.54          | 55.65                  | 27.70                       | 4.39                    | 42.28                     | -10.19                         |  |
| 2400.00            | 35.06                | AV                   | 54                | 18.94          | 45.25                  | 27.70                       | 4.39                    | 42.28                     | -10.19                         |  |

| Test Freq          | uency(Mł | Hz):                 | Lowest channel    |                | Polarity:              |                             | VERTICAL                |                           |                                |
|--------------------|----------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Le       | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2310.00            | 47.23    | PK                   | 74                | 26.77          | 57.65                  | 27.42                       | 4.31                    | 42.15                     | -10.42                         |
| 2310.00            | 37.20    | AV                   | 54                | 16.80          | 47.62                  | 27.42                       | 4.31                    | 42.15                     | -10.42                         |
| 2390.00            | 45.34    | PK                   | 74                | 28.66          | 55.63                  | 27.55                       | 4.35                    | 42.19                     | -10.29                         |
| 2390.00            | 34.95    | AV                   | 54                | 19.05          | 45.24                  | 27.55                       | 4.35                    | 42.19                     | -10.29                         |
| 2400.00            | 43.22    | PK                   | 74                | 30.78          | 53.41                  | 27.70                       | 4.39                    | 42.28                     | -10.19                         |
| 2400.00            | 33.33    | AV                   | 54                | 20.67          | 43.52                  | 27.70                       | 4.39                    | 42.28                     | -10.19                         |

| Test Freq          | uency(Mł | Hz):                 | Highest channel   |                | Polarity:              |                             | HORIZONTAL              |                           |                                |
|--------------------|----------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Le       | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2483.50            | 45.22    | PK                   | 74                | 28.78          | 55.85                  | 27.55                       | 4.38                    | 42.56                     | -10.63                         |
| 2483.50            | 34.93    | AV                   | 54                | 19.07          | 45.56                  | 27.55                       | 4.38                    | 42.56                     | -10.63                         |
| 2500.00            | 42.59    | PK                   | 74                | 31.41          | 53.32                  | 27.69                       | 4.46                    | 42.88                     | -10.73                         |
| 2500.00            | 32.12    | AV                   | 54                | 21.88          | 42.85                  | 27.69                       | 4.46                    | 42.88                     | -10.73                         |

| Test Freq          | Test Frequency(MHz): |     | Highest channel   |                | Polarity:              |                             | VERTICAL                |                           |                                |
|--------------------|----------------------|-----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Lev<br>(dBu) | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2483.50            | 42.50                | PK  | 74                | 31.50          | 53.13                  | 27.55                       | 4.38                    | 42.56                     | -10.63                         |
| 2483.50            | 32.62                | AV  | 54                | 21.38          | 43.25                  | 27.55                       | 4.38                    | 42.56                     | -10.63                         |
| 2500.00            | 39.69                | PK  | 74                | 34.31          | 50.42                  | 27.69                       | 4.46                    | 42.88                     | -10.73                         |
| 2500.00            | 30.08                | AV  | 54                | 23.92          | 40.81                  | 27.69                       | 4.46                    | 42.88                     | -10.73                         |

**REMARKS**:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

3. Margin value = Limit value- Emission level.

4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.



Maximum Peak Output Power Limit

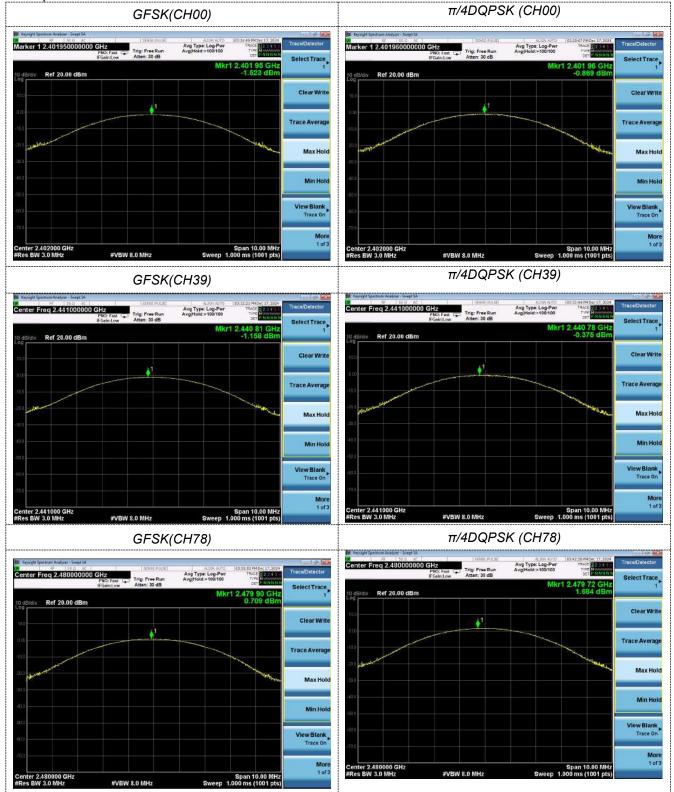
The Maximum Peak Output Power Measurement is 30dBm(for GFSK)/20.97dBm(for EDR)

## Test Procedure

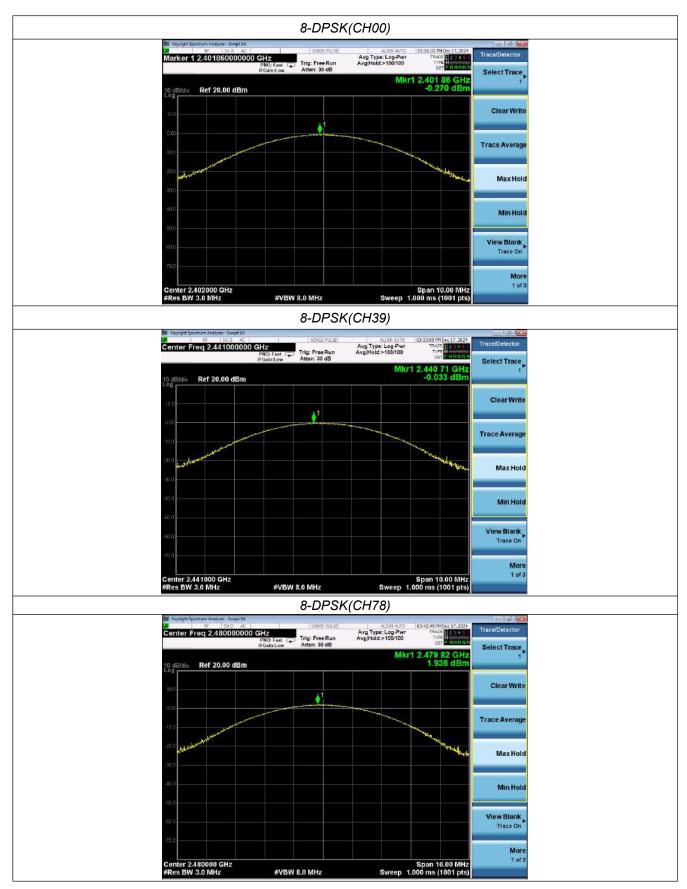
- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 8MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

## Test Configuration

| EUT | <br>SPECTRUM<br>ANALYZER |
|-----|--------------------------|
|     | ANALYZER                 |


#### Test Results

| Туре     | Channel | Output power (dBm) | Limit (dBm) | Result |
|----------|---------|--------------------|-------------|--------|
|          | 00      | -1.523             |             |        |
| GFSK     | 39      | -1.158             | 30.00       | Pass   |
|          | 78      | 0.709              |             |        |
|          | 00      | -0.869             |             |        |
| π/4DQPSK | 39      | -0.375             | 20.97       | Pass   |
|          | 78      | 1.684              |             |        |
|          | 00      | -0.270             |             |        |
| 8-DPSK   | 39      | -0.033             | 20.97       | Pass   |
|          | 78      | 1.936              |             |        |


Note: 1.The test results including the cable lose.



#### Test plots









## 4.3 20dB Bandwidth

## <u>Limit</u>

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

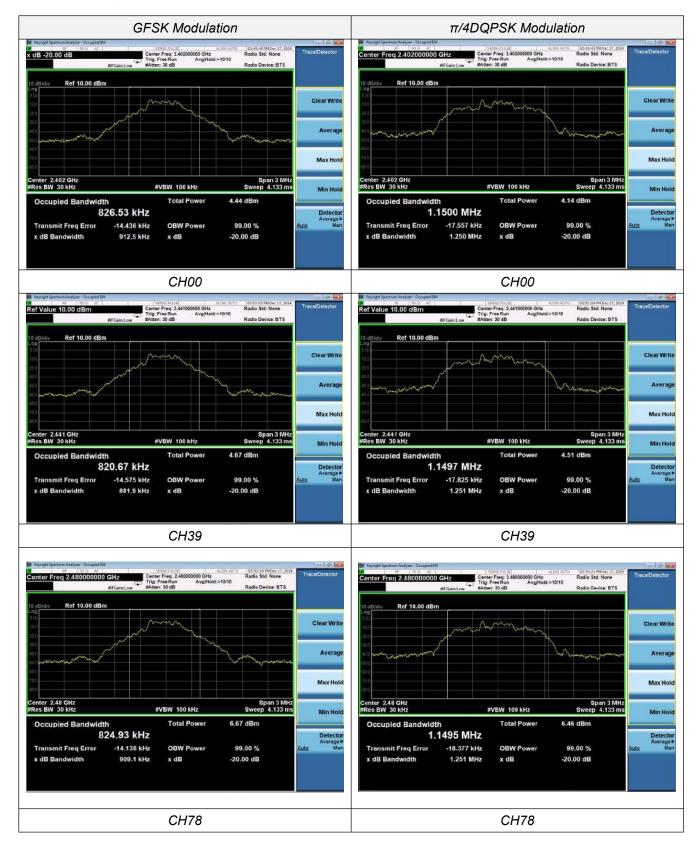
#### Test Procedure

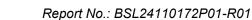
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

#### Test Configuration




#### Test Results


| Modulation | Channel | 20dB bandwidth (MHz) | Result |
|------------|---------|----------------------|--------|
|            | CH00    | 0.913                |        |
| GFSK       | CH39    | 0.882                |        |
|            | CH78    | 0.909                |        |
|            | CH00    | 1.250                |        |
| π/4DQPSK   | CH39    | 1.251                | Pass   |
|            | CH78    | 1.251                |        |
|            | CH00    | 1.207                |        |
| 8-DPSK     | CH39    | 1.206                |        |
|            | CH78    | 1.207                |        |

Test plot as follows:



#### Report No.: BSL24110172P01-R01











## 4.4 Frequency Separation

#### <u>LIMIT</u>

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3\*20dB bandwidth of the hopping channel, whichever is greater.

#### TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with100 KHz RBW and 300 KHz VBW.

#### TEST CONFIGURATION



#### TEST RESULTS

| Modulation | Channel | Channel Separation<br>(MHz) | Limit(MHz) | Result |  |
|------------|---------|-----------------------------|------------|--------|--|
| GFSK       | CH38    | 1.000                       | 0.913      | Pass   |  |
| GFSK       | CH39    | 1.000                       | 0.915      | Fass   |  |
|            | CH38    | 1 002                       | 0.924      | Deee   |  |
| π/4DQPSK   | CH39    | 1.002                       | 0.834      | Pass   |  |
|            | CH38    | 1 000                       | 0.005      | Deee   |  |
| 8-DPSK     | CH39    | 1.000                       | 0.805      | Pass   |  |

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

#### Test plot as follows:



#### Report No.: BSL24110172P01-R01





## 4.5 Number of hopping frequency

#### <u>Limit</u>

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

#### Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

#### **Test Configuration**



#### Test Results

| Modulation | Number of Hopping Channel | Limit | Result |
|------------|---------------------------|-------|--------|
| GFSK       | 79                        |       |        |
| π/4DQPSK   | 79                        | ≥15   | Pass   |
| 8-DPSK     | 79                        |       |        |

#### Test plot as follows:

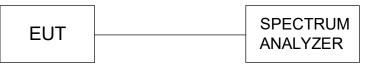


## Report No.: BSL24110172P01-R01

| Mic Topylogiest Standing         Service Standing         Service Standing         Service Standing         Service Standing           Mic Topylogiest Standing         No         AC         String String         NLTON AUTO         04:14:030 PM Doc 17, 2024         NLTON AUTO         04:14:030 PM Doc 17, 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Marker 2 2.48016000000 GHz Avg Type: Log-Pwr Tracing Trig: Free Run<br>IFGain: 30 dB Avg Hold:>100/100 Det Frances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10 dB/dlv Ref 20.00 dBm 0.008 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| and y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| λια                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| #Res BW 100 kHz         #VBW 300 kHz         Sweep         8.000 ms (1001 pts)         Mkr—CF           Mki Nobe the soul         x         Y         Function institution institutinstitution institution institutinin institution in                                                                                                                   |
| 1 N 1 f 2.401 837 0 GHz2.493 0Bm<br>2 N 1 f 2.480 180 0 GHz 0.008 dBm<br>3 G 1 G 2.480 180 0 GHz 0.008 dBm<br>4 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| S More                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10 1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GFSK Modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Marker 2 2.479826000000 CHZ structure Run AvglHold:-100/100 cft 2 cft Park Search<br>Horker 2 2.479826000000 CHZ trig: Free Run AvglHold:-100/100 cft Parks Charles Char |
| Mkr2 2.479 826 0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 100 200 200 200 200 200 200 200 200 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| and Marker Delta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Start 2.40000 GHz         Stop 2.48350 GHz           #Res BW 100 kHz         #VBW 300 kHz         Sweep 8.000 ms (1001 pts)           MRR NODE TRC SOL         X         Y         Function without protection without protectin without protection w                                                                                                                                    |
| Migrinoper res occ         X         Y         Function         Function width         Fun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8 More<br>10 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <br>π/4DQPSK Modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Million Participant Sector Sector Sale         Sector                                    |
| Marker 2 2.479993000000 GHz<br>PNO: Fast Pho: Fa |
| 10 dB/dt/ Ref 20.00 dBm -0.204 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ้อก<br>การการการการการการการการการการการการการก                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 200 Next Pk Left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 400 Marker Delta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Start 2.40000 GHz         Stop 2.48350 GHz           #Res BW 100 kHz         #VBW 300 kHz         Sweep 8.000 ms (1001 pts)           MMR NODE TRCI SCL         X         Y         Function         Function interval         Function interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 N 1 1 2.401837.0 GHz -2.428 dBm<br>2 N 1 7 2.479 993.0 GHz -0.204 dBm<br>3 4 Mkr→RefLvl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| S More                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8-DPSK Modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



## 4.6 Time of Occupancy (Dwell Time)


#### <u>Limit</u>

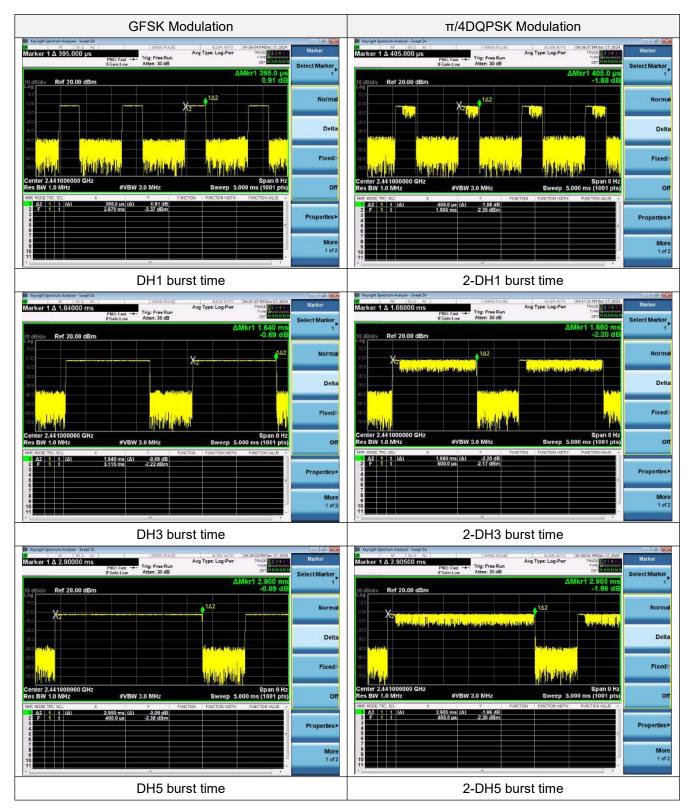
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

#### Test Procedure

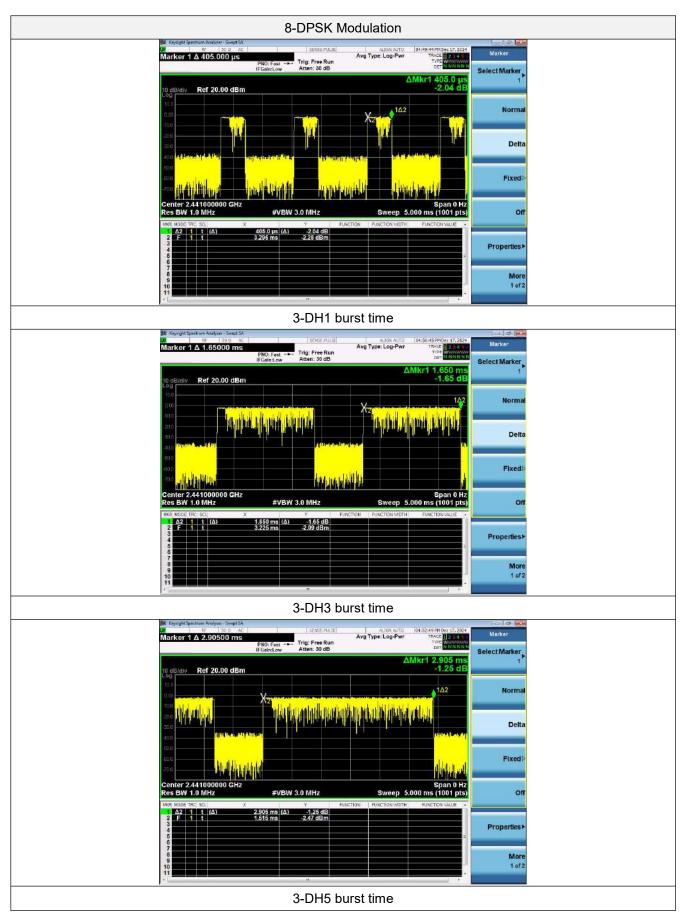
The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 3MHz VBW, Span 0Hz.

#### Test Configuration




#### Test Results

| Modulation | Packet     | Burst time<br>(ms) | Dwell time<br>(s) | Limit (s) | Result |  |
|------------|------------|--------------------|-------------------|-----------|--------|--|
|            | DH1        | 0.395              | 0.126             |           |        |  |
| GFSK       | DH3        | 1.640              | 0.262             | 0.40      | Pass   |  |
|            | DH5        | 2.900              | 0.309             |           |        |  |
|            | 2-DH1      | 0.405              | 0.130             |           |        |  |
| π/4DQPSK   | 2-DH3      | 1.660              | 0.266             | 0.40      | Pass   |  |
|            | 2-DH5      | 2.905              | 0.310             |           |        |  |
|            | 3-DH1      | 0.405              | 0.130             |           |        |  |
| 8-DPSK     | DPSK 3-DH3 |                    | 1.650 0.264 0.40  |           | Pass   |  |
|            | 3-DH5      | 2.905              | 0.310             |           |        |  |


Note:We have tested all mode at high,middle and low channel,and recoreded worst case at middle channel. Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1 Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH2 Dwell time=Pulse time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second for DH5, 2-DH5, 3-DH3



#### Test plot as follows:









## 4.7 Out-of-band Emissions

#### <u>Limit</u>

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

#### Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

#### Test Configuration



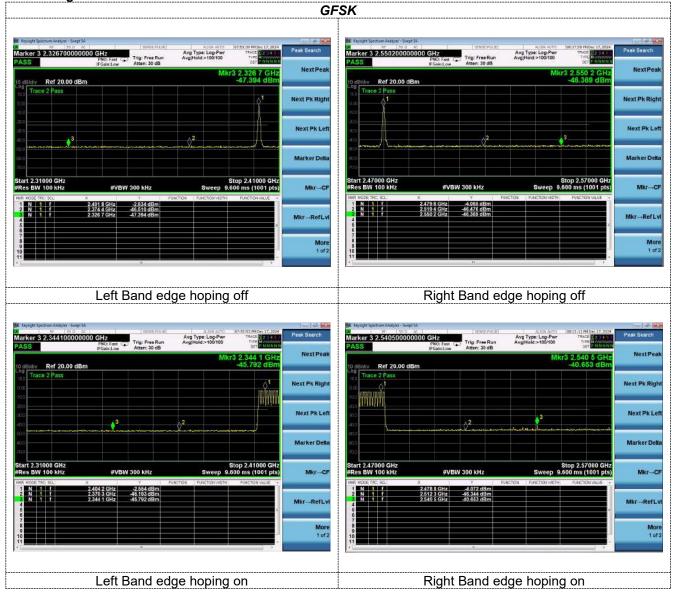
#### Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.


We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows:




30MHz-25G







#### Band-edge Measurements for RF Conducted Emissions:





|                                                                           |                                                                                                 |                                                                                                                          | π/4D                     | QPSK                                                                   |                                                                                                            |                                                                                                                    |                        |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------|
| Reysight Spectrum Analyse - Sing<br>RF 50 n<br>Iarker 3 2,33510000<br>ASS | AC EXTERNOLE                                                                                    | Aug Type: Log-Pur<br>Avg Type: Log-Pur<br>AvgHedd>footroo                                                                | Peak Search<br>Next Peak | Cayoget Spectrum Analyzet - Souge<br>Marker 3 2:553200000<br>PASS      | 56<br>AC<br>JOOD GH2:<br>PR0:Faat C_<br>IFGein:Low<br>Trig: Free Run<br>Atten: 30 dB                       | 4109-4070 109-2232 PHDec 17, 504<br>Avg Type: Log-Pwr<br>AvgIffeld->100100 The | Peak Search<br>Next Pe |
| ID dB/div Ref 20.00 d<br>103<br>Trace 2 Pass<br>0.00                      | Bm                                                                                              | -47,338 dBm                                                                                                              | Next Pk Right            | 10 dB/dlv Ref 20.00 dB<br>Log<br>Trace 2 Pass<br>and 01                | 3m                                                                                                         | Mkr3 2.553 2 GHz<br>-42.459 dBm                                                                                    | Next Pk Rig            |
| 101<br>210<br>210<br>411                                                  | <b>↓</b> <sup>3</sup>                                                                           | 2                                                                                                                        | Next Pk Left             | 300<br>-450                                                            | & <sup>2</sup>                                                                                             | ∳ <sup>3</sup>                                                                                                     | Next Pk L              |
| 400<br>650<br>700<br>Start 2,31000 GHz                                    |                                                                                                 | Ston 241000 GHz                                                                                                          | Marker Delta             | 500<br>500<br>500<br>Start 2.47000 GHz                                 |                                                                                                            | Stop 2.57000 GHz                                                                                                   | Marker Do              |
| Start 2.31000 GHz<br>VRes BW 100 kHz<br>IN 1 f<br>2 N 1 f<br>3 N 1 f      | #VBW 300 kHz<br>2 402 2 GHz - 2 590 dBm<br>2 387 2 GHz - 45.670 dBm<br>2 335 1 GHz - 47.338 dBm | Stop 2.41000 GHz<br>Sweep 9.600 ms (1001 pts)<br>NCTON   FUNCTIONINGTH FUNCTIONINGE +                                    | Mkr→CF<br>Mkr→RefLvi     | #Res BW 100 kHz                                                        | #VBW 300 kHz<br>X: Y PUNCT<br>2.479 8 GHz -4.039 dBm<br>2.516 6 GHz -46.918 dBm<br>2.553 2 GHz -42.459 dBm | Stop 2.57000 GHz<br>Sweep 9.600 ms (1001 pts)<br>all FUNCTION VALUE =                                              | Mkr→                   |
| 4                                                                         |                                                                                                 |                                                                                                                          | More<br>1 of 2           | 4<br>6<br>7<br>8<br>9<br>10                                            |                                                                                                            |                                                                                                                    | M                      |
|                                                                           | *                                                                                               |                                                                                                                          |                          |                                                                        |                                                                                                            |                                                                                                                    |                        |
| Character Andrew State                                                    | Left Band edo                                                                                   | ge hoping off                                                                                                            |                          | E found further factors form                                           | Right Band edg                                                                                             | e hoping off                                                                                                       |                        |
| arker 3 2.33510000<br>ASS                                                 | PNO: Fost 🖵 Ting: Pree Kun<br>IFGain:Low Atten: 30 dB                                           | Allow with 0754598 Mover 12 2024<br>Avg Type: Log-Pwr<br>AvgPlaid:>100100<br>Det 0446<br>Mkr3 2.335 1 GHz<br>-46.290 dEm | Peak Search<br>Next Peak | Marker 3 2.553700000<br>PASS                                           | (FGain:Low Atten: 30 dB                                                                                    | AUGN AUTO 01:24:49 PHOEC 17, 2014<br>Avg Type: Log-Pwr<br>AvgHold:>100/100 Tree<br>per MN1911<br>Mkr3 2,553 7 GHz  | Peak Search<br>Next Pe |
| o d6/div Ref 20.00 d                                                      | Bm                                                                                              | -46.290 dBm                                                                                                              | Next Pk Right            | 10 dBJdsv Ref 20.00 dB<br>Log Trace 2 Pass<br>000 01                   | 3m                                                                                                         | -45.342 dBm                                                                                                        | Next Pk Ri             |
| 1970                                                                      | A 3                                                                                             | 2 <sup>2</sup>                                                                                                           | Next Pk Left             | 20 0<br>-30 0<br>-40 0<br>-/0 0                                        | 1 ( <sup>2</sup> A                                                                                         | ¢ <sup>3</sup>                                                                                                     | Next Pk L              |
| itart 2.31000 GHz                                                         |                                                                                                 | Stop 2.41000 GHz<br>Sweep 9.600 ms (1001 pts)                                                                            | Marker Deita             | 5885<br>700<br>Start 2.47000 GHz                                       |                                                                                                            | Stop 2.57000 GHz<br>Sweep 9.600 ms (1001 pts)                                                                      | Marker De              |
| Res BW 100 kHz                                                            | #VBW 300 kHz<br>2.404 2 GHz -2725 dBm<br>2.374 8 GHz -46 290 dBm<br>2.335 1 GHz -46 290 dBm     | Sweep 9.600 ms (1001 pts)<br>ACTION   FUNCTION WOTH   FUNCTION VALUE -                                                   | Mkr→CF<br>Mkr→RefLvi     | #Res BW 100 kHz<br>Here Mater THE SEL<br>1 N 1 f<br>2 N 1 f<br>4 N 1 f | #VBW 300 kHz<br>2.478 8.GHz -4.079 dBm<br>2.523 6 GHz -39 683 dBm<br>2.553 7 GHz -45.342 dBm               | Stweep 9,600 ms (1001 pts)                                                                                         | Mkr-4<br>MkrRefl       |
| 6<br>7<br>8<br>9<br>9                                                     |                                                                                                 |                                                                                                                          | More<br>1 of 2           | 5<br>5<br>7<br>8<br>9<br>10                                            |                                                                                                            |                                                                                                                    | Mi<br>14               |
|                                                                           |                                                                                                 |                                                                                                                          |                          |                                                                        |                                                                                                            | *                                                                                                                  |                        |
|                                                                           | Left Band edg                                                                                   | ge hoping on                                                                                                             |                          |                                                                        | Right Band edg                                                                                             | e hoping on                                                                                                        |                        |



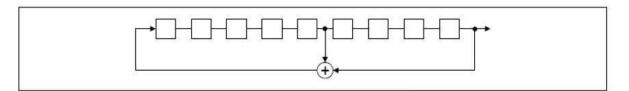
#### Report No.: BSL24110172P01-R01

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8-DPSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                |                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Orgigid Spectram Graden Sarget A.         19995 PLLSE         #169 AUTO         9993 1 BPO 4           Marker 3 2,335000000000 GHz         19995 PLLSE         Avg Type Log-Pare         1995 1 BPO 4           PASS         FROD Target Cruck         Avg Type Log-Pare         1995 1 BPO 4           PASS         FROD Target Cruck         Avg Holds - 100 100         1995 1 BPO 4           10 dB/d/V         Ref 20.00 dBm         46.029         46.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Peak Search Marker 3 2.551400000000 GHz PASS IFGain NextPeak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Avg Type:Log-Pwr TRAM<br>Avg/Hald:>100/100 Train<br>Avg/Hald:>100/100 Train<br>Avg/Hald:>100/100 Train<br>Avg/Hald:>100/100 Train<br>MKr3 2,55 | - ENNNNN                        |
| 100 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Next Pk Right 600 Trace 2 Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                | Next Pk Right                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marker Delta 2019<br>710<br>2 Start 2.47000 GHz<br>740 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                | Marker Delta                    |
| IN If (ROCE TIC: SC).         X         Y         Putcholi                         | MkrRefLvi<br>More 9<br>1072 1072 1013 X<br>1072 1072 1013 X<br>1072 1072 1013 X<br>1072 1072 1073 1073 1073 1073 1073 1073 1073 1073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y FUNCTION ( PUNCTION WOTH) PUNCTS<br>Hz -4077 dBm<br>Hz -46446 dBm                                                                            | Mkr-RefLvi                      |
| Left Band edge hoping off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ht Band edge hoping off                                                                                                                        |                                 |
| Byoget Spectrom Analyzer Savet SA         ISONE PULSE         ALIGN AURO         GE115 PPP Vec           Marker 3 2,3358000000000 GHz<br>PASS         ISONE PULSE         Avg Type: Log-Pur<br>Avg Type: Log-Pur<br>PGaint.ow         Avg Type: Log-Pur<br>Avg Type: Log-Pur<br>Avg Type: Log-Pur<br>Atten: 30 dB         Mkr3 2,3358           10 dB/div         Ref 20.00 dBm         -46.505         -46.505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marker 3 2.548700000000 GHz<br>PNO:<br>Next Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Area Asia<br>Area Trig. Free Rus<br>Area Market So dB<br>MKR3 2,544<br>MKR3 2,544<br>MKR3 2,544                                                | TRAININ                         |
| Cop Trace 2 Pass<br>00<br>00<br>00<br>00<br>00<br>00<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Next PK Right 000 Next PK Left 01 Next PK Left | 2²4³                                                                                                                                           | Next Pk Right<br>Next Pk Left   |
| 000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000 <td>Marker Deta<br/>33<br/>2 Marker CP<br/>Mkr-CP<br/>Mkr-CP</td> <td>Stop 2.57<br/>#VBW 300 kHz Sweep 9.600 ms (</td> <td>7000 GHz<br/>1001 pts) Mkr-CF</td>                            | Marker Deta<br>33<br>2 Marker CP<br>Mkr-CP<br>Mkr-CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stop 2.57<br>#VBW 300 kHz Sweep 9.600 ms (                                                                                                     | 7000 GHz<br>1001 pts) Mkr-CF    |
| MR         Most Inc: Soc.         X         Y         Punction         Planction         Planction | MkrRefLvi 4 1 2348 700<br>MkrRefLvi 4 1 2348 700<br>More 9 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | т Ристок Ронсток илт Ринсто<br>на 403 80m<br>12 44.252 85m<br>ка 43.960 05m                                                                    | n veuve e<br>Mkr→RefLvi<br>More |
| Left Band edge hoping on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ht Band edge hoping on                                                                                                                         | 1 of 2                          |



## 4.8 **Pseudorandom Frequency Hopping Sequence**

## TEST APPLICABLE


## For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

## EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5<sup>th</sup> and 9<sup>th</sup> stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

| 0 | 2   | 4 | 6 |      | 62 | 64  | 7 | 8 1 |   | 73 | 75 7 |
|---|-----|---|---|------|----|-----|---|-----|---|----|------|
| Т |     |   |   | <br> | ]  |     | 1 |     | T |    |      |
|   | - 1 |   |   |      | 3  |     | i |     |   |    |      |
|   | - 1 |   |   |      | 3  |     | 1 |     |   |    |      |
|   |     |   |   | <br> | 1  | LJ. | Ì |     | ] |    |      |

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.



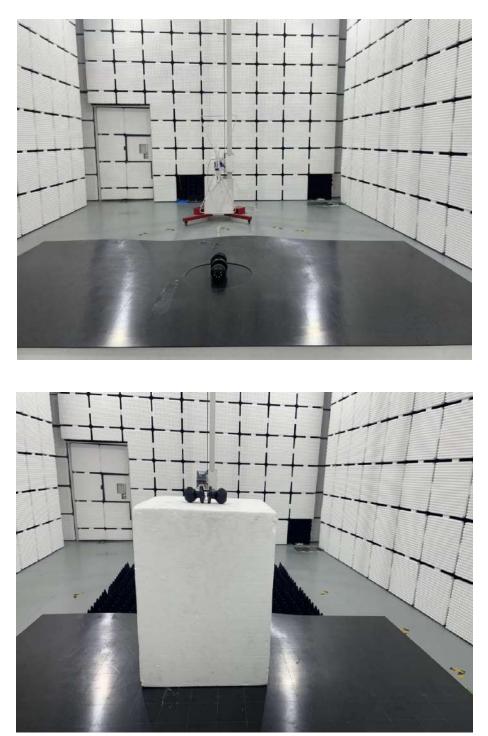
## 4.9 Antenna Requirement

#### Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

#### Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.


#### Antenna Connected Construction

The maximum gain of antenna was 0dBi.

Remark:The antenna gain is provided by the customer, if the data provided by the customer is not accurate, BSL Testing Co., Ltd. does not assume any responsibility.



# 5 Test Setup Photos of the EUT





Report No.: BSL24110172P01-R01

## 6 <u>Photos of the EUT</u>

Reference to the report ANNEX A of external photos and ANNEX B of internal photos.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* End of Report \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*