

Report No.: EED32J00271702 Page 1 of 36

TEST REPORT

Product : Mobile Printer

Trade mark : RONGTA

RPP02A, RPP02B, RPP02A-A, RPP02A-B,

RPP02A-C, RPP02A-D, RPP02B-A,

Model/Type reference : RPP02B-B, RPP02B-C, RPP02B-D,

RPP02A-BU, RPP02A-BWU, RPP02B-BU,

RPP02B-BWU

Serial Number : N/A

Report Number : EED32J00271702

FCC ID : 2AD6G-RPP02

Date of Issue : Jan. 08, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Prepared for:

XIAMEN RONGTA TECHNOLOGY CO., LTD. 3F-1/E Building, No.195 Gaoqishe, Gaodian Village, Dianqian Street Office, Huli District, Xiamen City, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Seal

Tested By:

Tom-chen

Tom chen (Test Project)

Reviewed by:

Date:

Kein Tong

Kevin yang (Reviewer)

Jan. 08, 2018

Mill chen

Mill chen (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.:2447639781

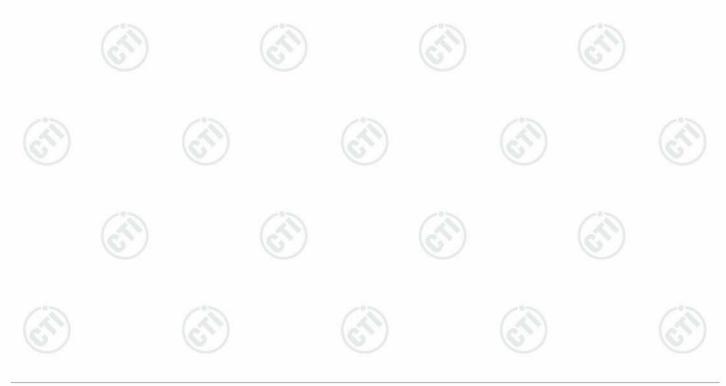
Page 2 of 36

2 Version

Version No.	Date	Description
00	Jan. 08, 2018	Original
· · · · · · · · · · · · · · · · · · ·		

3 Test Summary

Test Item	Test Requirement	Test method	Result PASS	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013		
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	


Remark:

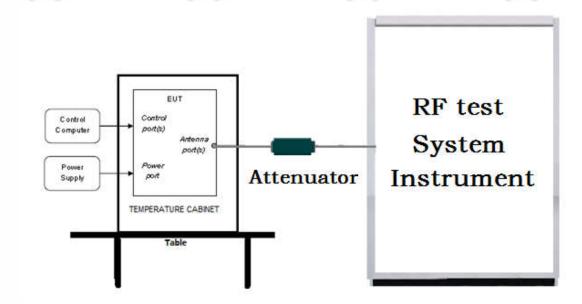
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample and the sample information are provided by the client.

Model No.:RPP02A, RPP02B, RPP02A-A, RPP02A-B, RPP02A-C, RPP02A-D, RPP02B-A, RPP02B-B, RPP02B-C, RPP02B-D, RPP02A-BU, RPP02A-BWU, RPP02B-BU, RPP02B-BWU

Only the model RPP02A was tested, since their electrical circuit design, layout, components and internal wiring are identical. Only the model name, appearances and color are different.

4 Content


1 COVI	ER PAGE				 1
2 VERS	SION			•••••	2
3 TEST	SUMMARY			•••••	3
4 CON	TENT	•••••			 4
5 TEST	REQUIREMENT				 5
5.1 1 5. 5. 5.2 1 5.3 1 6 GENI 6.1 0 6.2 0 6.3 F 6.4 [6.5 1 6.6 [TEST SETUP	etup	DARD		5 6 7 7 7 7
6.8 0 6.9 M 7 EQUI 8 RADI	OTHER INFORMATION REQUING MEASUREMENT UNCERTAINT PMENT LIST O TECHNICAL REQUIRE	ESTED BY THE CUSTOME Y (95% CONFIDENCE LE	EREVELS, K=2)		10
A A A A A A A	ppendix A): 6dB Occupied ppendix B): Conducted Peopendix C): Band-edge for ppendix D): RF Conducted ppendix E): Power Spectra ppendix F): Antenna Requippendix G): AC Power Lin ppendix H): Restricted bar ppendix I): Radiated Spuri	ak Output Power	ionsal frequency (Rad	diated)	
	OGRAPHS OF TEST SET OGRAPHS OF EUT CONS				

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

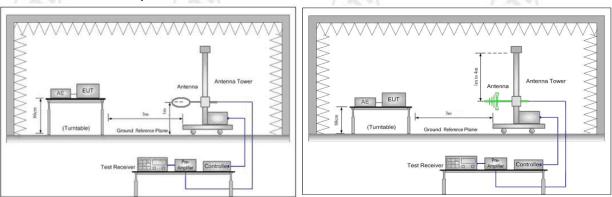
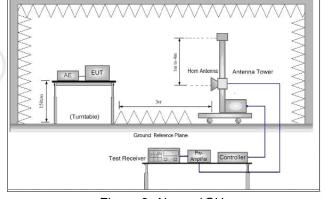
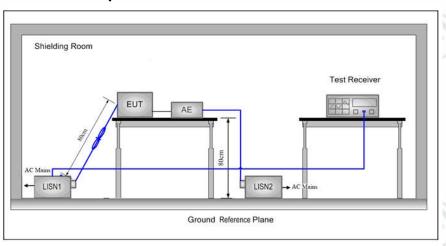


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

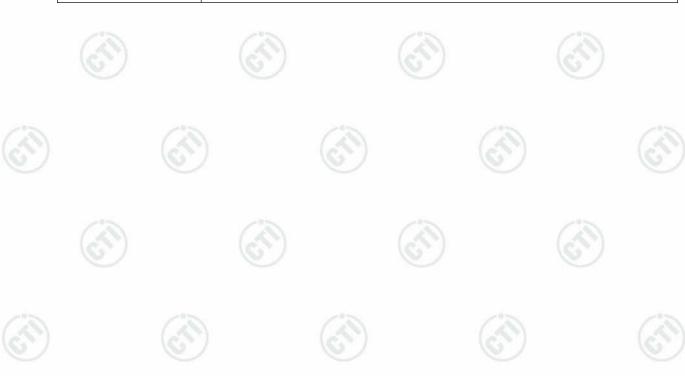
Page 5 of 36




Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup

Page 6 of 36


5.2 Test Environment

Operating Environment:		(3)	/3
Temperature:	25°C	(25)	(85)
Humidity:	55% RH		6
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

of onarino.					
Test Mode	Tv	RF Channel			
rest wode	Tx	Low(L)	Middle(M)	High(H)	
GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40	
		2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT at Transmit mod	e.			

6 General Information

6.1 Client Information

Applicant:	XIAMEN RONGTA TECHNOLOGY CO., LTD.
Address of Applicant:	3F-1/E Building, No.195 Gaoqishe, Gaodian Village, Dianqian Street Office, Huli District, Xiamen City, China
Manufacturer:	XIAMEN RONGTA TECHNOLOGY CO., LTD.
Address of Manufacturer:	3F-1/E Building, No.195 Gaoqishe, Gaodian Village, Dianqian Street Office, Huli District, Xiamen City, China
Factory:	XIAMEN RONGTA TECHNOLOGY CO., LTD.
Address of Factory:	3, 4F, C Plant, Gaoqi Industrial Zones, No. 199, Gaoqi Community, Gaodian Village, Huli Xiamen, China

6.2 General Description of EUT

Product Name:	Mobile Printer					
	RPP02A, RPP02B, RPP02A-A, RPP02A-B, RPP02A-C, RPP02A-D,					
Mode No.(EUT):	RPP02B-A, RPP02B-B, RPP02B-C, RPP02B-D, RPP02A-BU,RPP02A-BWU, RPP02B-BU, RPP02B-BWU					
Test Mode:	RPP02A					
Trade Mark:	RONGTA					
EUT Supports Radios application:	BT: 4.0 Dual mode, 2402-2480MHz					
Software version of the sample:	A1.1.01					
Hardware version of the sample:	P02A-GD-MB-V1.0					
Power Supply:	DC7.4V 1600mAh, 11.84Wh by rechargeable Li-ion battery AC100-240V,50/60Hz, 0.2A by Switching power supply					
Sample Received Date:	Dec. 05, 2017					
Sample tested Date:	Dec. 05, 2017 to Dec. 24, 2017					

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	(0,)		(0,	
Bluetooth Version:	4.0				
Modulation Type:	GFSK				
Number of Channel:	40		13		130
Sample Type:	Portable production		(35)		(85)
Test Power Grade:	N/A				
Test Software of EUT:	HCITester2				
Antenna Type:	PCB antenna				
Antenna Gain:	0dBi	(31)		(25)	
Test Voltage:	DC7.4V	(0)		(0)	
Tool vollage.	AC 120V, 60Hz				



Page 7 of 36

Operation F	Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
(14)	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz	
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz	
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz	
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz	
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz	
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz	
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz	
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz	

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Facility

Test location

The test site a is located on Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China. Test site at Centre Testing International Group Co., Ltd has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC-Designation No.: CN1164

Centre Testing International Group Co., Ltd EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The American association for Centre Testing International Group Co., Ltd. EMC laboratory accreditation Designation No.:CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

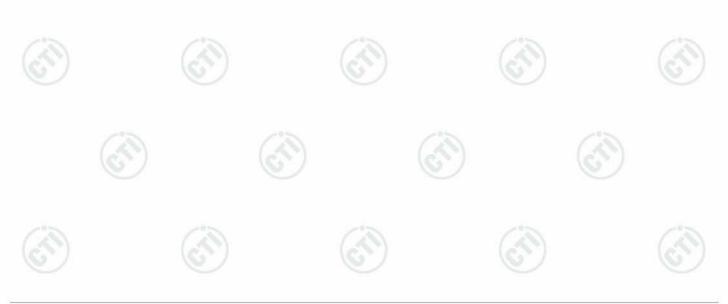
No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
	DE novembre de la conducate d	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
2	Dedicted Courieus amissian test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Page 10 of 36

7 Equipment List

	RF test system							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-13-2018			
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-13-2018			
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-13-2018			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2018			
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2018			
PC-1	Lenovo	R4960d		04-01-2016	03-31-2018			
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-13-2018			
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-13-2018			
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2018			

Conducted disturbance Test							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100009	06-14-2017	06-13-2018		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018		
LISN	R&S	ENV216	100098	06-13-2017	06-12-2018		
LISN	schwarzbeck	NNLK8121	8121-529	06-13-2017	06-12-2018		
Voltage Probe	R&S	ESH2-Z3		06-13-2017	06-12-2018		
Current Probe	R&S	EZ17	100106	06-13-2017	06-12-2018		
ISN	TESEQ GmbH	ISN T800	30297	02-23-2017	02-22-2018		



Page	11	of 36	3
i age		01 01	•

	3M	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	<u></u>	06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2017	05-22-2018
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	06-13-2017	06-12-2018
Receiver	R&S	ESCI	100435	06-14-2017	06-13-2018
Multi device Controller	maturo	NCD/070/10711 112	(F)	01-12-2017	01-11-2018
LISN	schwarzbeck	NNBM8125	81251547	06-13-2017	06-12-2018
LISN	schwarzbeck	NNBM8125	81251548	06-13-2017	06-12-2018
Signal Generator	Agilent	E4438C	MY45095744	03-14-2017	03-13-2018
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2017	01-11-2018
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2017	01-11-2018
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2017	01-11-2018
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2017	01-11-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2017	01-11-2018
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2017	01-11-2018
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2017	01-11-2018
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2017	01-11-2018
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001	(A)	01-12-2017	01-11-2018

Page 12 of 36

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

est Nesults List.				200
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10/KDB 558074	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10/KDB 558074	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/KDB 558074	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

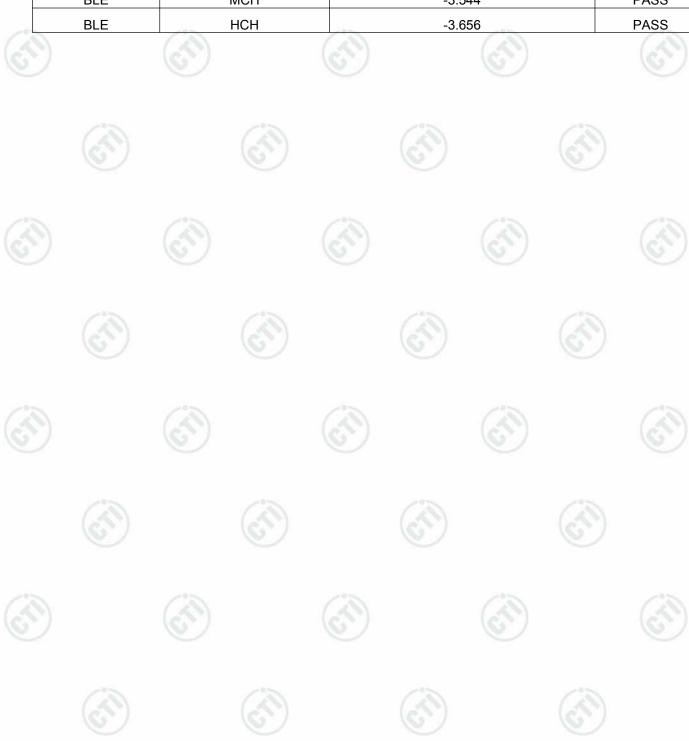
Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel 6dB Bandwidth [MHz]		99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6554	1.0519	PASS	
BLE	MCH	0.6545	1.0528	PASS	Peak
BLE	НСН	0.6522	1.0530	PASS	detector

Page 13 of 36

Test Graphs



Page 14 of 36

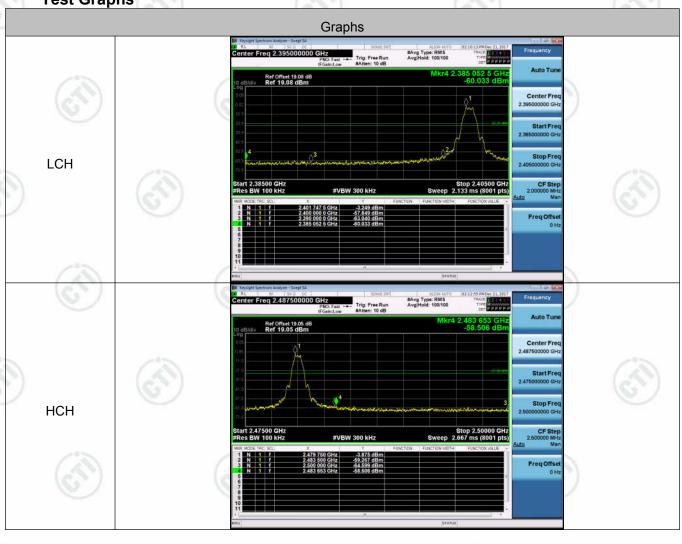
Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-2.955	PASS
BLE	MCH	-3.544	PASS
BLE	НСН	-3.656	PASS

Page 15 of 36

Test Graphs


Report No. : EED32J00271702 Page 16 of 36

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Carrier Power[dBm] Max.Spurious Level [dBm]		Verdict	
BLE	LCH	-3.249	-60.033	-23.25	PASS	
BLE	НСН	-3.875	-58.506	-23.88	PASS	

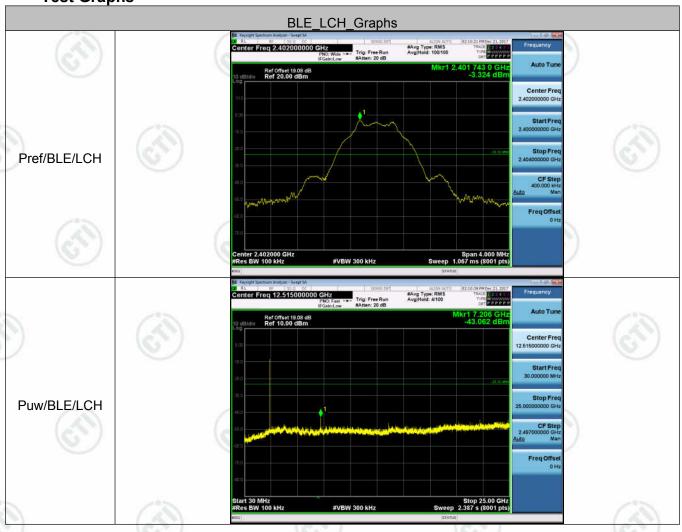
Test Graphs

Page 17 of 36

Appendix D): RF Conducted Spurious Emissions

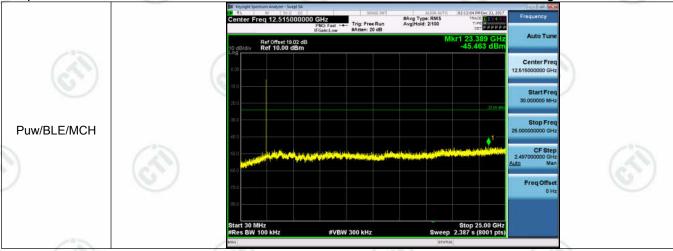
Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-3.324	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-3.927	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-4.059	<limit< td=""><td>PASS</td></limit<>	PASS



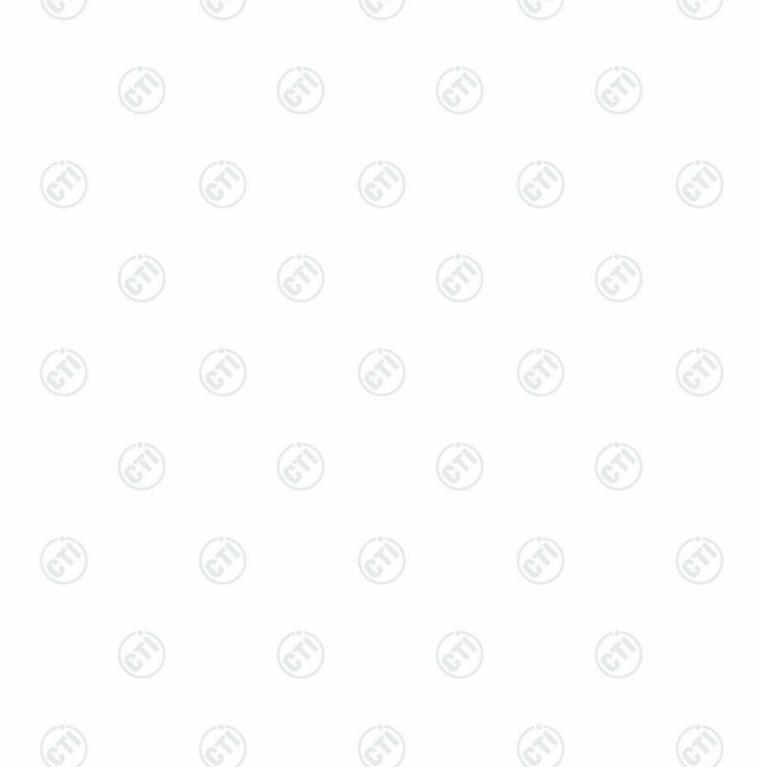
Page 18 of 36

Test Graphs



Report No. : EED32J00271702 Page 19 of 36

■ **Copyright Specham Analysis*- Sweet St.**

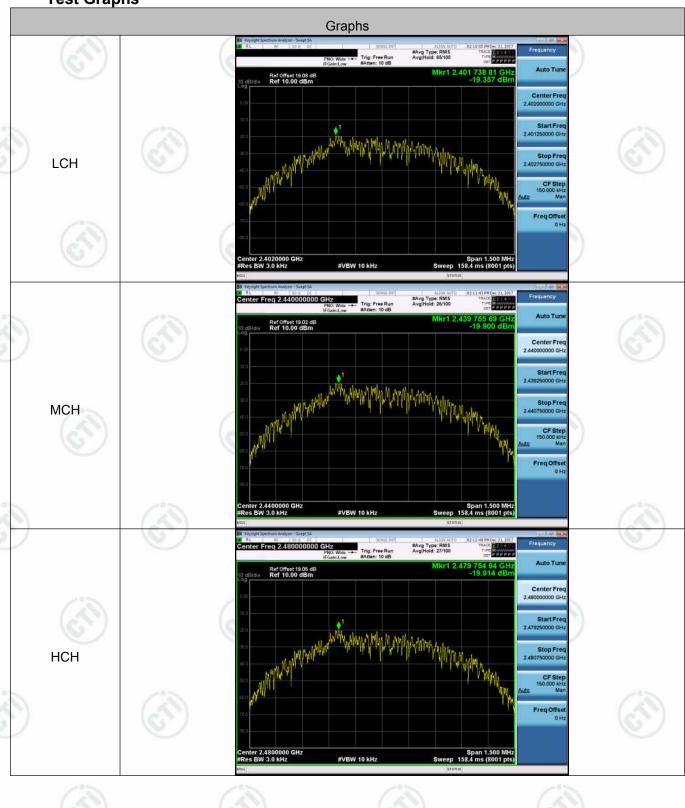


Appendix E): Power Spectral Density

Result Table

Mode	e Channel PSD[dBm/3kHz]			Verdict
BLE	LCH	-19.357	8	PASS
BLE	MCH	-19.900	8	PASS
BLE	НСН	-19.914	8	PASS

Page 20 of 36

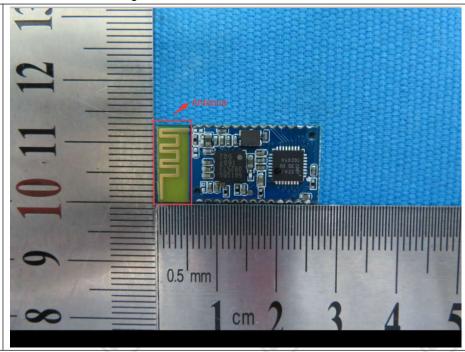


Page 21 of 36

Test Graphs

Page 22 of 36

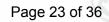
Appendix F): Antenna Requirement


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

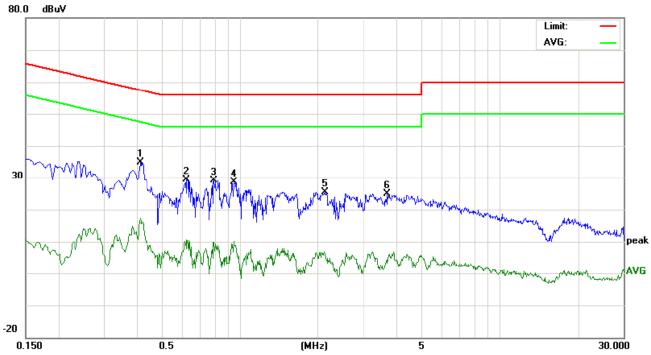
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.



The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

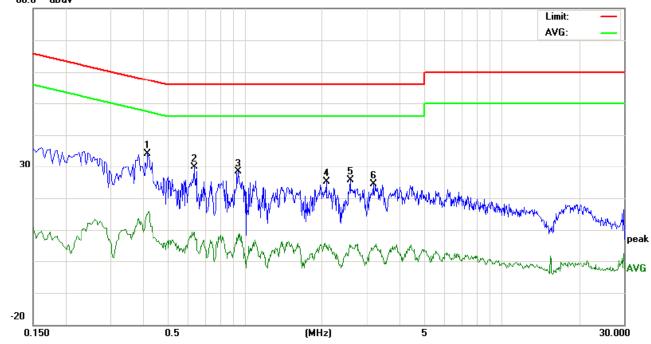
Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequ	ency range :150KHz	z-30MHz	20%	
			nce voltage test was o	onducted in a shield	ed room.
	2) The EU Stabiliz power which were	T was connected to cation Network) which cables of all other to was bonded to the gunit being measure a power cables to a	AC power source thr ch provides a 50Ω/50 units of the EUT were ground reference plane ed. A multiple socket of single LISN provided to	ough a LISN 1 (Line μH + 5Ω linear imper- connected to a sect the in the same way aso coutlet strip was used	Impedance edance. The ond LISN 2, is the LISN 1 d to connect
	3)The tabl referen	etop EUT was plac	ed upon a non-metall por-standing arrangem e plane,		
	4) The tes EUT sh referen 1 was ground plane. All othe LISN 2 5) In order	It was performed whall be 0.4 m from the ceplane was bonder placed 0.8 m from reference plane for units of the EUT and the find the maximum of the find the find the find the find the maximum of the find the fin	ith a vertical ground reference to the horizontal ground reference to the horizontal ground and the boundary of the concent of LISNs mounted of the closest point associated equipment of the relative must be changed as	rence plane. The veround reference plandunit under test and landon top of the groun bints of the LISN 1 ament was at least 0.8 re positions of equipage.	tical ground e. The LISN conded to a d reference nd the EUT. 3 m from the ment and all
		ted measurement.			
Limit:	- 6	(4)			٦
(0.)	Freque	ncy range (MHz)	Limit (d		
		, , ,	Quasi-peak	Average	
		0.15-0.5	66 to 56*	56 to 46*	
		0.5-5	56	46	13
6)	(250)	5-30	60	50	(6)
	MHz to	0.50 MHz.	with the logarithm of icable at the transition		range 0.15
	ta was performed on	the live and neutral	lines with peak detect at the frequencies with	or.	nission were



Page 24 of 36

No.	Reading_Level Freq. (dBuV)		Correct Factor	Measurement (dBuV)		Limit (dBu∀)		Margin (dB)						
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.4140	25.14	22.15	7.59	9.74	34.88	31.89	17.33	57.57	47.57	-25.68	-30.24	Р	
2	0.6260	19.69	17.41	0.76	9.75	29.44	27.16	10.51	56.00	46.00	-28.84	-35.49	Р	
3	0.7940	19.46	17.15	0.15	9.74	29.20	26.89	9.89	56.00	46.00	-29.11	-36.11	Р	
4	0.9540	18.93	15.36	-0.34	9.73	28.66	25.09	9.39	56.00	46.00	-30.91	-36.61	Р	
5	2.1220	15.64	13.37	-3.66	9.72	25.36	23.09	6.06	56.00	46.00	-32.91	-39.94	Р	
6	3.7180	15.21	14.33	-6.20	9.66	24.87	23.99	3.46	56.00	46.00	-32.01	-42.54	Р	



Page 25 of 36

Neutral line: 80.0 dBuV

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	Measurement (dBuV)					rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.4180	24.27	22.45	5.21	9.74	34.01	32.19	14.95	57.49	47.49	-25.30	-32.54	Р	
2	0.6340	20.16	18.23	-0.39	9.75	29.91	27.98	9.36	56.00	46.00	-28.02	-36.64	Р	
3	0.9460	18.64	16.53	-1.71	9.74	28.38	26.27	8.03	56.00	46.00	-29.73	-37.97	Р	
4	2.0860	15.53	13.41	-4.58	9.72	25.25	23.13	5.14	56.00	46.00	-32.87	-40.86	Р	
5	2.5780	15.83	12.47	-4.53	9.70	25.53	22.17	5.17	56.00	46.00	-33.83	-40.83	Р	
6	3.1820	14.59	12.38	-5.50	9.68	24.27	22.06	4.18	56.00	46.00	-33.94	-41.82	Р	

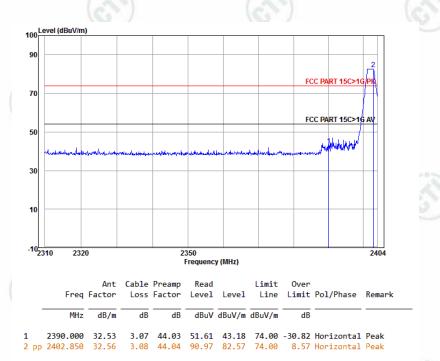
Notes:

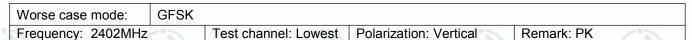
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. AC120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the above.

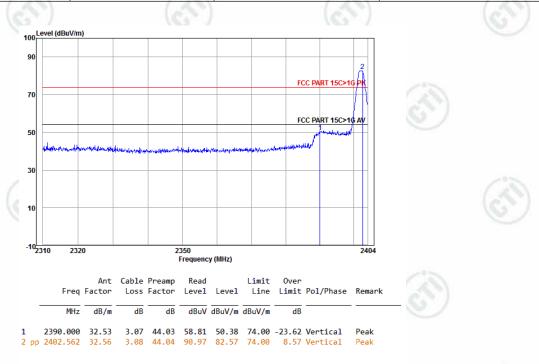
Report No. : EED32J00271702 Page 26 of 36

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 1011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
est Procedure:	Below 1GHz test proced a. The EUT was placed at a 3 meter semi-ane determine the position b. The EUT was set 3 m was mounted on the t c. The antenna height is determine the maximu polarizations of the ar d. For each suspected e the antenna was tune was turned from 0 deg e. The test-receiver syst Bandwidth with Maxim f. Place a marker at the frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above proced	on the top of a roschoic camber. The choic camber. The of the highest rate eters away from op of a variable-hoveried from one tum value of the finatenna are set to emission, the EUT of the highest to 360 degrees to 360 degreem was set to Penum Hold Mode. The end of the restrict end of the restrict end from analyzer plot to the channel of the test site of the end table towest channel, the ements are performed found the X axiones until all frequents.	ne table was adiation. the interfer neight ante meter to for eld strengtl make the r was arran 1 meter to rees to find eak Detect cted band or easure any ot. Repeat	ence-receinna tower. bur meters n. Both hor neasurement ged to its 4 meters the maxin Function a closest to the emissions for each por ter). t channel Y, Z axis point ing which in easured was	above the grorizontal and verent. worst case and the rotatal num reading. nd Specified ne transmit in the restrict ower and mode. Anechoic Cha. 5 meter (Above consitioning for the second consistioning for the second consistion co	whice whice und ertica d the ble ted ulatic
	Frequency 30MHz-88MHz	Limit (dBµV/			mark eak Value	
	88MHz-216MHz	43.5	4	- 1	eak Value	
	216MHz-960MHz	46.0		•	eak Value	
	960MHz-1GHz	54.0		· ·	eak Value	
		54.0		-	je Value	
	Above 1GHz	74.0			.2	
		/4 (100	PEAK	Value	

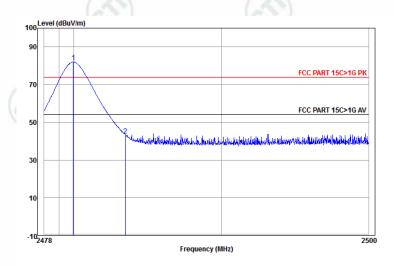


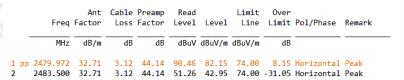

Page 27 of 36

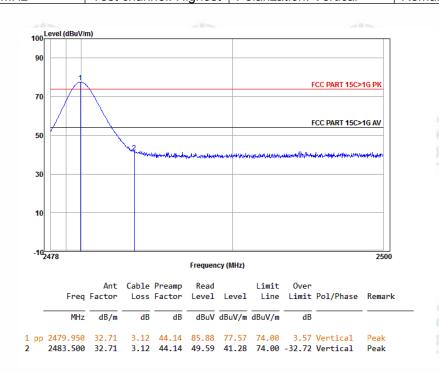

Test plot as follows:

Worse case mode: GFSK

Frequency: 2402MHz Test channel: Lowest Polarization: Horizontal Remark: PK







Worse case mode:	GFSK			
Frequency: 2480MHz		Test channel: Highest	Polarization: Horizontal	Remark: PK

Worse case mode:	GFSK				
Frequency: 2480MHz		Test channel: Highest	Polarization: Vertical	Remark: PK	

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Page 29 of 36

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
(850)	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	-0-
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	(4)
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	(0)
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4011=	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
	1,257,78	100	. 4. 1		16.7	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

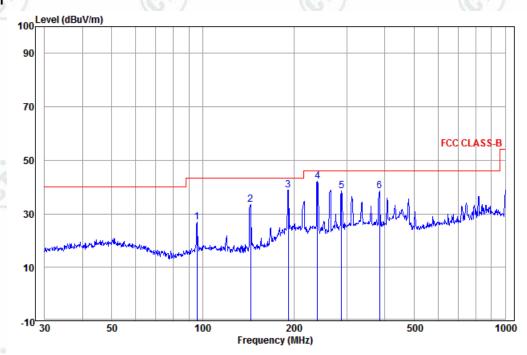
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

. Repeat above procedures until all frequencies measured was complete.

- 11 1	111

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	<u> </u>	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	10-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



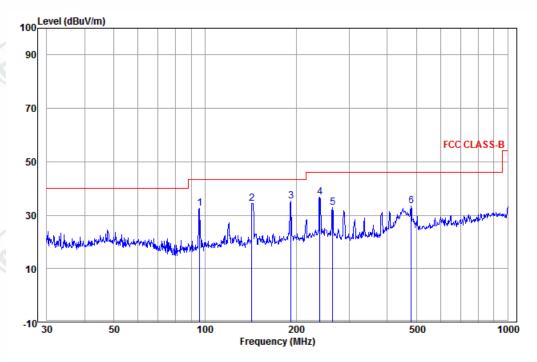
Page 30 of 36

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)

Horizontal

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_									
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	95.762	11.84	0.51	14.40	26.75	43.50	-16.75	Horizontal	QP
2	143.830	9.18	0.61	23.56	33.35	43.50	-10.15	Horizontal	QP
3	191.745	11.10	1.03	26.85	38.98	43.50	-4.52	Horizontal	QP
4 pp	239.987	12.40	1.30	28.38	42.08	46.00	-3.92	Horizontal	QP
5	287.990	13.22	1.13	24.28	38.63	46.00	-7.37	Horizontal	QP
6	383.932	14.95	1.32	22.15	38.42	46.00	-7.58	Horizontal	QP



Page 31 of 36

	Freq					Limit Line		Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	96.099	11.90	0.52	20.08	32.50	43.50	-11.00	Vertical	QP
2	142.824	9.25	0.61	24.56	34.42	43.50	-9.08	Vertical	QP
3 рр	192.419	11.14	1.03	23.14	35.31	43.50	-8.19	Vertical	QP
4	239.987	12.40	1.30	22.99	36.69	46.00	-9.31	Vertical	QP
5	263.819	12.84	1.26	18.84	32.94	46.00	-13.06	Vertical	QP
6	480.528	16.64	1.50	15.21	33.35	46.00	-12.65	Vertical	QР

Page 32 of 36

Transmitter Emission above 1GHz

Worse case	mode:	GFSK		Test char	nnel:	Lowest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1195.049	30.21	1.85	44.39	56.84	44.51	74.00	-29.49	Pass	Horizontal
1791.273	31.38	2.63	43.69	54.61	44.93	74.00	-29.07	Pass	Horizontal
4804.000	34.69	5.98	44.60	52.30	48.37	74.00	-25.63	Pass	Horizontal
6094.137	35.95	7.41	44.51	47.96	46.81	74.00	-27.19	Pass	Horizontal
7206.000	36.42	6.97	44.77	50.20	48.82	74.00	-25.18	Pass	Horizontal
9608.000	37.88	6.98	45.58	47.33	46.61	74.00	-27.39	Pass	Horizontal
1195.049	30.21	1.85	44.39	56.45	44.12	74.00	-29.88	Pass	Vertical
1593.340	31.04	2.40	43.89	53.04	42.59	74.00	-31.41	Pass	Vertical
4804.000	34.69	5.98	44.60	51.87	47.94	74.00	-26.06	Pass	Vertical
5762.235	35.72	7.20	44.52	49.38	47.78	74.00	-26.22	Pass	Vertical
7206.000	36.42	6.97	44.77	52.07	50.69	74.00	-23.31	Pass	Vertical
9608.000	37.88	6.98	45.58	46.04	45.32	74.00	-28.68	Pass	Vertical

Worse case	mode:	GFSK		Test cha	nnel:	Middle			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1195.049	30.21	1.85	44.39	55.47	43.14	74.00	-30.86	Pass	Horizontal
1593.340	31.04	2.40	43.89	49.02	38.57	74.00	-35.43	Pass	Horizontal
4880.000	34.85	6.13	44.60	50.10	46.48	74.00	-27.52	Pass	Horizontal
6063.190	35.93	7.42	44.51	47.32	46.16	74.00	-27.84	Pass	Horizontal
7320.000	36.43	6.85	44.87	49.60	48.01	74.00	-25.99	Pass	Horizontal
9760.000	38.05	7.12	45.55	46.38	46.00	74.00	-28.00	Pass	Horizontal
1195.049	30.21	1.85	44.39	54.29	41.96	74.00	-32.04	Pass	Vertical
1395.796	30.66	2.15	44.12	52.16	40.85	74.00	-33.15	Pass	Vertical
4880.000	34.85	6.13	44.60	50.50	46.88	74.00	-27.12	Pass	Vertical
5986.509	35.89	7.43	44.50	47.65	46.47	74.00	-27.53	Pass	Vertical
7320.000	36.43	6.85	44.87	49.97	48.38	74.00	-25.62	Pass	Vertical
9760.000	38.05	7.12	45.55	45.64	45.26	74.00	-28.74	Pass	Vertical

D	~~		00
Page	33	OT	36

Worse case mode:		GFSK		Test channel:		Highest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1195.049	30.21	1.85	44.39	55.16	42.83	74.00	-31.17	Pass	Horizontal
1510.402	30.89	2.30	43.99	49.89	39.09	74.00	-34.91	Pass	Horizontal
4960.000	35.02	6.29	44.60	53.03	49.74	74.00	-24.26	Pass	Horizontal
6063.190	35.93	7.42	44.51	47.93	46.77	74.00	-27.23	Pass	Horizontal
7440.000	36.45	6.73	44.97	46.19	44.40	74.00	-29.60	Pass	Horizontal
9920.000	38.22	7.26	45.52	46.99	46.95	74.00	-27.05	Pass	Horizontal
1195.049	30.21	1.85	44.39	55.07	42.74	74.00	-31.26	Pass	Vertical
1593.340	31.04	2.40	43.89	54.75	44.30	74.00	-29.70	Pass	Vertical
4960.000	35.02	6.29	44.60	48.23	44.94	74.00	-29.06	Pass	Vertical
5762.235	35.72	7.20	44.52	47.79	46.19	74.00	-27.81	Pass	Vertical
7440.000	36.45	6.73	44.97	49.37	47.58	74.00	-26.42	Pass	Vertical
9920.000	38.22	7.26	45.52	46.65	46.61	74.00	-27.39	Pass	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 34 of 36

PHOTOGRAPHS OF TEST SETUP

Test mode No.:RPP02A

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1G)

Page 35 of 36

Conducted Emissions Test Setup

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32J00271701 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

