

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.org.cn

TECT	DE	:PC	NDT
IEJI		: T	

Report No. CTC20211300E05

FCC ID.....: 2AR24-AIBOX30UM

Applicant-----: Shenzhen Absen Optoelectronic Co.,Ltd

18-20F Building 3A, Cloud Park, Bantian, Longgang District, Address-----:

Shenzhen, China

Manufacturer: Shenzhen Absen Optoelectronic Co.,Ltd

18-20F Building 3A, Cloud Park, Bantian, Longgang District, Address....:

Shenzhen, China

Product Name: LED Multimedia Processor

Trade Mark-----: /

Model/Type reference······: Ai Box3.0 UM

Listed Model(s) ·····:

Standard----:: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample...: Aug. 02, 2021

Date of testing..... Aug. 02, 2021 to Aug. 20, 2021

Date of issue..... Aug. 25, 2021

Result....: **PASS**

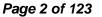
Compiled by:

(Printed name+signature) Lucy Lan

Supervised by:

(Printed name+signature) Miller Ma Miller Ma

Approved by:


(Printed name+signature) Walter Chen

Testing Laboratory Name.....: CTC Laboratories, Inc.

1-2/F., Building 2, Jiaguan Building, Guanlan High-Tech Park, Address....:

Shenzhen, Guangdong, China

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

		Table of Contents	raye
1. TE	ST SUMMARY		3
1.1.	TEST STANDARDS		3
1.2.			
1.3.	TEST DESCRIPTION		3
1.4.	TEST FACILITY		4
1.5.	MEASUREMENT UNCERTAINTY		4
1.6.	ENVIRONMENTAL CONDITIONS		5
2. GE	NERAL INFORMATION		6
2.1.			
2.2.			
2.3.			
2.4.			
2.5.	MEASUREMENT INSTRUMENTS LIST		g
3. TE	ST ITEM AND RESULTS		11
3.1.	CONDUCTED EMISSION		11
3.2.	RADIATED EMISSION		14
3.3.	Band Edge Emissions (Radiated)		43
3.4.		(CONDUCTED)	
3.5.	DTS BANDWIDTH		91
3.6.	PEAK OUTPUT POWER		101
3.7.	POWER SPECTRAL DENSITY		103
3.8.	DUTY CYCLE		113
3 9	ΔΝΤΈΝΝΑ ΒΕΟΙΙΒΕΜΕΝΤ		123

Page 3 of 123

Report No.: CTC20211300E05

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

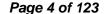
FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

RSS 247 Issue 2: Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Date of issue	Description
01	Aug 25, 2021	Original


1.3. Test Description

FCC Part 15 Subpart C (15.247) / RSS 247 Issue 2					
Test Item	Standard	Section	Result	Test	
iest item	FCC	IC	Resuit	Engineer	
Antenna Requirement	15.203	/	Pass	Lucy Lan	
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Lucy Lan	
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	RSS 247 5.5	Pass	Lucy Lan	
Conducted Band Edge and Spurious Emissions	15.247(d)	RSS 247 5.5	Pass	Lucy Lan	
6dB Bandwidth	15.247(a)(2)	RSS 247 5.2 (a)	Pass	Lucy Lan	
Conducted Max Output Power	15.247(b)(3)	RSS 247 5.4 (d)	Pass	Lucy Lan	
Power Spectral Density	15.247(e)	RSS 247 5.2 (b)	Pass	Lucy Lan	
Transmitter Radiated Spurious	15.209&15.247(d)	RSS 247 5.5& RSS-Gen 8.9	Pass	Lucy Lan	

Note:

- 1. The measurement uncertainty is not included in the test result.
- 2. The test data except AC conducted emission and Radiated emission below 1GHz refer to CTC20211289E05 (FCC ID: 2AR24-AIBOX30US; Equipment code: DTS). The EUT wireless module, antenna, PCB layout and electrical circuit are the same, the difference is EUT size.

EN 中国国家认证认可监督管理委员会

1.4. Test Facility

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation. Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 4340.01

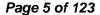
CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug. 26, 2017.

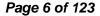

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn


Test Items Measurement Uncertainty Notes Transmitter power conducted 0.42 dB (1) Transmitter power Radiated 2.14 dB (1) Conducted spurious emissions 9kHz~40GHz 1.60 dB (1) Radiated spurious emissions 9kHz~40GHz 2.20 dB (1) Conducted Emissions 9kHz~30MHz 3.08 dB (1) Radiated Emissions 30~1000MHz 4.51 dB (1) Radiated Emissions 1~18GHz 5.84 dB (1) Radiated Emissions 18~40GHz 6.12 dB (1) Occupied Bandwidth (1)

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	21°C~27°C
Relative Humidity:	40%~60%
Air Pressure:	101kPa

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

2. GENERAL INFORMATION

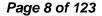
2.1. Client Information

Applicant:	Shenzhen Absen Optoelectronic Co.,Ltd
Address:	18-20F Building 3A, Cloud Park, Bantian, Longgang District, Shenzhen, China
Manufacturer:	Shenzhen Absen Optoelectronic Co.,Ltd
Address:	18-20F Building 3A, Cloud Park, Bantian, Longgang District, Shenzhen, China

Report No.: CTC20211300E05

2.2. General Description of EUT

Product Name:	LED Multimedia Processor				
Trade Mark:	/				
Model/Type reference:	Ai Box3.0 UM				
Listed Model(s):	/				
Model Difference:	/				
Power supply:	100-240V~ 50/60Hz 23W				
RF Module Model:	RTL8822BU				
Hardware version:	/				
Software version:	/				
WIFI 802.11b/ g/ n(HT20)/	WIFI 802.11b/ g/ n(HT20)/ n(HT40)				
Modulation:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK, QPSK, 16QAM, 64QAM)				
Operation frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz				
Channel number:	802.11b/g/n(HT20): 11 Channels 802.11n(HT40): 7 Channels				
Channel separation:	5MHz				
Antenna 1 or 2 type:	PCB Antenna				
Antenna 1 or 2 gain:	5dBi				



2.3. Accessory Equipment Information

Equipment Information				
Name	Model	S/N	Manufacturer	
Notebook	X220	/	Lenovo	
Cable Information				
Name	Shielded Type	Ferrite Core	Length	
USB Cable	Unshielded	NO	150cm	
AC Cable	Unshielded	NO	120cm	
Test Software Information	n			
Name	Software version	/	/	
REALTEK 11ac 8822BU USB WLAN NIC Massproduction Kit	/	/	/	

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency List:

Channel	Frequency (MHz)
01	2412
02	2417
03	2422
04	2427
05	2432
06	2437
07	2442
08	2447
09	2452
10	2457
11	2462

Note: CH 01~CH 11 for 802.11b/g/n(HT20), CH 03~CH 09 for 802.11n(HT40)

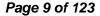
Data Rated

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Mode	Data rate (worst mode)	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(HT20)	HT-MCS0	
802.11n(HT40)	HT-MCS0	

Test mode

For RF test items:

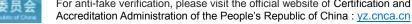

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.


2.5. Measurement Instruments List

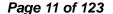
Tonscei	Tonscend JS0806-2 Test system					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 25, 2021	
2	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101331	Mar. 15, 2022	
3	Spectrum Analyzer	KEYSIGHT	N9020A	100231	Dec. 25, 2021	
4	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 25, 2021	
5	Signal Generator	Agilent	E8257D	MY46521908	Dec. 25, 2021	
6	Power Sensor	Agilent	U2021XA	MY5365004	Dec. 25, 2021	
7	Power Sensor	Agilent	U2021XA	MY5365006	Dec. 25, 2021	
8	Simultaneous Sampling DAQ	Agilent	U2531A	TW54493510	Dec. 25, 2021	
9	Climate Chamber	TABAI	PR-4G	A8708055	Dec. 25, 2021	
10	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	116410	Dec. 25, 2021	
11	Climate Chamber	ESPEC	MT3065	/	Dec. 25, 2021	
12	300328 v2.2.2 test system	TONSCEND	v2.6	/	/	

Radiate	Radiated Emission and Transmitter spurious emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	EMI Test Receiver	Rohde & Schwarz	ESCI	100658	Dec. 25, 2021	
2	High pass filter	micro-tranics	HPM50111	142	Dec. 25, 2021	
3	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4180	Dec. 25, 2021	
4	Ultra-Broadband Antenna	ShwarzBeck	BBHA9170	25841	Dec. 25, 2021	
5	Loop Antenna	LAPLAC	RF300	9138	Dec. 25, 2021	
6	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 25, 2021	
7	Horn Antenna	Schwarzbeck	BBHA 9120D	647	Dec. 25, 2021	
8	Pre-Amplifier	HP	8447D	1937A03050	Dec. 25, 2021	
9	Pre-Amplifier	EMCI	EMC051835	980075	Dec. 25, 2021	
10	Antenna Mast	UC	UC3000	N/A	N/A	
11	Turn Table	UC	UC3000	N/A	N/A	
12	Cable Below 1GHz	Schwarzbeck	AK9515E	33155	Dec. 25, 2021	
13	Cable Above 1GHz	Hubersuhner	SUCOFLEX 102	DA1580	Dec. 25, 2021	
14	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 25, 2021	
15	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	Dec. 25, 2021	

CTC Laboratories, Inc.

Page 10 of 123

16	RF Connection Cable	Chengdu E-Microwave			Dec. 25, 2021
17	High pass filter	Compliance Direction systems	BSU-6	34202	Dec. 25, 2021
18	Attenuator	Chengdu E-Microwave	EMCAXX-10 RNZ-3		Dec. 25, 2021
19	High and low temperature box	ESPEC	MT3065	12114019	Dec. 25, 2021


Report No.: CTC20211300E05

Conduc	Conducted Emission												
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until								
1	LISN	R&S	ENV216	101112	Dec. 25, 2021								
2	LISN	R&S	ENV216	101113	Dec. 25, 2021								
3	EMI Test Receiver	R&S	ESCI	100658	Dec. 25, 2021								

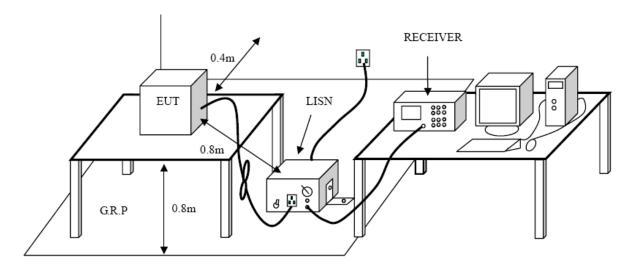
Note:1. The Cal. Interval was one year.

2. The cable loss has calculated in test result which connection between each test instruments.

Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8:

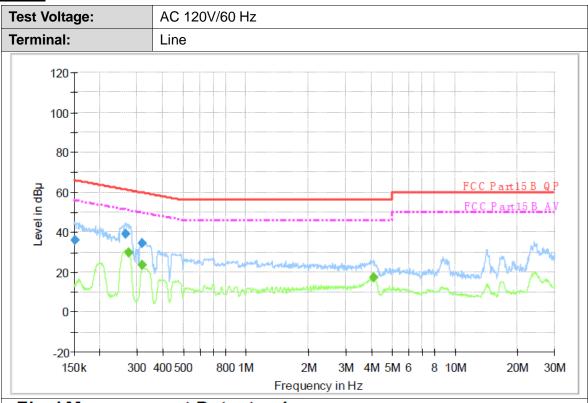
Frequency range (MHz)	Limit (dBuV)						
Frequency range (MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					

^{*} Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

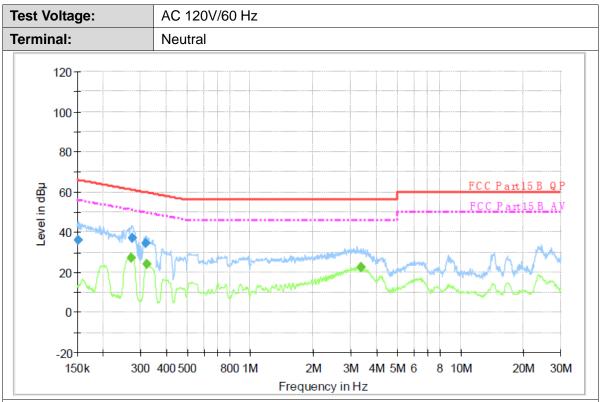
- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.



Test Mode:

Please refer to the clause 2.4.

Test Results

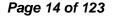

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.151200	36.0	1000.00	9.000	On	L1	9.7	29.9	65.9	
0.266530	39.4	1000.00	9.000	On	L1	9.7	21.8	61.2	
0.316440	34.2	1000.00	9.000	On	L1	9.7	25.6	59.8	

Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.272990	29.9	1000.00	9.000	On	L1	9.7	21.1	51.0	
0.318980	23.3	1000.00	9.000	On	L1	9.7	26.4	49.7	
4.072600	17.4	1000.00	9.000	On	L1	9.7	28.6	46.0	

Emission Level= Read Level+ Correct Factor


Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBμ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.151810	35.9	1000.00	9.000	On	N	10.0	30.0	65.9	
0.272990	36.9	1000.00	9.000	On	N	10.0	24.1	61.0	
0.317710	34.7	1000.00	9.000	On	N	10.0	25.1	59.8	

Final Measurement Detector 2

	Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
Γ	0.269740	27.4	1000.00	9.000	On	N	10.0	23.7	51.1	
Γ	0.322820	23.9	1000.00	9.000	On	N	10.0	25.7	49.6	
	3.375880	22.8	1000.00	9.000	On	N	10.0	23.2	46.0	

Emission Level= Read Level+ Correct Factor

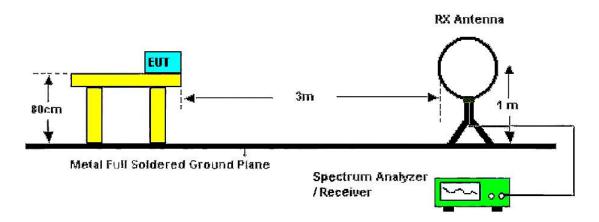
3.2. Radiated Emission

<u>Limit</u>

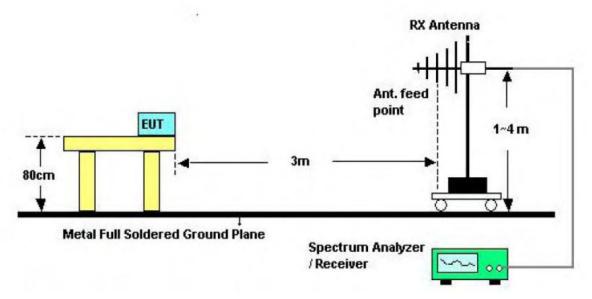
FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS - Gen 8.9:

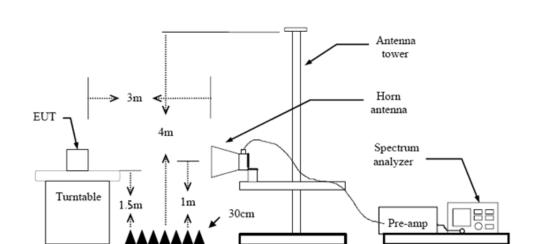

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Fraguesov (MHz)	dB(uV/m) (at 3 meters)				
Frequency (MHz)	Peak	Average			
Above 1000	74	54			


Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).


Test Configuration



Below 30MHz Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
- (1) Span shall wide enough to fully capture the emission being measured;
- (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW ≥1/T Peak detector for Average value.

Note 1: For the 1/T& Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Result

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Pre-scan all antenna, only show the test data for worse case antenna on the test report.

CTC Laboratories, Inc.

30MHz-1GHz

Ant.	Pol.			Horizontal											
Test	st Mode: Ant 1 802.11b Mode 2412MHz														
Ren	nark:			Only worse case is reported											
90.0	dBuV/m														
80															
70															
60										FCC Part	15 RE-C	lass B	30-100	ОМ	
50 -										Margin -6	dB				$\dashv \blacksquare$
40								2			*			5 6	
30		1	A.i.				Λ	/~************************************	3 1/\	WANT VOTEN	hulod	July ann	Moreofore		phin philip
20	warman	Arr No.	(~~_\	handry	N WAN	w N	n de la companya de l		UV VIII		WENT V	din na			
10							•								
o															+
-10															
30.	000	6	0.00					(MHz)		300.00					1000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	53.2800	42.13	-14.90	27.23	40.00	-12.77	QP
2	175.5000	50.80	-15.56	35.24	43.50	-8.26	QP
3	199.7500	51.11	-17.87	33.24	43.50	-10.26	QP
4	399.8933	50.25	-11.85	38.40	46.00	-7.60	QP
5 *	742.6267	43.63	-3.93	39.70	46.00	-6.30	QP
6	816.6700	42.11	-2.64	39.47	46.00	-6.53	QP

Remarks:

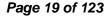
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

1000.000

Ant. Pol. Vertical **Test Mode:** Ant 1 802.11b Mode 2412MHz Remark: Only worse case is reported dBuV/m 90.0 80 70 60 FCC Part15 RE-Class B 30-1000M Margin -6 dB 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	38.4067	45.32	-14.56	30.76	40.00	-9.24	QP
2	50.6933	47.78	-14.66	33.12	40.00	-6.88	QP
3	61.3633	46.75	-15.53	31.22	40.00	-8.78	QP
4	162.2433	50.54	-14.58	35.96	43.50	-7.54	QP
5	742.6267	42.23	-3.93	38.30	46.00	-7.70	QP
6 *	816.6700	42.57	-2.64	39.93	46.00	-6.07	QP

(MHz)


300.00

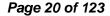
Remarks:

0 -10 30.000

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

60.00

Adobe 1GHz

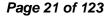

Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX B Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

Report No.: CTC20211300E05

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4823.974	42.60	3.17	45.77	54.00	-8.23	AVG
2	4823.990	44.62	3.17	47.79	74.00	-26.21	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

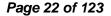


Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX B Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4823.940	41.60	3.17	44.77	54.00	-9.23	AVG
2	4824.060	46.18	3.17	49.35	74.00	-24.65	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

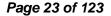


Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX B Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.690	37.97	3.32	41.29	74.00	-32.71	peak
2 *	4873.922	32.68	3.32	36.00	54.00	-18.00	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

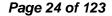


Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX B Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.930	37.92	3.32	41.24	54.00	-12.76	AVG
2	4874.040	44.59	3.32	47.91	74.00	-26.09	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

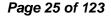


Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX B Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.980	39.19	3.47	42.66	54.00	-11.34	AVG
2	4924.060	44.94	3.47	48.41	74.00	-25.59	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

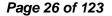


Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX B Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.638	41.51	3.47	44.98	74.00	-29.02	peak
2 *	4923.952	30.95	3.47	34.42	54.00	-19.58	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

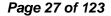


Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.802	44.84	3.17	48.01	74.00	-25.99	peak
2 *	4823.972	34.42	3.17	37.59	54.00	-16.41	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX G Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.622	44.27	3.17	47.44	74.00	-26.56	peak
2 *	4824.014	32.15	3.17	35.32	54.00	-18.68	AVG

Remarks:

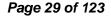
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.908	41.96	3.32	45.28	74.00	-28.72	peak
2 *	4874.054	31.78	3.32	35.10	54.00	-18.90	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

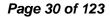


Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX G Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1 *	4873.952	30.17	3.32	33.49	54.00	-20.51	AVG
2	4874.794	42.11	3.32	45.43	74.00	-28.57	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

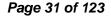


Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4924.002	43.43	3.47	46.90	74.00	-27.10	peak
2 *	4924.026	32.85	3.47	36.32	54.00	-17.68	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

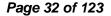


Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX G Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.944	29.32	3.47	32.79	54.00	-21.21	AVG
2	4924.222	40.78	3.47	44.25	74.00	-29.75	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

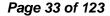


Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX N20 Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4823.938	38.41	3.17	41.58	54.00	-12.42	AVG
2	4823.948	50.20	3.17	53.37	74.00	-20.63	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

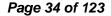


Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N20 Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4823.830	38.67	3.17	41.84	54.00	-12.16	AVG
2	4823.964	50.35	3.17	53.52	74.00	-20.48	peak

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

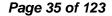


Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX N20 Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.752	39.03	3.32	42.35	54.00	-11.65	AVG
2	4873.796	50.56	3.32	53.88	74.00	-20.12	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N20 Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.890	37.04	3.32	40.36	54.00	-13.64	AVG
2	4874.210	48.85	3.32	52.17	74.00	-21.83	peak

Remarks:

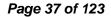
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX N20 Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1 *	4923.844	36.55	3.47	40.02	54.00	-13.98	AVG
2	4923.946	48.16	3.47	51.63	74.00	-22.37	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

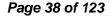


Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N20 Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1 *	4823.974	42.60	3.17	45.77	54.00	-8.23	AVG
2	4823.990	44.62	3.17	47.79	74.00	-26.21	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX N40 Mode 2422MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4843.466	46.29	3.23	49.52	74.00	-24.48	peak
2 *	4844.020	35.26	3.23	38.49	54.00	-15.51	AVG

Remarks:

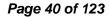
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N40 Mode 2422MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4844.088	34.95	3.23	38.18	54.00	-15.82	AVG
2	4844.480	46.15	3.23	49.38	74.00	-24.62	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

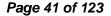


Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX N40 Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.464	47.71	3.32	51.03	74.00	-22.97	peak
2 *	4873.856	35.53	3.32	38.85	54.00	-15.15	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

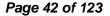


Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N40 Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.436	33.64	3.32	36.96	54.00	-17.04	AVG
2	4874.956	46.30	3.32	49.62	74.00	-24.38	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX N40 Mode 2452MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1	4903.522	45.40	3.40	48.80	74.00	-25.20
2 *	4903.950	33.91	3.40	37.31	54.00	-16.69

Remarks:

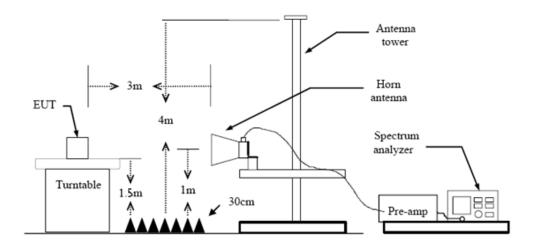
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N40 Mode 2452MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4903.956	46.22	3.40	49.62	74.00	-24.38	peak
2 *	4904.436	33.56	3.40	36.96	54.00	-17.04	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

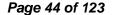

3.3. Band Edge Emissions (Radiated)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)/ RSS 247 5.5:

Restricted Frequency Band	(dBuV/m)(at 3m)				
(MHz)	Peak	Average			
2310 ~2390	74	54			
2483.5 ~2500	74	54			

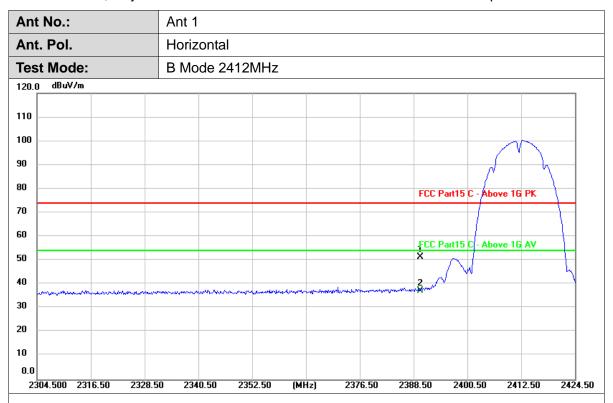
Test Configuration


Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:
 - RBW=1MHz, VBW=3MHz Peak detector for Peak value.
 - RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

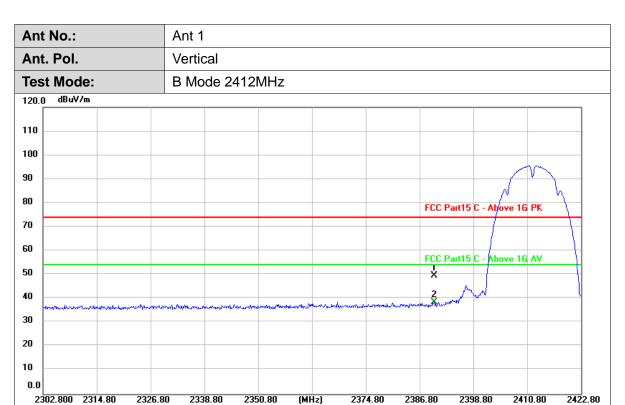
Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.7 Duty Cycle.

Test Mode


Please refer to the clause 2.4.

Test Results

Pre-scan all antenna, only show the test data for worse case antenna on the test report.


No	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	20.63	30.84	51.47	74.00	-22.53	peak
2	2390.000	6.57	30.84	37.41	54.00	-16.59	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2422.80

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	18.78	30.84	49.62	74.00	-24.38	peak
2 *	2390.000	7.63	30.84	38.47	54.00	-15.53	AVG

(MHz)

2374.80

2386.80

2398.80

2410.80

2350.80

Remarks:

2302.800 2314.80

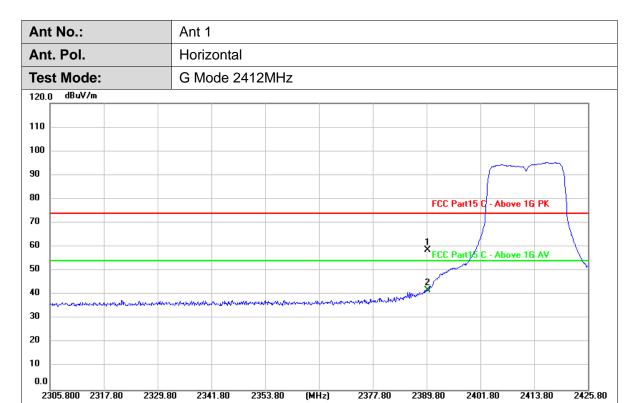
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2338.80

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	2483.500	19.73	31.24	50.97	74.00	-23.03	peak
ĺ	2 *	2483.500	7.84	31.24	39.08	54.00	-14.92	AVG

Remarks:

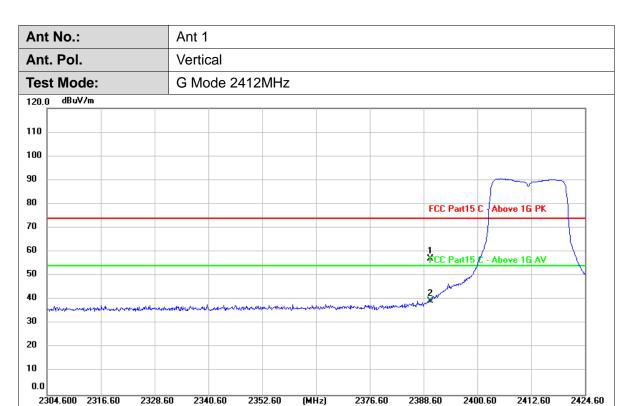
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Ant No.: Ant 1 Ant. Pol. Vertical **Test Mode:** B Mode 2462 MHz dBuV/m 120.0 110 100 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 <u>6</u> 40 30 20 10 0.0 2451.200 2463.20 2487.20 (MHz) 2475.20 2499.20 2523.20 2535.20 2547.20 2559.20 2571.20 Factor Frequency Reading Level Limit Margin No. Detector (MHz) (dBuV) (dB/m) (dBuV/m)(dBuV/m)(dB) 1 2483.500 19.10 31.24 50.34 74.00 -23.66 peak 2 39.25 2483.500 8.01 31.24 54.00 -14.75AVG 3 31.25 53.38 74.00 -20.62 2484.200 22.13 peak 4 2484.200 12.89 31.25 44.14 54.00 -9.86 AVG 5 2515.520 20.25 31.34 51.59 74.00 -22.41 peak 6 2515.520 31.34 -12.10AVG 10.56 41.90 54.00

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

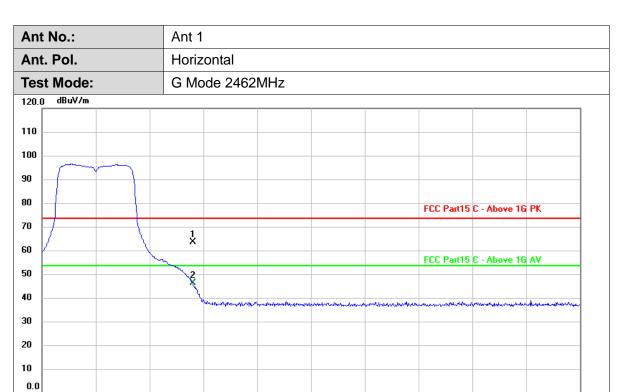


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	27.69	30.84	58.53	74.00	-15.47	peak
2 *	2390.000	11.01	30.84	41.85	54.00	-12.15	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	2390.000	26.24	30.84	57.08	74.00	-16.92	peak
ĺ	2 *	2390.000	8.47	30.84	39.31	54.00	-14.69	AVG


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2570.00

2558.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	32.93	31.24	64.17	74.00	-9.83	peak
2 *	2483.500	15.58	31.24	46.82	54.00	-7.18	AVG

(MHz)

2522.00

2534.00

2546.00

2498.00

Remarks:

2450.000 2462.00

2474.00

2486.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.: Ant 1 Ant. Pol. Vertical G Mode 2462MHz **Test Mode:** dBuV/m 120.0 110 100 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40 30 20 10 0.0 2571.20

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	24.53	31.24	55.77	74.00	-18.23	peak
2	2483.500	10.19	31.24	41.43	54.00	-12.57	AVG
3	2484.320	23.24	31.25	54.49	74.00	-19.51	peak
4 *	2484.320	13.51	31.25	44.76	54.00	-9.24	AVG
5	2515.520	21.68	31.34	53.02	74.00	-20.98	peak
6	2515.520	9.98	31.34	41.32	54.00	-12.68	AVG

(MHz)

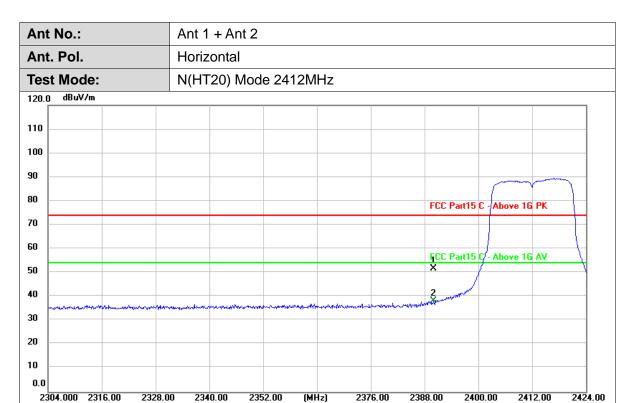
2523.20

2535.20

2547.20

2559.20

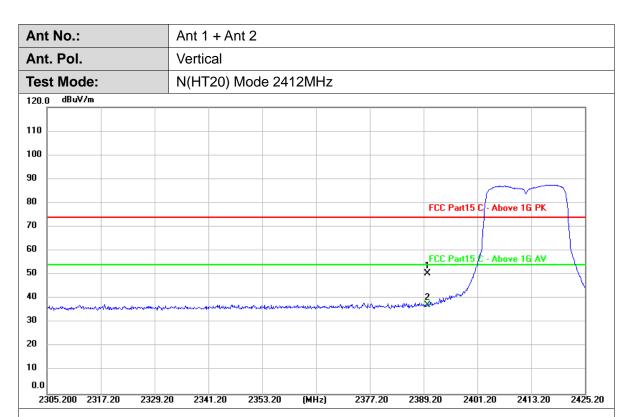
2499.20


2451.200 2463.20

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2487.20

2475.20



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	20.92	30.84	51.76	74.00	-22.24	peak
2 *	2390.000	7.52	30.84	38.36	54.00	-15.64	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l	Margin (dB)	Detector
1	2390.000	19.65	30.84	50.49	74.00	-23.51	peak
2 *	2390.000	6.41	30.84	37.25	54.00	-16.75	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2565.20

2445.200 2457.20

2469.20

2481.20

Ant No.: Ant 1 + Ant 2 Ant. Pol. Horizontal **Test Mode:** N(HT20) Mode 2462MHz dBuV/m 120.0 110 100 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV

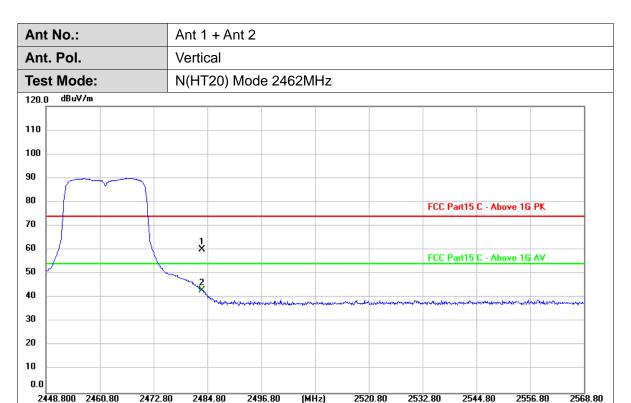
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	25.27	31.24	56.51	74.00	-17.49	peak
2 *	2483 500	10.26	31 24	41.50	54.00	-12 50	AVG

(MHz)

2517.20

2529.20

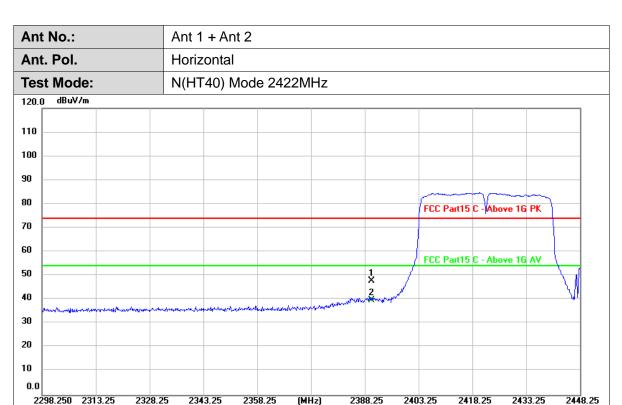
2541.20


2553.20

2493.20

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	28.92	31.24	60.16	74.00	-13.84	peak
2 *	2483.500	11.83	31.24	43.07	54.00	-10.93	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l	Margin (dB)	Detector
1	2390.000	17.02	30.84	47.86	74.00	-26.14	peak
2 *	2390.000	8.94	30.84	39.78	54.00	-14.22	AVG

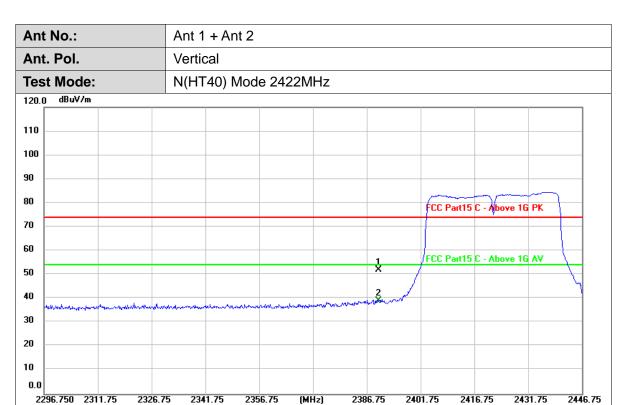
(MHz)

2388.25

2403.25

2418.25

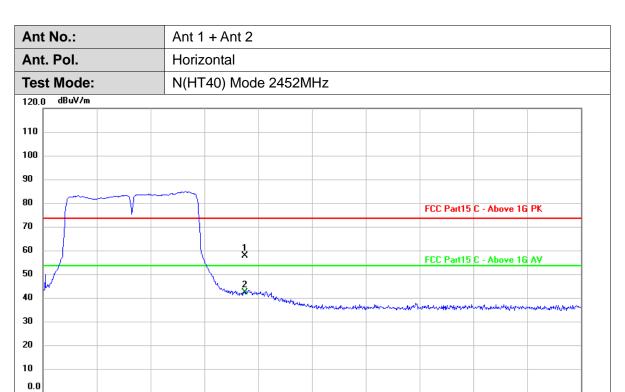
2433.25


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2343.25

2358.25



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l	Margin (dB)	Detector
1	2390.000	21.10	30.84	51.94	74.00	-22.06	peak
2 *	2390.000	8.31	30.84	39.15	54.00	-14.85	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	27.14	31.24	58.38	74.00	-15.62	peak
2 *	2483.500	11.89	31.24	43.13	54.00	-10.87	AVG

(MHz)

2517.25

2532.25

2547.25

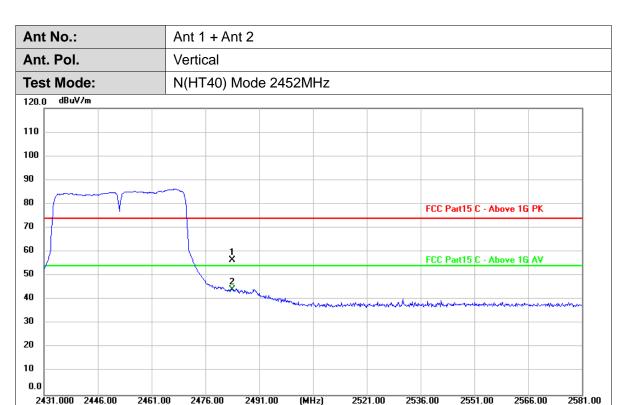
2562.25

2577.25

Remarks:

2427.250 2442.25

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

2457.25

2472.25

2487.25

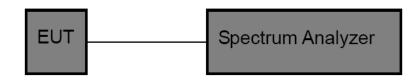
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	25.37	31.24	56.61	74.00	-17.39	peak
2 *	2483.500	12.99	31.24	44.23	54.00	-9.77	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Page 60 of 123

Report No.: CTC20211300E05



3.4. Band edge and Spurious Emissions (Conducted)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

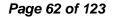
Test Configuration

Test Procedure

- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

Test Mode

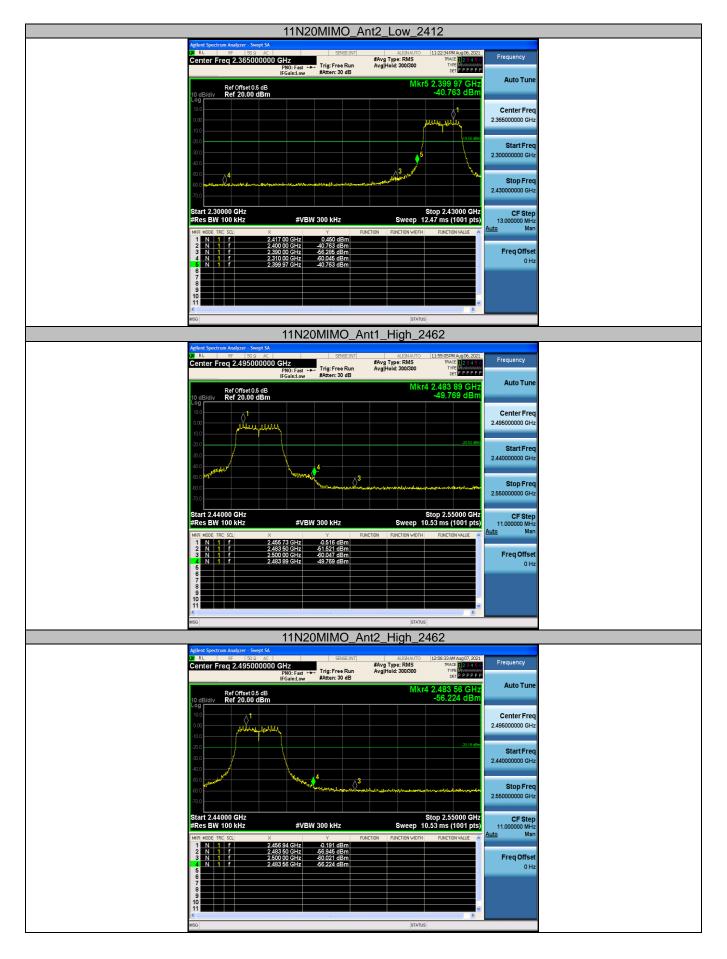
Please refer to the clause 2.4.

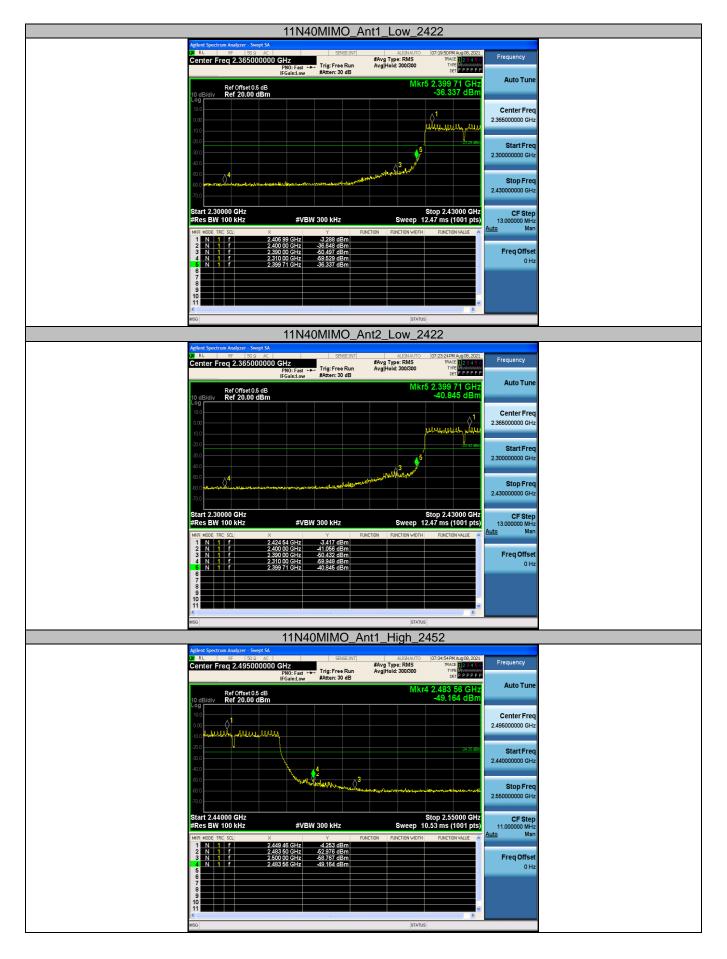

Test Results

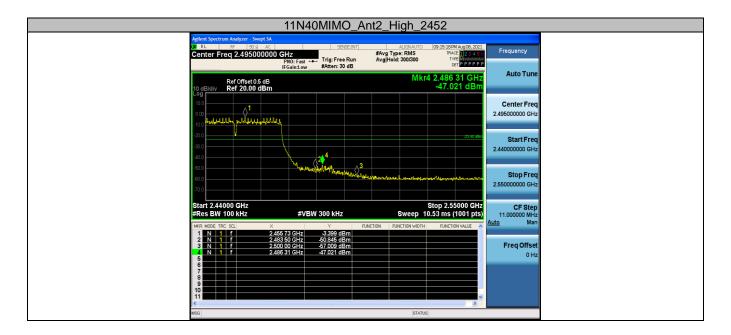
CTC Laboratories, Inc.

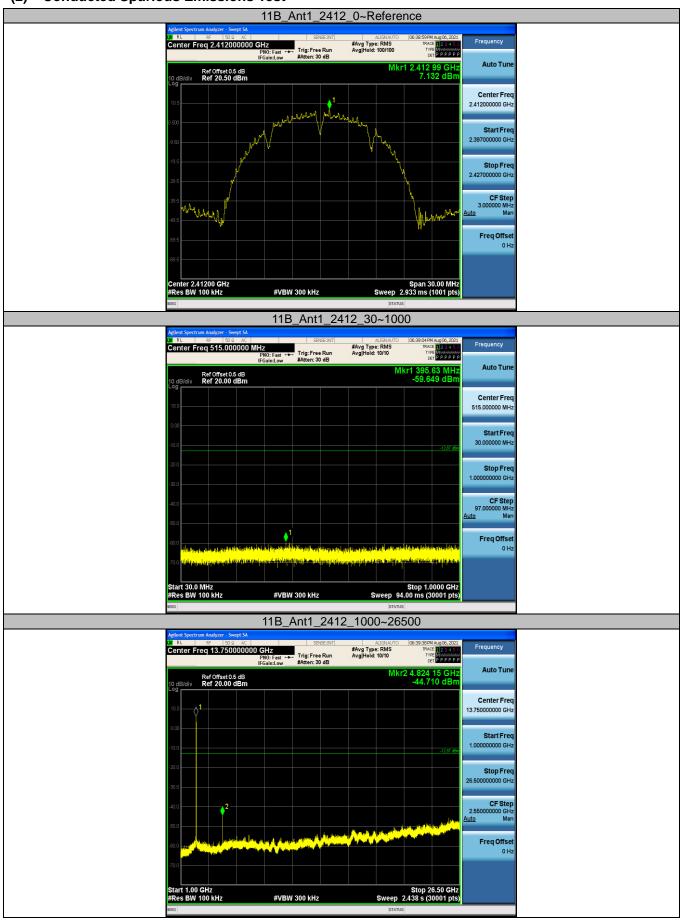


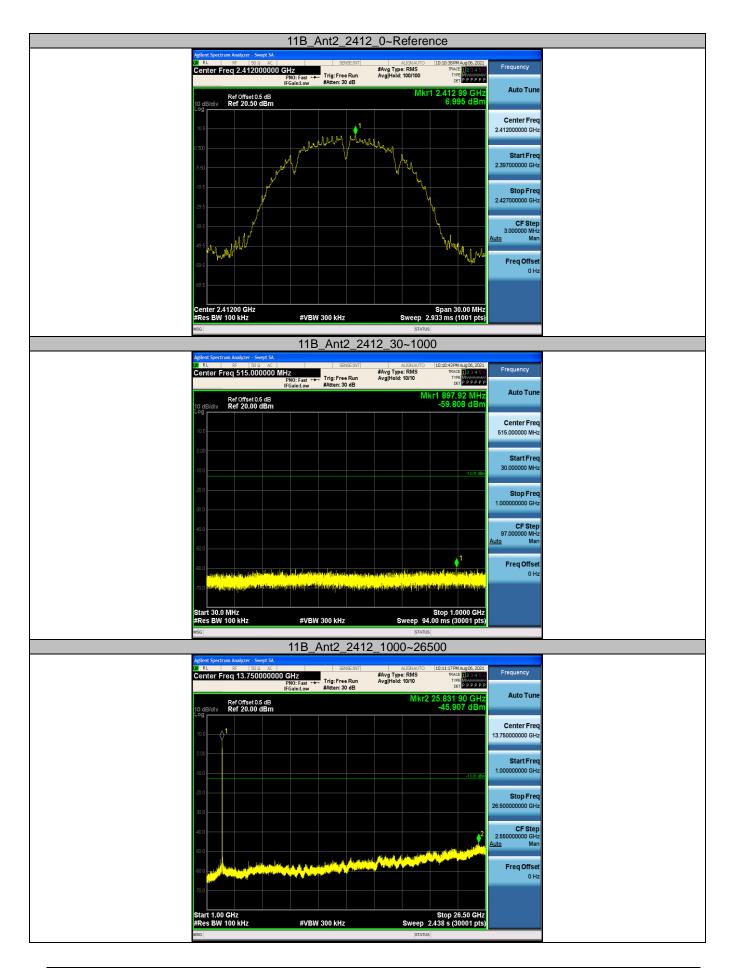
(1) Band edge Conducted Test

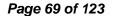











(2) Conducted Spurious Emissions Test

