

TEST REPORT

Applicant Name: Quanzhou longtuo electronic technology co. ,Ltd

Address: No.17-20, building 16, chenghui international, zone B, xiamei, quanzhou

Fujian, China

Report Number: RA221103-51377E-RF-00A

FCC ID: 2AWL3-TDH8

Test Standard (s) FCC PART 15.247

Sample Description

Product Type: Radio

Model No.: TD-H8, TD-H9, TD-H10, TD-H11, TD-UV9R, TD-UV13,

TD-UV68, TD-UV78, TD-UV88, TD-V738, TD-V730

Trade Name: TIDRADIO, TID

Date Received: 2022-11-03

Date of Test: 2022-11-08 to 2022-11-19

Report Date: 2023-01-09

Test Result: Pass*

Prepared and Checked By: Approved By:

Roger, Ling Candy, Li

Roger.Ling Candy Li

EMC Engineer EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk " \bigstar ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
Tel: +86 755-26503290
Fax: +86 755-26503396
Web: www.atc-lab.com

^{*} In the configuration tested, the EUT complied with the standards above.

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	3
GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTYTEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
SPECIAL ACCESSORIES.	
EQUIPMENT MODIFICATIONS	
DUTY CYCLE	
SUPPORT EQUIPMENT LIST AND DETAILS BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
-	
FCC §1.1307 (b) & §2.1093 – RF EXPOSURE	
TEST RESULT	
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	13
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP TEST PROCEDURE	
FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH	21
APPLICABLE STANDARD	21
TEST PROCEDURE	
TEST DATA	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	_
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	
APPLICABLE STANDARD	
TEST PROCEDURE	
FCC §15.247(e) - POWER SPECTRAL DENSITY	
APPLICABLE STANDARD	
TEST PROCEDURE	
Test Data	30

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	RA221103-51377E-RF-00A	Original Report	2023-01-09

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Radio
Tested Model	TD-H8
Multiple Model	TD-H9, TD-H10, TD-H11, TD-UV9R, TD-UV13, TD-UV68, TD-UV78, TD-UV88, TD-V730
Model Differences	Please refer to the DoS letter
Frequency Range	BLE 1M: 2402~2480MHz
Maximum conducted Peak output power	0.07dBm
Modulation Technique	GFSK
Antenna Specification*	Internal Antenna: 2.0dBi(provided by the applicant)
Voltage Range	DC 7.4V from battery DC 8.4V from Charger Base (Note: Only Charging Base charging mode.) DC 12V from adapter for Charger base
Sample number	RA221103-51377E-RF-RF-S1 (RF Radiated Test) RA221103-51377E-RF-RF-S2 (RF Conducted Test) (Assigned by ATC, Shenzhen)
Sample/EUT Status	Good condition
Adapter Information	Model: RSF-DY077B-1200500US Input: 100~240V-50/60Hz 0.5A Output: 12V= 0.5A

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty	
Occupied Cha	nnel Bandwidth	5%	
RF Fr	equency	$0.082*10^{-7}$	
RF output po	wer, conducted	0.73dB	
Unwanted Emi	ssion, conducted	1.6dB	
	30MHz - 1GHz	4.28dB	
Emissions, Radiated	1GHz - 18GHz	4.98dB	
Radiated	18GHz - 26.5GHz	5.06dB	
Temperature		1℃	
Humidity		6%	
Supply	voltages	0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For BLE mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
		•••	•••
•••		•••	•••
•••		•••	•••
18	2438	38	2478
19	2440	39	2480

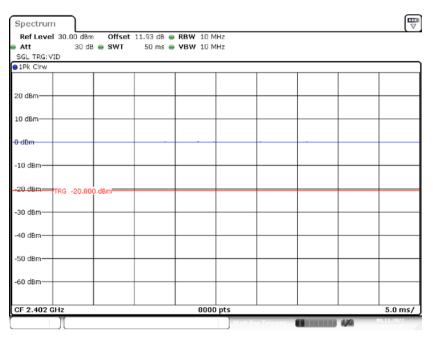
EUT was tested with Channel 0, 19 and 39.

EUT Exercise Software

Software "EMI_TEST_1.9"* was used during testing and the power level was 0.6*.

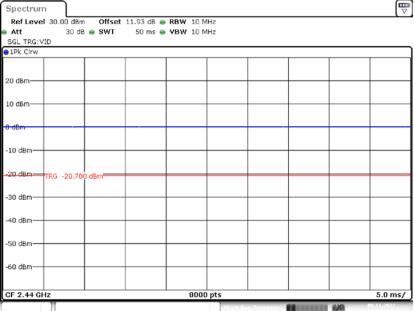
Special Accessories

No special accessory.

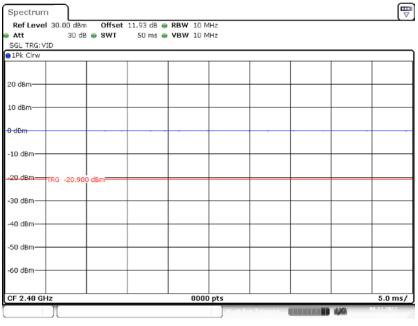

Equipment Modifications

No modification was made to the EUT tested.

Duty Cycle


Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
		2402	50.00	50.00	100.00
BLE_1M	Ant1	2440	50.00	50.00	100.00
		2480	50.00	50.00	100.00

Low Channel


Date: 8.NOV.2022 09:28:47

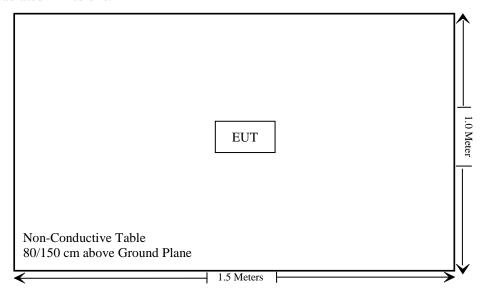
Middle Channel

Date: 8.NOV.2022 09:48:46

High Channel

Date: 8.NOV.2022 09:54:46

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Description Length (m)		То
/	/	/	/

Block Diagram of Test Setup

For Radiated Emissions:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1307(b) §2.1093	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Not Applicable
\$15.205, \$15.209, \$15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth & Occupied Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

Not Applicable: The device was powered by battery when use Bluetooth function.

TEST EQUIPMENT LIST

Manufacturer	Description Model Serial Num		Serial Number	Calibration Date	Calibration Due Date		
		Radiated Emissi	ons Test				
Rohde & Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12		
Rohde & Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12		
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07		
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2022/11/08	2023/11/07		
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2022/11/08	2023/11/07		
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05		
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04		
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04		
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13		
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2021/12/14	2022/12/13		
Radiated Emission Test Software: e3 19821b (V9)							
RF Conducted Test							
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12		
Rohde & Schwarz	Open Switch and Control Unit	OSP120 + OSP-B157	101244 + 100866	2021/12/13	2022/12/12		
WEINSCHEL	10dB Attenuator	5324	AU 3842	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.33	RF-03	Each time			

^{*} Statement of Traceability: Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307 (b) & §2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.3.1-SAR-Based Exemption:

A more comprehensive exemption, considering a variable power threshold that depends on both the separation distance and power, is provided in § 1.1307(b)(3)(i)(B). This exemption is applicable to the frequency range between 300 MHz and 6 GHz, with test separation distances between 0.5 cm and 40 cm, and for all RF sources in fixed, mobile, and portable device exposure conditions.

Accordingly, a RF source is considered an RF exempt device if its available maximum time-averaged (matched conducted) power or its effective radiated power (ERP), whichever is greater, are below a specified threshold. This exemption threshold was derived based on general population 1-g SAR requirements and is detailed in Appendix C.

Test Result

For worst case:

Mode	Frequency	Maximum Tune-up Conducted Power	Antenna Gain				ERP	Distance	Excl	Based usion shold	SAR-Based Exclusion
	(MHz)	(dBm)	(dBi)	(dBd)	(dBm)	(mm)	(mW)	(dBm)	211010001011		
BLE	2402-2480	1	2	-0.15	0.85	5	2.72	4.34	Yes		

Note 1: The tune-up power was declared by the applicant.

Note 2: 0dBd=2.15dBi.

Result: Compliant.

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

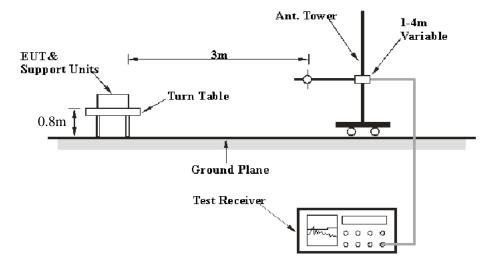
Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

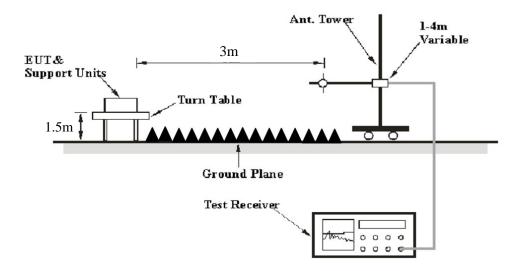
Antenna Connector Construction

The EUT has one internal antenna arrangement, which was permanently attached and the antenna gain is 2.0dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1 MHz	3 MHz	/	PK
Above 1 GHz	1 MHz	10Hz*	/	Ave.
	1 MHz	1/T**	/	Ave.

Note: * for duty cycle ≥ 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

If the maximized peak measured value complies with the limit, then it is unnecessary to perform an QP/Average measurement

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

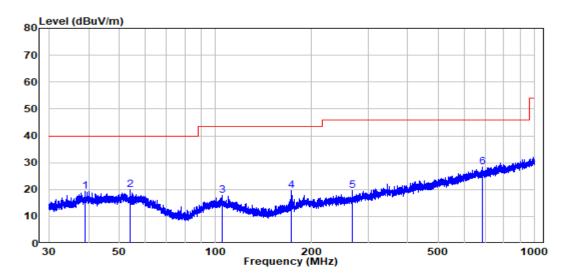
The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

Temperature:	24°C
Relative Humidity:	58%
ATM Pressure:	101.0kPa

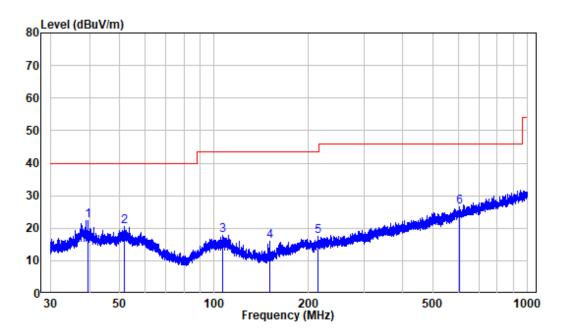

The testing was performed by Jimi Zheng on 2022-11-19.

EUT operation mode: Transmitting (Scan with BLE 1M mode at X axis, Y axis, Z axis, the worst case is at X axis)

^{**}for duty cycle < 98%, and T is maximum transmission duration.

Below 1GHz: (worst case High Channel)

Horizontal


Site : chamber

Condition: 3m HORIZONTAL

Job No. : RA221103-51377E-RF Test Mode: BLE Transmitting

	Frea	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	39.110	-10.56	29.88	19.32	40.00	-20.68	Peak
2	53.882	-10.33	30.12	19.79	40.00	-20.21	Peak
3	104.765	-11.81	29.61	17.80	43.50	-25.70	Peak
4	172.978	-13.28	32.79	19.51	43.50	-23.99	Peak
5	267.428	-10.34	29.85	19.51	46.00	-26.49	Peak
6	683.546	-1.50	29.95	28.45	46.00	-17.55	Peak

Vertical

Site : chamber Condition: 3m VERTICAL

Job No. : RA221103-51377E-RF Test Mode: BLE Transmitting

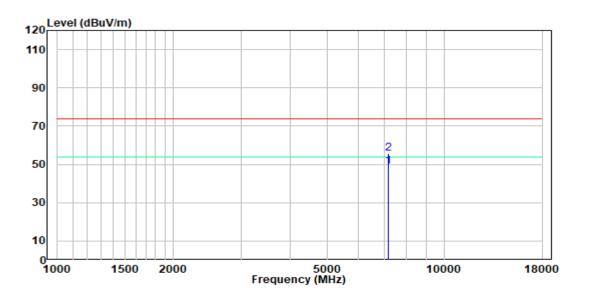
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB	
1	39.506	-10.46	32.94	22.48	40.00	-17.52	Peak
2	51.752	-9.97	30.57	20.60	40.00	-19.40	Peak
3	106.665	-11.94	29.79	17.85	43.50	-25.65	Peak
4	150.011	-15.27	31.35	16.08	43.50	-27.42	Peak
5	215.079	-11.68	29.23	17.55	43.50	-25.95	Peak
6	608.053	-2.35	28.85	26.50	46.00	-19.50	Peak

Above 1GHz:

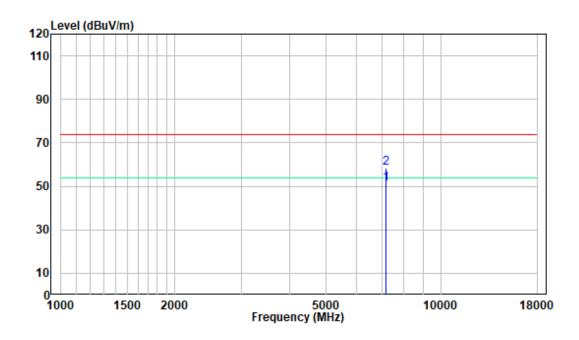
Frequency	Receiver		Turntable	Rx An	ntenna	Factor	Absolute	Limit	Margin	
(MHz)	Reading (dBuV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	Level (dBm)	(dBm)	(dB)	
	BLE 1M, Low Channel									
2310	45.03	PK	242	1.5	Н	-7.23	37.8	74	-36.2	
2310	47.55	PK	306	1.8	V	-7.23	40.32	74	-33.68	
2390	47.64	PK	163	1.2	Н	-7.21	40.43	74	-33.57	
2390	46.86	PK	245	1.1	V	-7.21	39.65	74	-34.35	
4804	52.4	PK	163	1.2	Н	-3.52	48.88	74	-25.12	
4804	49.5	PK	245	1.1	V	-3.52	45.98	74	-28.02	
7206	53.08	PK	163	1.2	Н	2.71	55.79	74	-18.21	
7206	45.98	AV	163	1.2	Н	2.71	48.69	54	-5.31	
7206	55.73	PK	279	1.4	V	2.71	58.44	74	-15.56	
7206	48.61	AV	279	1.4	V	2.71	51.32	54	-2.68	
			B	LE 1M, Mid	dle Channel	•			•	
4880	51.76	PK	128	1.3	Н	-3.38	48.38	74	-25.62	
4880	50.51	PK	358	1.2	V	-3.38	47.13	74	-26.87	
7320	49.94	PK	310	2.1	Н	3.31	53.25	74	-20.75	
7320	49.04	PK	303	1.1	V	3.31	52.35	74	-21.65	
			F	BLE 1M, Hig	gh Channel					
2483.5	44.69	PK	150	1.5	Н	-7.2	37.49	74	-36.51	
2483.5	45.94	PK	158	2.2	V	-7.2	38.74	74	-35.26	
2500	45.29	PK	112	1.3	Н	-7.18	38.11	74	-35.89	
2500	46.81	PK	304	2.1	V	-7.18	39.63	74	-34.37	
4960	52.85	PK	112	1.3	Н	-3.01	49.84	74	-24.16	
4960	50.44	PK	304	2.1	V	-3.01	47.43	74	-26.57	
7440	49.76	PK	115	2.1	Н	3.52	53.28	74	-20.72	
7440	47.63	PK	233	1.9	V	3.52	51.15	74	-22.85	

Note:

Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Absolute Level (Corrected Amplitude) = Factor + Reading Margin = Absolute Level - Limit

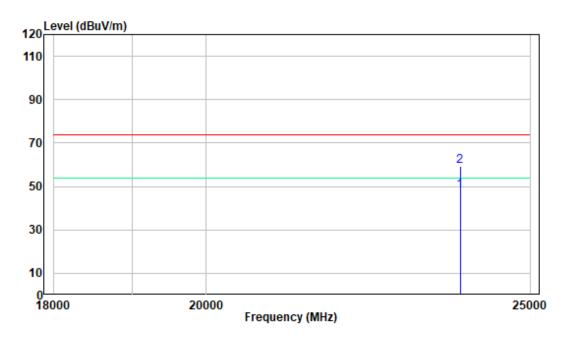

The other spurious emission which is in the noise floor level was not recorded.

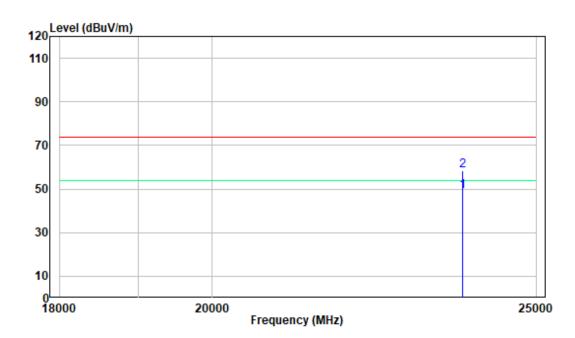
For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.


1 GHz - 18 GHz: (Pre-Scan plots)

Worst case Low Channel

Horizontal

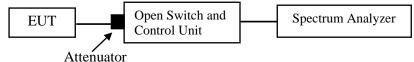

Vertical


18-25GHz: (Pre-Scan plots)

Worst case Low Channel

Horizontal

Vertical


FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

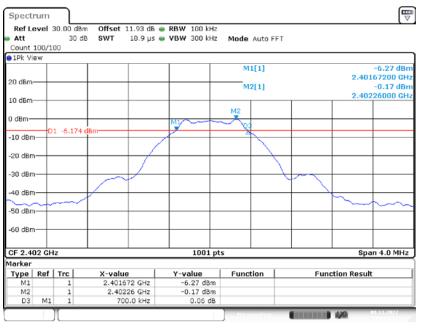
Environmental Conditions

Temperature:	25℃
Relative Humidity:	48%
ATM Pressure:	101.0 kPa

The testing was performed by Glenn Jiang on 2022-11-08.

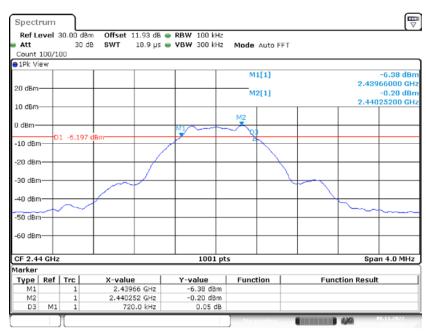
EUT operation mode: Transmitting

Test Result

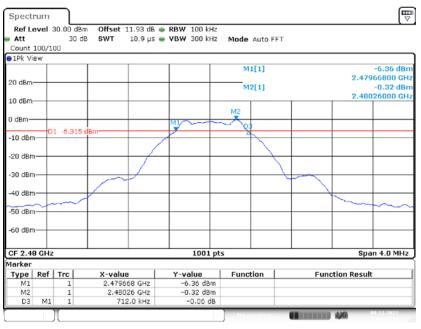

Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
		2402	0.700	0.5	PASS
BLE_1M	Ant1	2440	0.720	0.5	PASS
		2480	0.712	0.5	PASS

Test Mode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.039	2401.497	2402.535		PASS
BLE_1M	Ant1	2440	1.051	2439.489	2440.539		PASS
		2480	1.047	2479.493	2480.539		PASS

Please refer to the below plots:

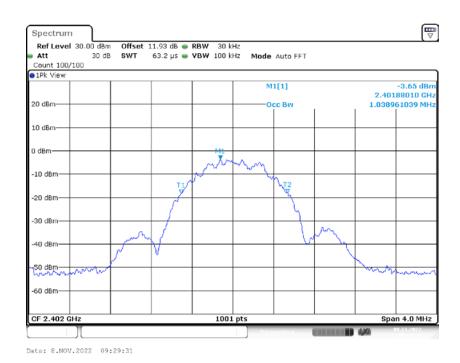

6 dB EMISSION BANDWIDTH:

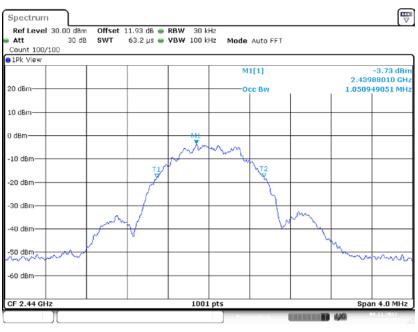
Low Channel


Date: 8.NOV.2022 09:29:14

Middle Channel

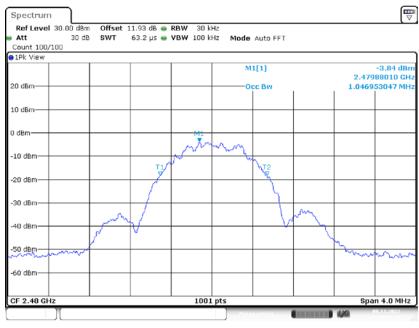
Date: 8.NOV.2022 09:49:12


High Channel


Date: 8.NOV.2022 09:55:12

99% OCCUPIED BANDWIDTH:

Low Channel

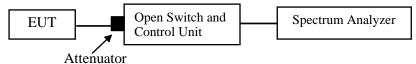


Middle Channel

Date: 8.NOV.2022 09:49:29

High Channel

Date: 8.NOV.2022 09:55:29


FCC §15,247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

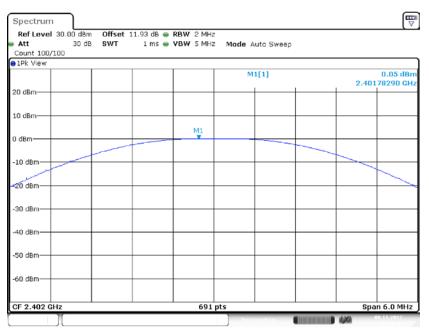
Test Data

Environmental Conditions

Temperature:	24℃
Relative Humidity:	48%
ATM Pressure:	101.0 kPa

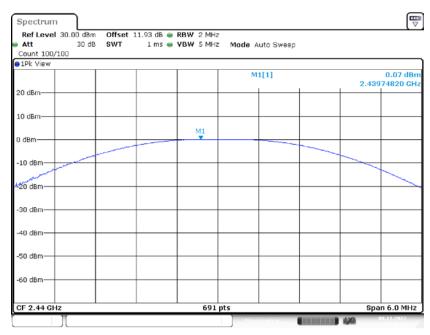
The testing was performed by Glenn Jiang on 2022-11-08.

EUT operation mode: Transmitting

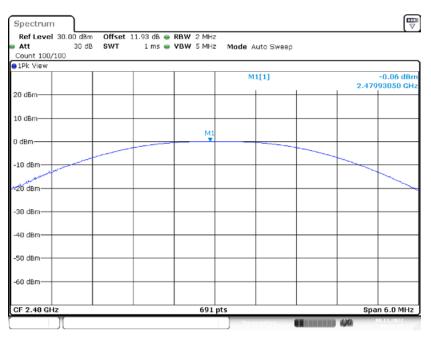

Test Result

Test Mode	Antenna	Channel	Conducted peak output power[dBm]	Limit[dBm]	Verdict
BLE_1M Ant1		2402	0.05	<=30	PASS
	Ant1	2440	0.07	<=30	PASS
		2480	-0.06	<=30	PASS

Please refer to the below plots:


Maximum conducted output power

Low Channel

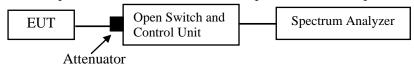

Date: 8.NOV.2022 09:29:43

Middle Channel

Date: 8.NOV.2022 09:49:42

High Channel

Date: 8.NOV.2022 09:55:41


FCC §15.247(d) - 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

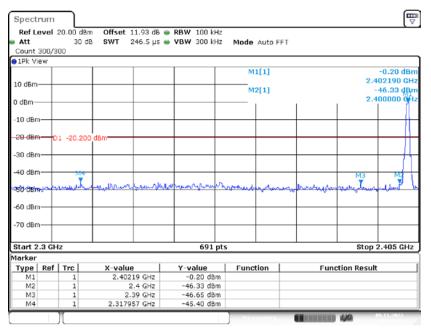
Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

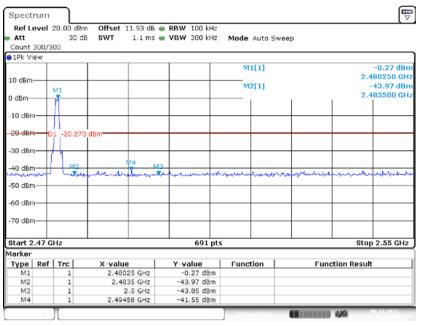
Environmental Conditions

Temperature:	24℃
Relative Humidity:	48%
ATM Pressure:	101.0 kPa


The testing was performed by Glenn Jiang on 2022-11-08.

EUT operation mode: Transmitting

Test Result: Compliant.

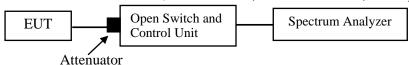

Please refer to the below plots:

Low Channel

Date: 8.NOV.2022 09:30:10

High Channel

Date: 8.NOV.2022 09:56:08


FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

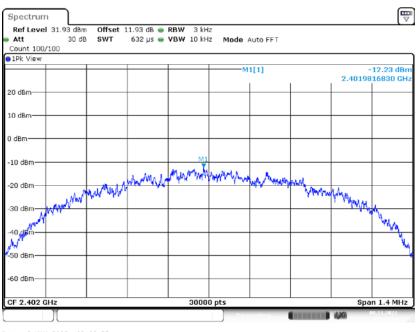
- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: 3kHz< RBW<100 kHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

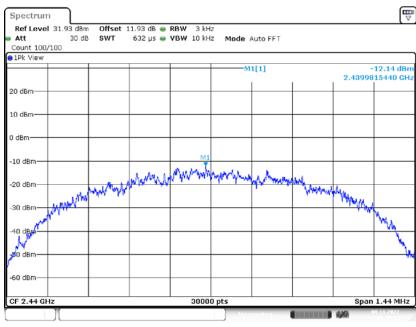
Temperature:	24℃
Relative Humidity:	48%
ATM Pressure:	101.0 kPa

The testing was performed by Glenn Jiang on 2022-11-08.

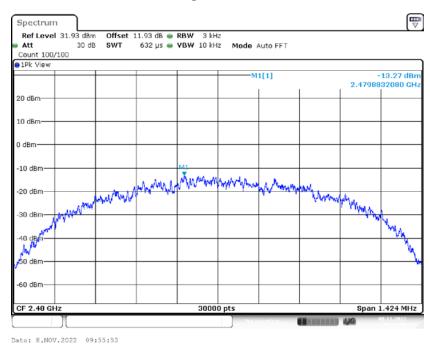

EUT operation mode: Transmitting

Test Result

Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE_1M Ant1		2402	-12.23	<=8	PASS
	Ant1	2440	-12.14	<=8	PASS
		2480	-13.27	<=8	PASS


Please refer to the below plots:

Low Channel


Date: 8.NOV.2022 09:29:55

Middle Channel

Date: 8.NOV.2022 09:49:53

High Channel

***** END OF REPORT *****