

TEST REPORT

Report No.	SST2503E0181
Applicant:	Shenzhen Colorful Yugong Applied Technology Innovation Co., Ltd.
Address of Applicant:	1103, 11th Floor, Building 4, Shenzhen New Generation Industrial Park, No. 136, ZhongkangRoad, Meilin Street, Futian District, Shenzhen, China.
Product Name:	NOTEBOOK COMPUTER
Trade Mark:	COLORFUL
Standard(s):	FCC CFR Title 47 Part 15 Subpart E Section 15.407 ANSI C63.10-2020 2BN3V-L1
Test Report Form No:	SST-RD-7.5-02-E01(A/0)
Date of sample receipt:	2025/1/13
Date of Test:	2025/1/13 - 2025/3/10
Date of report issued:	2025/3/12

*The equipment complies with the requirements according to the standard(s) or Specification above, it is applicable only to the tested sample identified in the report.

Prepared by:	Bold OFT SAIL TEST
Reviewed by:	Tiger over
Approved by:	Seven Ran
	ATTPLOT

*The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Version	Description	Date of Issue
V1.0	Original	2025/3/12

2 Contents

		Pa	age
1	cov	ER PAGE	1
2	CON	ITENTS	3
3	TES	T SUMMARY	4
4	MEA	SUREMENT UNCERTAINTY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	-
	5.2	GENERAL DESCRIPTION OF EUT	-
	5.3	TEST MODE(S)	-
	5.4	TEST FACILITY	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	Additional Instructions	
	5.7	ANTENNA INFORMATION	
;	5.8		
6	TEC	HNICAL REQUIREMENT AND MEASUREMENT DATA	
(6.1	GENERALLY REQUIREMENT	8
(6.2	DUTY CYCLE	9
(6.3	CONDUCTED PEAK OUTPUT POWER	10
(6.4	EMISSION BANDWIDTH	
(6.5	Power Spectral Density	
e	6.6	FREQUENCY STABILITY	
	6.7	RADIATED SPURIOUS EMISSION	
(5.8	CONDUCTED EMISSIONS	
7	TES	T SETUP PHOTO	21
8	EUT	CONSTRUCTIONAL DETAILS	21
AN	NEX A	TEST INSTRUMENTS LIST	22

3 Test Summary

Test items	Basics standards	Result
Antenna requirement	FCC part 15.203	PASS
Automatically discontinue transmission	FCC part 15.407(c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	PASS
99% Bandwidth	Report only	PASS
Emission Bandwidth	FCC part 15.407(a)	PASS
Peak Transmit Power	FCC part 15.407(a)(1)(2)	PASS
Power Spectral Density	FCC part 15.407(a) (1)(2)	PASS
Undesirable Emission	FCC part 15.407(b), 15.205/15.209	PASS
Radiated Emission	FCC part 15.205/15.209	PASS
Frequency Stability	FCC part 15.407(g)	PASS

Notes:

1: NA =Not Applicable

2: Determining compliance based on the results of the compliance measurement, not taking into account measurement uncertainty. If necessary, the applicant shall informing test lab in advance 3: Additions, Deviations and Exclusions from Standards: None.

4 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item	Uncertainty (±) (k=2, 95%)		
Output Power, Conducted	0.9	0.54	
Power Spectral Density, Conducted	1.:	28	
Spurious Emissions, Conducted	1.:	28	
Padiated Emissiona(<10Hz)	9kHz~30MHz	2.6	
Radiated Emissions(<1GHz)	30MHz~1GHz	5.08	
	1GHz~6GHz	4.02	
Radiated Emissions(>1GHz)	6GHz~18GHz	4.62	
	18GHz~40GHz	4.7	
Occupied Bandwidth	1.	14	
Conducted Emissions—AC mains	9kHz~150KHz	1.76	
Conducted Emissions—AC mains	150kHz~30MHz	2.52	
Conducted Emissions—Telecom	2.0	64	

5 General Information

5.1 Client Information

Applicant:	Shenzhen Colorful Yugong Applied Technology Innovation Co., Ltd.
Address of applicant: Manufacturer:	1103, 11th Floor, Building 4, Shenzhen New Generation Industrial Park, No. 136, ZhongkangRoad, Meilin Street, Futian District, Shenzhen, China. Same as applicant
Address of Manufacturer:	Same as applicant
Factory: Address of Factory:	Shenzhen Gentude Technology Co.,Ltd 601, Building 1, Emdoor Building, No. 8 Guang Ke 1st Road, Laokeng Community,Long Tian Street, PingShan District, Shenzhen, China

5.2 General Description of EUT

Product Name:	NOTEBOOK COMPUTER
Model No.:	COLORFUL L1***********************************
Test Model:	L1
Test sample(s) ID:	2501130601
Sample(s) Status:	Continuously transmitter
S/N:	1
Hardware version:	1
Software version:	1
Operation Frequency:	5180MHz~5240MHz, 5260MHz~5320MHz, 5500MHz~5700MHz
Technical specific:	802.11a, 802.11n, 802.11ac, 802.11ax
Supported bandwidth:	20MHz, 40MHz, 80MHz
Modulation technology:	OFDM(A)
Antenna gain:	Refer to section 5.7 for details
Power supply:	AC/DC ADAPTER Model: AY65FA-AF1903422-US Input: AC 100~240V, 50/60Hz, 1.8A Output: DC 19V, 3.42A
	Or DC 11.55V 4330mAh/50Wh Rechargeable li-ion battery

Channel list for 802.11

Channel list	TOP 802.11						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180MHz	54	5270MHz	104	5520MHz	122	5610MHz
38	5190MHz	56	5280MHz	106	5530MHz	124	5620MHz
40	5200MHz	58	5290MHz	108	5540MHz	126	5630MHz
42	5210MHz	60	5300MHz	110	5550MHz	128	5640MHz
44	5220MHz	62	5310MHz	112	5560MHz	132	5660MHz
46	5230MHz	64	5320MHz	116	5580MHz	134	5670MHz
48	5240MHz	100	5500MHz	118	5590MHz	136	5680MHz
52	5260MHz	102	5510MHz	120	5600MHz	140	5700MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test

5.3 Test mode(s)

Mode 1:	continuously transmitting, with its lowest data rate which emit the max power level
Mode 2:	
Mode 3:	

5.4 Test Facility

	FCC Accredited Lab
The test facility is	Test Firm Registration Number: 638130 Designation Number: CN1359
recognized, certified,	IC Registration Lab
or accredited by these organizations:	CAB Identifier No.CN0154
these organizations.	A2LA Accreditation Lab
	Certificate No.:7057.01

	Name
	GuangDong Set Sail Testing Co., Ltd.
Test Performed at:	Address
	101, No.19, Tianxin Hudie 1st Road, Huangjiang Town, Dongguan, Guangdong,
	China

5.5 Description of Support Units

Device Type	Brand	Model	Series No.	Note

5.6 Additional Instructions

Test Software	DRTU	
Version:	05439.23.20.0	
Power level setup	Default	

5.7 Antenna Information

Ant	Manufacturer	Model	Antenna Type	Antenna Gain (dBi)	Note
2	GUANGDONG SLEING COMM- TECH CO.,LTD	SLEingB247860375	FPCB	1.78	WIFI

All above information provided by the applicant which is fully responsible for those information.

5.8 Others

The laboratory responsible for all the information provided in the report, except those information provided by the applicant.

The applicant shall fully responsible for the information they provided.

The report would be invalid without a stamp of test laboratory and the signatures of compiler and approver. The laboratory has not been responsible for the sampling stage; the test report merely corresponds to the test sample received.

Any objection to the test report shall submitted to the test laboratory within 15 days from the date of receipt of the report.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

6 Technical Requirement and Measurement Data

6.1 Generally requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.407 requirement:

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

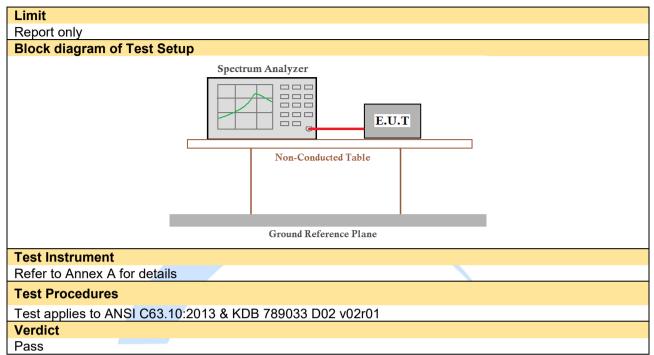
Reference to the appendix II for details

15.407(c) requirement:

The applicant declares that the device (FCC Part 15 Subpart E Section 15.407) shall automatically discontinue transmission in cases of absence of information to transmit, or operational failure.

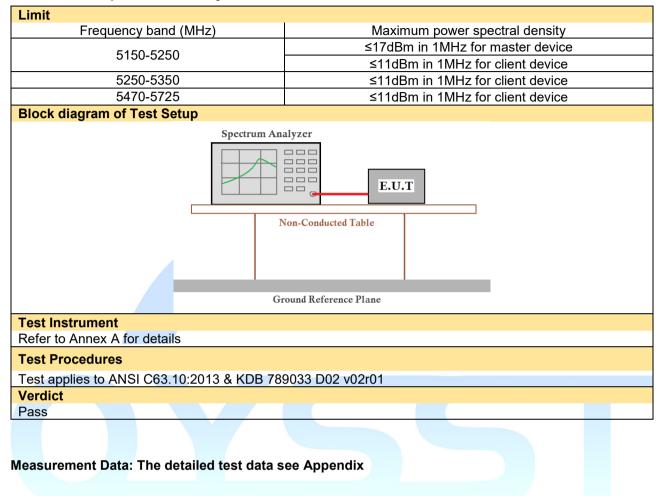
6.2 Duty Cycle

Limit
Report for use
Block diagram of Test Setup
Spectrum Analyzer E-U-T Non-Conducted Table
Ground Reference Plane
Test Instrument Refer to Annex A for details Test Procedures
The transmitter output connected to the Spectrum Analyzer. Test according to <mark>Procedu</mark> re B.2 in KDB 789033 D02 v02r01.
1.RBW=8 MHz(the largest available value) 2.VBW=8 MHz(>RBW) 3.SPAN = 0 Hz 4.Detector = Peak 5.Number of points in sweep: 30001 6.Trace mode: Clear write 7.Measure T _{total} and T _{on} 8.Calculate Duty Cycle = T _{on} /T _{total} and Duty Cycle Factor = 10log(1/Duty Cycle)
Verdict
Pass



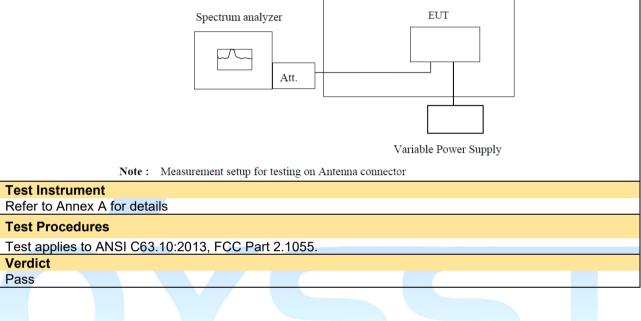
6.3 Conducted Peak Output Power

Limit				
Frequency band(MHz)	Maximum conducted power			
5150-5250	≤1W(30dBm) for master device			
	≤250Mw(23.98dBm) for client device			
5250-5350	≤250Mw(23.98dBm) for client device or 11dBm+10logB*			
5470-5725	≤250Mw(23.98dBm) for client device or 11dBm+10logB*			
Remark: *Where B is the 26dB emission The maximum conducted output power using instrumentation calibrated in terms	must be measured over any interval of continuous transmission			
Block diagram of Test Setup				
Power	Meter E.U.T Non-Conducted Table Ground Reference Plane			
Test Instrument				
Refer to Annex A for details				
Test Procedures				
Test applies to ANSI C63.10:2013 & KD	B 789033 D02 v02r01			
Verdict				
Pass				



6.4 Emission Bandwidth

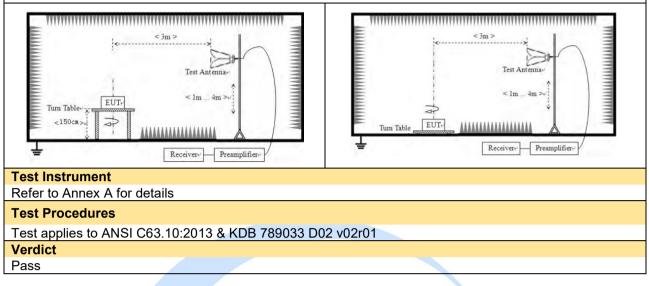
6.5 Power Spectral Density



6.6 Frequency Stability

Limit

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified
Block diagram of Test Setup
Temperature Chamber


6.7 Radiated Spurious Emission

Present (M0) Paid strength (M0) Paid strength (M0) Macroament dialance (Multi) 100-540 4000 (Tr(44)) 300 100-540 100- 300 30-64 100- 300 30-64 100- 300 30-64 100- 300 30-64 100- 300 30-64 100- 300 30-64 100- 300 30-64 100- 300 30-64 100- 300 30-64 100- 300 30-64 100- 100- 30-64 100- 100- 30-64 100- 100- 30-64 100- 100- 30-70- 100- 100- 30-70- 100- 100- 100- 30-70- 100- 100- 100- 30-70- 100- 100- 100- 100- 30-70- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100-	Limit			
000-175 100070440 1000704040 1000704040 1000704040 1000704040 10007040 1000704040 1000704040 <td></td> <td>Field strength (microvolts/meter</td> <td>)</td> <td>Measurement distance (meters)</td>		Field strength (microvolts/meter)	Measurement distance (meters)
105-10 00 00 3x=26 105** 3 3x=26 00** 00** 3x=26 00** 00** 3y=26 00** 00** 3y=26 00** 00** 3y=26 00** 00** 3y=26 00** 00** 3y=15/231 and 15/241. 10** 10** The emission limits shown in the above table are based on measurements employing a CISPR quasi-pea detector except for the frequency bands 9** 00 kHz, 10** The emission limits: the maximum emissions outside of the 5.15-0.53 GHz band: All emissions outside of the 5.15-0.53 GHz band: All emissions outside of the 5.15-	0.009-0.490	2400/F(kHz)		300
Partial 100°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	0.490-1.705	24000/F(kHz)		30
 ¹⁹⁻²¹⁶ 19²⁰ 30²⁰ ¹⁹⁰ 20²⁰ 30²⁰ ¹⁹⁰ 20²⁰ 20²⁰ ¹⁹² Except as provided in paragraph (g), fundamental emissions from intentional radiators operating unde this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–800 MHz. However, operation within these frequency bands is permitted under other sections of this par e.g., §§ 15.231 and 15.241. The emission limits shown in the above table are based on measurements employing a CISPR quasi-pea detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. Undesirable emission limits: the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits: (1)For transmitters operating in the 5.15–5.25 GHz band: All emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (2) For transmitters operating in the 5.24–5.35 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47–5.725 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47–5.725 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (4) For transmitters operating in the 5.15–6.25 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (5) For transmitters operating in the 5.14–5.35 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (7) For transmitters operating in the 5.15–5.25 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an	1.705-30.0	30		30
 The section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–80 MHZ. However, operation within these frequency bands is permitted under other sections of this part e.g., §§ 15.231 and 15.241. The emission limits shown in the above table are based on measurements employing a CISPR quasi-pead detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. Undesirable emission limits: the maximum emissions outside of the frequency bands of operation shall not exceed an e.i.r.p. of –27 dBm/MHz. (1)For transmitters operating in the 5.45–5.25 GHz band: All emissions outside of the 5.15–5.35 GHz bane shall not exceed an e.i.r.p. of –27 dBm/MHz. (2) For transmitters operating in the 5.45–5.25 GHz band: All emissions outside of the 5.15–5.35 GHz bane shall not exceed an e.i.r.p. of –27 dBm/MHz. (3) For transmitters operating in the 5.45–5.25 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of –27 dBm/MHz. (3) For transmitters operating in the 5.45–5.725 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of –27 dBm/MHz. (3) For transmitters operating in the 5.47–5.725 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of –27 dBm/MHz. For radiated emissions from 9kHz to 30MHz For radiated emissions from 30MHz to1GHz (a) The table-top equipment For radiated emissions from 30MHz to1GHz (a) The table-top equipment to table top to the table table top to the table top to the table top to the table top to the table top tothe table top tothe table top to the table top to the table	30-88	100 **		3
November 2010 Store ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–800 MHz. However, operation within these frequency bands is permitted under other sections of this pare e.g., §§ 15.231 and 15.241. The emission limits shown in the above table are based on measurements employing a CISPR quasi-pead detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. Undesirable emission limits: the maximum emissions outside of the frequency bands of operation shale three bands are based on measurements employing an average detector. Undesirable emission limits: the maximum emissions outside of the frequency bands of operation shale to accordance with the following limits: (1) For transmitters operating in the 5.15–5.25 GHz band: All emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of –27 dBm/MHz. (2) For transmitters operating in the 5.47–5.725 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of –27 dBm/MHz. Biock diagram of Test Setup (2) For transmitters operating in the 5.47–5.725 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of –27 dBm/MHz. Biock diagram of Test Setup (2) For table-top equipment For radiated emissions from 9kHz to 30MHz For radiated emissions from 30MHz to1GHz For radiated emissions from 30MHz to1GHz For radiated emissions from 30MHz to1GHz (3) for transmitters operating in the superior for t	88-216	150 **		3
** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–80 MHz. However, operation within these frequency bands is permitted under other sections of this pare. e.g., § 15.231 and 15.241. The emission limits shown in the above table are based on measurements employing a CISPR quasi-pead detector except for the frequency bands 9-90 KHz, 110-490 KHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. Undesirable emission limits: the maximum emissions outside of the frequency bands of operation shabe attenuated in accordance with the following limits: (1)For transmitters operating in the 5.15–5.25 GHz band: All emissions outside of the 5.15–5.35 GHz band: All emissions outside of the 5.47–5.725 GHz band thall not exceed an e.i.r.p. of –27 dBm/MHz. (3) For transmitters operating in the 5.47–5.725 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of –27 dBm/MHz. Block diagram of Test Setup Seture Seture For radiated emissions from 9kHz to 30MHz Tor adiated emissions from 30MHz to1GHz Tum Table	216-960	200 **		3
this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–80 MHz. However, operation within these frequency bands is permitted under other sections of this par e.g., §§ 15.231 and 15.241. The emission limits shown in the above table are based on measurements employing a CISPR quasi-pea detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emissio limits in these three bands are based on measurements employing an average detector. Undesirable emission limits : the maximum emissions outside of the frequency bands of operation sha be attenuated in accordance with the following limits: (1)For transmitters operating in the 5.15–5.25 GHz band: All emissions outside of the 5.15–5.35 GHz band; All emissions outside of the 5.15–5.35 GHz band; All emissions outside of the 5.47–5.725 GHz band; All emissions form 9kHz to 30MHz For radiated emissions from 9kHz to 30MHz For radiated emissions from 30MHz to 1GHz For radiated emissions from 30MHz to 1GHz For radiated emissions from 30MHz to 1GHz	Above 960	500		3
detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. Undesirable emission limits: the maximum emissions outside of the frequency bands of operation sha be attenuated in accordance with the following limits: (1)For transmitters operating in the 5.15–5.25 GHz band: All emissions outside of the 5.15–5.35 GHz ban shall not exceed an e.i.r.p. of -27 dBm/MHz. (2) For transmitters operating in the 5.45–5.35 GHz band: All emissions outside of the 5.15–5.35 GHz ban shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47–5.725 GHz band: All emissions outside of the 5.47–5.725 GH band shall not exceed an e.i.r.p. of -27 dBm/MHz. Block diagram of Test Setup Second and the total and the following limits: For radiated emissions from 9kHz to 30MHz For radiated emissions from 30MHz to 1GHz For radiated emissions from 30MHz to 1GHz	this section shall not be MHz. However, operation	located in the frequency band ion within these frequency b	ls 54–72 M⊦	lz, 76–88 MHz, 174–216 MHz or 470–806
be attenuated in accordance with the following limits: (1)For transmitters operating in the 5.15–5.25 GHz band: All emissions outside of the 5.15–5.35 GHz bandshall not exceed an e.i.r.p. of -27 dBm/MHz. (2) For transmitters operating in the 5.47–5.725 GHz band: All emissions outside of the 5.15–5.35 GHz bandshall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47–5.725 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. Block diagram of Test Setup © For table-top equipment For radiated emissions from 9kHz to 30MHz For radiated emissions from 30MHz to1GHz For radiated emissions from 30MHz to1GHz	detector except for the	frequency bands 9-90 kHz, 1	10-490 kHz	and above 1000 MHz. Radiated emission
Image: Several	be attenuated in accord (1)For transmitters ope shall not exceed an e.i. (2) For transmitters ope shall not exceed an e.i. (3) For transmitters op band shall not exceed a	lance with the following limits: rating in the 5.15–5.25 GHz ba r.p. of −27 dBm/MHz. erating in the 5.25–5.35 GHz b r.p. of −27 dBm/MHz. erating in the 5.47–5.725 GH: an e.i.r.p. of −27 dBm/MHz.	and: All emis and: All emis	ssions outside of the 5.15–5.35 GHz band
For radiated emissions from 9kHz to 30MHz $ \begin{bmatrix} $	Block diagram of Tes	t Setup		
For radiated emissions from 30MHz to1GHz $\int_{C} \frac{1}{100} \int_{C} \frac{1}{100} \int_{$	⊠For tabl	e-top equipment		☐For floor standing equipment
For radiated emissions from 30MHz to 1GHz $\int_{C} \frac{1}{100} \int_{C} \frac{1}{100} \int_$	For radiated emissions	from 9kHz to 30MHz		
$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	Ium lable	n Table-	Tum Tat	Test Antenna
$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & &$	For radiated emissions	from 30MHz to1GHz		
Ecceiver Preamplifier	Ium lable	+++++++++++++++++++++++++++++++++++++	Turn	< Im 4m >v
	÷	Receiver. Preamplifier.	÷	Receiver. Preamplifier.

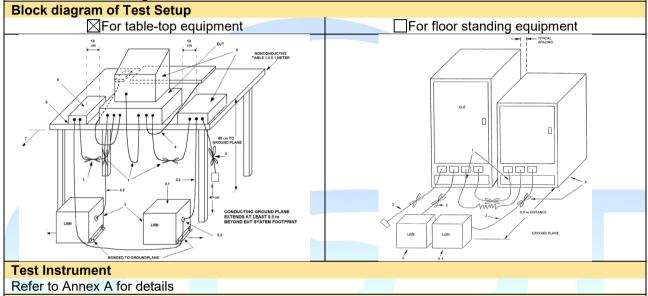
GuangDong Set Sail Testing Co., Ltd. 101, No.19, Tianxin Hudie 1st Road, Huangjiang Town, Dongguan, Guangdong, China Tel: (86)-0769-26622875 Email: sst@sstesting.cn

For radiated emissions above 1GHz

Note:

- 1. The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.
- 2. For those undesirable emission (in the Restricted Bands and out-of-band spurious) above 1GHz, According to KDB 789033 D02 v02r01 section II.G, as an alternative, antenna-port conducted measurements in conjunction with cabinet emissions tests will be permitted to demonstrate compliance.
- 3. The undesirable spurious emission range from 26GHz to 40GHz is as low as the cabinet noise, so there is no report, refer to appendix for details.
- 4. According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows: E[dBuV/m] = EIRP[dBm] + 95.2; For example, if EIRP = -27dBm E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

		Mode 1			Polarity		Horizontal	
st voltage	9	AC 120V/	60Hz	Temp. /H	lum.	25 °C/60%		
90								
80								
70								
60								
							F	
[ш/Л 50								
40 -		*						
30				- dillo danoble Alika	ALL AND	Mathered Martin and Martin	with an interrest where and	
20	putritudi formanta providente anterna	Martin Martin	Manager and a state of the stat	drust and the second	and an address of the second	a survey of the survey of the survey		
	a a a Maria a							
10								
0 ЗОМ			100M					
			LOOM				1G	
		Jorizontal PK	TUUNI	Frequency[Hz]			1G	
		Horizontal PK	TUUM	Frequency[Hz]			1G	
	— QP Limit — I	Horizontal PK	TUUM	Frequency[Hz]			1G	
	— QP Limit — I	Horizontal PK		Frequency[Hz]			1G	
	QP Limit QP Detector				OP Margin			
NO.	— QP Limit — I	Horizontal PK Factor [dB]	QP Value [dBµV/m]	Frequency[Hz] QP Limit [dBµV/m]	QP Margin [dB]	Polarity	1G Verdict	
	QP Limit	Factor [dB]	QP Value [dBµV/m]	QP Limit [dBµV/m]	[dB]		Verdict	
1	QP Limit QP Detector	Factor [dB] 12.58	QP Value [dBµV/m] 36.16	QP Limit [dBµV/m] 40.00	[dB] 3.84	Horizontal	Verdict PASS	
1 2	- QP Limit • QP Detector Freq. [MHz] 62.8591 63.8586	Factor [dB] 12.58 12.25	QP Value [dBµV/m] 36.16 36.15	QP Limit [dBµV/m] 40.00 40.00	[dB] 3.84 3.85	Horizontal Horizontal	Verdict PASS PASS	
1 2 3	- QP Limit • QP Detector Freq. [MHz] 62.8591 63.8586 64.7037	Factor [dB] 12.58 12.25 11.96	QP Value [dBµV/m] 36.16 36.15 35.95	QP Limit [dBµV/m] 40.00 40.00 40.00	[dB] 3.84 3.85 4.05	Horizontal Horizontal Horizontal	Verdict PASS PASS PASS	
1 2 3 4	- QP Limit • QP Detector Freq. [MHz] 62.8591 63.8586 64.7037 381.3406	Factor [dB] 12.58 12.25 11.96 16.82	QP Value [dBµV/m] 36.16 36.15 35.95 39.57	QP Limit [dBµV/m] 40.00 40.00 40.00 46.00	[dB] 3.84 3.85 4.05 6.43	Horizontal Horizontal Horizontal Horizontal	Verdict PASS PASS PASS PASS	
1 2 3 4 5	- QP Limit • QP Detector Freq. [MHz] 62.8591 63.8586 64.7037 381.3406 387.4041	Factor [dB] 12.58 12.25 11.96 16.82 16.94	QP Value [dBµV/m] 36.16 36.15 35.95 39.57 39.11	QP Limit [dBµV/m] 40.00 40.00 40.00 46.00 46.00	[dB] 3.84 3.85 4.05 6.43 6.89	Horizontal Horizontal Horizontal Horizontal Horizontal	Verdict PASS PASS PASS PASS PASS	
1 2 3 4	- QP Limit • QP Detector Freq. [MHz] 62.8591 63.8586 64.7037 381.3406	Factor [dB] 12.58 12.25 11.96 16.82	QP Value [dBµV/m] 36.16 36.15 35.95 39.57	QP Limit [dBµV/m] 40.00 40.00 40.00 46.00	[dB] 3.84 3.85 4.05 6.43	Horizontal Horizontal Horizontal Horizontal	Verdict PASS PASS PASS PASS	
1 2 3 4 5	- QP Limit • QP Detector Freq. [MHz] 62.8591 63.8586 64.7037 381.3406 387.4041	Factor [dB] 12.58 12.25 11.96 16.82 16.94	QP Value [dBµV/m] 36.16 36.15 35.95 39.57 39.11	QP Limit [dBµV/m] 40.00 40.00 40.00 46.00 46.00	[dB] 3.84 3.85 4.05 6.43 6.89	Horizontal Horizontal Horizontal Horizontal Horizontal	Verdict PASS PASS PASS PASS PASS	
1 2 3 4 5 6	- QP Limit • QP Detector Freq. [MHz] 62.8591 63.8586 64.7037 381.3406 387.4041 392.1868	Factor [dB] 12.58 12.25 11.96 16.82 16.94 17.02	QP Value [dBµV/m] 36.16 36.15 35.95 39.57 39.11 38.93	QP Limit [dBµV/m] 40.00 40.00 40.00 46.00 46.00	[dB] 3.84 3.85 4.05 6.43 6.89	Horizontal Horizontal Horizontal Horizontal Horizontal	Verdict PASS PASS PASS PASS PASS	
1 2 3 4 5 6	- QP Limit • QP Detector Freq. [MHz] 62.8591 63.8586 64.7037 381.3406 387.4041	Factor [dB] 12.58 12.25 11.96 16.82 16.94 17.02	QP Value [dBµV/m] 36.16 36.15 35.95 39.57 39.11 38.93	QP Limit [dBµV/m] 40.00 40.00 40.00 46.00 46.00 46.00	[dB] 3.84 3.85 4.05 6.43 6.89	Horizontal Horizontal Horizontal Horizontal Horizontal	Verdict PASS PASS PASS PASS PASS	

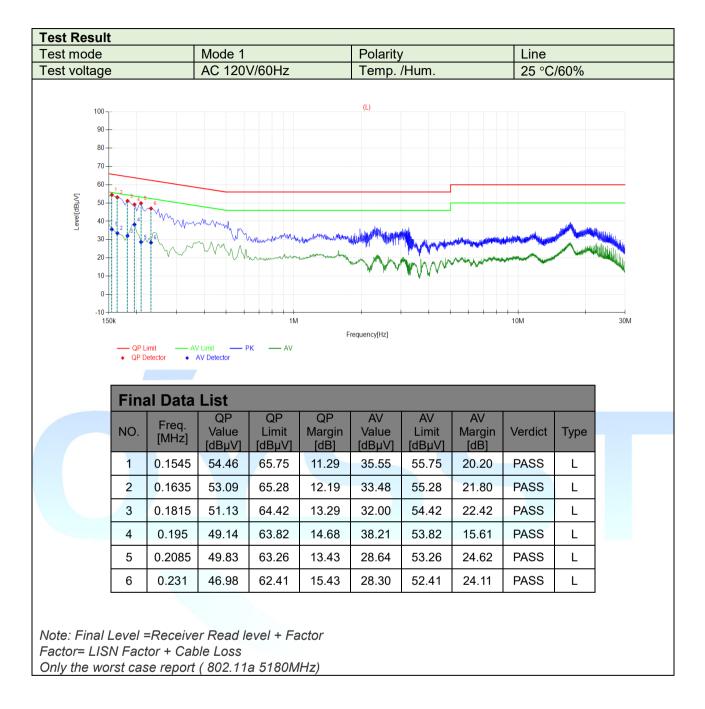

			Node 1 Pola				Vertical	
t voltage	e	AC 120V/	60Hz	Temp. /H	lum.	25 °C/60	%	
90								
80								
70								
60							_	
50								
[씨/시 50	•							
30			hatt	deathth <mark>ditheas lli</mark> mae	M	Well Martin Shall a share a more and the set	and the second state of the	
20	The second se		A Print		uning and have and a second and the second and the second and a second and a second and the seco	and the formation of the second s		
		an a	414 ⁴⁴					
10								
0 30N	1		100M				1G	
		Vertical PK	100M	Frequency[Hz]			1G	
		Vertical PK	100M	Frequency[Hz]			1G	
	QP Limit	Vertical PK	100M	Frequency[Hz]			1G	
	QP Limit	Vertical PK	100M	Frequency[Hz]			16	
301/	QP Limit	Vertical PK Factor	100M	Frequency[Hz]	QP Margin	Delerity		
	QP Limit QP Detector				QP Margin [dB]	Polarity	1G Verdict	
301/	QP Limit QP Detector	Factor	QP Value	QP Limit		Polarity Vertical		
30M	QP Limit QP Detector	Factor [dB]	QP Value [dBμV/m]	QP Limit [dBµV/m]	[dB]	-	Verdict	
30M	- QP Limit • QP Detector Freq. [MHz] 32.5191	Factor [dB] 11.31	QP Value [dBµV/m] 36.45	QP Limit [dBµV/m] 40.00	[dB] 3.55	Vertical	Verdict PASS	
30M	- QP Limit • QP Detector Freq. [MHz] 32.5191 63.9146	Factor [dB] 11.31 12.23	QP Value [dBµV/m] 36.45 36.23	QP Limit [dBµV/m] 40.00 40.00	[dB] 3.55 3.77	Vertical Vertical	Verdict PASS PASS	
NO.	- QP Limit • QP Detector Freq. [MHz] 32.5191 63.9146 64.7037	Factor [dB] 11.31 12.23 11.96	QP Value [dBµV/m] 36.45 36.23 36.14	QP Limit [dBµV/m] 40.00 40.00 40.00	[dB] 3.55 3.77 3.86	Vertical Vertical Vertical	Verdict PASS PASS PASS	
NO. 1 2 3 4	- QP Limit • QP Detector Freq. [MHz] 32.5191 63.9146 64.7037 379.3406	Factor [dB] 11.31 12.23 11.96 16.79	QP Value [dBµV/m] 36.45 36.23 36.14 41.87	QP Limit [dBµV/m] 40.00 40.00 40.00 46.00	[dB] 3.55 3.77 3.86 4.13	Vertical Vertical Vertical Vertical	Verdict PASS PASS PASS PASS	
NO. 1 2 3 4 5	- QP Limit • QP Detector Freq. [MHz] 32.5191 63.9146 64.7037 379.3406 387.4041	Factor [dB] 11.31 12.23 11.96 16.79 16.94	QP Value [dBµV/m] 36.45 36.23 36.14 41.87 41.34	QP Limit [dBµV/m] 40.00 40.00 40.00 46.00 46.00	[dB] 3.55 3.77 3.86 4.13 4.66	Vertical Vertical Vertical Vertical Vertical	Verdict PASS PASS PASS PASS PASS	
NO. 1 2 3 4 5 6	- QP Limit • QP Detector Freq. [MHz] 32.5191 63.9146 64.7037 379.3406 387.4041	Factor [dB] 11.31 12.23 11.96 16.79 16.94 17.10	QP Value [dBµV/m] 36.45 36.23 36.14 41.87 41.34 41.85	QP Limit [dBµV/m] 40.00 40.00 40.00 46.00 46.00	[dB] 3.55 3.77 3.86 4.13 4.66	Vertical Vertical Vertical Vertical Vertical	Verdict PASS PASS PASS PASS PASS	

6.8 Conducted Emissions

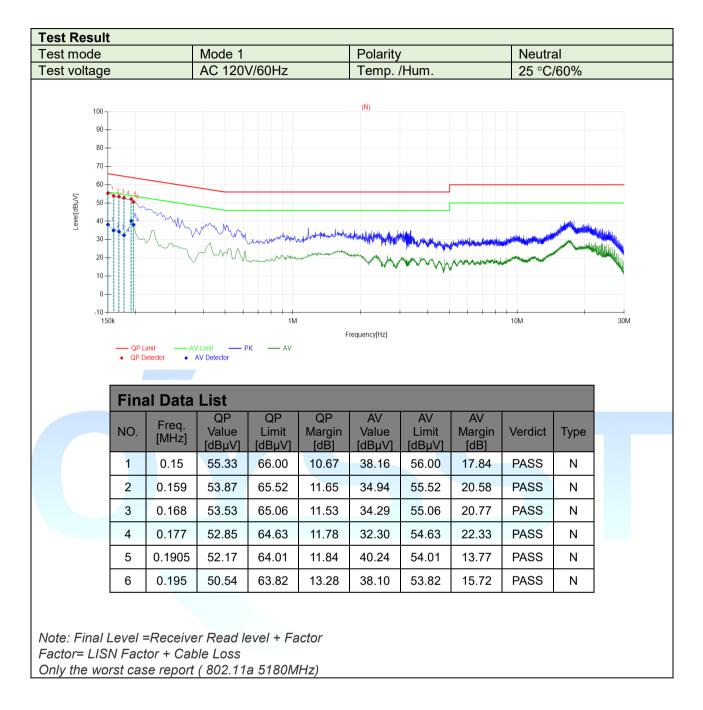
Limit		
Frequency (MHz)	Quasi-peak	Average
0.15~0.50	66 to 56*	56 to 46*
0.50~5.0	56	46
5.0~30	60	50
*Decreases with the logarithm of the free	quency.	
If the limit for the measurement with the	average detector is met when u	ising a receiver with a quasi-peak

If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the equipment under test shall be deemed to meet both limits and the measurement using the receiver with an average detector need not be carried out

Test Procedures


The measurement was performed in a shield room.

Measured levels of ac power-line conducted emission shall be the radio-noise voltage from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), as terminated into a 50 Ω EMI receiver or spectrum analyzer. All radio-noise voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord or calibrated extension cord by the use of mating plugs and receptacles on the EUT and LISN, if used. The manufacturer shall test equipment with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended. For measurements using a LISN, the 50 Ω measuring port is terminated into a 50 Ω EMI receiver or spectrum analyzer. All other ports are terminated into 50 Ω loads.


Table top devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz. Verdict Pass

Report No.: SST2503E0181

Test Setup Photo Reference to the appendix I for details. 7

EUT Constructional Details 8 Reference to the **appendix II** for details.

Annex A -- Test Instruments list

Radiated Emiss	sion:					
Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date
SST-E-SAC001	3m Semi- Anechoic Chamber	BOST	966	1	3 years	2023.01.07
SST-E-SCC001	Control Room	BOST	333	/	3 years	2023.01.07
SST-E-SAC002	Breiband TRILOG Messantenne	Schwarzbeck	VULB 9162	00556	1 year	2024.04.20
SST-E-SAC004	Broad-band Horn Antenna	Schwarzbeck	BBHA 9120 D	02783	1 year	2024.04.16
SST-E-SCC003	EMI Test Receiver	R&S	ESU 8	100372	1 year	2024.04.16
SST-E-SCC004	Amplifier	Schwarzbeck	BBV 9744	00327	1 year	2024.04.16
SST-E-SCC015	Amplifie (1-18GHz)	TSTPASS	LNA10180G45	TSAM2303003	1 year	2024.04.16
SST-E-SCC016	Amplifier (40G)	RFsystem	TRLA- 180400G45B	23060801	1 year	2024.04.16
SST-E-SAC006	Broadband Horn Antenna(40G)	Schwarzbeck	BBHA9170	01306	1 year	2024.04.17
SST-E-RSC010	Spectrum analyzer	R&S	FSV40-N	/	1 year	2024.04.16
SST-E-SAC007	Loop Antenna	Schwarzbeck	FMZB 1513- 60B	1513-60B 044	1 year	2024.04.17
SST-E-SAC005	5W 6dB attenuator	1	DC-6GHz	1	Internal calibration	1
SST-E-EMC006	Thermohygrometer	КТJ	TA218A	879030	1 year	2024.0 <mark>4.18</mark>
/	EMI Test Software	Tonscend	TS+	1	1	1

Conducted Emission							
Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date	
SST-E-CSC001	Shielding Room	BOST	854	/	3 year	2023.01.07	
SST-E-CSC002	EMI Test Receiver	R&S	ESR3	103057	1 year	2024.04.16	
SST-E-CSC003	LISN	R&S	ENV 216	102832	1 year	2024.04.16	
SST-E-CSC004	ISN	R&S	NTFM 8158	00347	1 year	2024.04.16	
SST-E-CSC007	Antenna port test assembly	/	DC-3GHz	/	Internal calibration	/	
SST-E-EMC011	Thermohygrometer	КТЈ	TA218A	879036	1 year	2024.04.18	
/	EMI Test Software	Tonscend	TS+	V4.0	/	/	

RF conducted						
Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date
SST-E-RSC001	Shielding Room	BOST	543	/	3 year	2023.01.07
SST-E-RSC007	Spectrum analyzer	keysight	N9020A	MY51280659	1 year	2024.04.16
SST-E-RSC008	Analog signal source	Agilent	N5181A	MY48180054	1 year	2024.04.16
SST-E-RSC009	Vector signal source	keysight	N5172B	MY57281610	1 year	2024.04.16
SST-E-EMC007	Thermohygrometer	КТЈ	TA218A	879032	1 year	2024.04.18
SST-E-RSC010	Spectrum analyzer	R&S	FSV40-N	/	1 year	2024.04.16
SST-E-RSC015- 1	Power meter 1	TST	TST V2	/	1 year	2024.04.16
/	Test Software	TST PASS	TST PASS	V2.0	/	/
SST-S-CTH002	Temperature and humidity chamber	Guangdong fenghe	FH-TH-1000	FH24032017	1 year	2024.04.26

END OF REPORT

