Summary of Test Results in accord with FCC Rules Part 15 and C63.4-2001 | Equipment iviodei: | DN 1 00088 | |---|--| | Transmitter Tested to C63.4-2001 Section: | FCC Rules 15.231 | | Field Strength at a distance of 3 meters: | 3127 uV/Mtr (-5 dB below limit) @ 303.875 MHz | | Peak to Average Ratio: | 15.6 dB - Fixed Duty Cycle | | Test Conditions: | Radiated (Sections 11 & 13) | | Transmitter:
Transmitter Frequency: | 303.875 MHz Nominal (Factory Tuned Only) | | Bandwidth (20 dB down) | < 0.020% of Center Freq. | | Frequency Tolerance: | N/A (Nominal +/- 0.125 MHz) | | Frequency Stability: | N/A (Nominal +/- 0.125 MHz) | | Transmitter Spurious at 3 meters:
(Worst Harmonic) | 302 uV/Mtr (-5.3 dB below limit) | | Frequency: | 1215 MHz | | Momentary Operation (Yes/No) | Yes | | Holdover time after manual release: | 0.0 seconds | | Duration of transmission after activation: | 30 seconds maximum on any single manual activation | | Attestation: | | | The radio apparatus identified in the application specified in FCC Rules Part 15 and all of the re- | has been subject to all the applicable test conditions quirements of the Standard have been met. | | Regulatory Compliance Engineer | | | John W. Kriivin | en | | John W. Kuivinen. P.E. | Date: December 5, 2003 | # Radio Standard Specification Low Power Communication Devices C63.4-2001 and FCC Rules Part 15 1.0 General: 1.2, Exclusions to TV Broadcast Freq. Complies 2.0 Related Documents: Reference Documents for Application: CFR 47, FCC Rules Part 15 3.0 Test Equipment: Supply Voltage: One 2025 - 3 volt lithium battery Test Equipment List See Section 6 Signal Detector: Peak with 15.6 dB peak to average conversion. 4.0 Certification and Test Results: Summary of Results per See Page 1 of this Report 5.0 General Technical Requirements: 5.1 Testing Methods: Peak Signal pulse position modulated A1D signal. 5.1 Reference Standard: C63.4-2001 (FCC Procedure) 5.2 Modulation: Pulse Position 20K0 A1D, AM Modulation 5.3 Type of Antenna: Integral to Transmitter Case - Tuned Loop 5.4 External Controls: Push Button No user serviceable parts. 5.5 Accessories: NONE 5.6 TX Bandwidth: <0.020 % (See Section 8) 5.7 Equipment Labels: See Section 2 5.8 Manual Disclaimer: See attached draft copy of manual 5.9 Usage Restrictions: Digital Pulse Code Only ## 6.0 Transmitter Characteristics and Tests: 6.1 Momentary Operated Devices: Complies 6.1(a) Types of Signals: Manual Push to Transmit 6.1(a) Automatic Activation: N/A 6.1(a) Five Second Max. upon release: Complies 6.1(b) Field Strengths: Table 1 303.875 MHz = 5583 uV/Mtr maximum at 3 meters. 6.1(c) Bandwidth (20 dB down) <0.020 % Complies 6.1(d) Frequency Stability N/A per regulations +/- 0.125 MHz SAW Based Oscillator 6.1(e) Reduced Field Strength N/A 6.2 Non-Momentary Operated Devices: N/A 6.2.1 Frequency Bands: Refer to Table 1 6.3 Restricted Bands: Complies 6.5 Pulsed Operation: Complies (15.6 dB Peak/Average) See Section 8 6.6 Wireline Conducted Emissions: N/A 7.0 Receivers N/A 8.0 Self Certification: N/A 9.0 AC Wireline Conducted Emissions: N/A 10.0 Terminated Measurement Method: N/A 11.0 Radiated Measurement Method: See Section 8 11.1 Measuring Distance: Complies 11.2 Open Field Test Site: Complies, C63.4-2001 11.3 Equipment Test Platform: See Section 8 11.4 Measurement Method: Complies, See Section 8 12.0 DC Power Consumption Methods: N/A 13.0 Near Field Measurement for < 30 MHz: N/A 14.0 Test Report Submission: See Attached ## REPORT OF MEASUREMENTS LINEAR CORPORATION FCC ID: EF4 DNT00088 Model: MX-62 Emergency Reporting Transmitter The enclosed documents reflect the requirements contained generally within the code of Federal Regulations, Title 47, Parts 2 and 15 as most recently published October 1, 2003 and all other applicable revisions made by the Commission since that time. The specific rule sections for which the enclosed documents demonstrate compliance or rely upon to demonstrate compliance with the Commission's application and technical standards are as follows: 15.201-15.207, 15.231, Subpart C, Intentional Radiators. Test Procedure C63.4-2001, Section 13, Measurement of Intentional Radiators was used for the testing of this device. In accord with Section 2.948 of the Commission's Rules, a Test Site submittal is on file with the commission and a Letter of Acceptance dated March 23, 2001 (File 90767) is a portion of the Commission's records. All of the information contained within this documentation is true, correct, and complete to the best of my knowledge. John W. Knivinen John W. Kuivinen, P.E. Regulatory Compliance Engineer No. E013909 Exp. 6/04 OF CALIFORNIA __ December 5, 2003 _ Date # **DURATION OF RF TRANSMISSIONS** # **MX-62** # **EMERGENCY REPORTING TRANSMITTER** This transmitter is manually activated. It is used only for emergency signal of an emergency reporting console. As such, it may be operated continuously by the user (FCC Rules 15.231(a)(4)). However, due to battery constraints and an accidental continuous activation causing interference to the system, the maximum manually activated transmission for a single press of a pushbutton is 30 seconds. When the push button is released the transmitter ceases transmitting immediately. FCC Rules 15.231 (a)(1) allows no longer than 5 seconds upon the release of a manually activated transmitter. Signed: John W. Kuivinen, P.E. Regulatory Compliance Engineer # TESTING INSTRUMENTATION AND EQUIPMENT LIST #### **SPECTRUM ANALYZERS:** H.P. HP8562A 1KHz to 22GHz S/N 2913A03742 Calibrated 02/03 Due 02/04 #### ANTENNAS: (2) Ailtech DM105A T1 20-200 MHz Tuned Dipole S/N 93412-105 and 93412-114 Calibrated 3/03 Due: 3/04 140-400 MHz Tuned Dipole (2) Ailtech DM105A T2 S/N 93413-113 and 93413-117 Calibrated 3/03 Due: 3/04 Ailtech DM105A T3 400-1000 MHz Tuned Dipole (2) S/N 93413-105 and 93414-111 Calibrated 3/03 Due 3/04 (2) AH Systems SAS-200/511 1-12.4 GHz Log Periodic S/N 118 and 124, P/Ns 2069 (1) AH Systems SAS-200/540 20-330 MHz **Biconical** P/N 2052 S/N 367 #### INSTRUMENTATION: H.P. HP8656B RF Generator 100 KHz - 990 MHz > S/N A4229590 Calibrated 3/03 Due 3/04 Solar Electronics Line Impedance Stabilization Network, Type 8012-50-R-24-BNC Calibrated: 3/03 S/N 8379585 Due: 3/04 HP 8447D Broadband preamplifier, 0.1-1300 MHz > S/N 2443A03660 Calibrated: 3/03 > > Due: 3/04 ZFL-2000 broadband preamplifier, 10-3000 MHz Mini-Circuits > Calibrated: 3/03 S/N Lin 001 > > Due: 3/04 ## **ACCESSORIES:** Ailtech Rulers calibrated in MHz (2) 4 Meter ABS Antenna Mast and Trolley Tektronix C5C Scope Camera Eighty Centimeter Tall, Motorized Wooden Turntable BNC to BNC Cables - as-required 25' RG-214/U Low-loss Coaxial Cable (2) > S/N- LIN001 & LIN002 Calibrated: 3/03 > > Due: 3/04 3' RG-55/U Low-loss Coaxial Cable, calibarated as part of the preamplifiers. Automatically taken into account when used with the above itemized range preamplifiers. # MEASUREMENT OF RADIO FREQUENCY EMISSION OF CONTROL AND SECURITY ALARM DEVICES FCC RULES PART 15, C63.4-2001 TEST PROCEDURE #### I. INTRODUCTION As part of a continuing series of quality control tests to ensure compliance with all applicable Rules and Regulations, this enclosure details the test procedures for certain radio control devices. Testing was performed at a test site located on the property of Linear Corporation, 2055 Corte del Nogal, Carlsbad, California 92009. #### II. MEASUREMENT FACILITY DESCRIPTION The test facility is a specially prepared area adequately combining the desirability of an interference free location with the convenience of nearby 120 volt power outlets, thus completely eliminating the incidence of inverter hash, so often a problem with field measurements. ### III. DESCRIPTION OF SUPPORTING STRUCTURES <u>For Measuring Equipment</u> - The antenna is supported on a trolley that can be raised and lowered on a mast by means of remote control to any level between 1 meter and 4 meters above the ground. For measurements at 3 meters, an antenna height (center of dipole) of about 1 meter generally yields the greatest field strength. For measurements at 1 meter, an antenna height equal to the device under test generally yields the greatest field strength. Usually, horizontal polarization yields the greatest field strength for both 1 and 3 meter measurements. <u>For Equipment Under Test (EUT)</u>: The equipment to be tested is supported by a wooden turntable at a height of eighty centimeters. A two axis swivel at the top of the turntable permits the unit under test to be manually oriented in the position of maximum received signal strength. The turntable can be rotated by remote control. <u>Test Configuration</u> - All transmitters were located eighty centimeters above ground, at a distance of three meters from the antenna. They were each oriented for maximum radiation by rotating the turntable. The antenna was then moved vertically along the mast for optimum reception in both horizontal and vertical planes. Where no emissions were found, the antenna was also moved to one meter distance to improve system sensitivity. All receivers were located eighty centimeters above ground, at a distance of three meters from the antenna. They were each oriented for maximum radiation by rotating the turntable. The antenna was then moved vertically along the mast for optimum reception in both horizontal and vertical planes. Generally, emissions were very close to the observed spectrum analyzer noise floor, making accurate measurement difficult because of the analyzer detector's characteristic of adding signal and noise. To better observe and measure emissions well above the noise floor, the antenna was moved in to one meter. This provides a theoretical 9.54 dB improvement in received field strength, but a possible shift from far field to near field antenna characteristics may introduce an unknown error in measurement. All transmitters and receivers tested are typical of production units. A Hewlett-Packard spectrum analyzer consisting of an 8562A mainframe is used for the field strength meter. A set of Ailtech DM-105 series dipoles are used for the receiving antennas up to 1 GHz. An A.H. Systems model SAS-200/511 log periodic antenna is used from 1 to 5 GHz. Since the published antenna factor includes the small amount of balun loss, this factor is not included in the equations for correcting measured values. The cable loss is added to the raw data. For measurements up to 1.3 GHz, a Hewlett-Packard 8447D broadband RF preamplifier is inserted between the antenna cable and spectrum analyzer input to ensure adequate system sensitivity while measuring. From 1.3 GHz to 3 GHz, a Mini-Circuits ZFL-2000 broadband RF preamplifier is used instead of the HP 8447D. In many cases, the antenna is moved in to a distance of 1 meter to enhance test range sensitivity after the 3 meter data is observed. A theoretical 9.54dB improvement is realized. Please see Excel data spreadsheet for details. For a particular device and frequency, the EUT to antenna distance is specified in the Report of Measurements. <u>Correction of Measured Values</u> - The spectrum analyzer calibration is in units of dBm absolute. Published antenna factor, measured cable loss and preamplifier gain are in units of dB. All equipment is referenced to a 50 ohm characteristic impedance; therefore, any impedance terms will factor out of any calculations. Also, balun loss is included in the antenna factor, so this term will not appear in any calculation. To obtain field strength, the reference (50 ohm system) 1 uV = 0 dBuV = -107 dBm is used. For a given frequency: antenna factor, cable loss, preamplifier gain (if used) and a 9.54 dB gain factor (3 meters to 1 meter field strength conversion) when required are factored into the spectrum analyzer reading, resulting in a field strength in units of dBm. Field strength reading (dBm) + 107 dB = dBuV, using 0 dBuV = 1 uV/meter at a specified distance as reference. All of the equipment was calibrated to NBS-traceable factory specifications prior to the date of measurement. #### IV MEASUREMENT PROCEDURE #### **Transmitters** - 1. Set the DIP-switch rockers of the transmitter (if needed) to all ON, jam the button in the ON position, and place the transmitter on the test stand. - 2. Tune the antenna (if required). - 3. Tune the spectrum analyzer. - 4. Adjust the antenna height and polarization for peak field strength. - 5. Rotate the turntable to orient the transmitter for the highest reading. - 6. Record the observed peak emission. - 7. Record the screen image (if required). #### Spectrum Analyzer Control Settings: Tuning: As required Bandwidth 100 KHz for Field Strength, Scan Width: 100 KHz/div (may be different when tuning or adjusting display for photographs) Input Attenuator: 10 dB Scan Time: 50 mSec. sweep Reference Level: 0 dBm Display Mode: Log 10 dB/division Video Filter: OFF Scan Mode: Internal Scan Trigger: Auto | December 200.075 He's transmiter Mappoon in Consultation March 100 Mar | | _ | | | | | | | | | | | | | | | | |--|----------------|---------------|-----------------|----------------|----------------|------------------|-----------------|----------|-----------|--------------|----------|--------------|---------------|----------|---------|---------|---------| | STO SMY to be some the parties and parti | | | | 1 | | 5 | 5 | | | 0 | | | | | | | | | STOCK HET Innomities Magnocie non-supposed (Unit Magnoci | | | | | ¥ | plications for o | control, securi | y alarm, | door open | er or remote | switch | | | | | | | | Control Cont | Description: | | 303.875 MH | z trans | mitter Megaco | viedus-non eb | ised, Unit No | 2 | | | | | | | | | | | No. | | | | 1 | | | | | | | | | | | | | | | C C C C C C C C C C | DATE | | December 5, | 2003 | | | | | | | | | | | | | | | RED: State Part | ITEM TESTE | ö | MX-62 Trans | smitter | | | | | | | | | | | | | | | The control of | MANUFACT | RER | Linear Corpo | oration | | | | | | | | | | | | | | | FED: 3 makes, DUT 0.5 make above ground FED: 3 makes, DUT 0.5 makes above ab | PRODUCT ID | يد انا | EF4 DNT000 | 880 | | | | | | | | | | | | | | | Fig. 15 States Fig. Fi | | | 1 | | | | | | | | | | | | | | | | C | DISTANCE A | T WHICH ME | | 3 met | ars, DUT 0.8 m | eter above gro | bung | | | | | | | | | | | | C D E E G H I I J K L M N O P P Foot Stength TeCC Meder Anterna Cable Amp Dist Fac Duty Feld Stength Unit Food flow Factor Loss Gain GB GB GB GB GB GB MIN GBN/mit Un/M UN/M UN/M UN/M GBN GB | REFERENCE | ENT PROCE | | 15.23
C63.4 | (a,b,c)† | _ | | | | | | | | | | | | | theirt FCC Meter Attenna Cable Amp Dist Fed Steregth Limit Reading Fedor Lises Gain Gain Gamma | RADIATION: 1 | per 15.201 | | | -12 | | | | | | | | | | | | | | The color FCC Weller Antienra Cable Amp Dist Fac Duty Fleid Strength Fleid Strength Fleid Strength GBH | ∢ | 8 | U | | ۵ | ш | ŋ | I | - | 7 | × | _ | 2 | z | 0 | 4 | a | | Link Reading Fector Loss Gain | Tuned | Emission | Ambient | + | 2 | Meter | Antenna | Sable | Amo | Dist Fac | Q | Field Streng | £ | | S | SP.F.C. | FRE | | den dBm dB dB dB dB www www ww | Frequency | Frequency | Level | | Cimit | Reading | Factor | ssol | Sg. | | Cycle | | | | Ē | 3 | Ž Į | | 1982 1982 1982 1982 1982 1982 1982 1982 1983 | ¥₩ | MHz | æ | | dBm | фBm | 용 | 쁑 | 쁑 | 8 | 9 | dBm/mtr | dBuV/mtr | UV/M | nV/M | | | | 90.20 3-7.00 | 370 000 | 00000 | 8 | ı | | 1 | 1 | | | - | | | 8 | | | | | | 86.00 | 303.013 | 903.00 | 90.20 | \pm | -0.00 | -13.7 | 10.2 | 17 | 2,12 | 9 0 | 15.6 | -83.00 | 68.90 | 31.26.U8 | 5583.00 | 40.04 | 303.88 | | 48.14 - 48.27 - 45.27 - 45.2 | | 911.63 | -86.00 | | 41.47 | -62.7 | 28. | 22 | 26.3 | 000 | 15.6 | -73.30 | 33.70 | 48.42 | 258.00 | -21.23 | 911.63 | | 98.14 *38.33 * - 48.4 | | 1215.50 | -82.20 | | 45.27 | -52.0 | 26.5 | 2.6 | 20.3 | 000 | 15.6 | -58.80 | 48.20 | 257.04 | 558.00 | -6.73 | 1215.50 | | ## 14.04 4.04.43 4.11.47 4.04.43 4.11.47 4.04.43 4.04.43 4.11.47 4.04.43 4.11.47 4.04.43 4.11.47 4.04.43 4.11.47 4.04.43 4.11.43 4.11.43 4.14. | | 1519.38 | -89.14 | • | -38.33 | 48.4 | 28.2 | 3.0 | 19.8 | 9.54 | 15.6 | -62.14 | 44.86 | 174.98 | 558.00 | -10.07 | 1519.38 | | 25.14 - 46.73 - 46.84 30.8 30.8 19.5 9.54 15.6 46.04 46.96 22.284 5580 0 -7.97 48.04 - 46.73 - 440.73 - 440.73 - 440.74 31.7 38 19.5 15.6 46.04 46.96 52.284 558.00 -7.97 42.04 - 45.203 - 440.74 32.4 4.2 11.5 9.54 15.6 440.4 46.96 568.00 470.4 42.04 - 45.763 - 440.4 32.4 4.2 11.5 9.54 15.6 440.4 46.96 568.00 470.4 42.04 - 45.763 - 440.4 33.1 4.4 6.8 9.54 15.6 470.4 470.4 470.4 568.00 470.4 42.04 - 45.383 - 440.4 33.1 4.4 6.8 9.54 15.6 470.4 470.4 470.4 568.00 470.4 42.04 - 45.383 - 440.4 33.1 4.4 6.8 9.54 15.6 470.4 470.4 470.4 568.00 470.4 42.04 - 45.383 - 470.4 5.33 - 45.1 1.5 9.54 15.6 470.4 470.4 470.4 568.00 470.4 42.04 - 46.73 - 46.8 9.54 15.6 470.4 470.4 470.4 568.00 470.4 42.04 - 46.73 - 470.4 5.4 6.8 9.54 15.6 470.4 470.4 470.4 568.00 470.4 42.04 - 46.73 - 46.8 9.54 15.6 470.4 470.4 470.4 568.00 470.4 42.04 - 46.73 - 46.8 9.54 15.6 470.4 470.4 470.4 470.4 568.00 470.4 42.04 - 46.73 - 46.8 9.54 15.6 470.4 470.4 470.4 470.4 568.00 470.4 42.04 - 46.73 - 46.8 9.54 15.6 470.4 470.4 470.4 470.4 568.00 470.4 42.04 - 46.73 - 46.8 9.54 15.6 470.4 | | 1823.25 | 87.0 | | 40.43 | -51.6 | 29.7 | 3.3 | 19.5 | 9.54 | 15.6 | -63.24 | 43.76 | 154.17 | 258.00 | -11.17 | 1823.25 | | ## ## ## ## ## ## ## ## ## ## ## ## ## | | 2127.13 | 42.14 | | 41.83 | 8.94 | 30.8 | 3.6 | 19.5 | 9.54 | 15.6 | 40.04 | 46.96 | 222.84 | 228.00 | 7.97 | 2127.13 | | 82.04 * 57.63 * #WA 33.1 4.4 6.8 9.54 15.6 #WA #WA #WA 568.00 #WA 91.34 * 6.88.3 * #WA 33.7 4.5 1.3 9.54 15.6 #WA #WA #WA 568.00 #WA 15.13 9.54 15.6 #WA #WA 568.00 #WA 15.13 9.54 15.6 #WA 9.55 15.6 #WA 9.54 | | 2734.88 | 82.8 | | -52.03 | X | 32.4 | 4.2 | 11.5 | 70.00 | 15.6 | WA/W | W. | #W# | 258.00 | #W# | 2734.88 | | # # # # # # # # # # # # # # # # # # # | | 3038.75 | -82.04 | | -57.63 | #WA | 33.1 | 4.4 | 8.9 | 9.54 | 15.6 | #WA | #NA | #N# | 228.00 | #M | 3038.75 | | m 25 to 3500 MHz ved except those shown on this page. S Not Applicable- Battery Powered DATE DATE DATE | | 3342.63 | 81.34 | | -63.83 | #NA | 33.7 | 4.5 | 1.3 | 9.54 | 15.6 | #N/A | #WA | * | 558.00 | #NA | 3342.63 | | wed except those shown on this page. If the Applicable- Battery Powered DATE DATE DATE DATE DATE | | | | | | | | | | | | | | | | | | | S Not Applicable- Battery Powered DATE DATE DATE DATE | The spectrum | was searched | 1 from 25 to 3: | 500 M | 4 | | | | • | NOTE: 1 m | eter mea | surement cor | rected to 3 n | neters | | | | | S Not Applicable Battery Power DATE DATE DATE | No other emiss | sions were ob | decxe pevoes | of those | shown on this | bage. | | | | | | | | | | | | | DATE (2) S | 15.107(d) Con | ducted Emiss | ions Not Appl | -licable | Battery Powe | 28 | | | | | | | | | | | | | DATE (2) S | | | | | | | | | | | | | | | | | | | DATE (2) S | | | | \pm | | | | | | | | | | | | | | | Date 12/5/ | | | | | | | | | | | | | | | | | | | DATE (1-)5/0 | | | | \pm | | | | | | | | | | | | | | | Work 17/5/ | TECTED BY | | | 12 | | | | | | | | | | | | | | | 17/5/0 | | | • | Š _ | | | | | | | T | | | | | | | | WINE 12/5/ | | | | | | | | | | | | | | | | | | | DATE | John | E
E | Turbea | 4 | \mathbf{x} | | | | | | | | | | | | | | | ENGINEER | 1 | | ۵۱ | ITE (| | | | | | | | | | | | | | | 7 | | | + | | | | | | | | | | | | | ĺ | | | | | | | | ÖRT | REPORT OF MEASUREMENTS | SCA | | £ | | | | | | | | |-----------------------------|---------------|---|--------|---|--|------------|------------------------|-----------|------------|-------------|----------|--------------|---|--|---------|--|---------| | | | | | • | Applications for control, security alarm, door opener or remote switch | for contr | ol, security | slarm, dc | or opene | f or remote | switch | 76.00 | | Description: | | 303.875 MH | z trav | 303.875 MHz transmitter Megacode non-supervised, Unit No. 1 | ode non-sur | Denvised | Unit No. 1 | | | | | | | | | | | | | | | I | | | + | | | 1 | | | | | | | | | | DATE: | | December 5, 2003 | ଛ | 3 | + | | | | | | | | | | | | | HEW IESTED | 2 | MX-62 Iransmitter | Ĕ. | | | + | - | 1 | | | | | | | | | İ | | TRADE NAME | יַ בּי | N/A | | | - | _ | | 1 | 1 | | | 220 | | | | - Constitution of the Cons | | | PRODUCT ID: | | EF4 DNT00088 | 88 | | | - | | ľ | | | | | | | | | | | | | 1 1 | | | | | | | | | | | | | | | | | DISTANCE AT WHICH MEASURED: | T WHICH ME | - 1 | 3 | 3 meters, DUT 0.8 meter above ground | meter above | grounce 8 | | | | | | | | | | | | | REFERENCE | | | 15.2 | 15.231(a,b,c) | _ | 1 | | | | | | | | | | | | | MEASUREMENT PROCEDURE | INT PROCE | | 8 | C83.4-1987 200 | 0 | | | | | | | | | | | | | | RADIATION: per 15 201 | ser 15.201 | | Ι | | | + | | | | | | | | | | | | | | | | | | | \Box | | | | | | | | | | | | | ٧ | 8 | ၁ | | ٥ | ш | + | ဖ | I | - | 7 | × | 7 | 2 | z | 0 | а | σ | | Tunod | Emission | Ambions | | Ç | Motor | + | -1 | 4 | + | Piot Foo | i | Piola Otonia | 1 | | Ç | Ç. | C. | | Emerican | Fraguesia | Ambient
Lond | T | 3 1 | Meter | + | | | + | 36.736 | | ried Suengu | 56 | and the second s | 3 | 32.25 | ž : | | MUSEUM | rieduency | E CENTER | T | | TOP OF | 4 | + | 88 | E 9 | 4 | 9 | 9 | 4 | | Time: | | MHZ | | ZUM | ZLIM | EIGD | | $^{+}$ | 8 | + | 8 | 8 | 8 | 8 | 8 | OB IN INIT | OBSUV/MIE | W/An | UV/W | | | | 303.875 | 303.88 | \perp | ı | 99 | + | 15.4 | 18.5 | ן כ | 27.0 | 8 | 15.8 | 38.80 | 06.88 | 2570.40 | E582 00 | 17.8 | 90 606 | | | 607.75 | | | -37.27 | 4 | 45.1 | 35.6 | 1 7 | 1 % | 8.0 | 15.6 | 8 8 | 47.10 | 226.48 | 558.00 | 7 83 | AU3.00 | | | 911.63 | | | 4147 | 200 | -58.2 | 8 | 22 | 28.3 | 000 | 15.6 | -68.80 | 38.20 | 81.28 | 558.00 | 16.73 | 011.63 | | | 1215.50 | | Π | 45.27 | 8 | 20.6 | 28.5 | 5.6 | 20.3 | 000 | 15.6 | -57.40 | 49.60 | 302.00 | 228.00 | 5.33 | 1215.50 | | | 1519.38 | -89.14 | | -38.33 | 7 | 68 | 28.2 | 3.0 | 19.8 | 9.54 | 15.6 | -61.74 | 45.26 | 183.23 | 558.00 | -9.67 | 1519.38 | | | 1823.25 | -87.04 | | -40.43 | 25 | 50.9 | 29.7 | 3.3 | 19.5 | 9.54 | 15.6 | -62.54 | 44.46 | 167.11 | 558.00 | -10.47 | 1823.25 | | | 2127.13 | -85.14 | | 41.83 | 22 | -52.5 | 30.8 | 3.6 | 19.5 | 9.54 | 15.6 | -62.74 | 44.26 | 163.31 | 558.00 | -10.67 | 2127.13 | | | 2431.00 | 40.4 | | +6.73 | #N# | | 31.7 | 3.8 | 15.7 | 9.54 | 15.6 | #WA | #WA | #WA | 558.00 | #WA | 2431.00 | | | 2734.88 | -82.94 | | -52.03 | #/ | | 32.4 | 4.2 | 11.5 | 9.54 | 15.6 | ¥¥ | ¥N# | #WA | 558.00 | #NA | 2734.88 | | | 3036.75 | \$2.04 | | 29.70 | ¥ X | - | 33.1 | 4.4 | 8.9 | 9.54 | 15.6 | ¥N# | #NA | #NA | 228.00 | #N/A | 3038.7 | | | 3342.63 | ₩. | | •
83.83 | ₩ | | 33.7 | 4.5 | 1.3 | 9.54 | 15.6 | ¥X# | #MA | #NA | 228.00 | #NA | 3342.63 | | | | | | | | + | | | | | | | | | | | | | The spectrum | was searched | The spectrum was searched from 25 to 3500 MHz | 89 | WHZ | | ╀ | | \dagger | • | NOTE: 1 m | eter mes | surement co | * NOTE: 1 meter measurement corrected to 3 meters | nefers | | | | | No other emiss | sions were ob | served excep | ŧ | No other emissions were observed except those shown on this page. | is page. | - | | | | | | | | | | | | | 15.107(d) Con | ducted Emiss | sions Not App | 8 | 15.107(d) Conducted Emissions Not Applicable- Battery Powered | erred | + | | 1 | | | | | | : | | | | | | | | - | | | + | + | + | + | | | | | | | | | | | | | 1 | | | + | | t | + | - | - | | - | - | | | | | | | | | | | | | TESTED BY | | | | DATE | | + | | Ť | | | | | | | | | | | | (| 7 | П | | | - | | | - | | | | | | | | | | | 1111 | | П | | | | | | | | | | | | | | | | 1 della | ₹ :¥ | J. W. Wald | 1 | 11/1 | 63 | + | | 1 | + | | 1 | | | | | | | | ENGWEER | 1 | | ı | DATE / | | + | | | | | | | | | | | | | | | | Γ | | | | | Ī | | | | | | | | | | | | | | ĺ | | | l | - | | | | | | | | | | |