

Intertek 731 Enterprise Drive Lexington, KY 40510

Tel 859 226 1000 Fax 859 226 1040

www.intertek.com

Midmark Corporation TEST REPORT

SCOPE OF WORK EMC TESTING – WIRELESS HAND CONTROL

REPORT NUMBER 105489075LEX-001.1bb

ISSUE DATE 7/17/2024 **REVISE DATE** 5/19/2025

PAGES 37

DOCUMENT CONTROL NUMBER Non-Specific EMC Report Shell Rev. December 2017 © 2017 INTERTEK

EMC TEST REPORT

(FULL COMPLIANCE)

Report Number:105489075LEX-001.1bbProject Number:G105489075Report Issue Date:7/17/2024Report Revise Date:5/19/2025Model(s) Tested:Wireless Hand Control
029-4020-01Standards:Title 47 CFR Part 15.247
RSS-247 Issue 3
RSS-Gen Issue 5

Tested by: Intertek Testing Services NA, Inc. 731 Enterprise Dr. Lexington, KY 40510 USA Client: Midmark Corporation 60 Vista Dr. Versailles, OH 45342 USA

Report prepared by

Ai Jo

Brian Lackey, Team Leader

Report reviewed by

Michael aulam

Michael Carlson, Project Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Table of Contents

1	Introduction and Conclusion	1
2	Test Summary	1
3	Client Information	5
4	Description of Equipment under Test and Variant Models	5
5	System Setup and Method	7
6	Transmitter Spurious Emissions & Band Edge	8
7	Output Power and Peak Power Spectral Density	2
8	Occupied Bandwidth	5
10	Antenna Requirement	5
11	Revision History	7

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
6	Radiated Spurious Emissions (FCC Part 15.247(d), RSS-247 Issue 3 § 5.5)	Pass
7	Output Power and Power Spectral Density (FCC Part 15.247(b)(3), FCC Part 15.247(e), RSS-247 Issue 3 §§ 5.2(b), 5.4(d))	Pass
8	Occupied Bandwidth (FCC Part 15.247, RSS-247 Issue 3 § 5.2(a))	Pass
9	Antenna Requirement (FCC Part 15.203, RSS-Gen Issue 5 § 6.8)	Pass

3 Client Information

This product was tested at the request of the following:

	Client Information			
Client Name:	Midmark Corporation			
Address:	60 Vista Dr.			
	Versailles, OH 45342			
	USA			
Contact:	Nick Stammen			
Email:	nstammen@midmark.com			
	Manufacturer Information			
Manufacturer Name:	Midmark Corporation			
Manufacturer Address:	60 Vista Dr.			
	Versailles, OH 45342			
	USA			

4 Description of Equipment under Test and Variant Models

Equipment Under Test				
Product Name	Wireless Hand Control			
Model Numbers	029-4020-01			
Serial Number	Unit 1			
Receive Date	9/28/2023			
Test Start Date	9/28/2023			
Test End Date	9/29/2023			
Device Received Condition	Good			
Test Sample Type	Production			
Hardware Version	015-2084-02			
Rated Voltage	3VDC, 2xAA batteries			
Frequency Band(s)	2400 – 2483.5MHz			
Test Channel(s)	2405MHz, 2445MHz, 2475MHz			
Maximum Antenna Gain (dBi) ¹	-2.69 dBi			
Description o	f Equipment Under Test (provided by client)			
Maximum Antenna Gain (dBi) ¹ -2.69 dBi Description of Equipment Under Test (provided by client)				

The wireless hand control allows the user to energize the motor(s) of the chair/table to move the orientation of the chair/table.

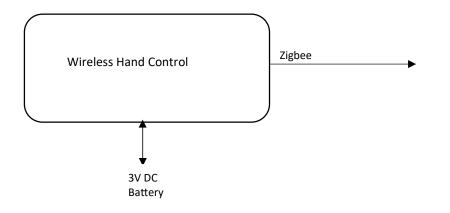
4.1 Variant Models:

There were no variant models covered by this evaluation.

¹ Values were taken from ezurio report "Midmark Controllers 2024-03-25.xlsx" provided by the client. Deviations from these values may affect compliance. Intertek does not make any claims of compliance for values other than those shown.

5 System Setup and Method

5.1 Method:


Configuration as required by ANSI C63.10:2020

No.	Descriptions of EUT Exercising
1	Transmitting a Zigbee signal on low, middle, or high channel at greater than 98% duty cycle.

	Cables								
Qty	Description	Length (m)	Shielding	Ferrites	Termination				
-	-	-	-	-	-				

Support Equipment						
Description Manufacturer Model Number Serial Number						
-	-	-	-			

5.2 EUT Block Diagram:

6 Transmitter Spurious Emissions & Band Edge

6.1 Test Limits

FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

RSS-247 Issue 3 § 5.5:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

6.2 Test Method

Tests are performed in accordance with ANSI C63.10:2013 § 11.12.1 Radiated emission measurements.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	U _{CISPR}
Radiated Emissions, 10m	30-1000 MHz	3.9dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	4.0dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.7dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	4.7dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.7dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.7dB	5.5 dB

As shown in the table above our radiated emissions U_{Lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required.

6.3 Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG Where FS = Field Strength in dBμV/m RA = Receiver Amplitude (including preamplifier) in dBμV CF = Cable Attenuation Factor in dB AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dBµV AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dBµV/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μV NF = Net Reading in dB μV

Example:

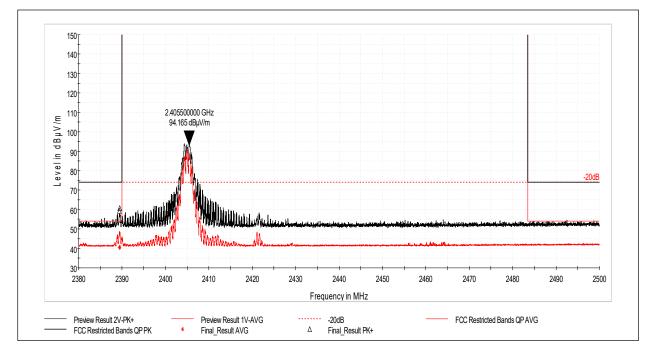
FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

6.4 Test Equipment Used

Description	Asset	Manufacturer	Model	Cal Date	Cal Due
EMI Test Receiver	8258	Rohde & Schwarz	ESW44	9/19/2023	9/19/2024
Magnetic Loop Antenna	2366	ETS	6502	8/28/2023	8/28/2024
Bilog Antenna (30MHz- 1GHz)	7085	SunAR	JB6	3/7/2023	3/7/2024
Horn Antenna (1-18GHz)	3780	ETS	3117	8/8/2023	8/8/2024
Horn Antenna (18-40GHz)	3779	ETS	3116c	8/23/2023	8/23/2024
Sustan Cantuallan	4096	ETS Lindgren	2090	Verify at	Verify at
System Controller				Time of Use	Time of Use
Sustem Controller	2057	Sunal Calanaaa	SC99V	Verify at	Verify at
System Controller	3957	Sunol Sciences	20330	Time of Use	Time of Use
30M-1G 3m Signal Path without Preamplifier	3339, 2592, 8188, 8185	-	-	1/12/2023	1/12/2024
1-18GHz Signal Path with Preamplifier	3074, 3918, 2588, 2593, 8188, 8185	-	-	1/12/2023	1/12/2024
18-40GHz Signal Path with Preamplifier	7020, 3921, 7021	-	-	1/12/2023	1/12/2024

6.5 Software Utilized

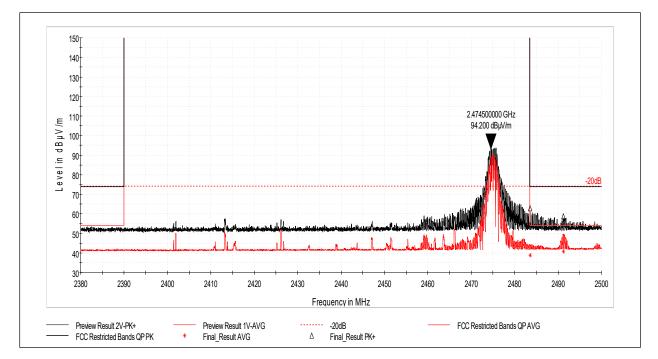
Name	Manufacturer	Version
EMC32	Rohde & Schwarz	Version 10.60.20


6.6 Test Results

The sample tested was found to be **compliant**. The data presented represents the worst-case emissions with the device positioned in three orthogonal positions.

6.7 Test Data: Radiated Band Edge

6.7.1 2405 MHz

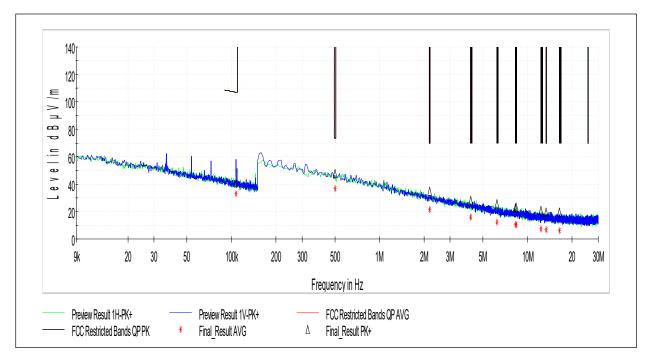

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2389.392	59.51	73.98	14.47	120.0	V	156.0	40.0
2389.438	60.76	73.98	13.22	121.0	V	162.0	40.0

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2389.392	40.31	53.98	13.67	120.0	V	156.0	40.0
2389.438	40.80	53.98	13.18	121.0	V	162.0	40.0

Test Personnel:	Brian Lackey	Test Date:	9/28/2023
Supervising/Reviewing Engineer:			FCC Part 15.209 in Restricted
(Where Applicable)	NA	Limit Applied:	Bands from FCC Part 15.205
	FCC Part 15.247		
Product Standard:	RSS-247 Issue 3	Ambient Temperature:	22.0°C
Input Voltage:	3VDC	Relative Humidity:	62.2%
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	985.4mbar

6.7.2 2475 MHz

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2483.523	62.71	73.98	11.27	127.0	V	88.0	40.5
2491.254	58.62	73.98	15.36	129.0	V	80.0	40.5


Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2483.523	38.90	53.98	15.08	127.0	V	88.0	40.5
2491.254	40.63	53.98	13.35	129.0	V	80.0	40.5

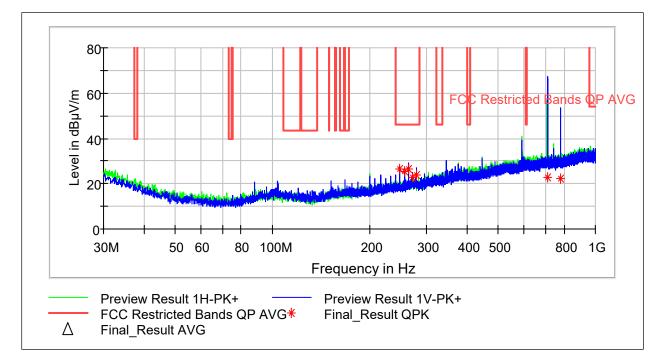
Test Personnel:	Brian Lackey	Test Date:	9/28/2023
Supervising/Reviewing Engineer:			FCC Part 15.209 in Restricted
(Where Applicable)	NA	Limit Applied:	Bands from FCC Part 15.205
	FCC Part 15.247		
Product Standard:	RSS-247 Issue 3	Ambient Temperature:	22.0°C
Input Voltage:	3VDC	Relative Humidity:	62.2%
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	985.4mbar
Input Voltage: Pretest Verification w / Ambient	RSS-247 Issue 3 3VDC	Relative Humidity:	62.2%

6.8 Test Data: Radiated Spurious Emissions

6.8.1 Radiated Spurious Emissions, 2445MHz, 9KHz-30MHz:

Frequency (MHz)	MaxPeak (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Azimuth (deg)	Corr. (dB/m)
0.107	41.08	107.01	65.94	0.200	215.0	12.9
0.501	47.71	73.61	25.90	9.000	100.0	12.6
2.187	34.71	69.54	34.83	9.000	166.0	12.4
4.127	27.96	69.54	41.58	9.000	263.0	12.2
6.217	25.37	69.54	44.17	9.000	92.0	11.9
8.293	22.38	69.54	47.17	9.000	16.0	11.7
8.385	23.38	69.54	46.17	9.000	118.0	11.7
12.292	20.79	69.54	48.75	9.000	24.0	11.6
13.363	19.86	69.54	49.68	9.000	0.0	11.6
16.423	19.61	69.54	49.93	9.000	166.0	11.4

Frequency (MHz)	Average (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Azimuth (deg)	Corr. (dB/m)
0.107	33.02	107.01	74.00	0.200	215.0	12.9
0.501	36.53	73.61	37.07	9.000	100.0	12.6
2.187	21.68	69.54	47.86	9.000	166.0	12.4
4.127	16.15	69.54	53.39	9.000	263.0	12.2
6.217	12.35	69.54	57.19	9.000	92.0	11.9
8.293	10.14	69.54	59.40	9.000	16.0	11.7
8.385	10.22	69.54	59.32	9.000	118.0	11.7
12.292	7.52	69.54	62.03	9.000	24.0	11.6
13.363	6.92	69.54	62.62	9.000	0.0	11.6
16.423	5.89	69.54	63.65	9.000	166.0	11.4

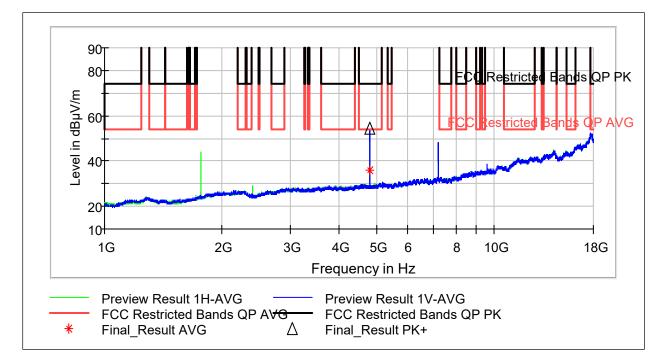

Test Personnel:	Brian Lackey	Test Date:	9/29/2023
Supervising/Reviewing Engineer:			FCC Part 15.209 in Restricted
(Where Applicable)	NA	Limit Applied:	Bands from FCC Part 15.205
	FCC Part 15.247	_	
Product Standard:	RSS-247 Issue 3	Ambient Temperature:	21.9°C
Input Voltage:	3VDC	Relative Humidity:	62.6%
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	985.4mbar
		_	

Deviations, Additions, or Exclusions: None

Note: Testing represents the worst case of low, middle, and high channels.

6.8.2 Radiated Spurious Emissions, 2445MHz, 30MHz-1GHz:

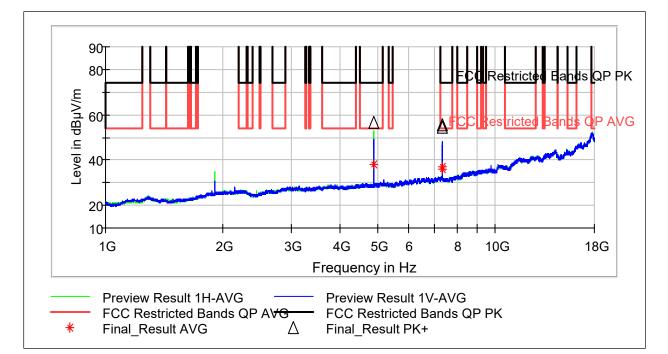
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
247.981	26.66	46.02	19.36	100.0	V	7.0	19.9
256.010	25.40	46.02	20.62	100.0	V	0.0	20.1
263.986	26.38	46.02	19.65	100.0	V	0.0	20.2
272.015	22.66	46.02	23.36	149.0	V	0.0	20.8
279.991	23.80	46.02	22.22	151.0	V	0.0	20.7
711.964	22.75	-	-	285.0	V	241.0	30.0
778.463	22.38	-	-	342.0	V	48.0	30.2


Test Personnel:	Brian Lackey	Test Date:	9/28/2023
Supervising/Reviewing Engineer:			FCC Part 15.209 in Restricted
(Where Applicable)	NA	Limit Applied:	Bands from FCC Part 15.205
	FCC Part 15.247	_	
Product Standard:	RSS-247 Issue 3	Ambient Temperature:	22.0°C
Input Voltage:	3VDC		62.2%
Pretest Verification w / Ambient		_	
Signals or BB Source:	Yes	Atmospheric Pressure:	985.4mbar

Deviations, Additions, or Exclusions: signals observed at 711.964MHz and 778.463MHz were transients not observed during final measurement.

Note: Testing represents the worst case of low, middle, and high channels.

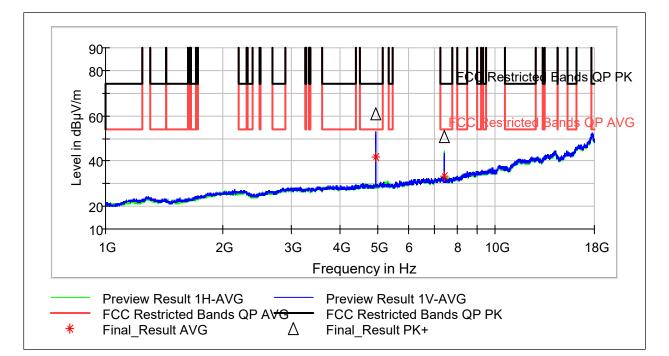
6.8.3 Radiated Spurious Emissions, 2405MHz, 1GHz-18GHz:


Frequency	MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB/m)
4811.000	54.54	73.98	19.44	266.0	V	22.0	10.3

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
4811.000	36.14	53.98	17.84	266.0	V	22.0	10.3

Test Personnel:	Brian Lackey	Test Date:	9/28/2023
Supervising/Reviewing Engineer:			FCC Part 15.209 in Restricted
(Where Applicable)	NA	Limit Applied:	Bands from FCC Part 15.205
	FCC Part 15.247		
Product Standard:	RSS-247 Issue 3	Ambient Temperature:	22.0°C
Input Voltage:	3VDC	Relative Humidity:	62.2%
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	985.4mbar

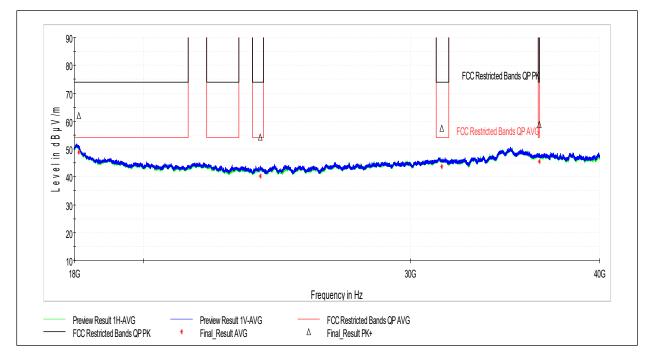
6.8.4 Radiated Spurious Emissions, 2445MHz 1GHz-18GHz:


Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
4891.000	56.65	73.98	17.33	254.0	Н	314.0	10.3
7333.500	54.58	73.98	19.40	198.0	V	0.0	14.9
7336.500	55.36	73.98	18.62	199.0	V	0.0	15.0

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
4891.000	37.95	53.98	16.03	254.0	н	314.0	10.3
7333.500	36.11	53.98	17.87	198.0	V	0.0	14.9
7336.500	36.96	53.98	17.02	199.0	V	0.0	15.0

Test Personnel:	Brian Lackey	Test Date:	9/28/2023
Supervising/Reviewing Engineer:			FCC Part 15.209 in Restricted
(Where Applicable)	NA	Limit Applied:	Bands from FCC Part 15.205
	FCC Part 15.247		
Product Standard:	RSS-247 Issue 3	Ambient Temperature:	22.0°C
Input Voltage:	3VDC	Relative Humidity:	62.2%
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	985.4mbar

6.8.5 Radiated Spurious Emissions, 2475MHz, 1GHz-18GHz:


Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
4951.000	60.96	73.98	13.02	277.0	V	301.0	10.1
7426.500	50.84	73.98	23.14	256.0	Н	0.0	13.9

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
4951.000	42.00	53.98	11.98	277.0	V	301.0	10.1
7426.500	33.50	53.98	20.48	256.0	Н	0.0	13.9

Test Personnel:	Brian Lackey	Test Date:	9/28/2023
Supervising/Reviewing Engineer:		_	FCC Part 15.209 in Restricted
(Where Applicable)	NA	Limit Applied:	Bands from FCC Part 15.205
	FCC Part 15.247	_	
Product Standard:	RSS-247 Issue 3	Ambient Temperature:	22.0°C
Input Voltage:	3VDC		62.2%
Pretest Verification w / Ambient		_	
Signals or BB Source:	Yes	Atmospheric Pressure:	985.4mbar

6.8.6 Radiated Spurious Emissions, 2445MHz, 18GHz-40GHz:

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
18117.000	62.09	73.98	11.89	410.0	V	268.0	30.5
23882.000	54.38	73.98	19.60	381.0	V	312.0	13.3
31464.000	57.52	73.98	16.46	410.0	Н	0.0	19.7
36508.000	58.87	1000.00	941.13	410.0	V	67.0	21.4

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
18117.000	48.92	53.98	5.06	410.0	V	268.0	30.5
23882.000	40.34	53.98	13.64	381.0	V	312.0	13.3
31464.000	43.76	53.98	10.22	410.0	Н	0.0	19.7
36508.000	45.56	1000.00	954.44	410.0	V	67.0	21.4

Brian Lackey	Test Date:	9/28/2023
		FCC Part 15.209 in Restricted
NA	Limit Applied:	Bands from FCC Part 15.205
FCC Part 15.247		
RSS-247 Issue 3	Ambient Temperature:	22.0°C
3VDC	Relative Humidity:	62.2%
Yes	Atmospheric Pressure:	985.4mbar
	NA FCC Part 15.247 RSS-247 Issue 3 3VDC	NALimit Applied:FCC Part 15.247Ambient Temperature:SS-247 Issue 3Ambient Temperature:3VDCRelative Humidity:

Deviations, Additions, or Exclusions: None

Note: Testing represents the worst case of low, middle, and high channels.

7 Output Power and Peak Power Spectral Density

7.1 Test Limits

FCC Part 15.247(b)(3):

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

FCC Part 15.247(e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

RSS-247 Issue 3 § 5.4(d):

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

RSS-247 Issue 3 § 5.2(b):

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

7.2 Test Method

Tests are performed in accordance with ANSI C63.10:2013 § 11.9.1.1

7.3 Measurement Uncertainty

Description	Expanded Uncertainty (k=2)
Signal Chain Calibration	1.2

No measurement correction based on measurement uncertainty is performed.

7.4 Test Equipment Used

Description	Asset	Manufacturer	Model	Cal Date	Cal Due
EMI Test Receiver	8258	Rohde &	ESW44	9/19/2023	9/19/2024
		Schwarz			
Horn Antenna (1-18GHz)	3780	ETS	3117	8/8/2023	8/8/2024
System Controller	4096	ETS Lindgren	2090	Verify at	Verify at
				Time of Use	Time of Use
1-18GHz Signal Path without	3074, 2588, 2593,	-	-	1/12/2023	1/12/2024
Preamplifier	8188, 8185				

7.5 Test Results

The device was found to be **compliant**. The peak output power was less than 1W and the EIRP was less than 4W. Per ANSI C63.10:2020 § 11.10.1:

Where the measured power (peak conducted output power or maximum conducted output power) complies with the regulatory requirement for the PSD, then measurement of the PSD is not required, provided that the PSD level is reported as being equal to the measured output power.

7.6 Test Conditions

Test Personnel:	Brian Lackey	Test Date:	9/28/2023
Supervising/Reviewing Engineer:			FCC Part 15.209 in Restricted
(Where Applicable)	NA	Limit Applied:	Bands from FCC Part 15.205
	FCC Part 15.247		
Product Standard:	RSS-247 Issue 3	Ambient Temperature:	22.0°C
Input Voltage:	3VDC	Relative Humidity:	62.2%
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	985.4mbar

Deviations, Additions, or Exclusions: None

7.7 Test Data

Frequency (MHz)	Receiver Reading (dBm)	Receiver Reading (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	E Field (dBuV/m)	EIRP (dBm)
2405	-51.51	55.48	32.5	8.0	95.98	0.75
2445	-52.04	54.95	32.5	8.0	95.45	0.22
2475	-52.88	54.11	32.5	8.0	94.61	-0.62

Frequency (MHz)	EIRP (dBm)	Antenna Gain (dBi)	Conducted Output Power / PSD (dBm)
2405	0.75	-2.69	3.44

2445	0.22	-3.92	4.14
2475	-0.62	-4.63	5.25

7.8 Spectrum Plots

7.8.1 2405 MHz

MultiView • Spectrum	n						-
	T 1.01 m s 🗢 VBW 10 MHz 🛛 Moo	de Auto Sweep			Fre	equency 2.40	50000 GHz
Input 1 AC PS	Off Notch Off				979-753		e tol. Utau
1 Frequency Sweep						M1[1]	●1Pk View -51.51 dBm
							.4044210 GHz
-30 dBm-				6 A			
-40 dBm							
		М1					
-50 dBm		V		e			
				~			
-60 dBm				WWWW	٨.		
	a de Andrewand				MAY WAY WAY AND AN		
-70 dBm- /WWWWWWWWWWWWWWW /WWWWWWWWWWW	MM why where y			e	L. Tath Jike	atterne and a second	M. InsurAnderst with and stars
NDANA AMALA Assessment							the law of the subscription of the subscriptio
-80 dBm				i			
-90 dBm				(i)			
-100 dBm				18			
-110 dBm	+						
CF 2.405 GHz	1001 pts		2.	0 MHz/		S	pan 20.0 MHz
-		-	- Measuring.	and the second	2023-09	9-28 Ref Level	RBW
					** 15:40	J:23 U	•

03:40:24 PM 09/28/2023

7.8.1 2445 MHz

MultiView 📲									•
Input LN Amplifier	10 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV Off Note	V 10 MHz Mo	de Auto Sweep			Fre	equency 2.44	
1 Frequency Swee	ер								●1Pk View
								M1[1]	-52.04 dBm
-30 dBm								2	2.4455990 GHz
-40 dBm									
-50 dBm					M1	8			
						~			
-60 dBm			webWater			~			
		www.allentanter	/P 1* *				Mulla.		
-60 dBm	www.ww	МИТ I						WANNA NUMANA WA	NAMMUL ANMALA
-80 dBm									
-90 dBm									
-100 dBm						n			
-110 dBm									
CF 2.445 GHz			1001 pt	s	2	.0 MHz/			pan 20.0 MHz
					- Measuring.		2023-09 15:23	0-28 Ref Level 3:05 •	RBW

03:23:06 PM 09/28/2023

7.8.2 2475 MHz

MultiView	Spectrum								•
Ref Level -20 Att Input LN Amplifier		● RBV 1.01 ms ● VBV Off Not	V 10 MHz Mo	de Auto Sweep			Fre	equency 2.47	50000 GHz
1 Frequency S	weep		P						●1Pk View
								M1[1]	-52.88 dBm 4745400 GHz
-30 dBm			3			76 - 55			
-40 dBm									
-50 dBm				M1					
-60 dBm						and the second			
70 db		1 Martin Martin	Warner			.≁₩₩	ANT MANY MALLING	4.4. 14.	
-70 dBm	man manual and	hor Manager					t - sha	mananan (miran)	121-1914 March March
-80 dBm									
-90 dBm									
-100 dBm						17			
200 0000									
-110 dBm									
05.0 (75.5)			1005						
CF 2.475 GHz			1001 pt	S		.0 MHz/	0020 0	S Define	pan 20.0 MHz
					- Measuring		2023-09	P-28 Ref Level	RBW

03:33:03 PM 09/28/2023

8 Occupied Bandwidth

8.1 Test Limits

FCC Part 15.247(a)(2):

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

RSS-247 Issue 3 § 5.2(a):

The minimum 6 dB bandwidth shall be 500 kHz.

8.2 Test Method

Tests are performed in accordance with ANSI C63.10:2013 § 11.8.1.

8.3 Measurement Uncertainty

Description Expa	anded Uncertainty (k=2)
Signal Chain Calibration 1.2	

No measurement correction based on measurement uncertainty is performed.

8.4 Test Equipment Used

Description	Asset	Manufacturer	Model	Cal Date	Cal Due
EMI Test Receiver	8258	Rohde & Schwarz	ESW44	9/19/2023	9/19/2024
Horn Antenna (1-18GHz)	3780	ETS	3117	8/8/2023	8/8/2024
System Controller	4096	ETS Lindgren	2090	Verify at Time of Use	Verify at Time of Use
1-18GHz Signal Path without Preamplifier	3074, 2588, 2593, 8188, 8185	-	-	1/12/2023	1/12/2024

8.5 Test Results

The device was found to be **compliant**. The 6dB bandwidth was at least 500kHz.

8.6 Test Conditions

Test Personnel:	Brian Lackey	Test Date:	9/29/2023
Supervising/Reviewing Engineer:			From FCC Part 15.247(b)(3), RSS-
(Where Applicable)	NA	Limit Applied:	247 Issue 3 § 5.4(d)
	FCC Part 15.247		
Product Standard:	RSS-247 Issue 3	Ambient Temperature:	21.9°C
Input Voltage:	3VDC	Relative Humidity:	62.6%
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	985.4mbar

8.7 Test Data

Frequency (MHz)	6dB BW (kHz)	20dB BW (kHz)	99% BW (kHz)
2405	1628	2608	2553
2445	1608	2578	2623
2475	1623	2578	2577

8.8 Spectrum Plots

8.8.1 2405MHz 6dB BW

MultiView	Spectru	m							
Ref Level -40. Att Input LN Amplifier		T 41.84 µs (~7.1 r	● RBW 10 ns) ● VBW 30 Off Notch		uto FFT		Fre	equency 2.40	50000 GHz
1 Frequency St	weep					p	1		⊖1Pk View
								M3[1] 2.	-68.01 dBm 40580920 GHz
-50 dBm								M1[1]	-61.89 dBm
-60 dBm				M1				2.	40477520 GHz
	H1 -67 890	cBm	M2	~~~	$\sim\sim$	МЗ			
-70 dBm									
-80 dBm							\sim		
\sim	\sim							\sim	\sim
-90 dBm	~	1							
-100 dBm									
-110 dBm									
-120 dBm									
100 0000									
-130 dBm									
CF 2,405 GHz			1001 pt	3	50	10.0 kHz/			Span 5.0 MHz
2 Marker Table	٩		1001 pt	,					opan olo miliz
Type Ref	Trc	X-Value		Y-Value		Function		Function Re	esult
M1 M2 M3	1	2.4047752 GI 2.4041808 GI 2.4058092 GI	-1z -0	51.89 dBm 58.06 dBm 58.01 dBm					
	-				- Measuring		2023-09 12:26	0-29 Ref Level	RBW O

12:26:13 PM 09/29/2023

M3 – M2 = 2405.8092 MHz – 2404.1808 MHz = 1.628 MHz = 1628 kHz

8.8.2 2405MHz 20dB BW

									8
MultiView	Spectrum	1							
Ref Level -40 Att Input LN Amplifier		140 µs (~7.5 ms) Off			o FFT		Fn	equency 2.40	050000 GHz
1 Frequency S	weep								⊜1Pk Max
								M1[1]	-66.64 dBm
50 db								2.	40526000 GHz
-50 dBm									
-60 dBm						1			
					M1 ▼				
-70 dBm				mmm	Man	2			
				m V	1 m				
-80 dBm			^	10		n			
			T1-V	ſ					
-90 dBm			, j			4			
50 dbm		m	wh r			1 month	m		
100 10	. Am		W				why a	0.0	
-HO. BOW MAN	WWWWW	A WW					mohr	Monter	mon
-110 dBm						× ×			
-120 dBm						1			
-130 dBm									
-2762-186-15 CONVERSION									
						-			
CF 2.405 GHz			1001 pts	5	1	.0 MHz/		5	Span 10.0 MHz
2 Marker Tabl							_		
Type Ref	Trc	X-Value		Y-Value		Function		Function Re	
M1 T1	1	2.40526 GH: 2.403681 GH		56.64 dBm -86.76 dBm	ndB ndB down f	Dial		20.0 c 2.61 MH	
T2	1	2.403681 GH 2.406289 GH		-86.18 dBm	O Factor	DVV		2.01 MF	
	*	2.400209 011		50.10 GDIT		-	2023-09		
					 Aborted 		2020 0.	NOT LOVOT	IND IN

12:28:03 PM 09/29/2023

8.8.3 2405MHz 99% BW

MultiView	Spectrum	i 🦛							-
Ref Level -40. Att Input LN Amplifier		1.12 ms • RBW Off • VBW Notc	100 kHz Mo	de Auto Sweep			Fre	equency 2.40)50000 GHz
1 Occupied Ba	ndwidth					<u>e</u> n .		· · · · · · · · · · · · · · · · · · ·	●1Pk Max
								M1[1]	-66.64 dBm 40526000 GHz
-50 dBm)						
-60 dBm			5		M1				
-70 dBm				man					
				mmy	" My				
-80 dBm	-			(AT2-			
-90 dBm		. 09	m /	8	5: 	- J AN	M		
-40.dBm	AM MAM		W			- Vr	1 mm	mon	0.050 - 0
www.www.	V. V. M. O.	~ q.s						an marine	an Malanna (Marea)
-110 dBm						96			
-120 dBm									
-130 dBm									
0.00									
CF 2.405 GHz			1001 pt	s	1	.0 MHz/		5	pan 10.0 MHz
2 Marker Table	e								-
Type Ref	Trc	X-Value		Y-Value		Function		Function Re	
M1	1	2.40526 GI		56.64 dBm	Occ Bw	2 B Y		2.55304666	
T1 T2	1	2.4037177 G 2.4062708 G		-84.43 dBm -83.94 dBm	Occ Bw Cer Occ Bw Fre			2.404994 -5.728603	
	~	2. 1002. 00 0		50.5 1 0011	Aborted		2023-09	-29 Ref Level	

12:28:36 PM 09/29/2023

8.8.4 2445MHz 6dB BW

									I
MultiView	Spectrun	n							-
Ref Level -40. Att Input LN Amplifier	10 dB SWT 1 AC PS	41.84 µs (~7.1 r	● RBW 10 ns) ● VBW 30 Off Notch		uto FFT		Fre	equency 2.44	150000 GHz
1 Frequency St	weep								⊖1Pk Max
								M1[1]	-63.23 dBm
FO dow								2.	44524980 GHz
-50 dBm					803				
-60 dBm		6			M1	88 - 32 			
-70 dBm			Ţ1 Ţ						
						~~~	5		
-80 dBm									
-90 dBm	~~~~~								$\sim$
-100 dBm									
-110 dBm									
-120 dBm									
-130 dBm									
-130 080									
CF 2.445 GHz			1001 pt	 s	50	00.0 kHz/			Span 5.0 MHz
2 Marker Table	<u>م</u>		1001 pt	<u>.</u>					00011010101112
Type Ref		X-Value		Y-Value		Function		Function Re	esult
M1		.4452498 GI	lz -	63.23 dBm	ndB			6.0 (	dΒ
Τ1	1	2.4442058 G		-69.12 dBm	ndB down	BW		1.61 MF	Iz
T2	1	2.4458142 G	Hz	-69.39 dBm	Q Factor			1520	.3
					Aborted		2023-09	9-29 Ref Level	RBW

12:32:09 PM 09/29/2023



### 8.8.5 2445MHz 20dB BW

MultiView	Spectrum	i 🦀							-
Ref Level -40 Att Input LN Amplifier		140 µs (~7.5 ms O	• RBW 30 • VBW 100 ff Notch		o FFT		Fre	equency 2.44	
1 Frequency S	weep		0			e			●1Pk Max
								M1[1] 2.	-66.64 dBm 44525000 GHz
-50 dBm			8			o			
-60 dBm		2	5.		MI				
-70 dBm					MI Min				
5.00 ( 100)				many	1 Mm				
-80 dBm		,	T1√ \$	V		MJ2 V			
-90 dBm		, mail	My	-		h	Mun		
√5100-dBm <del>~~∿w√√</del>	Acmint	Marine	V			~	- have	Maryanguration	- manager
-110 dBm									
-120 dBm									
-130 dBm									
Constant & Constant									
CF 2.445 GHz			1001 pt	s	1	.0 MHz/		S	pan 10.0 MHz
2 Marker Tabl									
Type Ref	f   Trc	X-Value 2.44525 GH		Y-Value 66.64 dBm	ndB	Function		Function Re 20.0 d	
T1 T2	1	2.443721 GH 2.446299 GH	Ηz	-86.81 dBm -86.71 dBm	ndB down I O Factor	ЗW		2.58 MH 948	lz
	~	2.1.10209-01		5007 GDIT	Aborted		2023-09	-29 Ref Level	RBW

12:30:50 PM 09/29/2023



### 8.8.6 2445MHz 99% BW

									<b></b>
MultiView	Spectrum	1							
Ref Level -40. Att Input LN Amplifier	10 dB <b>SWT</b> 1 AC <b>PS</b>	140 µs (~7.5 ms) Off			o FFT		Fre	equency 2.44	50000 GHz
1 Occupied Bar	ndwidth					p			⊜1Pk Max
								M1[1] 2.	-66.64 dBm 44525000 GHz
-50 dBm									
-60 dBm						11. N			
					M1 ▼				
-70 dBm				mmm	Mm.	20			
				and I i					
-80 dBm				/*: 	, .	<i>n</i> .			
			T1-V			$M_{L^2}$			
-90 dBm			7			X			
50 dbiii		M	m r			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Mu		
100 d0m	A a Aman	Mr. N	V				Maran	annaman de	
~100-dBm~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		o					·· • • •	h and the second of the	
-110 dBm						ik ji			
-120 dBm									
-130 dBm									
CF 2,445 GHz			1001 pts		1	.0 MHz/		C	pan 10.0 MHz
2 Marker Table	~		1001 pts		1	10 1411 127			part 10.0 Militz
Type Ref		X-Value		Y-Value		Function		Function Re	sult
M1	1	2.44525 GHz	-6	6.64 dBm	Occ Bw	1 GHOGOT		2.62256327	6 MHz
Τ1	1	2.4436917 GHz		-87.49 dBm	Occ Bw Cer			2.4450029	992 GHz
T2	1	2.4463143 GHz		-86.89 dBm	Occ Bw Fre	q Offset		2.99165	578 kHz
					- Aborted		2023-09	9-29 Ref Level	RBW

12:30:25 PM 09/29/2023



# 8.8.7 2475MHz 6dB BW

									<b>I</b>
MultiView	Spect	rum							•
Ref Level -40.0 Att Input LN Amplifier		SWT 41.84 µs (~7.1 PS	● RBW 10 ms) ● VBW 30 Off Notch		uto FFT		Fre	equency 2.4	750000 GHz
1 Frequency Sv	weep			ŕ	1				⊜1Pk Max
								M3[1]	-71.83 dBm
-50 dBm						1. y		202	47581420 GHz
-50 UBM								M1[1]	-65.52 dBm
								2.	47477020 GHz
-60 dBm				M1					
			M2 ,		han	мз			
-70 dBm	H1 -71 S	20 dBm	WIZ V			M3			
	1.4.1								
-80 dBm							~		
-90 dBm	$\sim\sim$							$ \longrightarrow $	$\sim$
		Ť							<u>~</u>
-100 dBm						s			
-110 dBm									
-110 0800-						66 90 90			
-120 dBm									
-130 dBm									
				1		0.0111.7			
CF 2.475 GHz			1001 pt	S	50	10.0 kHz/			Span 5.0 MHz
2 Marker Table						-			1.
Type Ref	Trc	X-Value 2.4747702 G	<b>U</b> 7	Y-Value 65.52 dBm		Function		Function R	esult
M1 M2	1	2.4741908 G		71.58 dBm					
M3	1	2.4758142 G	Hz -	71.83 dBm					
-	-						2023-09	-29 Ref Level	RBW
					- Aborted		12:34	4:15	0

12:34:16 PM 09/29/2023

M3 – M2 = 2475.8142 MHz – 2474.1908 MHz = 1.623 MHz = 1623 kHz



### 8.8.8 2475MHz 20dB BW

MultiView	Spectrum	1 🍝							-
Ref Level -40. Att Input LN Amplifier		140 μs (~7.5 ms Ο		kHz kHz <b>Mode</b> Aut Off	IO FFT		Fre	equency 2.47	750000 GHz
1 Frequency S	weep		0		<i></i>	p			●1Pk Max
								M1[1] 2.	-66.96 dBm 47525000 GHz
-50 dBm									
-60 dBm	2	22	5.	S	8	8	0	0	
-70 dBm				man	MI				
-80 dBm				www.	Y YM				
-80 aBm			T1.JY	V.		N _{T2}			
-90 dBm		mm	Mul			1 Jun	run		
j=10QvdBm~~~~~~	www.www.	www.				V	har	Wwwwwww	Amman
-110 dBm						р. 			
-120 dBm									
-130 dBm									
dia gra-consene									
CF 2.475 GHz			1001 pt	s	1	.0 MHz/		S	pan 10.0 MHz
2 Marker Table								-	
Type Ref	Trc 1	X-Value 2.47525 GH	7 -	Y-Value 66.96 dBm	ndB	Function		Function Re 20.0 d	
T1 T2	1	2.473711 GH 2.476289 GH	Ηz	-87.11 dBm -87.28 dBm	ndB down I O Factor	BW		2.58 MH 960	lz
	~	21110203 01		37120 0011	- Aborted		2023-09	-29 Ref Level	RBW

12:36:28 PM 09/29/2023



### 8.8.9 2475MHz 99% BW

									<b></b>
MultiView	Spectrum	1							
Ref Level -40.0 Att Input LN Amplifier	10 dB <b>SWT</b> 1 AC <b>PS</b>	140 µs (~7.5 ms O	● RBW 30 ) ● VBW 100 ff Notch		o FFT		Fre	equency 2.47	
1 Occupied Bar	ndwidth								⊜1Pk Max
								M1[1] 2.	-66.96 dBm 47525000 GHz
-50 dBm									
-60 dBm									
oo abiii					M1				
-70 dBm				m. A.M	MAN				
70 dbiii				www.	M.	· · · · ·			
00.40.0			~	( ^{bu} "	' M				
-80 dBm			T1.	1		M _{T2}			
			Ż			₹.			
-90 dBm			My 1			4 nn	rm		
		NW.Y	in the last				why .		
r100.dBm-mm	wwwwww	prhand-	<u>۷</u> ۲			V~	burn	Marina	Amman
-110 dBm				8		6			
-120 dBm									
100 100									
-130 dBm									
CF 2.475 GHz			1001 pts	3	1	.0 MHz/		S	pan 10.0 MHz
2 Marker Table	•					•			
Type Ref		X-Value		Y-Value		Function		Function Re	sult
M1	1	2.47525 G		56.96 dBm	Occ Bw			2.57746910	5 MHz
Τ1	1	2.4737138 G		-87.11 dBm	Occ Bw Cer			2.4750025	
T2	1	2.4762912 G	Hz	-87.28 dBm	Occ Bw Fre	q Offset		2.501107	362 kHz
					Aborted		2023-09	9-29 Ref Level	RBW

12:36:08 PM 09/29/2023

### 10 Antenna Requirement

### 10.1 Test Limits

### FCC Part 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

### RSS-Gen Issue 5 § 6.8:

The applicant for equipment certification, as per RSP-100, must provide a list of all antenna types that may be used with the licence-exempt transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna.

Licence-exempt transmitters that have received equipment certification may operate with different types of antennas. However, it is not permissible to exceed the maximum equivalent isotropically radiated power (e.i.r.p.) limits specified in the applicable standard (RSS) for the licence-exempt apparatus.

Testing shall be performed using the highest gain antenna of each combination of licence-exempt transmitter and antenna type, with the transmitter output power set at the maximum level. When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer.

User manuals for transmitters equipped with detachable antennas shall also contain the following notice in a conspicuous location:

This radio transmitter (identify the device by certification number) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types approved for use with the transmitter, indicating the maximum permissible antenna gain (in dBi).

### 10.2 Test Results

The device was found to be **compliant**. The device has an internal, permanently affixed antenna.



# 11 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	7/17/2024	105489075LEX-001bb	BL	MC	Original Issue
1	5/19/2025	105489075LEX-001.1bb	BL	MC	Added measurement uncertainty values, sample calculations, and duty cycle.