	と 灰リ CHNOLOGY						
	TEST REPOR						
FCC ID :	2BMR6-CW2303C						
Test Report No::	TCT250220E010						
Date of issue:	Mar. 06, 2025						
Testing laboratory::	SHENZHEN TONGCE TESTIN	G LAB					
Testing location/ address:	Fuhai Subdistrict, Bao'an Distric	2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China					
Applicant's name::	MEGA MULTIMEDIA AI, INC.						
Address:	17870 CASTLETON ST, STE 2 California 91748, United States						
Manufacturer's name :	MEGA MULTIMEDIA AI, INC.						
Address:	17870 CASTLETON ST, STE 2 California 91748, United States	7870 CASTLETON ST, STE 215 CITY OF INDUSTRY, California 91748, United States					
Standard(s):	FCC CFR Title 47 Part 15 Subp	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02					
Product Name::	Home Security WiFi Camera						
Trade Mark:	Alaga						
Model/Type reference :	A-CW2303C-H, A-CW2303C-F, CW2303C	A-CW2303C-M, A-CW2303C,					
Rating(s):	Adapter Information: MODEL: BS05A-0501000US INPUT: AC 100-240V, 50/60Hz, OUTPUT: DC 5V, 1000mA	, 0.25A Max					
Date of receipt of test item :	Feb. 20, 2025						
Date (s) of performance of test:	Feb. 20, 2025 ~ Mar. 06, 2025						
Tested by (+signature) :	Aaron MO	Aaron Aborger					
Check by (+signature) :	Beryl ZHAO	Boyl 2 TCT					
Approved by (+signature):	Tomsin	Tomsit's st					

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1	General Pro	duct Info	rmation			(c)		
	1.2. Model(s)	list		<u> </u>				
	1.3. Operation							
2.	Test Result	Summary			(S)		(s ^c)	
3.	General Info	-						
	3.1. Test envi	ronment ar	nd mode					6
	3.2. Description	on of Supp	ort Units.					7
4.	Facilities ar							
	4.1. Facilities		6		<u>(6)</u>			8
	4.2. Location		\sim		\sim			8
	4.3. Measurer	nent Uncer	tainty					8
5.	Test Result	s and Mea	asureme	nt Data .		<u>(6)</u>		9
	5.1. Antenna	requiremen	it					9
	5.2. Conducte	d Emissio	٦					10
	5.3. Maximum							
	5.4. Emission							
	5.5. Power Sp	ectral Den	sity					16
	5.6. Conducte							
	5.7. Radiated	Spurious E	Emission I	Measurem	ent			19
Ap	opendix A: T	est Resul	t of Con	ducted T	est			
A	opendix B: P	hotograp	hs of Te	st Setup				
	opendix C: P							

1. General Product Information

1.1. EUT description

Product Name:	Home Security WiFi Camera
Model/Type reference:	A-CW2303C-H
Sample Number:	TCT250220E009-0101
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20)/802.11ax(HE20)) 2422MHz~2452MHz (802.11n(HT40)/802.11ax(HE40))
Channel Separation:	5MHz
Number of Channel:	11 for 802.11b/802.11g/802.11n(HT20)/802.11ax(HE20) 7 for 802.11n(HT40)/802.11ax(HE40)
Modulation Technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n: Orthogonal Frequency Division Multiplexing(OFDM)
Data speed:	802.11b: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps 802.11g: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps 802.11n: Up to 150Mbps
Antenna Type:	Chip Antenna
Antenna Gain:	1.03dBi
Rating(s):	Adapter Information: MODEL: BS05A-0501000US INPUT: AC 100-240V, 50/60Hz, 0.25A Max OUTPUT: DC 5V, 1000mA

Report No.: TCT250220E010

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

		Model No.		Tested with
_1		A-CW2303C-H		
Other models	A-CW2303C-F,	A-CW2303C-M, A-CW2	2303C, CW2303C	
	ifferent on the model na	er models are derivative mod ames and appearance color.		

1.3. Operation Frequency

For 802.11b/g/n(HT20)/ax(HE20)

	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
/	1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
~	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
	3	2422MHz	6	2437MHz	9	2452MHz		

For 802.11n (HT40)/ax(HE40)

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
		4	2427MHz	7	2442MHz		-
	(5	2432MHz	8	2447MHz	6`)	(KU
3	2422MHz	6	2437MHz	9	2452MHz		(

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (HT20)/802.11ax (HE20)

2412MHz
2437MHz
2462MHz

802.11n (HT40)/802.11ax (HE40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS
		(

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 5 of 107

3. General Information

3.1. Test environment and mode

Operating Environment:		
Condition	Conducted Emission	Radiated Emission
Temperature:	22.8 °C	23.7 °C
Humidity:	49 % RH	50 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		
Software Information:	SSCOM	
Power Level:	9	
Test Mode:		
Engineer mode:	Keep the EUT in continuous channel and modulations wi	
oolarities were performed. I the EUT continuously work axis (X, Y & Z) and con manipulating interconnectin from 1m to 4m in both	During the test, each emission ng, investigated all operating sidered typical configuration g cables, rotating the turnta horizontal and vertical po	y modes, rotated about all n to obtain worst position ble, varying antenna heigh plarizations. The emissions
oolarities were performed. I the EUT continuously work axis (X, Y & Z) and con manipulating interconnectin from 1m to 4m in both	During the test, each emission ng, investigated all operating sidered typical configuration g cables, rotating the turnta	n was maximized by: having g modes, rotated about all 3 n to obtain worst position ble, varying antenna heigh plarizations. The emissions
bolarities were performed. I the EUT continuously work axis (X, Y & Z) and con- manipulating interconnecting from 1m to 4m in both worst-case(Z axis) are show We have verified the constru- were carried out with the EU	During the test, each emission ng, investigated all operating sidered typical configuration g cables, rotating the turnta horizontal and vertical po vn in Test Results of the follow uction and function in typical of IT in transmitting operation, w	n was maximized by: having modes, rotated about all 3 n to obtain worst position ble, varying antenna heigh plarizations. The emissions ving pages.
bolarities were performed. I the EUT continuously work axis (X, Y & Z) and com- manipulating interconnecting from 1m to 4m in both worst-case(Z axis) are show We have verified the constru- were carried out with the EU report and defined as follow Per-scan all kind of data ra	During the test, each emission ng, investigated all operating sidered typical configuration g cables, rotating the turnta horizontal and vertical po vn in Test Results of the follow uction and function in typical of IT in transmitting operation, w	n was maximized by: having g modes, rotated about all 3 n to obtain worst position ble, varying antenna heigh plarizations. The emissions ving pages. pperation. All the test modes hich was shown in this test
bolarities were performed. I he EUT continuously work axis (X, Y & Z) and com- manipulating interconnecting rom 1m to 4m in both worst-case(Z axis) are show We have verified the constru- were carried out with the EU report and defined as follow Per-scan all kind of data ra	During the test, each emission ng, investigated all operating sidered typical configuration g cables, rotating the turnta horizontal and vertical po vn in Test Results of the follow uction and function in typical o IT in transmitting operation, w s:	n was maximized by: having g modes, rotated about all 3 n to obtain worst position ble, varying antenna heigh plarizations. The emissions ving pages. pperation. All the test modes hich was shown in this test
bolarities were performed. I the EUT continuously work axis (X, Y & Z) and con- manipulating interconnecting from 1m to 4m in both worst-case(Z axis) are show We have verified the constru- were carried out with the EU report and defined as follow Per-scan all kind of data ra- was worst case.	During the test, each emission ng, investigated all operating sidered typical configuration g cables, rotating the turnta horizontal and vertical po vn in Test Results of the follow uction and function in typical o IT in transmitting operation, w s:	n was maximized by: having g modes, rotated about all 3 n to obtain worst position ble, varying antenna heigh plarizations. The emissions ving pages. operation. All the test modes hich was shown in this test
bolarities were performed. I the EUT continuously work axis (X, Y & Z) and com- manipulating interconnection from 1m to 4m in both worst-case(Z axis) are show We have verified the constru- were carried out with the EU report and defined as follow Per-scan all kind of data ra- was worst case. Mode	During the test, each emission ng, investigated all operating sidered typical configuration g cables, rotating the turnta horizontal and vertical po vn in Test Results of the follow uction and function in typical o IT in transmitting operation, w s:	n was maximized by: having g modes, rotated about all 3 n to obtain worst position ble, varying antenna heigh plarizations. The emissions ving pages. operation. All the test modes hich was shown in this test bund the follow list which i Data rate
bolarities were performed. I the EUT continuously work axis (X, Y & Z) and com- manipulating interconnection from 1m to 4m in both worst-case(Z axis) are show We have verified the constru- were carried out with the EU report and defined as follow Per-scan all kind of data ra- was worst case. Mode 802.11b	During the test, each emission ng, investigated all operating isidered typical configuration g cables, rotating the turnta horizontal and vertical po vn in Test Results of the follow uction and function in typical of IT in transmitting operation, w s:	n was maximized by: having g modes, rotated about all 3 n to obtain worst position ble, varying antenna heigh plarizations. The emissions ving pages. operation. All the test modes hich was shown in this test bund the follow list which i Data rate 1Mbps
bolarities were performed. I the EUT continuously work axis (X, Y & Z) and cor- manipulating interconnectin from 1m to 4m in both worst-case(Z axis) are show We have verified the constru- were carried out with the EU report and defined as follow Per-scan all kind of data ra- was worst case. Mode 802.11b 802.11g	During the test, each emission ng, investigated all operating usidered typical configuration g cables, rotating the turnta horizontal and vertical po vn in Test Results of the follow uction and function in typical of IT in transmitting operation, w s: ate in lowest channel, and for	n was maximized by: having modes, rotated about all 3 in to obtain worst position ble, varying antenna heigh plarizations. The emissions ving pages. operation. All the test modes thich was shown in this test bund the follow list which i Data rate 1Mbps 6Mbps
bolarities were performed. I he EUT continuously work axis (X, Y & Z) and com- manipulating interconnection from 1m to 4m in both worst-case(Z axis) are show We have verified the constru- were carried out with the EU report and defined as follow Per-scan all kind of data ra- was worst case. Mode 802.11b 802.11g 802.11n(HT20)	During the test, each emission ng, investigated all operating usidered typical configuration g cables, rotating the turnta horizontal and vertical po vn in Test Results of the follow uction and function in typical of IT in transmitting operation, w s: ate in lowest channel, and for	n was maximized by: having modes, rotated about all 3 in to obtain worst position ble, varying antenna heigh plarizations. The emissions ving pages. operation. All the test modes hich was shown in this test bund the follow list which i Data rate 1Mbps 6Mbps 6.5Mbps
bolarities were performed. I the EUT continuously work axis (X, Y & Z) and com- manipulating interconnection from 1m to 4m in both worst-case(Z axis) are show We have verified the constru- were carried out with the EU report and defined as follow Per-scan all kind of data ra- was worst case. Mode 802.11b 802.11g 802.11n(HT20) 802.11n(HT40)	During the test, each emission ng, investigated all operating usidered typical configuration g cables, rotating the turnta horizontal and vertical po vn in Test Results of the follow uction and function in typical of IT in transmitting operation, w s: ate in lowest channel, and for both the follow	n was maximized by: having g modes, rotated about all 3 n to obtain worst position ble, varying antenna heigh plarizations. The emissions ving pages. operation. All the test modes hich was shown in this test bund the follow list which i Data rate 1Mbps 6Mbps 6.5Mbps 13.5Mbps

3.2. Description of Support Units

TCT 通测检测 TCT 通测检测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1	1	1	
(xG)	UN		(° C)	$(\mathbf{X}\mathbf{G})$

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

•IC - Registration No.: 10668A

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

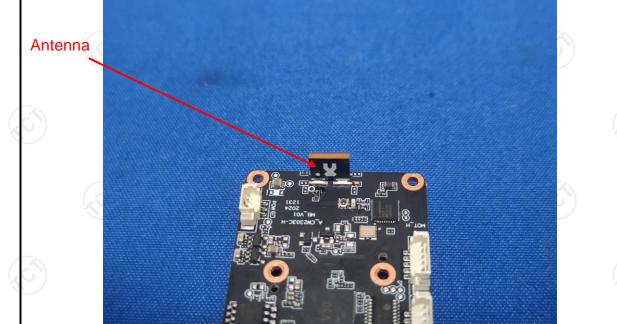
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WIFI antenna is Chip antenna which permanently attached, and the best case gain of the antenna is 1.03dBi.

5.2. Conducted Emission

5.2.1. Test Specification

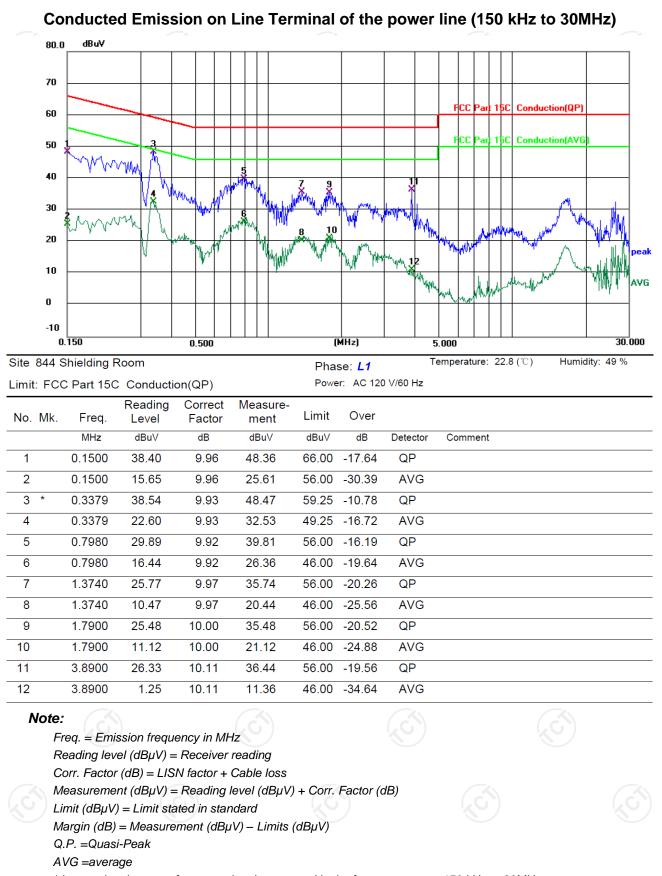
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2020				
Frequency Range:	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	e=auto		
	Frequency range	Limit (dBuV)		
	(MHz)	Quasi-peak	Average		
Limits:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	Reference	e Plane			
Test Setup: Test Mode:	40cm E.U.T AC power 80cm LISN Filter AC power E.U.T EMI Receiver ISN: Line Impedence Stabilization Network Test table height=0.8m				
Test Procedure:	 Transmitting Mode 1. The E.U.T is connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum emission, the relative positions of equipment and all of the interface cables must be changed according to the setup. 				
	conducted interferent emission, the relative	nce. In order to fin re positions of equ s must be chang	nd the maximum ipment and all o jed according to		

Page 10 of 107

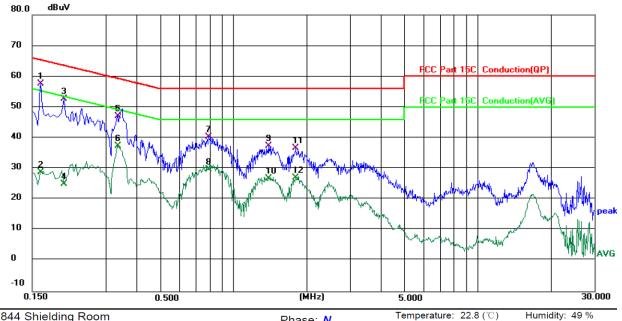
5.2.2. Test Instruments

TCT通测检测 TESTING CENTRE TECHNOLOGY

Cond	Conducted Emission Shielding Room Test Site (843)						
Equipment Manufacture		Model Serial Number		Calibration Due			
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025			
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 20, 2026			
Attenuator	N/A	10dB	164080	Jun. 26, 2025			
Line-5	тст	CE-05	/	Jun. 26, 2025			
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	1			



Page 11 of 107


5.2.3. Test data

TCT 通测检测 TCT 通测检测

Please refer to following diagram for individual

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room Phase: N

Limit	t: FCC	C Part 150	Conducti	on(QP)		Powe	er: AC 120	0 V/60 Hz	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBu∨	dBuV	dB	Detector	Comment
1	*	0.1620	47.78	9.94	57.72	65.36	-7.64	QP	
2		0.1620	18.98	9.94	28.92	55.36	-26.44	AVG	
3		0.2020	42.84	9.93	52.77	63.53	-10.76	QP	
4		0.2020	15.15	9.93	25.08	53.53	-28.45	AVG	
5		0.3339	37.21	9.93	47.14	59.35	-12.21	QP	
6		0.3339	27.47	9.93	37.40	49.35	-11.95	AVG	
7		0.7940	30.39	9.96	40.35	56.00	-15.65	QP	
8		0.7940	19.66	9.96	29.62	46.00	-16.38	AVG	
9		1.3938	27.39	10.00	37.39	56.00	-18.61	QP	
10		1.3938	16.90	10.00	26.90	46.00	-19.10	AVG	
11		1.8020	26.65	10.01	36.66	56.00	-19.34	QP	
12		1.8020	17.10	10.01	27.11	46.00	-18.89	AVG	

Note:

1.Freq. = Emission frequency in MHz

Reading level $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V) = Reading$ level $(dB\mu V) + Corr.$ Factor (dB)Limit $(dB\mu V) = Limit$ stated in standard Margin $(dB) = Measurement (dB\mu V) - Limits (dB\mu V)$ Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

2. Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20), 802.11ax(HE20), 802.11n(HT40), 802.11ax(HE40)), and the worst case Mode (Middle channel and 802.11n(HT40)) was submitted only.

5.3. Maximum Conducted (Average) Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 v05r02
Limit:	30dBm
Test Setup:	
Test Mode:	Spectrum Analyzer Eur Transmitting mode with modulation Image: Constraint of the second sec
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report.
Test Result:	PASS
(201)	$(\mathcal{A}\mathcal{G}^{*})$ $(\mathcal{A}\mathcal{G}^{*})$ $(\mathcal{A}\mathcal{G}^{*})$

5.3.2. Test Instruments

6	Equipment	Manufacturer	Model	Serial Number	Calibration Due
	Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
	Combiner Box	Ascentest	AT890-RFB		

Page 14 of 107

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Sec	ion 15.247 (a)(2)	
Test Method:	KDB 558074 D01 v	05r02		
Limit:	>500kHz			
Test Setup:				
	Spectrum Analyzer		EUT	
Test Mode:	Transmitting mode	with modulation	n	
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyze resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to ma an accurate measurement. The 6dB bandwidth m be greater than 500 kHz. Measure and record the results in the test report. 			
Test Result:	PASS	(\mathbf{c})		

5.4.2. Test Instruments

1.					
N	Equipment	Manufacturer	Model	Serial Number	Calibration Due
	Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
	Combiner Box	Ascentest	AT890-RFB	(c) 1	(SY

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074 D01 v05r02
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = RMS, Sweep time = auto couple. Employ trace averaging (RMS) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

	Equipment	Manufacturer	Model	Serial Number	Calibration Due
~	Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
~	Combiner Box	Ascentest	AT890-RFB		1 2

5.6. Conducted Band Edge and Spurious Emission Measurement

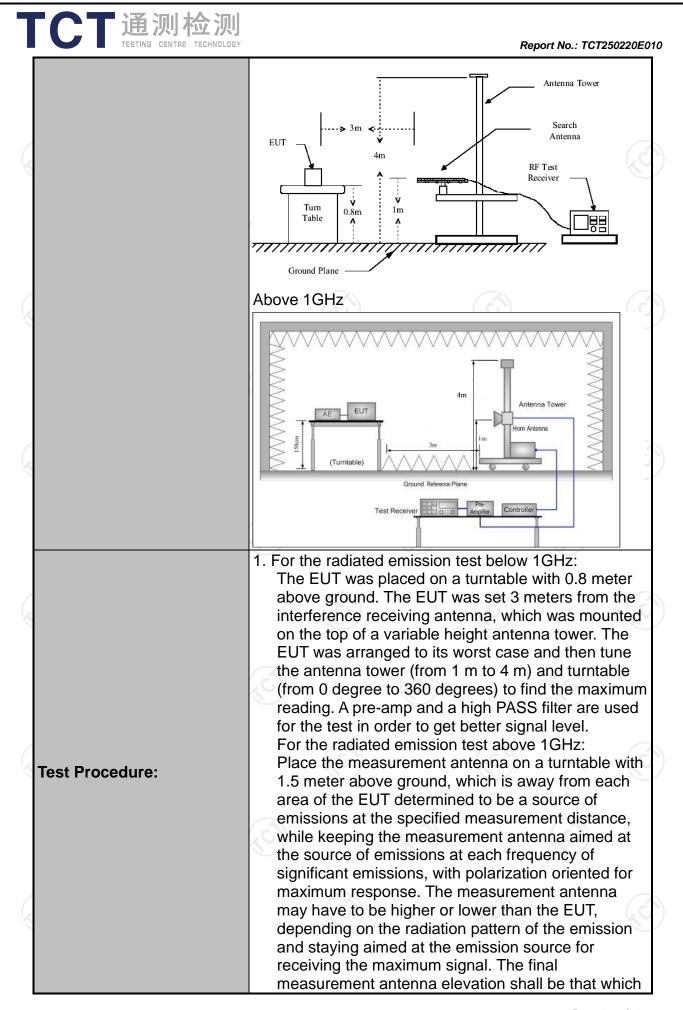
5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	Spectrum Analyzer
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report.
	against the limit line in the operating frequency band.

5.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	1

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



5.7.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

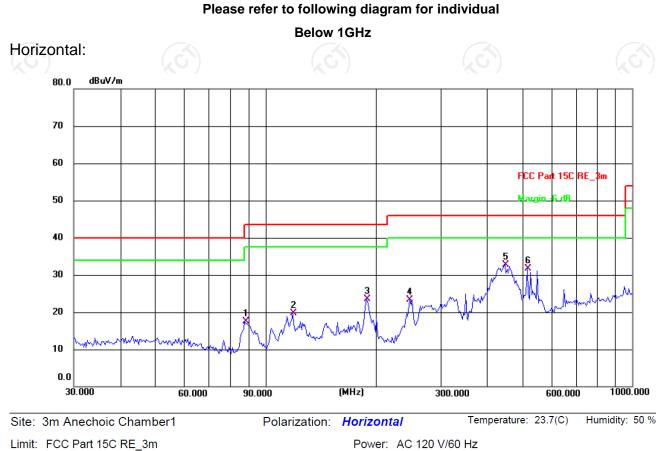
Test Requirement:	FCC Part15 C Section 15.209					
Test Method:	ANSI C63.10	0:2020				
Frequency Range:	9 kHz to 25 (9 kHz to 25 GHz				
Measurement Distance:	3 m		(\mathcal{G})		$\langle \mathcal{C} \rangle$	
Antenna Polarization:	Horizontal &	Vertical				
Operation mode:	Transmitting	mode wit	th modulat	ion	(
	Frequency	Detector	RBW	VBW	Remark	
Receiver Setup:	9kHz- 150kHz 150kHz-	Quasi-peal Quasi-peal		1kHz 30kHz	Quasi-peak Value Quasi-peak Value	
Receiver Setup:	30MHz 30MHz-1GHz	Quasi-peal	k 120KHz	300KHz	Quasi-peak Value	
		Peak	1MHz	3MHz	Peak Value	
	Above 1GHz	Peak	1MHz	10Hz	Average Value	
	Frequen		Field Stro (microvolts		Measurement Distance (meters)	
	0.009-0.4		2400/F(I		300	
	0.490-1.7		24000/F(KHz)		30	
	1.705-30 30-88		30 100		30	
	88-216		150		3	
Limit:	216-960		200		3	
	Above 960		500		3	
					6	
	Frequency		d Strength ovolts/meter)	Measure Distan (mete	ce Detector	
	About 101	_	500	3	Average	
	Above 1GHz	z (5000	3	Peak	
	For radiated	emission	s below 30)MHz		
	Di	stance = 3m			Computer	
	t	_(Pre -	Amplifier	
Test setup:	EUT 0.3m Turn table					
		Groun	d Plane	Ľ	teceiver	
	30MHz to 10	2H7				

Page 19 of 107

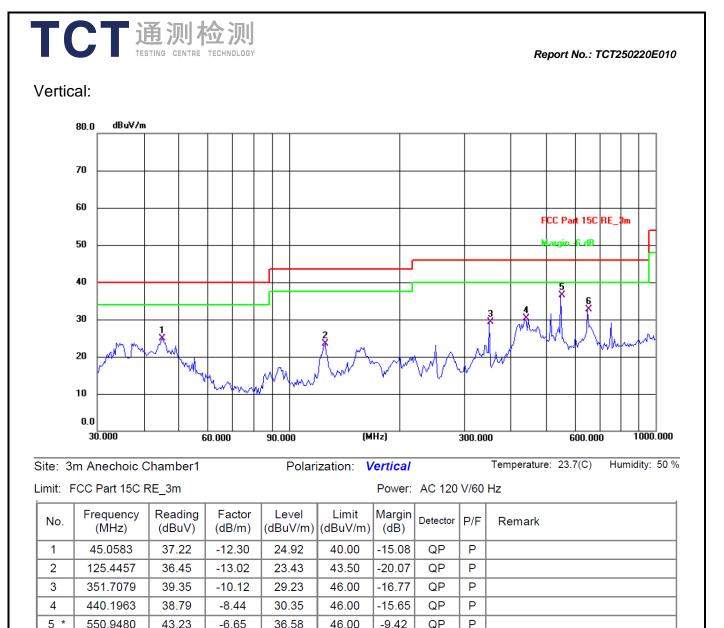
Page 20 of 107

TESTING CENTRE TECHNOLOGY	Report No.: TCT250220E010
	 maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when
	duty cycle is no less than 98 percent. VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test results:	PASS

Page 21 of 107


5.7.2. Test Instruments

	Radiated Em	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI7	100529	Jan. 20, 2026
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 20, 2026
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 20, 2026
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Jan. 22, 2026
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-M	1	Jun. 26, 2025
Coaxial cable	SKET	RE-03-L	1	Jun. 26, 2025
Coaxial cable	SKET	RE-04-D	1	Jun. 26, 2025
Coaxial cable	SKET	RE-04-M	KG)	Jun. 26, 2025
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025
Antenna Mast	Keleto	RE-AM	1	
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	



5.7.3. Test Data

1										
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
ſ	1	87.7246	34.17	-16.62	17.55	40.00	-22.45	QP	Ρ	
	2	118.6013	33.15	-13.54	19.61	43.50	-23.89	QP	Ρ	
	3	188.4125	37.53	-14.05	23.48	43.50	-20.02	QP	Ρ	
	4	247.6818	37.00	-13.62	23.38	46.00	-22.62	QP	Ρ	
	5 *	449.5558	40.95	-8.30	32.65	46.00	-13.35	QP	Ρ	
	6	517.2479	39.03	-7.37	31.66	46.00	-14.34	QP	Ρ	

Page 23 of 107

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than

46.00

the limit line per 15.31(o) was not reported 2. Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20), 802.11ax(HE20), 802.11n(HT40), 802.11ax(HE40)), and the worst case Mode (Middle channel and 802.11n(HT40)) was submitted only.

-13.22

QP

Ρ

3. Freq. = Emission frequency in MHz

36.79

651,9417

6

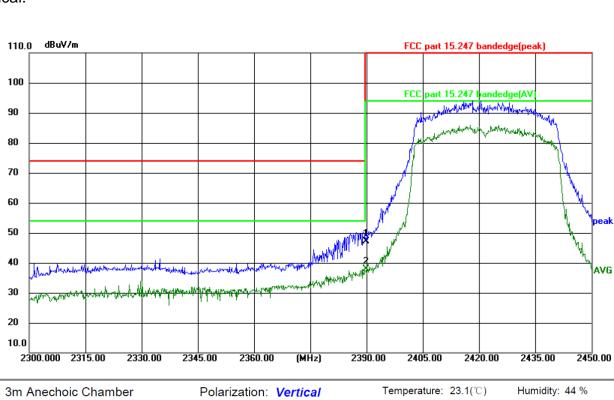
Measurement $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$ Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit $(dB\mu V/m) = Limit$ stated in standard Margin $(dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$

-4.01

* is meaning the worst frequency has been tested in the test frequency range.

32.78

Page 24 of 107



Test Result of Radiated Spurious at Band edges

Lowest channel 2422: Horizontal: 110.0 dBuV/m FCC part 15.247 bandedge(peak) 100 FCC part 15.247 bandedge(AV a the stronger light 90 80 70 60 50 AVG 4 MANUE WARAN MARKAN te mi and prototion in the way of the state 40 with m 30 20 10.0 2300.000 2315.00 2330.00 2345.00 2360.00 (MHz) 2390.00 2405.00 2420.00 2435.00 2450.00 Temperature: 23.1(℃) Humidity: 44 % Site: 3m Anechoic Chamber Polarization: Horizontal Limit: FCC part 15.247 bandedge(peak) Power:AC 120V/60Hz Reading Factor Limit Frequency Level Margin Detector P/F No. Remark (dBuV) (dB/m) (dBuV/m) (dBuV/m) (MHz) (dB) 2390.000 70.52 -16.70 53.82 74.00 -20.18 Ρ 1 peak 2390.000 58.01 -16.70 54.00 -12.69 Ρ 2 * 41.31 AVG

Page 25 of 107

50 WWWW 40 Labert 1. التعادية 30 M 20 10.0 2300.000 2315.00 2330.00 2345.00 2360.00 (MHz) 2390.00 2405.00 2420.00 2435.00 Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.1(℃) Power:AC 120V/60Hz Note: Measurements were conducted in all two channels (high, low) and all modulation (802.11b, 802.11g, was submitted only.

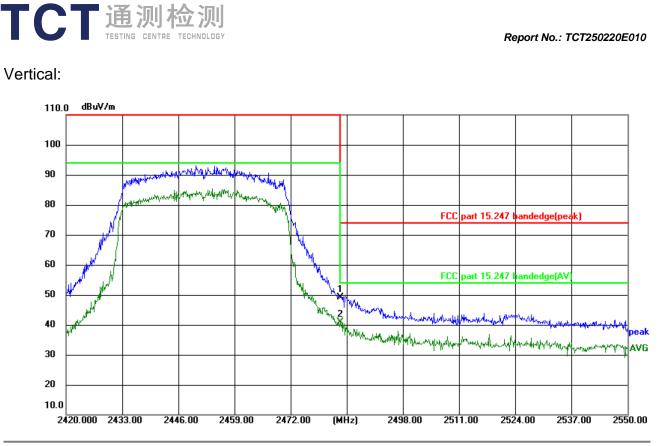
Limit: FCC part 15.247 bandedge(peak)

-									
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2390.000	63.94	-16.70	47.24	74.00	-26.76	peak	Ρ	
2 *	2390.000	54.59	-16.70	37.89	54.00	-16.11	AVG	Ρ	

802.11n(HT20), 802.11ax(HE20), 802.11n(HT40), 802.11ax(HE40)), and the worst case Mode 802.11ax(HE40))

Page 26 of 107

Vertical:


T(

CT 通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT250220E010

110	.0 dBuV/m		1									_
100	ı — — —											
90		www.comportent.compatible	terror Manala	had a server of the server at the server of the server at the server of								
80	<u>/</u>	por den den agener	address - Caramital	and the work								
70					With Mark			FCC	part 15.247)andedge(pea	sk)	
60	What What				Mr. Mr.	War it	_		part 15.247			
50	willow purported				Www.welland	MM WALL	When the		, part 15.247 1	andedgelav		
40						the state of the s	HALL.	moule	remained an all all	mentionation	or mighter	who
							'N/U	Muserman	muner worklynne	www.cl ^m iftywww.w	Mary market	_nNA
30												<u>an</u>
20 10.(2 e: 3m it: FC	2 420.000 24 Anechoic CC part 15.3	Chamber 247 bande	dge(peak	Polarizat)	ion: <i>Horiz</i> F	ower:A	2498.00 C 120	0 25 Tempera	11.00 252 ature: 23.1(%	4.00 253		2550
20 10.(2 e: 3m it: FC o. F	2420.000 24 Anechoic	Chamber		Polarizat) Level	ion: <i>Horiz</i>	ontal ower:A Margin	2498.00 C 120 ¹ Detecto	0 25 Tempera V/60Hz or P/F	11.00 252 ature: 23.1(%	4.00 253	37.00 2	2550
20 10.(2 : 3m it: FC 5. F	Anechoic CC part 15.: requency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak Factor (dB/m)	Polarizat) Level (dBuV/m)	ion: <i>Horiz</i> F Limit (dBuV/m)	ontal ower:A Margin (dB)	2498.00 C 120 ¹ Detecto	0 25 Tempera V/60Hz or P/F	11.00 252 ature: 23.1(*C	4.00 253	37.00 2	2550
20 10.0 2 : 3m it: FC 0. F	Anechoic C part 15 requency (MHz) 2483.500	Chamber 247 bande Reading (dBuV) 77.13	dge(peak Factor (dB/m) -16.65	Polarizat) Level (dBuV/m) 60.48	ion: Horiz F Limit (dBuV/m) 74.00	ontal ower:A Margin (dB) -13.52	2498.00 C 120 ¹ Detecto peak	0 25 Tempera V/60Hz or P/F	11.00 252 ature: 23.1(*C	4.00 253	37.00 2	 2550 %
20 10.0 2 :: 3m it: FC 0. F	Anechoic C part 15 requency (MHz) 2483.500	Chamber 247 bande Reading (dBuV) 77.13	dge(peak Factor (dB/m) -16.65	Polarizat) Level (dBuV/m) 60.48	ion: <i>Horiz</i> F Limit (dBuV/m) 74.00	ontal ower:A Margin (dB) -13.52	2498.00 C 120 ¹ Detecto peak	0 25 Tempera V/60Hz or P/F	11.00 252 ature: 23.1(*C	4.00 253	37.00 2	 2550. %
20 10.0 2 :: 3m it: FC 0. F	Anechoic C part 15 requency (MHz) 2483.500	Chamber 247 bande Reading (dBuV) 77.13	dge(peak Factor (dB/m) -16.65	Polarizat) Level (dBuV/m) 60.48	ion: <i>Horiz</i> F Limit (dBuV/m) 74.00	ontal ower:A Margin (dB) -13.52	2498.00 C 120 ¹ Detecto peak	0 25 Tempera V/60Hz or P/F	11.00 252 ature: 23.1(*C	4.00 253	37.00 2	2550.
20 10.0 2 :: 3m it: FC 0. F	Anechoic C part 15 requency (MHz) 2483.500	Chamber 247 bande Reading (dBuV) 77.13	dge(peak Factor (dB/m) -16.65	Polarizat) Level (dBuV/m) 60.48	ion: <i>Horiz</i> F Limit (dBuV/m) 74.00	ontal ower:A Margin (dB) -13.52	2498.00 C 120 ¹ Detecto peak	0 25 Tempera V/60Hz or P/F	11.00 252 ature: 23.1(*C	4.00 253	37.00 2	 2550 %
20 10.0 2 : 3m it: FC 0. F	Anechoic C part 15 requency (MHz) 2483.500	Chamber 247 bande Reading (dBuV) 77.13	dge(peak Factor (dB/m) -16.65	Polarizat) Level (dBuV/m) 60.48	ion: <i>Horiz</i> F Limit (dBuV/m) 74.00	ontal ower:A Margin (dB) -13.52	2498.00 C 120 ¹ Detecto peak	0 25 Tempera V/60Hz or P/F	11.00 252 ature: 23.1(*C	4.00 253	37.00 2	 2550. %

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.1(°C) Humidity: 44 %

Limit: FCC part 15.247 bandedge(peak)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2483.500	65.74	-16.65	49.09	74.00	-24.91	peak	Ρ	
2 *	2483.500	57.55	-16.65	40.90	54.00	-13.10	AVG	Ρ	

Power:AC 120V/60Hz

Note:

- 1. Peak Final Emission Level=Peak Reading + Correction Factor;
- 2. Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 3. Measurements were conducted in all modulation(802.11b, 802.11g, 802.11n(HT20), 802.11ax(HE20), 802.11n(HT40), 802.11ax(HE40)), and the worst case Mode 802.11ax(HE40)) was submitted only.

Page 28 of 107

Above 1GHz Modulation Type: 802.11b

			L	ow channe	I: 2412 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	54.25		-9.48	44.77		74	54	-9.23
7236	Н	45.69		-1.34	44.35		74	54	-9.65
	Н								
4824	V	54.44		-9.48	44.96	~	74	54	-9.04
7236	V	46.05		-1.34	44.71	Ú	74	54	-9.29
	V				2				

			Mi	iddle chann	el: 2437 MI	Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	55.39		-9.37	46.02		74	54	-7.98
7311	Н	46.58		-1.17	45.41		74	54	-8.59
	H				(
	KO)		KO.)	X			KO /	
4874	V	53.01		-9.37	43.64	·	74	54	-10.36
7311	V	46.65		-1.17	45.48		74	54	-8.52
	V								
$\left(c \right)$		(a)		(.0					

			H	ligh channe	el: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	Н	53.67		-9.26	44.41		74	54	-9.59
7386	H	45.45		-1.01	44.44		74	54	-9.56
	Η								
4924	V	55.02		-9.26	45.76		74	54	-8.24
7386	V	46.67		-1.01	45.66		74	54	-8.34
	V			0	J		<u></u>		

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.

	TESTI	NG CENTRE TEC	HNOLOGY				Repo	ort No.: TCT2	50220E010
			Μ	odulation T	ype: 802.11	lg			
			L	ow channe	I: 2412 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	55.14		-9.48	45.66		74	54	-8.34
7236	Н	46.69		-1.34	45.35		74	54	-8.65
	Н			· ()	· · · ·		<u> </u>		
4824	V	55.54		-9.48	46.06		74	54	-7.94
7236	V	47.98	(&	-1.34	46.64	×	74	54	-7.36
	V			•)		U ')		(2G)	

			Mi	ddle chann	el: 2437 Mł	Ηz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	54.25		-9.37	44.88		74	54	-9.12
7311	Н	47.41		-1.17	46.24		74	54	-7.76
	Н								
				2	(
4874	V	54.22		-9.37	44.85	<u> </u>	74	54	-9.15
7311	V	45.86		-1.17	44.69		74	54	-9.31
	V								

(\mathbf{G})		(F	ligh channe	el: 2462 MH	Z	(\mathbf{G})		
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H-a	53.74		-9.26	44.48		74	54	-9.52
7386	H	46.93		-1.01	45.92	<u> </u>	74	54	-8.08
	H			/					
4924	V	55.60		-9.26	46.34		74	54	-7.66
7386	V	45.24		-1.01	44.23		74	54	-9.77
$(- \Theta)$	V			(20			\mathcal{S}^{2}		()
ALC: C.									

TCT通测检测

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

	TESTI	NG CENTRE TEC	HNOLOGY				Rep	ort No.: TCT2	50220E010
			Modu	lation Type:	802.11n (l	HT20)			
			L	ow channe.	l: 2412 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	54.11		-9.48	44.63		74	54	-9.37
7236	Н	46.02		-1.34	44.68		74	54	-9.32
	Н			()	· · · ·				
4824	V	54.43		-9.48	44.95		74	54	-9.05
7236	V	46.87	(k	-1.34	45.53	×	74	54	-8.47
	V		, C	°)		G`)		(2G)	

Middle channel: 2437 MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)			
4874	Н	54.63		-9.37	45.26		74	54	-8.74			
7311	Н	46.02		-1.17	44.85		74	54	-9.15			
	Н											
				2	(
4874	V	52.69		-9.37	43.32		74	54	-10.68			
7311	V	46.52		-1.17	45.35	:	74	54	-8.65			
	V											

(.c.)		(6)) F	ligh channe	el: 2462 MH	z	(\mathbf{G})		(\mathbf{G})
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H-a	54.11		-9.26	44.85		74	54	-9.15
7386	H	46.04		-1.01	45.03	<u> </u>	74	54	-8.97
	Н			/	🤇	<u> </u>			
4924	V	53.14		-9.26	43.88		74	54	-10.12
7386	V	45.36		-1.01	44.35		74	54	-9.65
(2 0)	V	ί ν ς`		(20	5)		<u> </u>		(
Mada			7						

TCT通测检测

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

TC	T	的加枪					Repo	ort No.: TCT2	50220E010
			Modul	ation Type:	802.11ax (HE20)			
			L	ow channe	I: 2412 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	55.01		-9.48	45.53		74	54	-8.47
7236	Н	45.32		-1.34	43.98		74	54	-10.02
	Н			()	· · · ·		<u> </u>		
4824	V	53.94		-9.48	44.46		74	54	-9.54
7236	V	46.60	6	-1.34	45.26	×	74	54	-8.74
	V)	(<u>()</u>			

	Middle channel: 2437 MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
4874	Н	54.23		-9.37	44.86		74	54	-9.14				
7311	Н	45.08		-1.17	43.91		74	54	-10.09				
	Н												
				6	(
4874	V	53.33		-9.37	43.96	<u> </u>	74	54	-10.04				
7311	V	45.96		-1.17	44.79		74	54	-9.21				
	V												

(\mathbf{c})		()	F	ligh channe	el: 2462 MH	Z	(\mathbf{c})		(\mathbf{G})
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H-	54.47		-9.26	45.21		74	54	-8.79
7386	H	45.02		-1.01	44.01	<u> </u>	74	54	-9.99
	Н			/	<	<u> </u>			
4924	V	55.35		-9.26	46.09		74	54	-7.91
7386	V	46.16		-1.01	45.15		74	54	-8.85
	V	C T		(20	5)		\mathcal{S}		(
Mada			7						

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

TC	TEST	刻检 NG CENTRE TEC					Repo	ort No.: TCT25	50220E010
			Modu	ation Type:	: 802.11n (l	HT40)			
			Ĺ	ow channe	I: 2422 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4844	Н	54.02		-9.43	44.59		74	54	-9.41
7266	Н	45.36		-1.28	44.08		74	54	-9.92
	Н			())				Y
4824	V	54.54		-9.43	45.11		74	54	-8.89
7236	N.	45.19	()	-1.28	43.91		74	54	-10.09
	V)	(G`)			

	Middle channel: 2437 MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
4874	Н	54.20		-9.37	44.83		74	54	-9.17				
7311	Н	46.01		-1.17	44.84		74	54	-9.16				
	Н												
				6	(
4874	V	54.22		-9.37	44.85		74	54	-9.15				
7311	V	45.74	()	-1.17	44.57		74	54	-9.43				
	V												

(\mathbf{G})		() F	ligh channe	el: 2452 MH	z	(\mathbf{G})		(\mathbf{G})
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4904	H-	54.55		-9.30	45.25		74	54	-8.75
7356	H	45.16		-1.08	44.08	<u> </u>	74	54	-9.92
	H			/	(<u> </u>			
4904	V	55.69		-9.30	46.39		74	54	-7.61
7356	V	45.40		-1.08	44.32		74	54	-9.68
	V	C S		(, ()		$\sim 0^{2}$		
			/						

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

TC	T	的加检					Repo	ort No.: TCT2	50220E010
			Modul	ation Type:	802.11ax (HE40)			
			L	ow channe	I: 2422 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4844	Н	55.11		-9.43	45.68		74	54	-8.32
7266	Н	45.05		-1.28	43.77		74	54	-10.23
	Н			()	J				
4824	V	54.36		-9.43	44.93		74	54	-9.07
7236	N	46.94	(k	-1.28	45.66	×	74	54	-8.34
	V)	(<u> </u>			

	Middle channel: 2437 MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
4874	Н	54.02		-9.37	44.65		74	54	-9.35				
7311	Н	45.35		-1.17	44.18		74	54	-9.82				
	Н												
				2	(
4874	V	54.58		-9.37	45.21		74	54	-8.79				
7311	V	45.40		-1.17	44.23		74	54	-9.77				
	V												

(\mathbf{c})		()	F	ligh channe	el: 2452 MH	z	(\mathbf{c})		
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4904	H-	54.66		-9.30	45.36		74	54	-8.64
7356	H	45.37		-1.08	44.29	<u> </u>	74	54	-9.71
	Н			/	<	<u> </u>			
4904	V	53.98		-9.30	44.68		74	54	-9.32
7356	V	45.10		-1.08	44.02		74	54	-9.98
	V	((, (· · · ·		\mathcal{S}^{2}		
Mada			7						

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Appendix A: Test Result of Conducted Test

		Duty Cycle						
Con	dition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)			
N۱	/NT	b	2412	99.40	0			
N١	/NT	b	2437	99.90	0			
N١	/NT	b	2462	99.50	0,0)			
N١	/NT	g	2412	99.50	0			
N١	/NT	g	2437	99.90	0			
N١	/NT	g	2462	99.00	0			
N١	/NT	n20	2412	98.70	(<u>,</u> G) 0			
N١	/NT	n20	2437	98.20	0			
N١	/NT	n20	2462	98.30	0			
N١	/NT	n40	2422	97.04	0.13			
N١	/NT	n40	2437	96.96	0.13			
N١	/NT	n40	2452	97.82	0.10			
N١	/NT	ax20	2412	95.88	0.18			
N١	/NT	ax20	2437	96.65	0.15			
N\	/NT	ax20	2462	95.94	0.18			
N١	/NT	ax40	2422	97.12	0.13			
N١	/NT	ax40	2437	96.11	0.17			
N١	/NT	ax40	2452	97.19	0.12			

10 dB/di Log**√**

10 11

Keysight Spectrum Analyzer - Swept SA

Center Freq 2.412000000 GHz

Ref Offset 2.22 dB Ref 30.00 dBm

 \triangle^3

Center 2.412000000 GHz Res BW 8 MHz #VBW 8.0 MHz* N 1 t N 1 t N 1 t 11.28 dBm 11.55 dBm 9.30 dBm 9.400 ms 9.600 ms 21.80 ms

Test Graphs Duty Cycle NVNT b 2412MHz

PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 40 dB

ALIGN AUTO Avg Type: RMS

Duty Cycle NVNT b 2437MHz

Ref Offset 2 B/div Ref 30.00	2.31 dB I dBm								
								Mkr1 12	50.00 m 2.34 dBr
				↓ 1					
)						ľ			
ter 2.437000000 BW 8 MHz	GHZ	#VB\	N 8.0 MH2	Z*			Sweep	100.0 ms	Span 0 F 5 (1001 pt
NODE TRE SCL	× 50.00 n	r ns 12.34		NCTION	FUNCTION WI	TH	FU	INCTION VALUE	
					ST	ATUS			•

12:51:17 PM Feb 25, 2025 TRACE 1 2 3 4 5 6 TYPE DET ANNNN

Mkr1 9.400 ms 11.28 dBm

Span 0 Hz Sweep 100.0 ms (1001 pts)

Page 36 of 107

Center 2.462000000 GHz Res BW 8 MHz Span 0 Hz Sweep 100.0 ms (1001 pts) #VBW 8.0 MHz* 10.96 dBm 11.91 dBm 7.97 dBm 4.500 ms 4.700 ms 16.90 ms 234 N 1 t 1 t Duty Cycle NVNT g 2412MHz Keysight Spectrum Analyzer - Swept SA Feb 25, 2. 01:12:32 PM Feb 2 Avg Type: RMS Center Freg 2.412000000 GHz Trig: Free Run #Atten: 40 dB TYP PNO: Fast IFGain:Low Mkr1 10.50 ms 7.87 dBm Ref Offset 2.22 dB Ref 30.00 dBm 10 dB/div Log**√** ∕/3 ľ Center 2.412000000 GHz Res BW 8 MHz Span 0 Hz Sweep 100.0 ms (1001 pts) #VBW 8.0 MHz* FUNCTION WIDTH TION 1 t 1 t 1 t 10.50 ms 10.70 ms 21.50 ms 7.87 dBm 7.42 dBm 10.01 dBm 10 11 STATUS

Duty Cycle NVNT b 2462MHz

Trig: Free Run #Atten: 40 dB

PNO: Fast ↔→ IFGain:Low ALIGN

AVg Type: RMS

01:04:20 PM Feb 25, TRACE 2 3

TYPE DET

Mkr1 4.500 ms 10.96 dBm

TCT 通测检测 TESTING CENTRE TECHNOLOGY

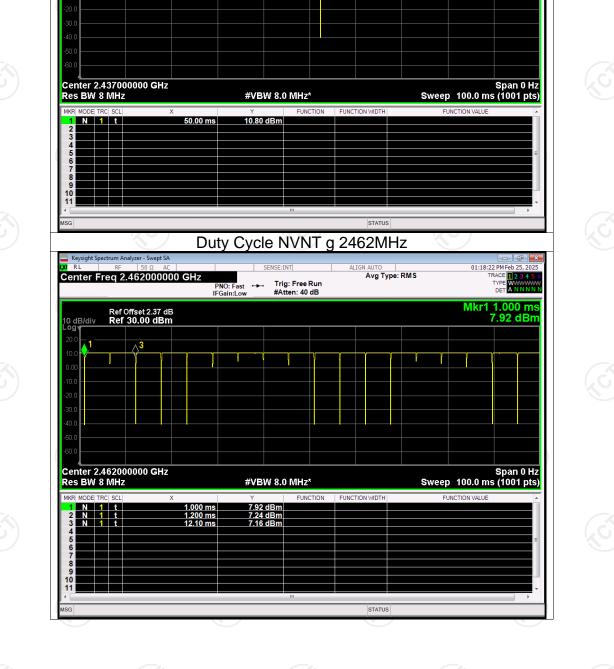
Center Freg 2.462000000 GHz

Ref Offset 2.37 dB Ref 30.00 dBm

🔤 Keysight Sp

KI RL

10 d Log


X

Ś

Page 37 of 107

Duty Cycle NVNT g 2437MHz

Trig: Free Run #Atten: 40 dB

PNO: Fast ↔→ IFGain:Low AVg Type: RMS

TCT通测检测 TESTING CENTRE TECHNOLOGY

Keysight Spe

Center Freg 2.437000000 GHz

Ref Offset 2.31 dB Ref 30.00 dBm

KI RL

Report No.: TCT250220E010

Page 38 of 107

01:15:57 PM Feb 25, TRACE 1 2 3

TYPE

Mkr1 50.00 ms 10.80 dBm

Center 2.412000000 GHz Res BW 8 MHz Span 0 Hz Sweep 100.0 ms (1001 pts) #VBW 8.0 MHz* 2.21 dBm 6.46 dBm 3.11 dBm 4.700 ms 4.900 ms 9.900 ms Duty Cycle NVNT n20 2437MHz Keysight Spectrum Analyzer - Swept SA 01:30:36 PM Feb 2 Avg Type: RMS Center Freg 2.437000000 GHz 12345 WWWWWWWW Trig: Free Run #Atten: 40 dB TYP PNO: Fast IFGain:Low Mkr1 7.000 ms 7.97 dBm Ref Offset 2.31 dB Ref 30.00 dBm \wedge^3

Duty Cycle NVNT n20 2412MHz

Trig: Free Run #Atten: 40 dB

PNO: Fast ↔→ IFGain:Low

AVg Type: RMS

TCT通测检测 TESTING CENTRE TECHNOLOGY

Keysight Spe

Center Freg 2.412000000 GHz

2

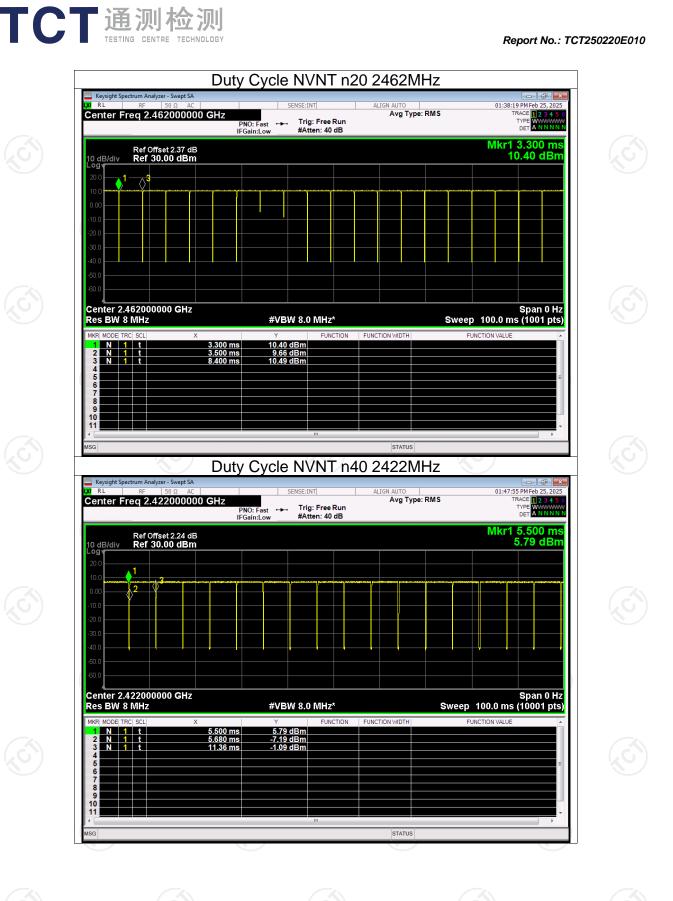
Ref Offset 2.22 dB Ref 30.00 dBm

KI RL

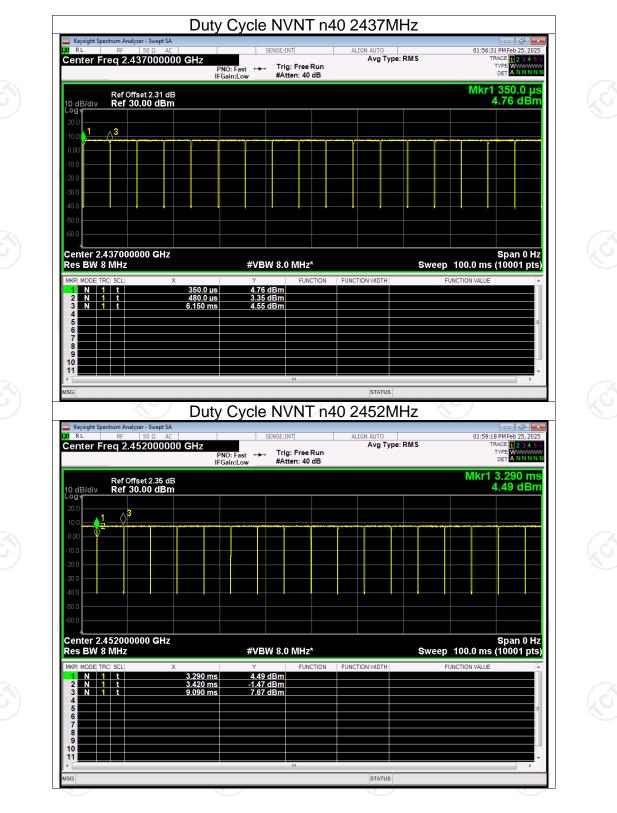
234 N 1 t 1 t

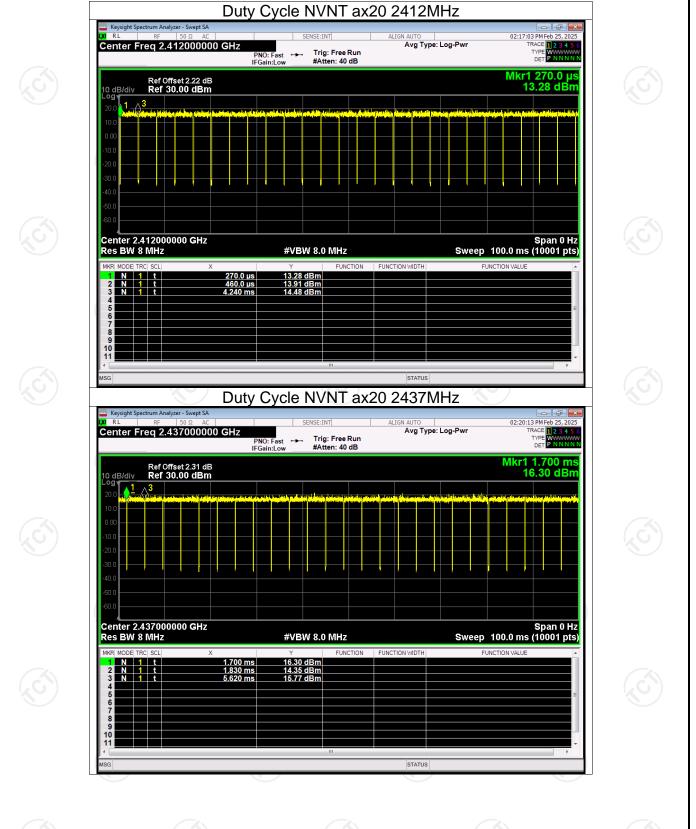
10 dB/di∖ Log**√**

1


Center 2.437000000 GHz Res BW 8 MHz Span 0 Hz Sweep 100.0 ms (1001 pts) #VBW 8.0 MHz* FUNCTION WIDTH TION 1 t 1 t 1 t 7.000 ms 7.200 ms 12.10 ms 7.97 dBm 9.60 dBm 9.78 dBm 10 11 STATUS

Report No.: TCT250220E010


01:24:47 PM Feb 25, TRACE 1 2 3 TYPE WWW DET A NN


Mkr1 4.700 ms 2.21 dBm

Page 39 of 107

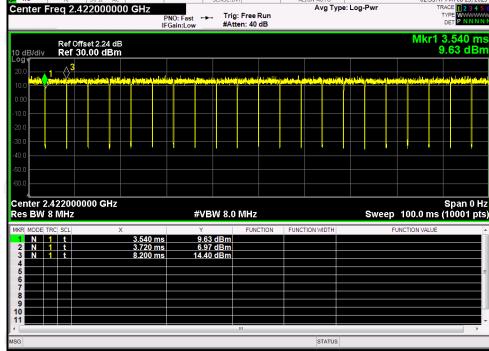
Report No.: TCT250220E010

Page 42 of 107

KI RL 02:27:02 PM Feb 25, 20 TRACE 1 2 3 4 Avg Type: Log-Pwr Center Freg 2.462000000 GHz Trig: Free Run #Atten: 36 dB TYP DE PNO: Fast ↔→ IFGain:Low Mkr1 1.180 ms 16.77 dBm Ref Offset 2.37 dB Ref 25.00 dBm 10 dB/div R Center 2.462000000 GHz Res BW 8 MHz Span 0 Hz Sweep 100.0 ms (10001 pts) #VBW 8.0 MHz 1.180 ms 1.310 ms 5.100 ms 16.77 dBm 15.61 dBm 15.54 dBm N 1 t N 1 t 2 3 4

Duty Cycle NVNT ax20 2462MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY


Keysight Sp

Keysight Spectrum Analyzer - Swept SA

Center Freg 2.422000000 GHz

Duty Cycle NVNT ax40 2422MHz

Avg Type: Log-Pwr

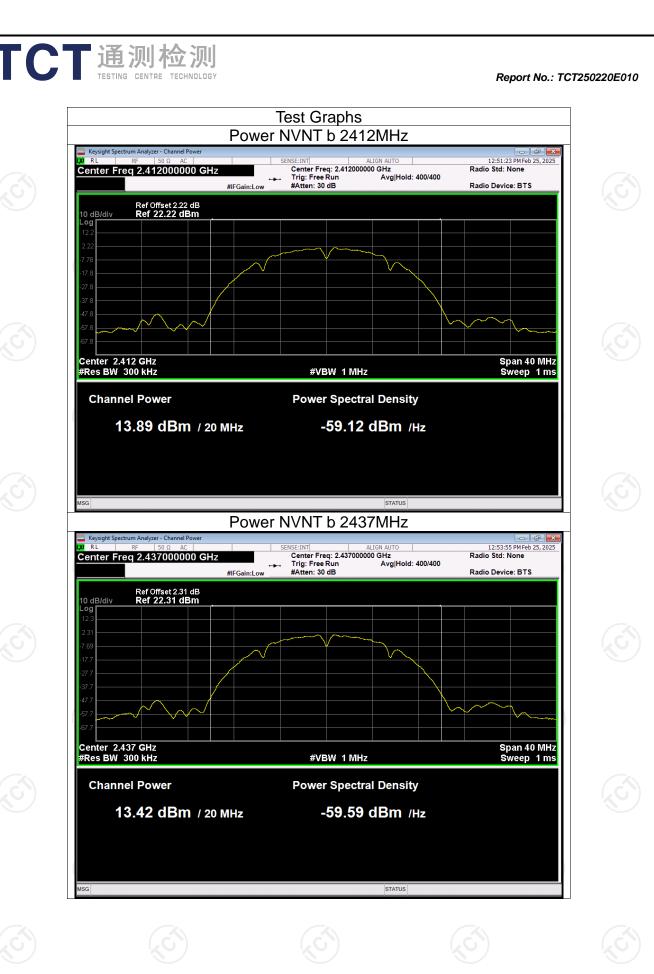
Report No.: TCT250220E010

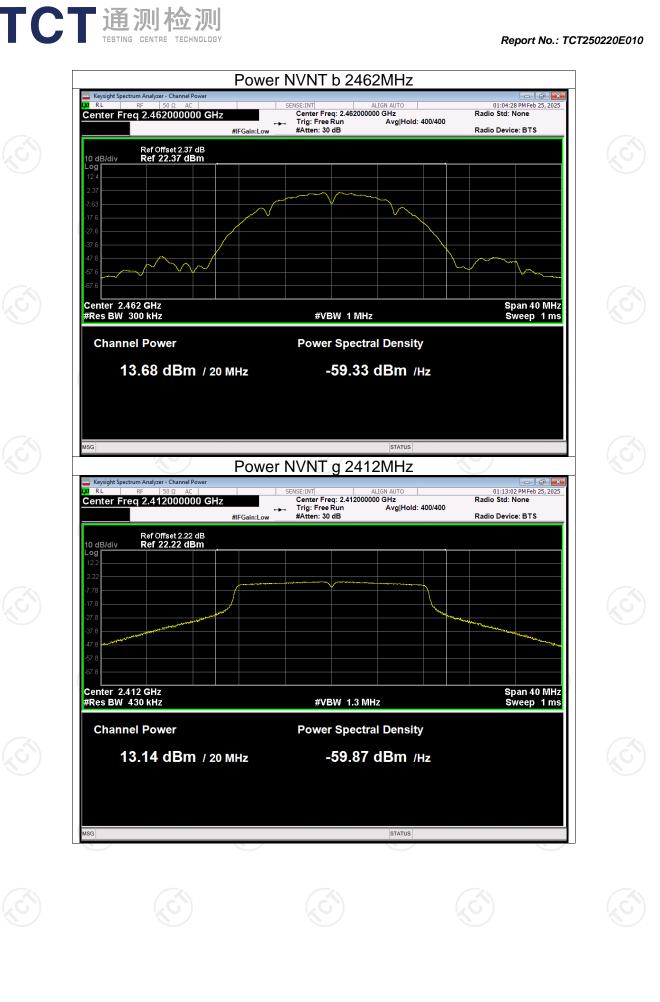
02:33:47 PM Feb 2

Duty Cycle NVNT ax40 2437MHz 🔤 Keysight Sp KI RL 02:35:16 PM Feb 25, TRACE 1 2 3 Avg Type: Log-Pwr Center Freg 2.437000000 GHz Trig: Free Run #Atten: 36 dB TYP DE PNO: Fast ↔→ IFGain:Low Mkr1 2.120 ms 10.62 dBm Ref Offset 2.31 dB Ref 25.00 dBm . ∧3

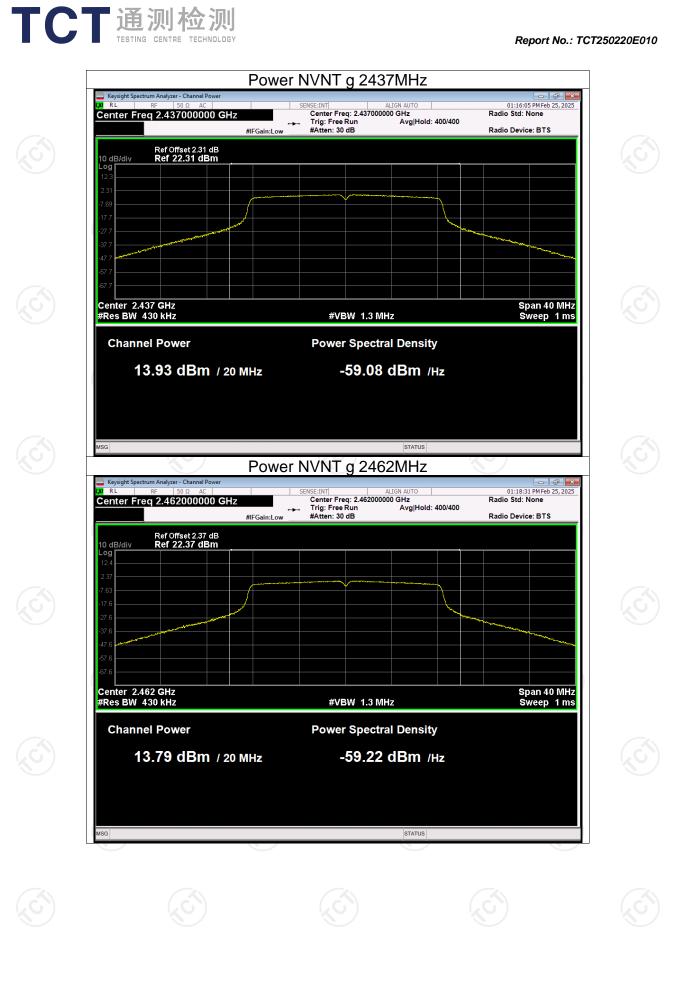
TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 44 of 107

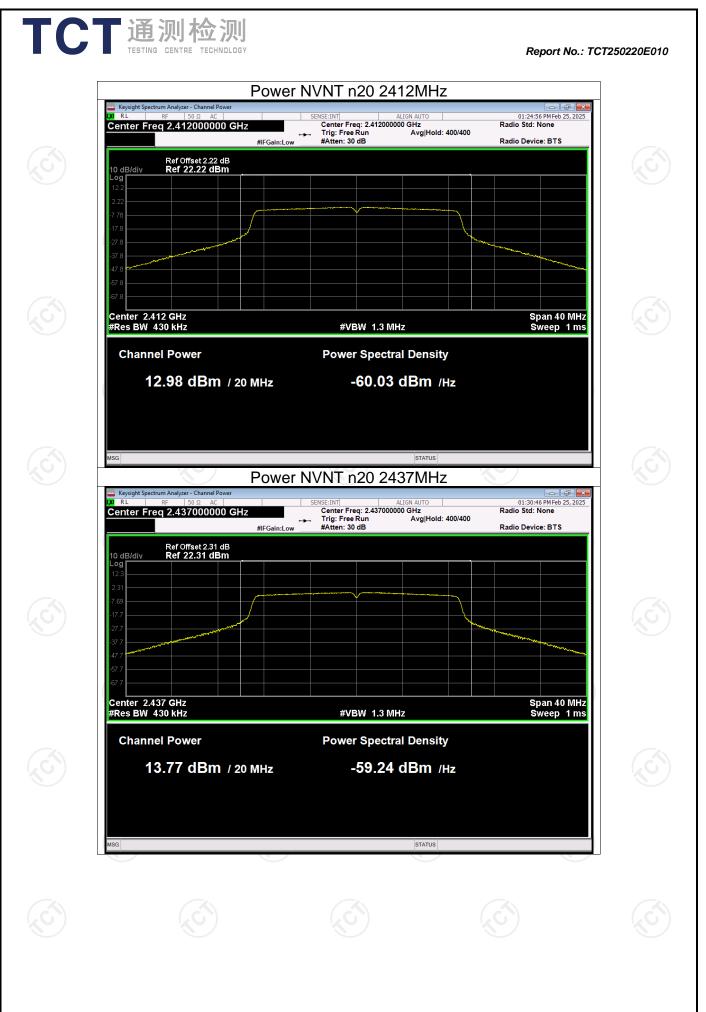

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	13.89	0	13.89	30	Pass
NVNT	b	2437	13.42	0	13.42	30	Pass
NVNT	b	2462	13.68	0	13.68	30	Pass
NVNT	g	2412	13.14	0	13.14	30	Pass
NVNT	g	2437	13.93	0	13.93	30	Pass
NVNT	g	2462	13.79	0	13.79	30	Pass
NVNT	n20	2412	12.98	0	12.98	30	Pass
NVNT	n20	2437	13.77	0	13.77	30	Pass
NVNT	n20	2462	14.15	0	14.15	30	Pass
NVNT	n40	2422	13.40	0.13	13.53	30	Pass
NVNT	n40	2437	14.26	0.13	14.39	30	Pass
NVNT	n40	2452	14.07	0.10	14.17	30	Pass
NVNT	ax20	2412	11.99	0.18	12.17	30	Pass
NVNT	ax20	2437	12.71	0.15	12.86	30	Pass
NVNT	ax20	2462	13.03	0.18	13.21	30	Pass
NVNT	ax40	2422	11.98	0.13	12.11	30	Pass
NVNT	ax40	2437	12.79	0.17	12.96	30	Pass
NVNT	ax40	2452	13.07	0.12	13.19	30	Pass

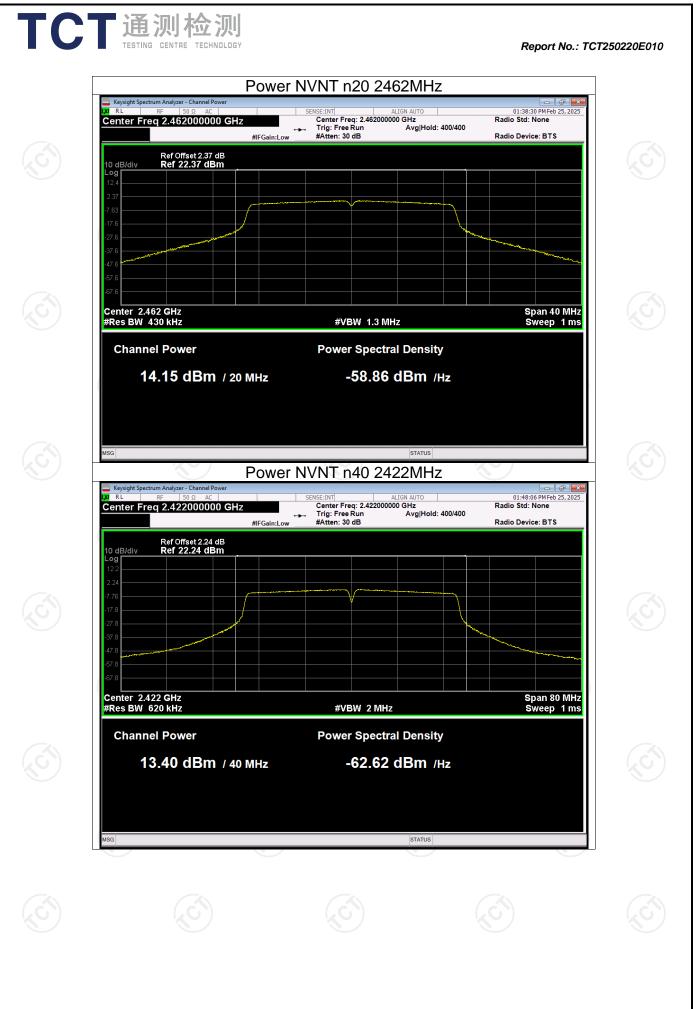

Maximum Conducted Output Power

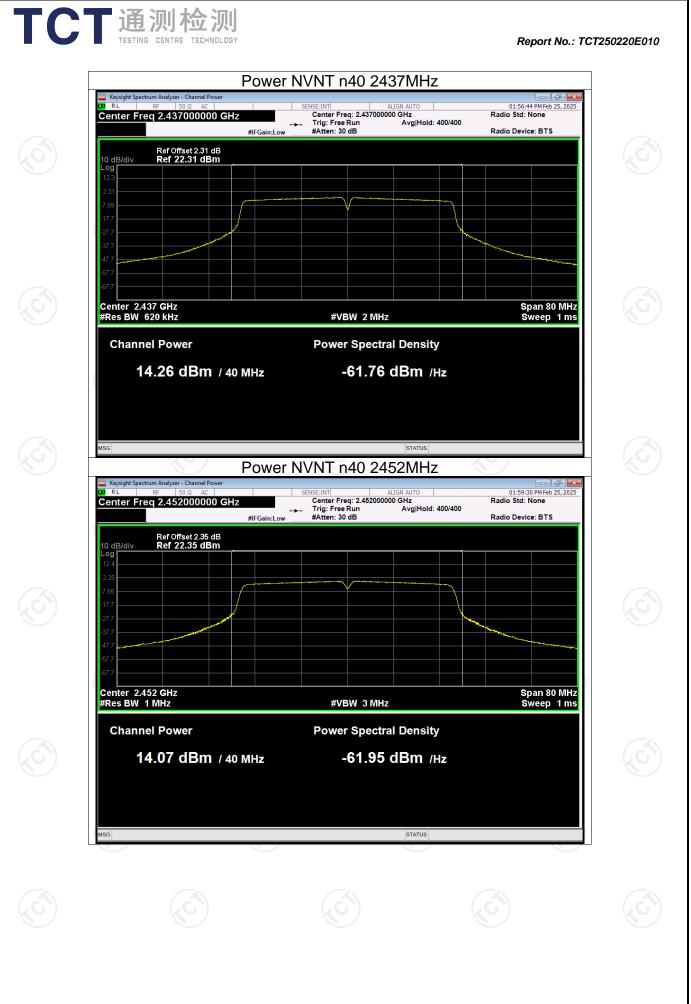
TCT通测检测 TESTING CENTRE TECHNOLOGY

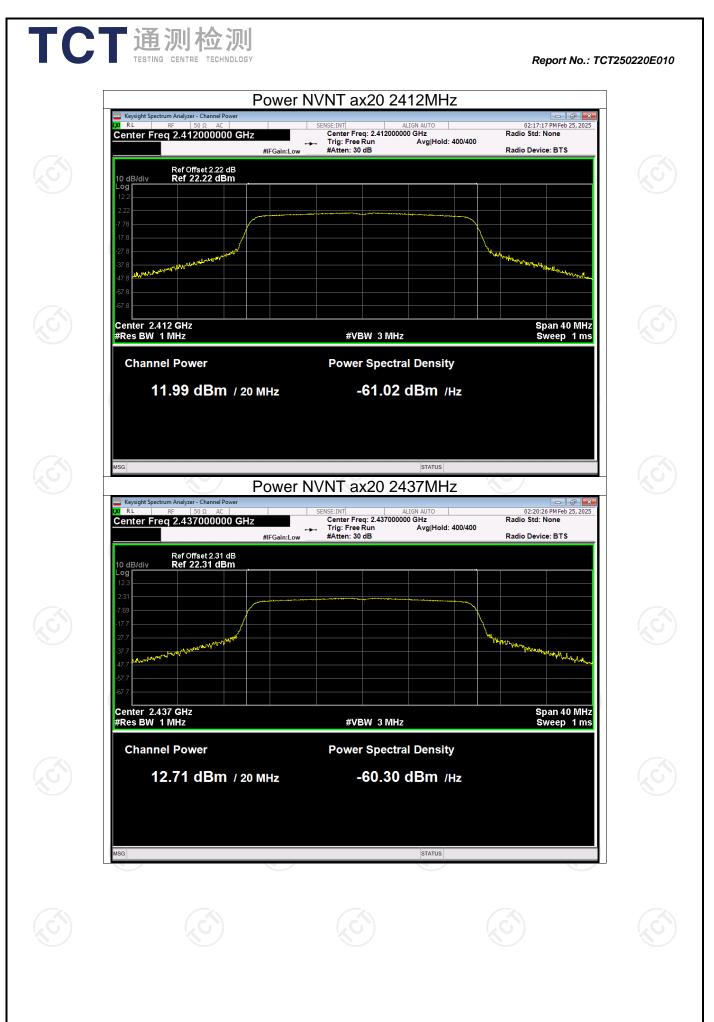


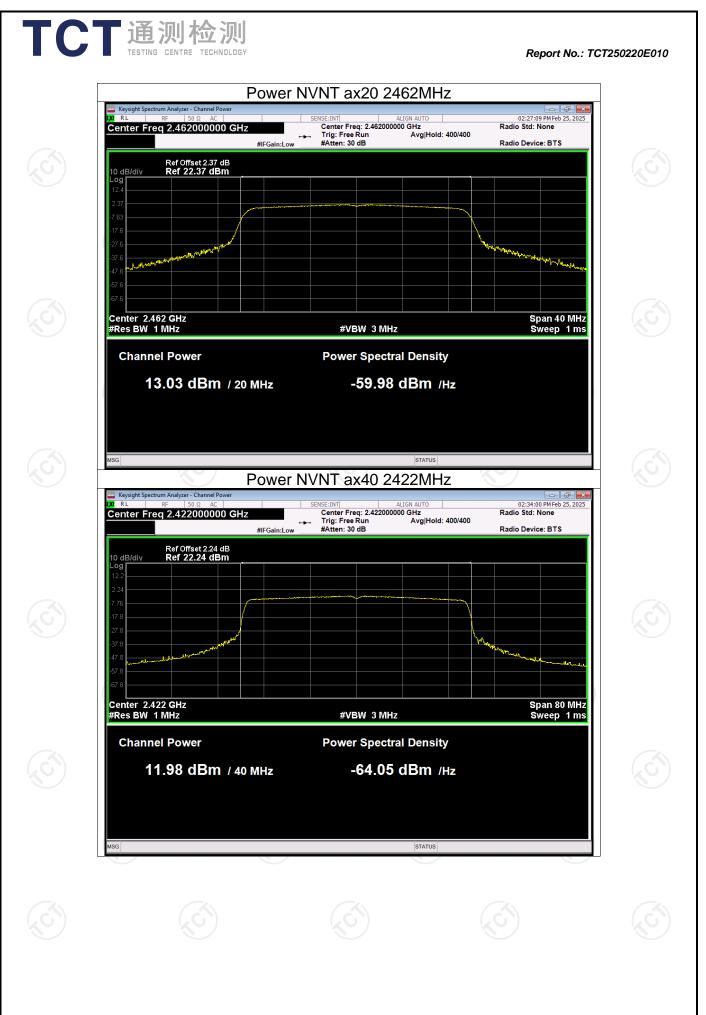
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



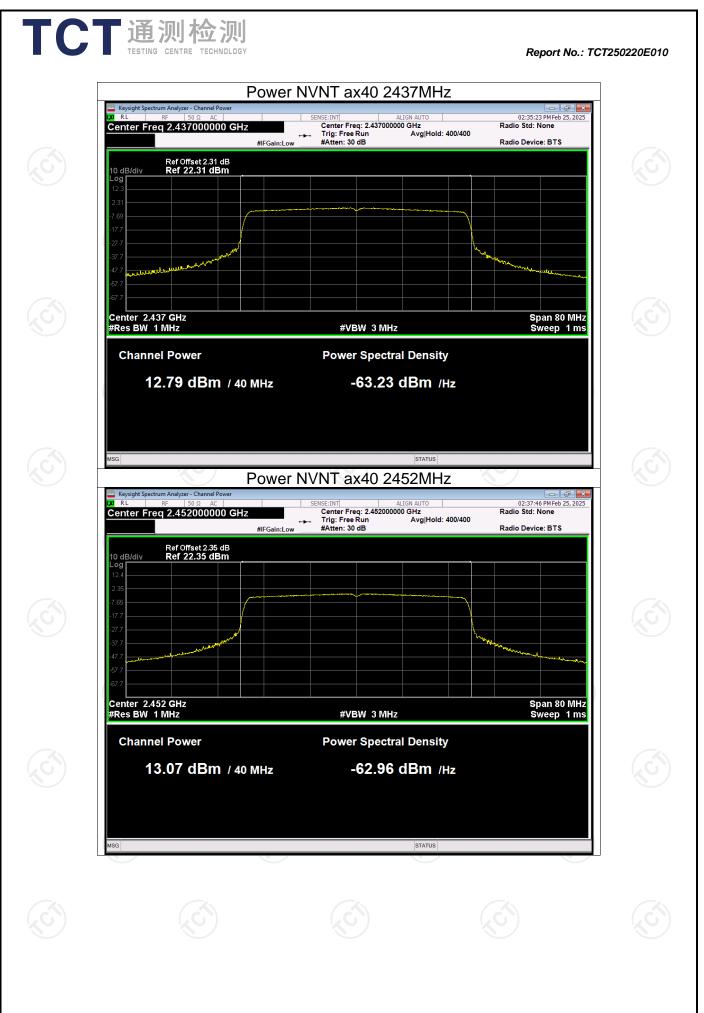

Page 47 of 107

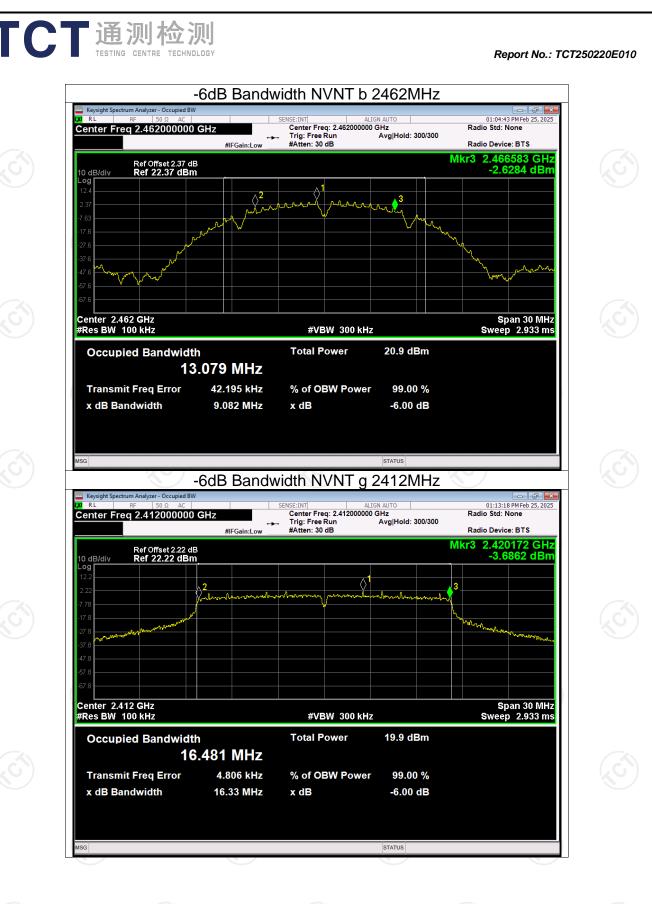



Page 48 of 107

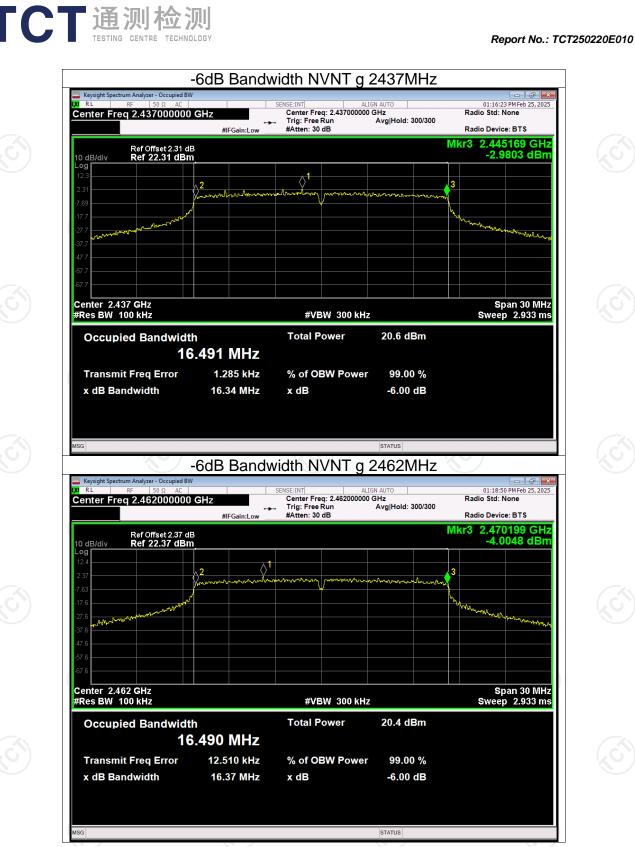


Page 49 of 107

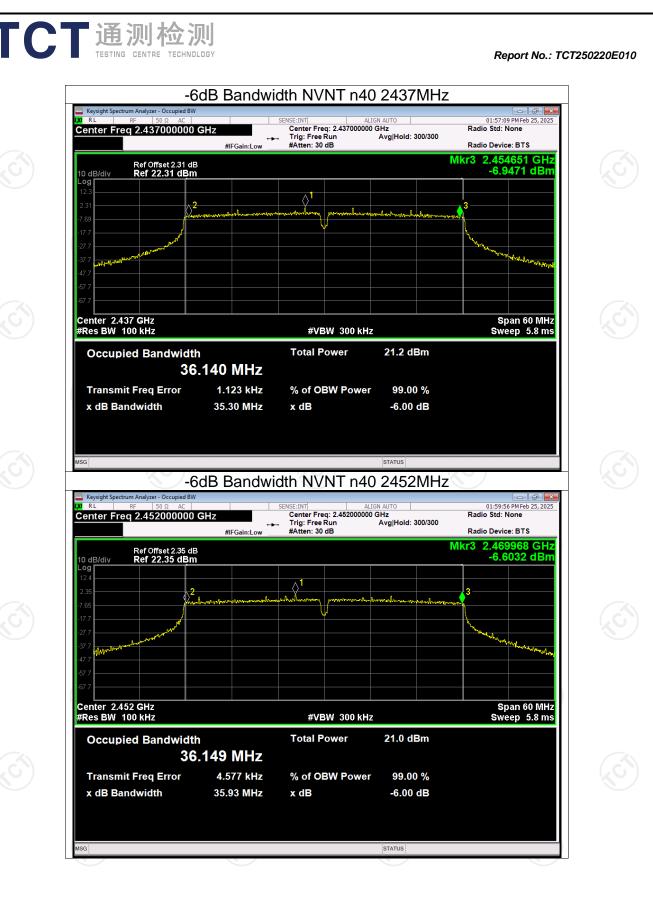


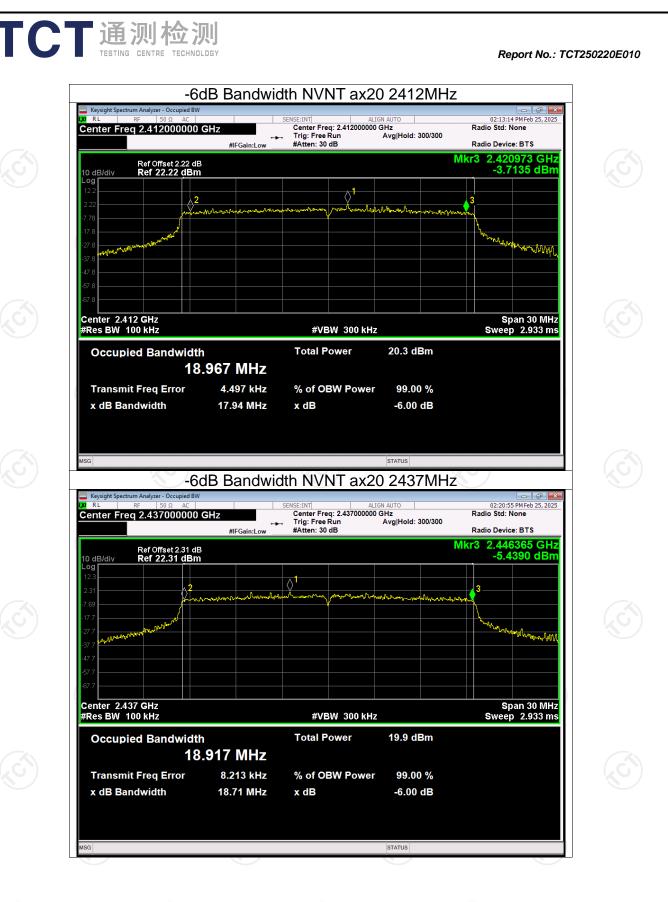

Page 53 of 107

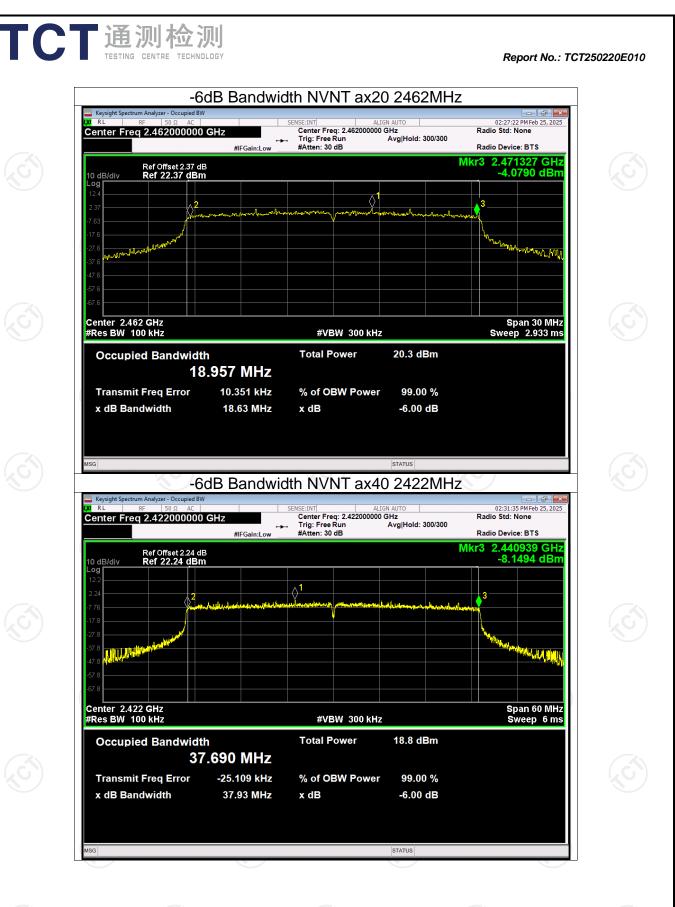
-6dB Bandwidth								
Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict			
NVNT	b	2412	9.099	0.5	Pass			
ŃVNT	b	2437	9.073	0.5	Pass			
NVNT	b	2462	9.082	0.5	Pass			
NVNT	g	2412	16.334	0.5	Pass			
NVNT	g	2437	16.335	0.5	Pass			
NVNT	g	2462	16.373	0.5	Pass			
NVNT	n20	2412	17.062	0.5	Pass			
NVNT	n20	2437	16.931	0.5	Pass			
NVNT	n20	2462	16.927	0.5	Pass			
NVNT	n40	2422	34.136	0.5	Pass			
NVNT	n40	2437	35.301	0.5	Pass			
NVNT	n40	2452	35.928	0.5	Pass			
NVNT	ax20	2412	17.938	0.5	Pass			
	ax20	2437	18.713	0.5	Pass			
NVNT	ax20	2462	18.633	0.5	Pass			
NVNT	ax40	2422	37.928	0.5	Pass			
ONVNT	ax40	2437	37.459	0.5	Pass			
ŃVNT	ax40	2452	37.428	0.5	Pass			

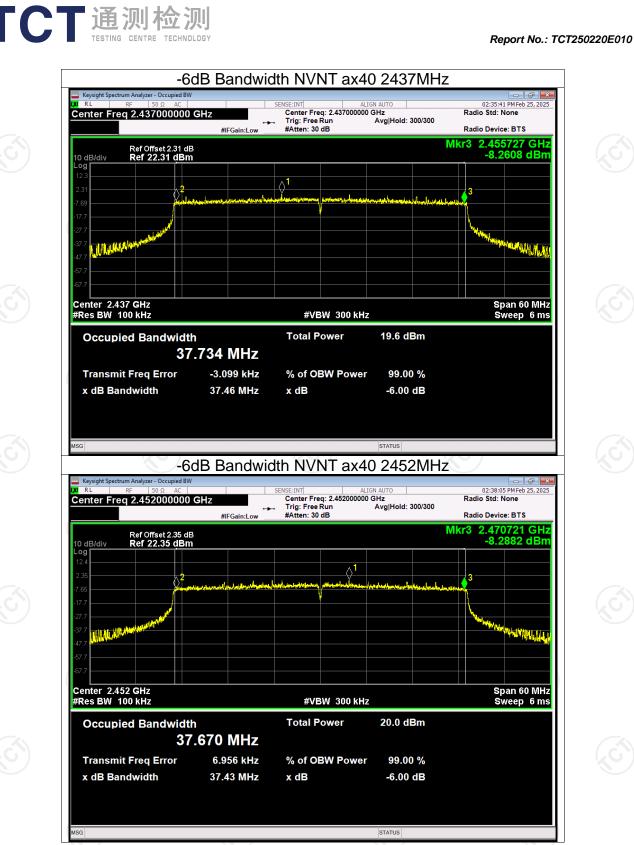


Page 57 of 107

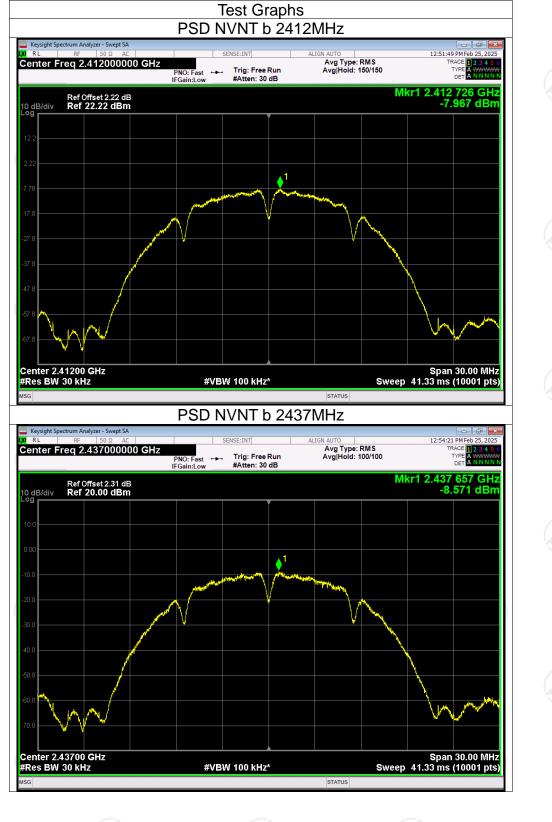

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



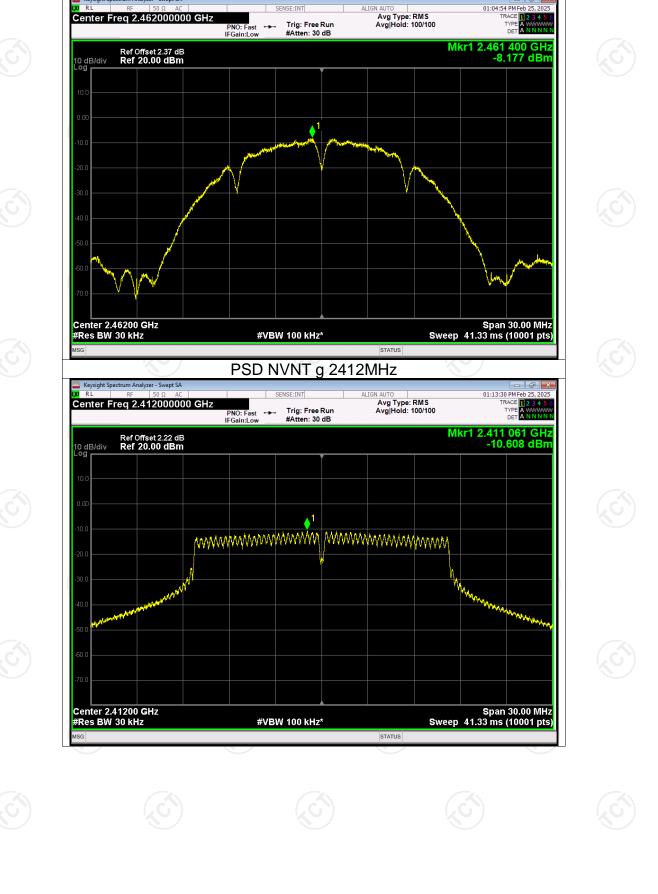

Page 58 of 107



Page 64 of 107


	Maximum Fower Spectral Density Level								
Condition	Mode	Frequency (MHz)	Conducted PSD (dBm)	Duty Factor (dB)	Total PSD (dBm/ 30kHz)	Total PSD (dBm/ 3kHz)	Limit (dBm/ 3kHz)	Verdict	
NVNT	b	2412	-7.97	0 (0	-7.97	-17.97	8	Pass	
NVNT	b	2437	-8.57	0	-8.57	-18.57	8	Pass	
NVNT	b	2462	-8.18	0	-8.18	-18.18	8	Pass	
NVNT	g	2412	-10.61	0	-10.61	-20.61	8	Pass	
NVNT	g	2437	-10.06	0	-10.06	-20.06	8	Pass	
NVNT	g	2462	-10.11	0	-10.11	-20.11	8	Pass	
NVNT	n20	2412	-10.67	0	-10.67	-20.67	8	Pass	
NVNT	n20	2437	-9.97	0	-9.97	-19.97	8	Pass	
NVNT	n20	2462	-10.11	0 (0	-10.11	-20.11	8	Pass	
NVNT	n40	2422	-13.86	0.13	-13.73	-23.73	8	Pass	
NVNT	n40	2437	-13.03	0.13	-12.90	-22.9	8	Pass	
NVNT	n40	2452	-13.20	0.10	-13.10	-23.10	8	Pass	
NVNT	ax20	2412	-13.62	0.18	-13.44	-12.44	8	Pass	
NVNT	ax20	2437	-12.69	0.15	-12.54	-22.54	8	Pass	
NVNT	ax20	2462	-12.40	0.18	-12.22	-22.22	8	Pass	
NVNT	ax40	2422	-16.74	0.13	-16.61	-26.61	8	Pass	
NVNT	ax40	2437	-15.87	0.17	-15.70	-25.70	8	Pass	
NVNT	ax40	2452	-15.62	0.12	-15.50	-25.50	8	Pass	

Maximum Power Spectral Density Level


TCT通测检测 TESTING CENTRE TECHNOLOGY

Note: Total PSD (dBm/3kHz) = Total PSD (dBm/30kHz)+10log(3kHz/30kHz)

Page 66 of 107

PSD NVNT b 2462MHz

ALTGN AL

a RL

Keysight Spectrum Analyzer - Swept SA

Center Freg 2.462000000 GHz

PSD NVNT g 2437MHz

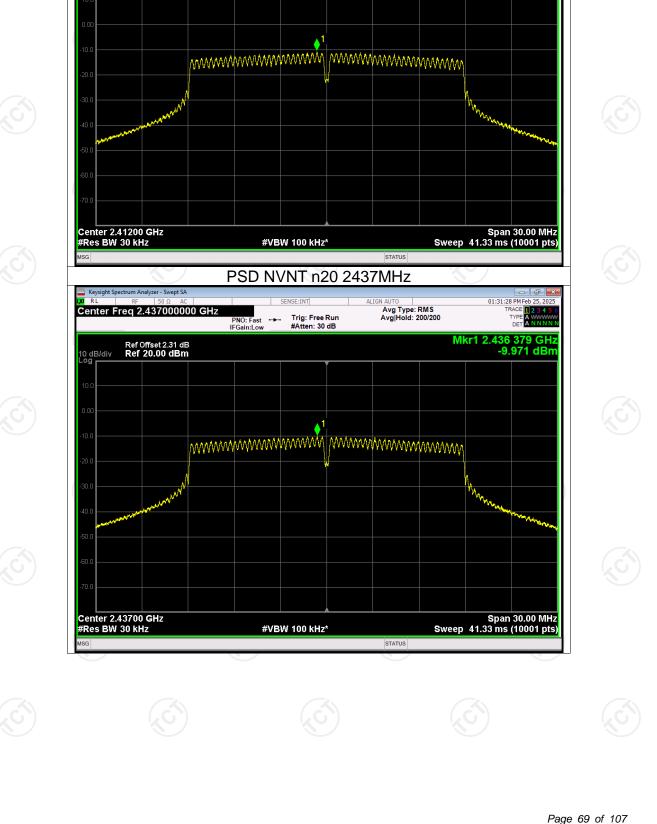
Trig: Free Run #Atten: 30 dB

PNO: Fast ↔→ IFGain:Low

ALTGN AL

Avg Type: RMS Avg|Hold: 200/200

Keysight Spectrum Analyzer - Swept S a RL Center Freg 2.437000000 GHz 10 dB/div


TCT通测检测 TESTING CENTRE TECHNOLOGY

Ref Offset 2.31 dB Ref 20.00 dBm

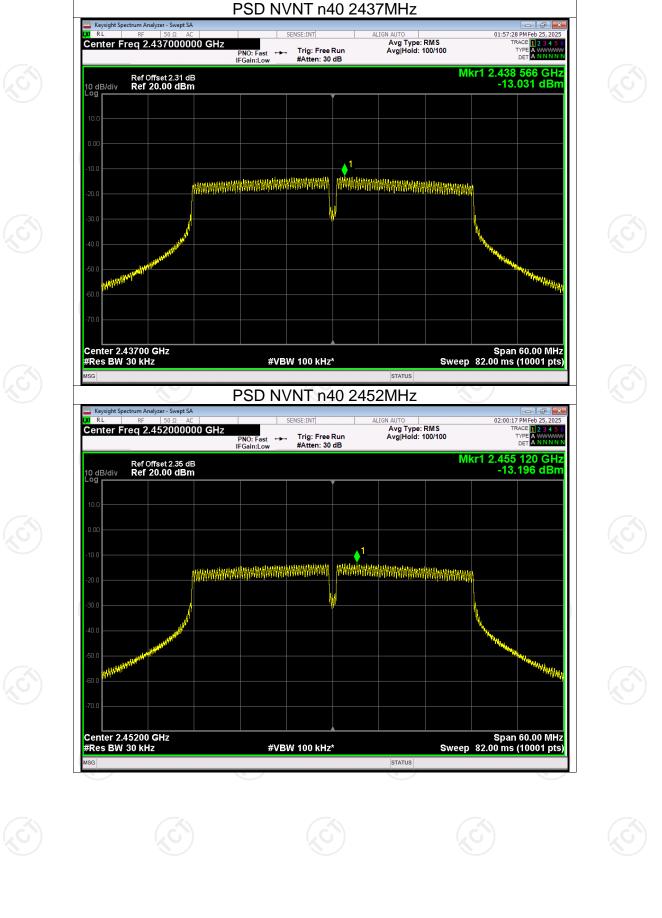
Report No.: TCT250220E010

01:16:40 PM Feb 25, TRACE 1 2 3 TYPE A WW DET A NN

Mkr1 2.436 376 GHz -10.063 dBm

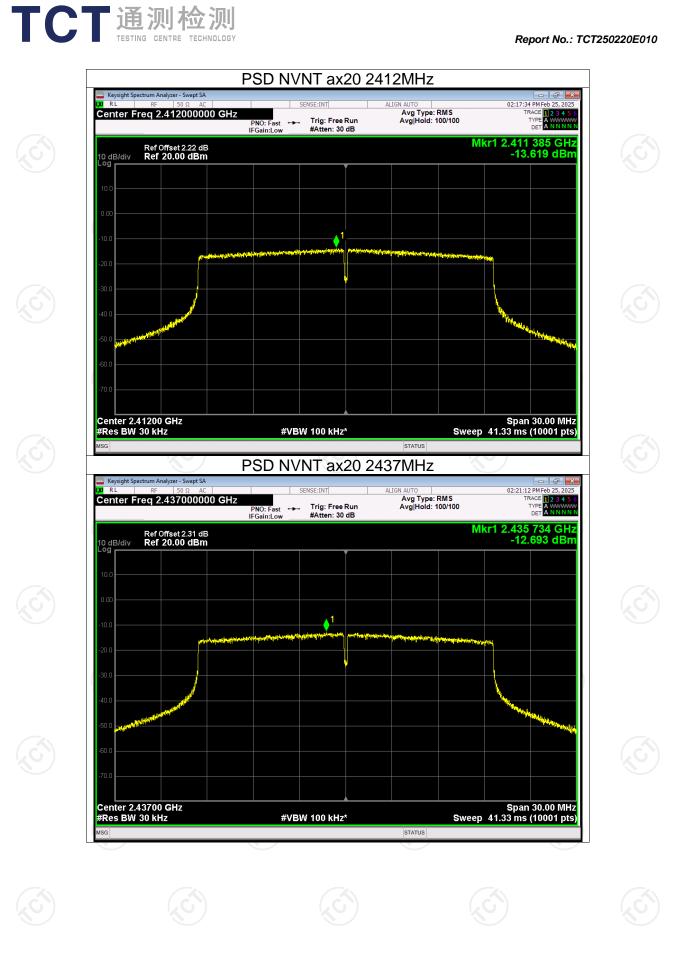
PSD NVNT n20 2412MHz Keysight Spectrum Analyzer - Swept S a RL AI IGN Avg Type: RMS Avg|Hold: 200/200 Center Freg 2.412000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast ↔→ IFGain:Low Ref Offset 2.22 dB Ref 20.00 dBm 10 dB/div

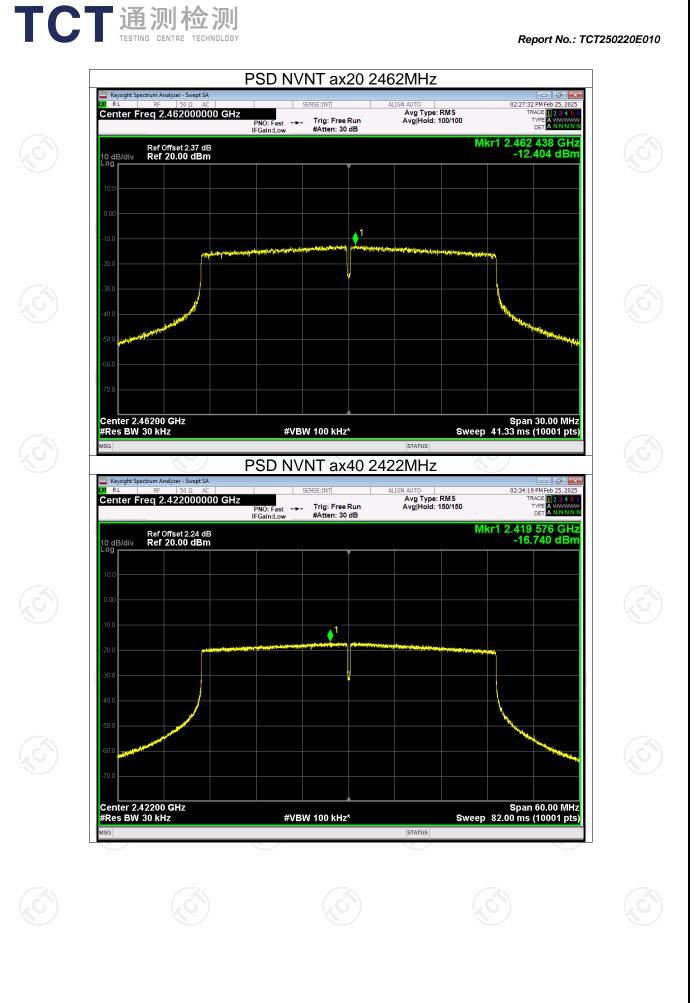
TCT通测检测 TESTING CENTRE TECHNOLOGY

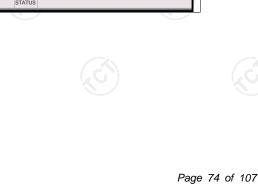

Report No.: TCT250220E010

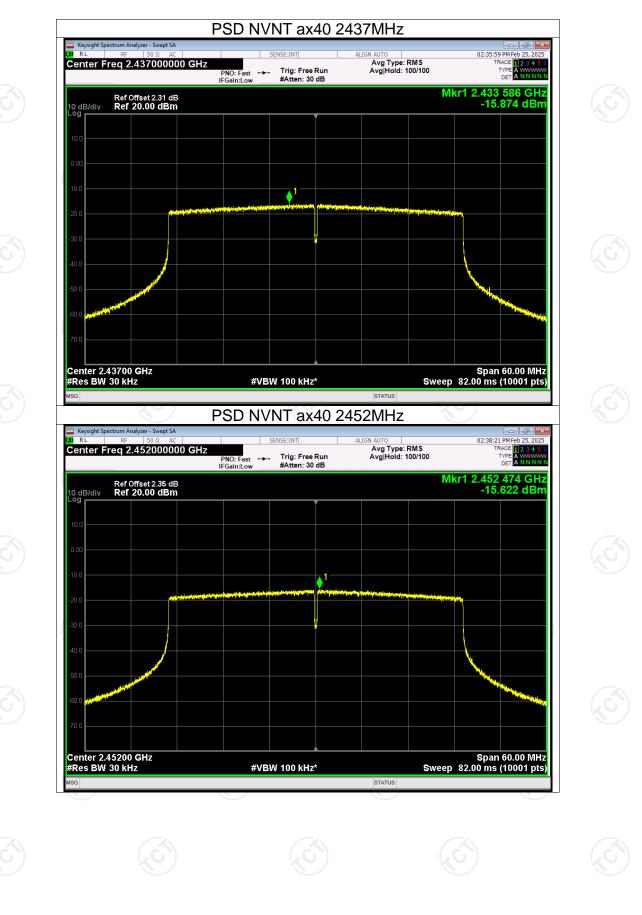
01:25:35 PM Feb 25, TRACE 1 2 3 TYPE A WW DET A NN

TYP


Mkr1 2.411 364 GHz -10.671 dBm






Report No.: TCT250220E010

Page 71 of 107

