SAR Test Report Report No.: AGC02115210401FH01 FCC ID : 2AG6IMPPUA **APPLICATION PURPOSE**: Original Equipment **PRODUCT DESIGNATION**: PARROT SKYCONTROLLER USA **BRAND NAME** : PARROT MODEL NAME : MPPUA **APPLICANT**: PARROT DRONE SAS **DATE OF ISSUE** : Jul. 23,2021 IEEE Std. 1528:2013 **STANDARD(S)**FCC 47 CFR Part 2§2.1093:2013 : IFFE 5td C05 1 ™ 2005 : IEEE Std C95.1 ™-2005 IEC 62209-1: 2016 REPORT VERSION : V1.0 Attestation of Global Confine (Shenzhen) Co., Ltd. Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Stamp' is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE, he test result presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuance of the test report Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Page 2 of 92 #### **Report Revise Record** | Report Version | Revise Time | Issued Date | Valid Version | Notes | |----------------|-------------|--------------|---------------|-----------------| | V1.0 | 160 | Jul. 23,2021 | Valid | Initial Release | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Page 3 of 92 | Test Report | | | | | |----------------------|--|--|--|--| | Applicant Name | PARROT DRONE SAS | | | | | Applicant Address | 174 quai de jemmapes 75010 Paris France | | | | | Manufacturer Name | ACTIA | | | | | Manufacturer Address | 10, avenue Edouard Serres, 31772 COLOMIERS cedex FRANCE | | | | | Factory Name | ACTIA | | | | | Factory Address | 10, avenue Edouard Serres, 31772 COLOMIERS cedex FRANCE | | | | | Product Designation | PARROT SKYCONTROLLER USA | | | | | Brand Name | PARROT | | | | | Model Name | MPPUA | | | | | EUT Voltage | DC7.2V by battery | | | | | Applicable Standard | IEEE Std. 1528:2013
FCC 47 CFR Part 2§2.1093:2013
IEEE Std C95.1 ™-2005
IEC 62209-1: 2016 | | | | | Test Date | Jun. 04,2021 to Jun. 07,2021 | | | | | Report Template | AGCRT- US -5G/SAR (2021-04-20) | | | | Note: The results of testing in this report apply to the product/system which was tested only. | | Jack bri | | |------------------|----------------------------------|------------------| | Prepared By | Jack Gui (Project Engineer) | Jun. 07,2021 | | | cash can (i reject zinginesh) | Jan. 67, 1202. | | | Angola li | | | Reviewed By | C C | 20 10 | | | Angela Li (Reviewer) | Jul. 23,2021 | | | -C | | | An annual of Dec | forest ce | | | Approved By _ | Forrest Lei (Authorized Officer) | Jul. 23,2021 | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the specificated resting/inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter pathorization of AGC, the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. #### **TABLE OF CONTENTS** | 1. SUMMARY OF MAXIMUM SAR VALUE | 5 | |--|----| | 2. GENERAL INFORMATION | 6 | | 2.1. EUT DESCRIPTION | 6 | | 3. SAR MEASUREMENT SYSTEM | 7 | | 3.1. THE DASY5 SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS | 8 | | 3.3. DATA ACQUISITION ELECTRONICS DESCRIPTION | | | 3.4. ROBOT | | | 3.6. DEVICE HOLDER | 10 | | 3.7. MEASUREMENT SERVER | | | 4. SAR MEASUREMENT PROCEDURE | | | 4.1. SPECIFIC ABSORPTION RATE (SAR) | | | 4.2. SAR Measurement Procedure | 13 | | 4.3. RF Exposure Conditions | | | 5. TISSUE SIMULATING LIQUID | | | 5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID | 16 | | 5.2. TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS | | | 6. SAR SYSTEM CHECK PROCEDURE | | | 6.1. SAR System Check Procedures | | | 6.2. SAR SYSTEM CHECK | 19 | | 7. EUT TEST POSITION | | | 7.1. TEST POSITION | | | 8. SAR EXPOSURE LIMITS | | | 9. TEST FACILITY | 23 | | 10. TEST EQUIPMENT LIST | 24 | | 11. MEASUREMENT UNCERTAINTY | 25 | | 12. CONDUCTED POWER MEASUREMENT | | | 13. TEST RESULTS | 33 | | 13.1. SAR TEST RESULTS SUMMARY | | | APPENDIX A. SAR SYSTEM CHECK DATA | 43 | | APPENDIX B. SAR MEASUREMENT DATA | 46 | | APPENDIX C. TEST SETUP PHOTOGRAPHS | | | ADDENIUS D. CALIDO ATION DATA | | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the specificated resting/inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter pathorization of AGC, the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Page 5 of 92 #### 1. SUMMARY OF MAXIMUM SAR VALUE The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows: | Frequency Band | | | SAR Test
Limit | | |--------------------------|--------------------------------|---------------------------|-------------------|--| | | | Hand(with 0mm separation) | (W/kg) | | | | CCK -10MHz | 1.090 | | | | WIFI 2.4G-Ant.1 | OFDM with data rate MCS0-10MHz | 0.578 | | | | WIFT 2.4G-AIR. I | 802.11b-20MHz | 1.071 | (8) | | | 0 | 802.11n(20)-20MHz | 0.803 | 600 | | | | CCK -10MHz | 0.792 | | | | WIFI 2.4G-Ant.2 | OFDM with data rate MCS0-10MHz | 0.522 | 8 | | | WIFI 2.4G-AIII.2 | 802.11b-20MHz | 1.086 | - C | | | | 802.11n(20)-20MHz | 0.784 | | | | WIFI 2.4G-MIMO | OFDM with data rate MCS0-10MHz | 1.111 | | | | VVIFI 2.4G-IVIIIVIO | 802.11n(20)-20MHz | 1.566 | 8 | | | 10 | OFDM with data rate 6 -10MHz | 0.489 | | | | F 2011-/11 NIII 4\ Amt 4 | OFDM with data rate MCS0-10MHz | 0.187 | | | | 5.2GHz(U-NII-1)-Ant.1 | 802.11a-20MHz | 0.780 | | | | | 802.11n20-20MHz | 0.688 | (8) | | | | OFDM with data rate 6 -10MHz | 0.783 | 4.0 | | | 5 0011-/11 NIII 4\ A+ 0 | OFDM with data rate MCS0-10MHz | 0.611 | | | | 5.2GHz(U-NII-1)-Ant.2 | 802.11a-20MHz | 0.874 | | | | | 802.11n20-20MHz | 0.823 | (2) | | | F OCUL-(II NIII 4) MIMO | OFDM with data rate MCS0-10MHz | 0.798 | | | | 5.2GHz(U-NII-1)-MIMO | 802.11n20-20MHz | 1.547 | | | | 2.C | OFDM with data rate MCS0-10MHz | 0.409 | | | | 5.8GHz(U-NII-3)-Ant.1 | 802.11a-20MHz | 0.581 | 0 | | | | 802.11n20-20MHz | 0.454 | 5 | | | 8 | OFDM with data rate 6 -10MHz | 0.148 | . (1) | | | 5 0011-/11 NIII 0\ A(0 | OFDM with data rate MCS0-10MHz | 0.140 | | | | 5.8GHz(U-NII-3)-Ant.2 | 802.11a-20MHz | 0.375 | | | | | 802.11n20-20MHz | 0.280 | | | | F OCH-(II NIII 2) MINA | OFDM with data rate MCS0-10MHz | 0.538 | 0 | | | 5.8GHz(U-NII-3)-MIMO | 802.11n20-20MHz | 0.723 | | | | SAR Test Result | 0 | PASS | 8 | | This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (4.0W/kg) specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures: - KDB 447498 D01 General RF Exposure Guidance v06 - KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04 - KDB 248227 D01 802 11 Wi-Fi SAR v02r02 Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Festing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Page 6 of 92 #### 2. GENERAL INFORMATION 2.1. EUT Description | General Information | | | | | | |-------------------------|--|--|--|--|--| | Product Designation | PARROT SKYCONTROLLER USA | | | | | | Test Model | MPPUA | | | | | | Hardware Version | HW02 | | | | | | Software Version | 3.0.1 | | | | | | Device Category | Portable | | | | | | RF Exposure Environment | Uncontrolled | | | | | | Antenna Type | Internal | | | | | | 2.4GHz WIFI | | | | | | | WIFI Specification | □802.11a □802.11b □802.11g □802.11n(20) □802.11n(40) | | | | | | Operation Frequency | 2412~2462MHz | | | | | | Modulation | 10MHz :CCK, OFDM | | | | | | Modulation | 20MHz: DSSS(DBPSK/DQPSK/CCK); OFDM(BPSK/QPSK/16-QAM/64-QAM) | | | | | | Avg. Burst Power | 10MHz : CCK: 25.05dBm; OFDM(6Mbps):24.72dBm; OFDM(MCS0):24.22dBm
20MHz : 802.11b:25.09dBm, 802.11g:24.58dBm,
802.11n20:24.31dBm | | | | | | Antenna Gain | 6dBi | | | | | | 5 GHz WIFI | | | | | | | WIFI Specification | ⊠802.11a ⊠802.11n20 □802.11n40 □802.11ac20 □802.11ac40 □802.11ac80 | | | | | | Operation Frequency | 5150 MHz~5250MHz; 5725 MHz~5850MHz | | | | | | Modulation | 10MHz :OFDM | | | | | | Modulation | 20MHz :BPSK, QPSK, 16QAM, 64QAM, 128QAM, 256QAM, OFDM | | | | | | Max. conducted Power | 10MHz: OFDM with data rate 6:24.04dBm; OFDM with data rate MCS0:24.00dBm 20MHz: IEEE 802.11A:24.47dBm; IEEE 802.11N:24.32dBm | | | | | | Antenna Gain | 5.2GHz (U-NII-1):5.15dBi; 5.8GHz (U-NII-3): 5.9dBi; | | | | | | 8 | Brand name: PARROT | | | | | | Battery | Model No.: MCBAT00026 | | | | | | | Voltage and Capacitance: 7.2V & 5000mAh | | | | | | Noto: 1 | 1 Tha | cample | LICON ! | for t | octing | ic . | and | product. | | |---------|-------|--------|---------|-------|--------|------|------|----------|--| | INOLE. | | Sample | useu | ioi i | Count | ıo ' | ciiu | product. | | 2.Duty-cycle = [on time/total time] x 100% 3. The test sample has no any deviation to the test method of standard mentioned in page 1. | Product | Type | | 8 | | |---------|-------------------|---------------------|---|---| | Product | □ Production unit | Identical Prototype | | ® | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the specificated resting/inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter pathorization of AGC, the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. #### 3. SAR MEASUREMENT SYSTEM #### 3.1. The DASY5 system used for performing compliance tests consists of following items - A standard high precision 6-axis robot with controller, teach pendant and software. - Data acquisition electronics (DAE) which attached to the robot arm extension. The DAE consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock - A dosimetric probe equipped with an optical surface detector system. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital Communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - A Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - Phantoms, device holders and other accessories according to the targeted measurement. Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Festing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. #### 3.2. DASY5 E-Field Probe The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE-1528 etc.)Under ISO17025.The calibration data are in Appendix D. #### **Isotropic E-Field Probe Specification** | Model | EX3DV4-SN:3953 | | |---------------|--|---| | Manufacture | SPEAG | | | frequency | 0.7GHz-6GHz
Linearity:±0.9%(k=2) | | | Dynamic Range | 0.01W/kg-100W/kg
Linearity: ±0.9%(k=2) | | | Dimensions | Overall length:337mm Tip diameter:2.5mm Typical distance from probe tip to dipole centers:1mm | 9 | | Application | High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%. | 8 | #### 3.3. Data Acquisition Electronics description The data acquisition electronics (DAE) consist if a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converte and a command decoder with a control logic unit. Transmission to the measurement sever is accomplished through an optical downlink fir data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. #### DAE4 | Input Impedance | 200MOhm | | (CONTRACTOR) | |-----------------------|--------------------------|--|---| | The Inputs | Symmetrical and floating | 10000000000000000000000000000000000000 | 4 9 9 9 8 M
7 000 Dpt BM
or Switzenland | | Common mode rejection | above 80 dB | | DAC
Prince | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written achorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Report No.: AGC02115210401FH01 Page 9 of 92 #### 3.4. Robot The DASY system uses the high precision robots (DASY5:TX60) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from is used. The XL robot series have many features that are important for our application: - ☐ High precision (repeatability 0.02 mm) - ☐ High reliability (industrial design) - ☐ Jerk-free straight movements - ☐ Low ELF interference (the closed metallic construction shields against motor control fields) - □ 6-axis controller #### 3.5. Light Beam Unit The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned prob.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position. e, the same position will be reached with another aligned probe within 0 Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the condicated resting/inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Page 10 of 92 #### 3.6. Device Holder The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR). Thus the device needs no repositioning when changing the angles. The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ϵ =3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. #### 3.7. Measurement Server The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chip-disk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DAYS I/O board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all the real-time data evaluation for field measurements
and surface detection, controls robot movements and handles safety operations. Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the condicated restrouting portion of Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com. Page 11 of 92 #### 3.8. PHANTOM **SAM Twin Phantom** The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas: □ Left head ☐ Right head ☐ Flat phantom The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. #### **ELI4 Phantom** ☐ Flat phantom a fiberglass shell flat phantom with 2mm+/- 0.2 mm shell thickness. It has only one measurement area for Flat phantom Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the he test results Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter Acthorization of ACC presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15d he test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Page 12 of 92 #### 4. SAR MEASUREMENT PROCEDURE #### 4.1. Specific Absorption Rate (SAR) SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR can be obtained using either of the following equations: $$SAR = \frac{\sigma E^2}{\rho}$$ $$SAR = c_h \frac{dT}{dt}\Big|_{t=0}$$ Where SAR is the specific absorption rate in watts per kilogram; E is the r.m.s. value of the electric field strength in the tissue in volts per meter; σ is the conductivity of the tissue in siemens per metre; ρ is the density of the tissue in kilograms per cubic metre; ch is the heat capacity of the tissue in joules per kilogram and Kelvin; $\frac{dT}{dt}$ | t=0 is the initial time derivative of temperature in the tissue in kelvins per second Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Bedicated Postuo/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com. Page 13 of 92 #### 4.2. SAR Measurement Procedure #### Step 1: Power Reference Measurement The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties, #### Step 2: Area Scan The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly. Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz | | ≤ 3 GHz | > 3 GHz | | |--|---|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | ½·δ·ln(2) ± 0.5 mm | | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | | ≤2 GHz: ≤15 mm
2 – 3 GHz: ≤12 mm | 3 – 4 GHz: ≤ 12 mm
4 – 6 GHz: ≤ 10 mm | | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device. | | | #### Step 3: Zoom Scan Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label. Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Bedicated Postuo/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com. Page 14 of 92 #### Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz | Maximum zoom scan spatial resolution: Δx _{Zoom} , Δy _{Zoom} | | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | 3 – 4 GHz: ≤ 5 mm [*]
4 – 6 GHz: ≤ 4 mm [*] | | |---|--|--|--|--| | Maximum zoom scan
spatial resolution,
normal to phantom
surface | uniform grid: Δz _{Zoom} (n) | | ≤ 5 mm | 3 – 4 GHz: ≤ 4 mm
4 – 5 GHz: ≤ 3 mm
5 – 6 GHz: ≤ 2 mm | | | $\begin{array}{c} \Delta z_{Zoom}(1)\text{: between} \\ 1^{st} \text{ two points closest} \\ \text{to phantom surface} \\ \\ \Delta z_{Zoom}(n>1)\text{:} \\ \text{between subsequent} \\ \text{points} \end{array}$ | 1 st two points closest | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | | $\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$ | | | | Minimum zoom scan
volume | scan x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### Step 4: Power Drift Measurement The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a
batch process. The measurement procedure is the same as Step 1. Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Bedicated Restrog/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com. ^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. Page 15 of 92 #### 4.3. RF Exposure Conditions Test Configuration and setting: The device is an unmanned aerial vehicle remote control, and supports WIFI wireless technology. For WLAN testing, the EUT is configured with the WLAN continuous TX tool through engineering command. #### **Antenna Location:** For WLAN mode: | Test Configurations | Antenna to edges/surface | SAR required | Note | |---------------------|--------------------------|--------------|--| | Hand | @ | | | | Back | <25mm | Yes | 20 2 | | Front | <25mm | Yes | | | Edge 1 (Top) | 8mm | Yes | 0 | | Edge 2 (Right) | 75mm | No | SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR | | Edge 3 (Bottom) | 183mm | No | SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR | | Edge 4 (Left) | 75mm | No | SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written appropriation of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Page 16 of 92 #### 5. TISSUE SIMULATING LIQUID For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 10% are listed in 6.2 5.1. The composition of the tissue simulating liquid | Ingredient (% Weight) Frequency (MHz) | Water | Nacl | Polysorbate
20 | DGBE | 1,2-
Propanediol | Triton
X-100 | Diethylen
glycol
monohex
ylether | |---------------------------------------|-------|------|-------------------|------|---------------------|-----------------|---| | 2450 Head | 71.88 | 0.16 | 0.0 | 7.99 | 0.0 | 19.97 | 0.0 | | 5000 Head | 65.52 | 0.0 | 0.0 | 0.0 | 0.0 | 17.24 | 17.24 | #### 5.2. Tissue Dielectric Parameters for Head and Body Phantoms The head tissue dielectric parameters recommended by the IEC 62209-1 have been incorporated in the following table. The body tissue dielectric parameters recommended by the IEC 62209-2 have been incorporated in the following table. | Target Frequency | he | ad | b | ody | |------------------|------|---------|------|---------| | (MHz) | ٤r | σ (S/m) | εr | σ (S/m) | | 300 | 45.3 | 0.87 | 45.3 | 0.87 | | 450 | 43.5 | 0.87 | 43.5 | 0.87 | | 835 | 41.5 | 0.90 | 41.5 | 0.90 | | 900 | 41.5 | 0.97 | 41.5 | 0.97 | | 915 | 41.5 | 1.01 | 41.5 | 1.01 | | 1450 | 40.5 | 1.20 | 40.5 | 1.20 | | 1610 | 40.3 | 1.29 | 40.3 | 1.29 | | 1800 – 2000 | 40.0 | 1.40 | 40.0 | 1.40 | | 2450 | 39.2 | 1.80 | 39.2 | 1.80 | | 3000 | 38.5 | 2.40 | 38.5 | 2.40 | | 5200 | 36.0 | 4.66 | 36.0 | 4.66 | | 5300 | 35.9 | 4.76 | 35.9 | 4.76 | | 5600 | 35.5 | 5.07 | 35.5 | 5.07 | | 5800 | 35.3 | 5.27 | 35.3 | 5.27 | ($\varepsilon r = relative permittivity$, $\sigma = conductivity and <math>\rho = 1000 \text{ kg/m}3$) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pestud/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Page 17 of 92 #### 5.3. Tissue Calibration Result The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY 5 Dielectric Probe Kit and R&S Network Analyzer ZVL6. | | Tissue Stimulant Measurement for 2450MHz | | | | | | | | |------|--|---|------|--------------|--------------|--|--|--| | | Fr. | Dielectric Parameters (±10%) | | | Totaldiana | | | | | Head | Head (MHz) | εr39.2(35.28-43.12) δ[s/m]1.80(1.62-1.98) | | Temp
[°C] | Test time | | | | | | 2437 | 39.52 | 1.73 | 22.0 | lup 04 2021 | | | | | | 2450 | 38.63 | 1.76 | 22.0 | Jun. 04,2021 | | | | | Tissue Stimulant Measurement for 5200MHz | | | | | | | | |--|-------|-----------------------|------------------------------|--------------|--------------|--|--| | | Fr. | Dielectric Para | ameters (±10%) | Tissue | | | | | Head | (MHz) | εr
36.0(32.4-39.6) | δ[s/m]
4.66(4.194 -5.126) | Temp
[°C] | Test time | | | | | 5200 | 35.63 | 5.31 | 21.4 | Jun. 05,2021 | | | | (V) | Tissue Stimulant Measurement for 5800MHz | | | | | | | | |------|--|--------------------------|------------------------------|--------------|---------------|--|--|--| | | Fr. | Dielectric Para | ameters (±10%) | Tissue | | | | | | Head | (MHz) | εr
35.3 (31.77-38.83) | δ[s/m]
5.27 (4.743-5.797) | Temp
[°C] | Test time | | | | | | 5785 | 35.34 | 5.43 | 21.2 | Jun. 07,2021 | | | | | | 5800 | 34.80 | 5.47 | 21.2 | Juli. 07,2021 | | | | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Page 18 of 92 #### 6. SAR SYSTEM CHECK PROCEDURE #### 6.1. SAR System Check Procedures SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements. Each DASY system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder. The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below. Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the common stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report
issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com. Page 19 of 92 g/Inspection The test results the test report. ### 6.2. SAR System Check 6.2.1. Dipoles The dipoles used are based on the IEEE-1528 standard, the table below provides details for the mechanical and electrical specifications for the dipoles. The wave guide is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of IEEE. The table below provides details for the mechanical and electrical specifications for the wave guide. | Frequency | L (mm) | h (mm) | d (mm) | |-----------|--------|--------|--------| | 2450MHz | 51.5 | 30.4 | 3.6 | | Frequency | L (mm) | W (mm) | L _f (mm) | W _f (mm) | |-----------|--------|--------|---------------------|---------------------| | 5000MHz | 40.39 | 20.19 | 81.03 | 61.98 | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Sedicated Fest Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issued by Turther enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Page 20 of 92 /Inspection he test results he test report. #### 6.2.2. System Check Result | System Performance Check at 2450MHz&5000-6000MHz for Head | | | | | | | | | |---|-----------------------|-------|-----------------------------|---------------|-----------------------|-------|-----------------|--------------| | Validation Kit: D2450V2-SN:968& SN 15/15 WGA 36 | | | | | | | | | | Frequency | Target
Value(W/kg) | | Reference Result
(± 10%) | | Tested
Value(W/kg) | | Tissue
Temp. | Test time | | [MHz] | 1g | 10g | 9 1g | 10g | 1g | 10g | [°C] | 8 | | 2450 | 53.6 | 25.0 | 48.24-58.96 | 22.50-27.50 | 54.36 | 24.25 | 22.0 | Jun. 04,2021 | | 5200 | 161.18 | 55.04 | 145.062-177.298 | 49.536-60.544 | 166.0 | 53.80 | 21.4 | Jun. 05,2021 | | 5800 | 181.69 | 60.11 | 163.521-199.859 | 54.099-66.121 | 189.00 | 59.10 | 21.2 | Jun. 07,2021 | #### Note: Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the steelicated restriction is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuance of Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. ⁽¹⁾ We use a CW signal of 18dBm(2450MHz), 10dBm(5000-6000MHz) for system check, and then all SAR values are normalized to 1W forward power. The result must be within $\pm 10\%$ of target value. Page 21 of 92 #### 7. EUT TEST POSITION This EUT was tested in Hand back, Hand front and Edge1. #### 7.1. Test Position - (1) To position the EUT parallel to the phantom surface. - (2) To adjust the EUT parallel to the flat phantom. - (3) To adjust the distance between the EUT surface and the flat phantom to 0mm. The SAR test procedure has been defined by FCC via KDB. Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Restrict/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuence of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com. Page 22 of 92 #### 8. SAR EXPOSURE LIMITS Limits for General Population/Uncontrolled Exposure (W/kg) | Type Exposure | Uncontrolled Environment Limit (W/kg) | |---|---------------------------------------| | Spatial Peak SAR (1g cube tissue for brain or body) | 1.60 | | Spatial Average SAR (Whole body) | 0.08 | | Spatial Peak SAR (Limbs) | 4.0 | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Festing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC within 15day after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Page 23 of 92 ### 9. TEST FACILITY | Test Site | Attestation of Global Compliance (Shenzhen) Co., Ltd | |--------------------------------------|--| | Location | 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China | | Designation Number | CN1259 | | FCC Test Firm
Registration Number | 975832 | | A2LA Cert. No. | 5054.02 | | Description | Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Festing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Page 24 of 92 #### **10. TEST EQUIPMENT LIST** | Equipment description | Manufacturer/
Model | Identification No. | Current calibration date | Next calibration date | |-----------------------|----------------------------|---------------------------------------|--------------------------|-----------------------| | Stäubli Robot | Stäubli-TX60 | F13/5Q2UD1/A/01 | N/A | N/A | | Robot Controller | Stäubli-CS8 | 139522 | N/A | N/A | | E-Field Probe | Speag- EX3DV4 | SN:3953 | Jul. 29,2020 | Jul. 28,2021 | | SAM Twin Phantom | Speag-SAM | 1790 | N/A | N/A | | Device Holder | Speag-SD 000 H01
KA | SD 000 H01 KA | N/A | N/A | | DAE4 | Speag-SD 000 D04
BM | 1398 | May 17,2021 | May 16,2021 | | SAR Software | Speag-DASY5 | DASY52.8.7.1137 | N/A | N/A | | Liquid | SATIMO | · · · · · · · · · · · · · · · · · · · | N/A | N/A | | Dipole | D2450V2 | SN968 | July 31,2018 | July 30,2021 | | Wave guide | SWG5500 | SN 15/15 WGA 36 | Apr. 26,2019 | Apr. 25,2022 | | Signal Generator | Agilent-E4438C | US41461365 | Aug. 21,2020 | Aug. 20,2021 | | Vector Analyzer | Agilent / E4440A | US41421290 | Sep. 06,2020 | Sep. 05,2021 | | Network Analyzer | Rhode & Schwarz
ZVL6 | SN101443 | Oct. 16,2020 | Oct. 15,2021 | | Attenuator | Warison
/WATT-6SR1211 | S/N:WRJ34AYM2F
1 | June 10,2020 | June 09,2021 | | Attenuator | Mini-circuits /
VAT-10+ | 31405 | June 10,2020 | June 09,2021 | | Amplifier | AS0104-55_55 | 1004793 | June 11,2020 | June 10,2021 | | Directional
Couple | Werlatone/
C5571-10 | SN99463 | May 15,2020 | May 14,2022 | | Directional
Couple | Werlatone/
C6026-10 | SN99482 | May 15,2020 | May 14,2022 | | Power Sensor | NRP-Z21 | 1137.6000.02 | Sep. 08,2020 | Sep. 07,2021 | | Power Sensor | NRP-Z23 | 100323 | Feb. 17,2021 | Feb. 16,2022 | | Power Viewer | R&S | V2.3.1.0 | N/A | N/A | Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria: - 1. There is no physical damage on the dipole; - 2. System validation with specific dipole is within 10% of calibrated value; - 3. Return-loss is within 20% of calibrated measurement; - 4. Impedance is within 5Ω of calibrated measurement. Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Feature/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the resurred. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Page 25 of 92 #### 11. MEASUREMENT UNCERTAINTY | Measu | urement u | DASY ncertainty fo | | ty- EX3DV
averaged c | | / 10 gram. | | | | |---|-----------|--------------------|----------------|-------------------------|---------|------------|---------------|----------------|-----| | a | b | С | d | e
f(d,k) | f | g | h
cxf/e | i
cxg/e | k | | Uncertainty Component | Sec. | Tol (± %) | Prob.
Dist. | Div. | Ci (1g) | Ci (10g) | 1g Ui
(±%) | 10g Ui
(±%) | vi | | Measurement System | <u>(</u> | (= /0) | 1 | | | | (=70) | (= / 5) | | | Probe calibration
 E.2.1 | 6.65 | N | 1 | 1 | 1 | 6.65 | 6.65 | ∞ | | Axial Isotropy | E.2.2 | 0.6 | R | √3 | √0.5 | √0.5 | 0.24 | 0.24 | ∞ | | Hemispherical Isotropy | E.2.2 | 1.6 | R | √3 | √0.5 | √0.5 | 0.65 | 0.65 | ~ | | Boundary effect | E.2.3 | 1 | R | √3 | 1 | 1 | 0.58 | 0.58 | ~ | | Linearity | E.2.4 | 0.45 | R | √3 | 1 | 1 | 0.26 | 0.26 | ∞ | | System detection limits | E.2.4 | 1 | R | √3 | 1 | 1 | 0.58 | 0.58 | ∞ | | Modulation response | E2.5 | 3.3 | R | √3 | 1 | 1 | 1.91 | 1.91 | ∞ | | Readout Electronics | E.2.6 | 0.15 | N | 1 | 1 | 1 | 0.15 | 0.15 | 00 | | Response Time | E.2.7 | 0 | R | √3 | 1 | 1 | 0.00 | 0.00 | ~ | | Integration Time | E.2.8 | 1.7 | R | $\sqrt{3}$ | 1 | 1 | 0.98 | 0.98 | ~ | | RF ambient conditions-Noise | E.6.1 | 3 | R | √3 | 1 | 1 ® | 1.73 | 1.73 | ~ | | RF ambient conditions-reflections | E.6.1 | 3 | R | √3 | 1 | _1 | 1.73 | 1.73 | ~ | | Probe positioner mechanical tolerance | E.6.2 | 0.4 | R | √3 | 1 | 1 | 0.23 | 0.23 | ° | | Probe positioning with respect to phantom shell | E.6.3 | 6.7 | R | √3 | 1 | 1 | 3.87 | 3.87 | ~ | | Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation | E.5 | 4 | R | √3 | 1 | 1 | 2.31 | 2.31 | 8 | | Test sample Related | | | 0 | | | 8 | | 10 | | | Test sample positioning | E.4.2 | 2.9 | N | (1 | 1 | 1 | 2.90 | 2.90 | × | | Device holder uncertainty | E.4.1 | 3.6 | N | 1 | 1 | 1 | 3.60 | 3.60 | ~ | | Output power variation—SAR drift measurement | E.2.9 | 5 | R | √3 | 1 | 1 | 2.89 | 2.89 | × | | SAR scaling | E.6.5 | 5 | R | $\sqrt{3}$ | 1 | 1 | 2.89 | 2.89 | ~ | | Phantom and tissue parameters | @ | | | | | | , | ® | | | Phantom shell uncertainty—shape, thickness, and permittivity | E.3.1 | 6.6 | R | √3 | 1 | 1 | 3.81 | 3.81 | ٥ | | Uncertainty in SAR correction for deviations in permittivity and conductivity | E.3.2 | 1.9 | N | 1 | 1 | 0.84 | 1.90 | 1.60 | ٥ | | Liquid conductivity measurement | E.3.3 | 9 4 | N | 1 | 0.78 | 0.71 | 3.12 | 2.84 | ı N | | Liquid permittivity measurement | E.3.3 | 5 | N | 1 | 0.23 | 0.26 | 1.15 | 1.30 | N | | Liquid conductivity—temperature uncertainty | E.3.4 | 2.5 | R | $\sqrt{3}$ | 0.78 | 0.71 | 1.13 | 1.02 | ۰ | | Liquid permittivity—temperature uncertainty | E.3.4 | 2.5 | R | √3 | 0.23 | 0.26 | 0.33 | 0.38 | ٥ | | Combined Standard Uncertainty | 60 | | RSS | 8 | | | 11.79 | 11.63 | | | Expanded Uncertainty (95% Confidence interval) | | | K=2 | ·C | (6) | (8) | 23.59 | 23.26 | | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the specificated resting/inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter pathorization of AGC, the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Report No.: AGC02115210401FH01 Page 26 of 92 | Systen | n Check ui | | | ty- EX3DV averaged of | ′4
over 1 gram | / 10 gram. | | | | |---|------------|--------------|----------------|-----------------------|-------------------|------------|---------------|-------------------|----| | a | b | С | d | e
f(d,k) | f | g | h
cxf/e | i
cxg/e | k | | Uncertainty Component | Sec. | Tol
(± %) | Prob.
Dist. | Div. | Ci (1g) | Ci (10g) | 1g Ui
(±%) | 10g Ui
(±%) | vi | | Measurement System | | (= /-) | | | 20 | | (= / - / | (=75) | | | Probe calibration drift | E.2.1 | 0.5 | N | 1 | 1 | 1 | 0.5 | 0.5 | × | | Axial Isotropy | E.2.2 | 0.6 | R | √3 | 0 | 0 | 0.00 | 0.00 | ۰ | | Hemispherical Isotropy | E.2.2 | 1.6 | R | $\sqrt{3}$ | 0 | 0 | 0.00 | 0.00 | ~ | | Boundary effect | E.2.3 | 1 | R | √3 | 0 | 0 | 0.00 | 0.00 | ۰ | | Linearity | E.2.4 | 0.45 | R | √3 | 0 | 0 | 0.00 | 0.00 | ~ | | System detection limits | E.2.4 | 1 | R | √3 | 0 | 0 | 0.00 | 0.00 | ~ | | Modulation response | E2.5 | 3.3 | R | $\sqrt{3}$ | 0 | 0 | 0.00 | 0.00 | ۰ | | Readout Electronics | E.2.6 | 0.15 | N | 1 | 0 | 0 | 0.00 | 0.00 | ٥ | | Response Time | E.2.7 | 0 | R | √3 | 0 | 0 | 0.00 | 0.00 | ٥ | | Integration Time | E.2.8 | 1.7 | R | √3 | 0 | 0 | 0.00 | 0.00 | ٥ | | RF ambient conditions-Noise | E.6.1 | 3 | R | $\sqrt{3}$ | 0 | 0 | 0.00 | 0.00 | ٥ | | RF ambient conditions-reflections | E.6.1 | 3 | R | $\sqrt{3}$ | 0 | 0 | 0.00 | 0.00 | c | | Probe positioner mechanical tolerance | E.6.2 | 0.4 | R | √3 | 1 | 1 | 0.37 | 0.37 | • | | Probe positioning with respect to phantom shell | E.6.3 | 6.7 | R | √3 | 1 | 1 | 3.87 | 3.87 | ۰ | | Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation | E.5 | 4 | R | √3 | 0 | 0 | 0.00 | 0.00 | • | | System check source (dipole) | | | ·C | 0 | | | | | | | Deviation of experimental dipoles | E.6.4 | 2.0 | N | 1 | 1 | 1 | 2.00 | 2.00 | ۰ | | Input power and SAR drift measurement | 8,6.6.4 | 5.0 | R | $\sqrt{3}$ | 1 | 1 | 2.89 | 2.89 | ۰ | | Dipole axis to liquid distance | 8,E.6.6 | 2.0 | R | $\sqrt{3}$ | 1 | 1 | 1.15 | 1.15 | ٥ | | Phantom and tissue parameters | | | | | @ | | | | | | Phantom shell uncertainty—shape, thickness, and permittivity | E.3.1 | 6.6 | R | √3 | 1 | 1 | 3.81 | _© 3.81 | ۰ | | Uncertainty in SAR correction for deviations in permittivity and conductivity | E.3.2 | 1.9 | N | 1 | 1 | 0.84 | 1.90 | 1.60 | G | | Liquid conductivity measurement | E.3.3 | 4 | N | 1 | 0.78 | 0.71 | 3.12 | 2.84 | ١ | | Liquid permittivity measurement | E.3.3 | 5 | N | 1 | 0.23 | 0.26 | 1.15 | 1.30 | N | | Liquid conductivity—temperature uncertainty | E.3.4 | 2.5 | R | √3 | 0.78 | 0.71 | 1.13 | 1.02 | ۰ | | Liquid permittivity—temperature uncertainty | E.3.4 | 2.5 | R | $\sqrt{3}$ | 0.23 | 0.26 | 0.33 | 0.38 | ۰ | | Combined Standard Uncertainty | 8 | | RSS | | . (3) | | 7.34 | 7.07 | | | Expanded Uncertainty
(95% Confidence interval) | a C | | K=2 | (8) | | | 14.67 | 14.14 | | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Bedicated Pest Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written exphorization of AGC presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issue of Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. g/Inspection he test results ne test report. Report No.: AGC02115210401FH01 Page 27 of 92 | System | Validation | | | ty- EX3DV | | m / 10 gram | 1. | | | |---|----------------|----------------|----------------|-------------|---------|-------------|---------------|----------------|----| | a | b | С | d | e
f(d,k) | f | g | h
cxf/e | i
cxg/e | k | | Uncertainty Component | Sec. | Tol
(±%) | Prob.
Dist. | Div. | Ci (1g) | Ci (10g) | 1g Ui
(±%) | 10g Ui
(±%) | vi | | Measurement System | (a) | | | | | | | | | | Probe calibration | E.2.1 | 6.65 | N | 1 | 1 | 1 | 6.65 | 6.65 | ∞ | | Axial Isotropy | E.2.2 | 0.6 | R | $\sqrt{3}$ | 1 | 1 | 0.35 | 0.35 | ∞ | | Hemispherical Isotropy | E.2.2 | 1.6 | R | $\sqrt{3}$ | 0 | 0 | 0.00 | 0.00 | ~ | | Boundary effect | E.2.3 | 1 | R | √3 | 1 | 1 | 0.58 | 0.58 | ~ | | Linearity | E.2.4 | 0.45 | R | √3 | 1 | 1 | 0.26 | 0.26 | ~ | | System detection limits | E.2.4 | 1 | R | √3 | 1 | 1 | 0.58 | 0.58 | ~ | | Modulation response | E2.5 | 3.3 | R | $\sqrt{3}$ | 0 | 0 | 0.00 | 0.00 | ~ | | Readout Electronics | E.2.6 | 0.15 | N | 1 | 1 | 1 | 0.15 | 0.15 | ~ | | Response Time | E.2.7 | 0 | R | √3 | 0 | 0 | 0.00 | 0.00 | ~ | | Integration Time | E.2.8 | 1.7 | R | √3 | 0 | 0 | 0.00 | 0.00 | ~ | | RF ambient conditions-Noise | E.6.1 | 3 | R | √3 | 1 | 1 | 1.73 | 1.73 | ~ | | RF ambient conditions-reflections | E.6.1 | 3 | R | √3 | 1 | 1 | 1.73 | 1.73 | ~ | | Probe positioner mechanical tolerance | E.6.2 | 0.4 | R | √3 | 1 | 9 | 0.23 | 0.23 | × | | Probe positioning with respect to phantom shell | E.6.3 | 6.7 | R | √3 | 1 | 1 | 3.87 | 3.87 | ~ | | Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation | E.5 | 4 | R | $\sqrt{3}$ | 1 | 1 | 2.31 | 2.31 | ~ | | System check source (dipole) | | | | | | | | | | | Deviation of experimental dipole from numerical dipole | E.6.4 | 5.0 | N | G1 | 1 | 1 | 5.00 | 5.00 | × | | Input power and SAR drift measurement | 8,6.6.4 | 5.0 | R | √3 | 1 | 1 | 2.89 | 2.89 | α | | Dipole axis to liquid distance | 8,E.6.6 | 2.0 | R | $\sqrt{3}$ | 1 | 1 | 1.15 | 1.15 | × | | Phantom and tissue parameters | | | | | | | | | | | Phantom shell uncertainty—shape, thickness, and permittivity | E.3.1 | 6.6 | R | √3 | 1 | 10 | 3.81 | 3.81 | × | | Uncertainty in SAR correction for deviations in permittivity and conductivity | E.3.2 | 1.9 | N | 1 | 1 | 0.84 | 1.90 | 1.60 | ~ | | Liquid conductivity measurement | E.3.3 | 4 | N | 1 | 0.78 | 0.71 | 3.12 | 2.84 | N | | Liquid permittivity measurement | E.3.3 | [®] 5 | N | 1 | 0.23 | 0.26 | 1.15 | 1.30 | N | | Liquid conductivity—temperature uncertainty | E.3.4 | 2.5 | R | √3 | 0.78 | 0.71 | 1.13 | 1.02 | ۰ | | Liquid permittivity—temperature uncertainty | E.3.4 | 2.5 | R | √3 | 0.23 | 0.26 | 0.33 | 0.38 | c | | Combined Standard Uncertainty | | | RSS | | | | 11.45 | 11.28 | | | Expanded Uncertainty
(95% Confidence interval) | Q ₀ | | K=2 | © | | | 22.89 | 22.55 | | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the speciated restaurable stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the
report is not permitted without the written authorization of AGC presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issued of Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. g/Inspection he test results he test report. Page 28 of 92 # 12. CONDUCTED POWER MEASUREMENT 2.4GHz WIFI | Mode | Nominal
Channel
Bandwidth | Channel | Frequency(MHz) | Conducted Output Power (dBm)-Ant.1 | Conducted
Output Power
(dBm)-Ant.2 | МІМО | |-----------------------|---------------------------------|---------|----------------|------------------------------------|--|-------| | | (8) | 01 | 2412 | 24.01 | 24.10 | N/A | | CCK | 10MHz | 06 | 2437 | 24.20 | 24.37 | N/A | | | | 11 | 2462 | 25.05 | 24.99 | N/A | | OEDM : | | 01 | 2412 | 23.62 | 24.08 | N/A | | OFDM with data rate 6 | 10MHz | 06 | 2437 | 23.77 | 23.96 | N/A | | uala lale 0 | | 11 | 2462 | 24.19 | 24.72 | N/A | | OFDM with | | 01 | 2412 | 23.76 | 23.71 | 26.75 | | data rate | | 06 | 2437 | 23.62 | 23.93 | 26.79 | | MCS0 | 0 | 11 | 2462 | 23.74 | 24.22 | 27.00 | | | | 01 | 2412 | 24.50 | 24.09 | N/A | | 802.11b | 20MHz | 06 | 2437 | 24.09 | 24.38 | N/A | | | | 11 | 2462 | 24.69 | 25.09 | N/A | | - 0 | 8 | 01 | 2412 | 24.42 | 24.26 | N/A | | 802.11g | 20MHz | 06 | 2437 | 24.37 | 24.12 | N/A | | | | 11 | 2462 | 24.58 | 24.26 | N/A | | 0 | | 01 | 2412 | 23.83 | 24.07 | 26.96 | | 802.11n(20) | 1n(20) 20MHz | 06 | 2437 | 24.05 | 24.15 | 27.11 | | | | 11 💿 | 2462 | 23.14 | 24.31 | 26.77 | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Dedicated Personal Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter permitted presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuence Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. /Inspection he test results ne test report. Report No.: AGC02115210401FH01 Page 29 of 92 #### 5.2GHz WIFI-Nominal Channel Bandwidth: 10MHz | | | al Channel Ba | | | | Power | (dBm) | | | | |--------|---------|---------------|-------|-------|-------|-------|----------|-------|-------|-------| | Mode | channel | Frequency | | | | | ate(bps) | | | | | Ant.1 | | | | | | | <u> </u> | | | | | | 3 | | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | | - C | 36 | 5180 | 16.39 | 16.27 | 16.12 | 16.05 | 15.95 | 15.86 | 15.76 | 15.62 | | OFDM | 40 | 5200 | 16.00 | 15.91 | 15.77 | 15.66 | 15.56 | 15.43 | 15.33 | 15.28 | | OFDM | 44 | 5220 | 15.93 | 15.83 | 15.72 | 15.58 | 15.47 | 15.41 | 15.25 | 15.19 | | | 48 | 5240 | 16.15 | 15.99 | 15.91 | 15.82 | 15.68 | 15.56 | 15.57 | 15.39 | | | - 6 | ® | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS | | | 36 | 5180 | 13.48 | 13.32 | 13.24 | 13.15 | 13.03 | 12.89 | 12.83 | 12.72 | | OEDM | 40 | 5200 | 13.09 | 12.96 | 12.85 | 12.79 | 12.62 | 12.58 | 12.41 | 12.34 | | OFDM | 44 | 5220 | 13.02 | 12.87 | 12.77 | 12.67 | 12.56 | 12.44 | 12.34 | 12.39 | | | 48 | 5240 | 13.08 | 12.96 | 12.81 | 12.69 | 12.68 | 12.56 | 12.43 | 12.35 | | Ant.2 | | | | | | | | | | | | | | | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | | - 0 | 36 | 5180 | 16.16 | 16.06 | 15.88 | 15.81 | 15.74 | 15.59 | 15.48 | 15.41 | | OFDM - | 40 | 5200 | 16.15 | 16.03 | 15.88 | 15.81 | 15.71 | 15.62 | 15.52 | 15.38 | | | 44 | 5220 | 16.09 | 16.06 | 15.86 | 15.73 | 15.65 | 15.51 | 15.43 | 15.37 | | | 48 | 5240 | 16.20 | 16.15 | 15.98 | 15.83 | 15.72 | 15.68 | 15.56 | 15.46 | | | | © | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS | | | 36 | 5180 | 13.19 | 13.03 | 12.95 | 12.83 | 12.71 | 12.56 | 12.52 | 12.43 | | OEDM | 40 | 5200 | 12.66 | 12.53 | 12.45 | 12.33 | 12.17 | 12.08 | 11.94 | 11.90 | | OFDM | 44 | 5220 | 12.58 | 12.43 | 12.33 | 12.21 | 12.08 | 11.97 | 11.89 | 11.83 | | | 48 | 5240 | 12.79 | 12.67 | 12.52 | 12.37 | 12.33 | 12.23 | 12.12 | 12.02 | | MIMO | | | | | | | | | | | | | | | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | | | 36 | 5180 | N/A | OFDM | 40 | 5200 | N/A | OFDIVI | 44 | 5220 | N/A | 8 | 48 | 5240 | N/A | | | @ | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS | | | 36 | 5180 | 16.35 | 16.19 | 16.11 | 16.00 | 15.88 | 15.74 | 15.69 | 15.59 | | OEDM | 40 | 5200 | 15.89 | 15.76 | 15.66 | 15.58 | 15.41 | 15.35 | 15.19 | 15.14 | | OFDM | 44 | 5220 | 15.82 | 15.67 | 15.57 | 15.46 | 15.34 | 15.22 | 15.13 | 15.13 | | | 48 | 5240 | 15.95 | 15.83 | 15.68 | 15.54 | 15.52 | 15.41 | 15.29 | 15.20 | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Bedicated Pest Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issue of Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. /Inspection The test results ne test report. Report No.: AGC02115210401FH01 Page 30 of 92 #### 5.2GHz WIFI-Nominal Channel Bandwidth:20MHz | Made | ah a ! | Биолическа | | | | Power | r(dBm) | | | | |-------------|---------|------------|-------|-------|-------|-------------|----------|-------|-------|-------| | Mode | channel | Frequency | | | | | ate(bps) | | | | | Ant.1 | | | | | | | | | | | | | ® | | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | | | 36 | 5180 | 19.25 | 19.12 | 18.99 | 18.93 | 18.82 | 18.73 | 18.56 | 18.52 | | 802.11 | 40 | 5200 | 18.88 | 18.78 | 18.61 | 18.53 | 18.46 | 18.31 | 18.22 | 18.13 | | а | 44 | 5220 | 18.73 | 18.61 | 18.46 | 18.37 | 18.24 | 18.16 | 18.08 | 17.92 | | | 48 | 5240 | 19.26 | 19.17 | 19.03 | 18.88 | 18.76 | 18.68 | 18.56 | 18.46 | | | | <u>®</u> | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | 36 | 5180 | 15.98 | 15.83 | 15.75 | 15.65 | 15.51 | 15.43 | 15.31 | 15.22 | | 802.11 | 40 | 5200 | 15.86 | 15.73 | 15.58 | 15.50 | 15.40 | 15.34 | 15.17 | 15.13 | | n20 | 44 | 5220 | 15.71 | 15.61 | 15.40 | 15.30 | 15.25 | 15.14 | 15.03 | 14.96 | | | 48 | 5240 | 16.29 | 16.17 | 16.02 | 15.95 | 15.85 | 15.76 | 15.66 | 15.52 | | Ant.2 | | | | | | | | | | | | | 0 | | 6M | 9M | 12M | 18 M | 24M | 36M | 48M | 54M | | - C | 36 | 5180 | 19.11 | 18.98 | 18.85 | 18.77 | 18.59 | 18.54 | 18.42 | 18.36 | | 802.11
a | 40 | 5200 | 18.90 | 18.75 | 18.63 | 18.54 | 18.43 | 18.32 | 18.22 | 18.18 | | | 44 | 5220 | 18.81 | 18.69 | 18.52 | 18.37 | 18.35 | 18.29 | 18.16 | 18.08 | | | 48 | 5240 | 18.86 | 18.72 | 18.63 | 18.56 | 18.37 | 18.29 | 18.22 | 18.11 | | | | <u> </u> | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | 36 | 5180 | 15.72 | 15.60 | 15.45 | 15.33 | 15.27 | 15.17 | 15.05 | 14.99 | | 802.11 | 40 | 5200 | 15.79 | 15.65 | 15.56 | 15.43 | 15.25 | 15.17 | 15.12 | 15.04 | | n20 | 44 | 5220 | 15.66 | 15.58 | 15.41 | 15.31 | 15.15 | 15.10 | 14.96 | 14.89 | | | 48 | 5240 | 15.88 | 15.77 | 15.68 | 15.55 | 15.41 | 15.31 | 15.15 | 15.13 | | MIMO | | | | | | | | | | | | | | | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | | | 36 | 5180 | N/A | 802.11 | 40 | 5200 | N/A | a | 44 | 5220 | N/A | | 48 | 5240 | N/A | -0 | 8 | @ | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | 36 | 5180 | 18.86 | 18.73 | 18.61 | 18.50 | 18.40 | 18.31 | 18.19 | 18.12 | | 802.11 | 40 | 5200 | 18.84 | 18.70 | 18.58 | 18.48 | 18.34 | 18.27 | 18.16 | 18.10 | | n20 | 44 | 5220 | 18.70 | 18.61 | 18.42 | 18.32 | 18.21 | 18.13 | 18.01 | 17.94 | | | 48 | 5240 | 19.10 | 18.98 | 18.86 | 18.76 | 18.65 | 18.55 | 18.42 | 18.34 | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Bedicated Pest Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issue of Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. /Inspection The test results ne test report. Page 31 of 92 #### 5.8GHz WIFI-Nominal Channel Bandwidth:10MHz | Mada | ahannal | F | | | | Power | r(dBm) | | | | |-------|---------|-----------|-------|-------|-------|---------|----------|-------|-------|-------| | Mode | channel | Frequency | | | | Data Ra | ate(bps) | | | | | Ant.1 | | | | | | | | | | | | | 3 | | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | | | 149 | 5745 | 23.91 | 23.81 | 23.63 | 23.51 | 23.46 | 23.32 | 23.23 | 23.16 | | OFDM | 157 | 5785 | 23.84 | 23.72 | 23.57 | 23.45 | 23.35 | 23.28 | 23.21 | 23.07 | | | 165 | 5825 | 23.36 | 23.27 | 23.13 | 22.95 | 22.89 | 22.74 | 22.69 | 22.64 | | (8) | (8) | | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | 149 | 5745 | 23.26 | 23.13 | 23.05 | 22.94 | 22.83 | 22.74 | 22.57 | 22.53 | | OFDM | 157 | 5785 | 24.00 | 23.92 | 23.72 | 23.65 | 23.58 | 23.43 | 23.32 | 23.25 | | | 165 | 5825 | 23.42 | 23.36 | 23.15 | 23.08 | 22.98 | 22.89 | 22.79 | 22.65 | | Ant.2 | | | | | | | | | | | | | | | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | | | 149 | 5745 | 24.04 | 23.89 | 23.79 | 23.69 | 23.58 | 23.41 | 23.34 | 23.27 | | OFDM | 157 | 5785 | 23.83 | 23.71 | 23.56 | 23.44 | 23.43 | 23.29 | 23.17 | 23.09 | | | 165 | 5825 | 23.30 | 23.16 | 23.07 | 22.94 | 22.81 | 22.71 | 22.61 | 22.49 | | | | 8 | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | 149 | 5745 | 23.88 | 23.79 | 23.65 | 23.52 | 23.44 | 23.33 | 23.21 | 23.16
 | OFDM | 157 | 5785 | 23.72 | 23.62 | 23.56 | 23.35 | 23.26 | 23.23 | 23.04 | 22.98 | | | 165 | 5825 | 23.25 | 23.09 | 23.01 | 22.92 | 22.78 | 22.66 | 22.67 | 22.49 | | MIMO | | | | | | | | | | | | @ | | | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | | | 149 | 5745 | N/A | OFDM | 157 | 5785 | N/A | | 165 | 5825 | N/A | | | | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | 149 | 5745 | 26.59 | 26.48 | 26.37 | 26.25 | 26.16 | 26.06 | 25.91 | 25.87 | | OFDM | 157 | 5785 | 26.87 | 26.78 | 26.65 | 26.51 | 26.43 | 26.34 | 26.19 | 26.13 | | | 165 | 5825 | 26.35 | 26.24 | 26.09 | 26.01 | 25.89 | 25.79 | 25.74 | 25.58 | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Page 32 of 92 #### 5.8GHz WIFI- Nominal Channel Bandwidth:20MHz | Mada | ahannal | F | | | | Power | r(dBm) | | | | |---------------|---------|-----------|-------|-------|-------|---------|----------|-------|-------|-------| | Mode | channel | Frequency | | | | Data Ra | ate(bps) | | | | | Ant.1 | | | | | | | | | | | | | 3 | | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | | 000.44 | 149 | 5745 | 24.47 | 24.34 | 24.21 | 24.15 | 23.98 | 23.92 | 23.78 | 23.74 | | 802.11
a | 157 | 5785 | 24.26 | 24.16 | 23.98 | 23.91 | 23.83 | 23.65 | 23.58 | 23.51 | | a | 165 | 5825 | 23.56 | 23.44 | 23.29 | 23.22 | 23.10 | 23.02 | 22.93 | 22.79 | | 8 | (2) | | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | 149 | 5745 | 24.32 | 24.22 | 24.13 | 23.95 | 23.86 | 23.82 | 23.64 | 23.58 | | 802.11
n20 | 157 | 5785 | 24.24 | 24.08 | 24.06 | 23.91 | 23.77 | 23.65 | 23.59 | 23.46 | | 1120 | 165 | 5825 | 23.74 | 23.61 | 23.53 | 23.42 | 23.27 | 23.17 | 23.05 | 22.99 | | Ant.2 | | | | | | | | | | | | | | | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | | 000 11 | 149 | 5745 | 24.28 | 24.15 | 24.07 | 23.94 | 23.76 | 23.65 | 23.59 | 23.53 | | 802.11
a | 157 | 5785 | 24.17 | 24.02 | 23.92 | 23.80 | 23.65 | 23.56 | 23.49 | 23.45 | | a | 165 | 5825 | 23.39 | 23.27 | 23.12 | 22.97 | 22.98 | 22.83 | 22.74 | 22.66 | | | | 8 | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | 149 | 5745 | 24.24 | 24.11 | 24.03 | 23.92 | 23.77 | 23.67 | 23.55 | 23.49 | | 802.11
n20 | 157 | 5785 | 23.61 | 23.46 | 23.36 | 23.26 | 23.15 | 23.03 | 22.93 | 22.89 | | 1120 | 165 | 5825 | 23.52 | 23.42 | 23.25 | 23.13 | 23.12 | 23.02 | 22.87 | 22.79 | | MIMO | | | | | | | | | | | | @ | | | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | | | 149 | 5745 | N/A | 802.11
a | 157 | 5785 | N/A | a | 165 | 5825 | N/A | | | | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | 000.44 | 149 | 5745 | 27.29 | 27.18 | 27.09 | 26.95 | 26.83 | 26.76 | 26.61 | 26.55 | | 802.11
n20 | 157 | 5785 | 26.95 | 26.79 | 26.73 | 26.61 | 26.48 | 26.36 | 26.28 | 26.19 | | 1120 | 165 | 5825 | 26.64 | 26.53 | 26.40 | 26.29 | 26.21 | 26.11 | 25.97 | 25.90 | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Page 33 of 92 #### 13. TEST RESULTS ## 13.1. SAR Test Results Summary 13.1.1. Test position and configuration - 1. This EUT is an unmanned aerial vehicle remote control - 2. Based on FCC guidance, use a non-standard setting for SAR testing. The operating instructions contain additional information: - According to KDB 447498 D01 General RF Exposure Guide v06, due to maximum peak power for bluetooth is more than just a test exclusion threshold, which must be tested. - 3. And an inquiry about SAR test method is request: - Lab. use the head liquid with a separation of 0mm at flat phantom to test the front and back surfaces, top, right, and left edges of the handle for 10-g Extremity SAR for each antenna located \leq 25 mm from that surface or edge. - 4. For SAR testing, the device was controlled by software to test at reference fixed frequency points. #### 13.1.2. Operation Mode - Per KDB 248227 D01 v02r02 Chapter 5.2.2,when SAR measurement is required for 2.4GHz 802.11g/n OFDM configurations, the measurement and test reducing procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions. - (1) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration. - (2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is≤1.2 W/kg, - 2. Per KDB 248227 D01 v02r02 Chapter 5.3.4, SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following. - (1) When SAR test exclusion provisions of KDB Publication 447498 D01 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration. - (2) When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration. - 3. Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows: Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)] Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated resting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC he test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc=cert.com. Page 34 of 92 Inspection he test results ne test report. #### 13.1.3. Test Result #### SAR MEASUREMENT Depth of Liquid (cm):>15 Product: PARROT SKYCONTROLLER USA Test Mode: 2.4GHz WIFI -Ant.1 | Position | Mode | Ch. | Fr.
(MHz) | Power
Drift
(<±0.2d
B) | 10-g
Extremity
SAR
(W/kg) | Max.
Tune-up
Power
(dBm) | Meas.
output
Power
(dBm) | Scaled
SAR
(W/Kg) | Limit
W/kg | |------------------|--------------|-----|--------------|---------------------------------|------------------------------------|-----------------------------------|-----------------------------------|-------------------------|---------------| | CCK -10MHz | | | | -G | ® | | | | | | Hand back | DTS | 06 | 2437 | 0.13 | 0.081 | 25.10 | 24.20 | 0.100 | 4.0 | | Hand front | DTS | 06 | 2437 | -0.17 | 0.106 | 25.10 | 24.20 | 0.130 | 4.0 | | Edge 1 (Top) | DTS | 06 | 2437 | -0.11 | 0.886 | 25.10 | 24.20 | 1.090 | 4.0 | | OFDM with data r | ate MCS0-10M | Hz | | | -0 | 8 | 0 | | | | Hand back | DTS | 06 | 2437 | 0.06 | 0.037 | 23.80 | 23.62 | 0.039 | 4.0 | | Hand front | DTS | 06 | 2437 | -0.14 | 0.091 | 23.80 | 23.62 | 0.095 | 4.0 | | Edge 1 (Top) | DTS | 06 | 2437 | -0.04 | 0.555 | 23.80 | 23.62 | 0.578 | 4.0 | | 802.11b-20MHz | | 8 | | | | | | ® | | | Hand back | DTS | 06 | 2437 | 0.09 | 27.30 | 24.70 | 24.09 | 0.077 | 4.0 | | Hand front | DTS | 06 | 2437 | -0.15 | 27.30 | 24.70 | 24.09 | 0.116 | 4.0 | | Edge 1 (Top) | DTS | 06 | 2437 | 0.15 | 0.931 | 24.70 | 24.09 | 1.071 | 4.0 | | 802.11n(20)-20MH | lz | | 8 | | | 10 ⁰ | - C | | @ | | Hand back | DTS | 06 | 2437 | -0.11 | 0.065 | 24.10 | 24.05 | 0.066 | 4.0 | | Hand front | DTS | 06 | 2437 | -0.02 | 0.098 | 24.10 | 24.05 | 0.099 | 4.0 | | Edge 1 (Top) | DTS | 06 | 2437 | -0.04 | 0.794 | 24.10 | 24.05 | 0.803 | 4.0 | #### Note: Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Stamp" is deemed to be invalid. Copying
or excerpting portion of, or altering the content of the report is not permitted without the writter authorization of presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issue Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. [•] The test separation of all above table is 0mm. [•] According to KDB248227, SAR is not required for 802.11n HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11a/b channels. Page 35 of 92 #### **SAR MEASUREMENT** Depth of Liquid (cm):>15 Product: PARROT SKYCONTROLLER USA Test Mode: 2.4GHz WIFI -Ant.2 | Position | Mode | Ch. | Fr.
(MHz) | Power
Drift
(<±0.2d
B) | 10-g
Extremity
SAR
(W/kg) | Max.
Tune-up
Power
(dBm) | Meas.
output
Power
(dBm) | Scaled
SAR
(W/Kg) | Limit
W/kg | |------------------|--------------|-----|--------------|---------------------------------|------------------------------------|-----------------------------------|-----------------------------------|-------------------------|------------------| | CCK -10MHz | | | | 8 | | | ~ 6 | | | | Hand back | DTS | 06 | 2437 | -0.04 | 0.047 | 25.00 | 24.37 | 0.054 | 4.0 | | Hand front | DTS | 06 | 2437 | 0.13 | 0.076 | 25.00 | 24.37 | 0.088 | 4.0 | | Edge 1 (Top) | DTS | 06 | 2437 | -0.05 | 0.685 | 25.00 | 24.37 | 0.792 | 4.0 | | OFDM with data r | ate MCS0-10M | Hz | | G | 8 | | | | | | Hand back | DTS | 06 | 2437 | -0.09 | 0.020 | 24.30 | 23.93 | 0.022 | 4.0 | | Hand front | DTS | 06 | 2437 | 0.02 | 0.030 | 24.30 | 23.93 | 0.033 | 4.0 | | Edge 1 (Top) | DTS | 06 | 2437 | 0.16 | 0.479 | 24.30 | 23.93 | 0.522 | 4.0 | | 802.11b-20MHz | (0) | | | | | | (0) | | 10 | | Hand back | DTS | 06 | 2437 | 0.11 | 0.073 | 25.10 | 24.38 | 0.086 | 4.0 | | Hand front | DTS | 06 | 2437 | -0.09 | 0.078 | 25.10 | 24.38 | 0.092 | 4.0 | | Edge 1 (Top) | DTS | 06 | 2437 | -0.10 | 0.920 | 25.10 | 24.38 | 1.086 | 4.0 | | 802.11n(20)-20MH | łz | 3 | | | 60 | | · · · · | | | | Hand back | DTS | 06 | 2437 | -0.02 | 0.066 | 24.40 | 24.15 | 0.070 | ₀ 4.0 | | Hand front | DTS | 06 | 2437 | 0.02 | 0.069 | 24.40 | 24.15 | 0.073 | 4.0 | | Edge 1 (Top) | DTS | 06 | 2437 | -0.17 | 0.740 | 24.40 | 24.15 | 0.784 | 4.0 | #### Note: - The test separation of all above table is 0mm. - According to KDB248227, SAR is not required for 802.11n HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11a/b channels. Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Sedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter pathorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Page 36 of 92 #### **SAR MEASUREMENT** Depth of Liquid (cm):>15 Product: PARROT SKYCONTROLLER USA Test Mode: 2.4GHz WIFI-MIMO | Position | Mode | Ch. | Fr.
(MHz) | 10-g
Extremity
SAR
(W/kg)
-Ant.1 | 10-g
Extremity
SAR
(W/kg)
-Ant.2 | 10-g
Extremity
SAR
(W/kg)-MIMO | Max.
Tune-up
Power
(dBm) | Meas.
output
Power
(dBm) | Scaled
SAR
(W/Kg) | Limit
W/k
g | |-----------------|----------|--------|--------------|--|--|---|-----------------------------------|-----------------------------------|-------------------------|-------------------| | OFDM with data | rate MCS | 0-10MH | z | | | - 0 | (6) | | | | | Hand back | DTS | 06 | 2437 | 0.037 | 0.020 | 0.057 | 27.10 | 26.79 | 0.061 | 4.0 | | Hand front | DTS | 06 | 2437 | 0.091 | 0.030 | 0.121 | 27.10 | 26.79 | 0.130 | 4.0 | | Edge 1 (Top) | DTS | 06 | 2437 | 0.555 | 0.479 | 1.034 | 27.10 | 26.79 | 1.111 | 4.0 | | 802.11n(20)-20N | 1Hz | 8 | | | | -C | | 0 | | | | Hand back | DTS | 06 | 2437 | 0.065 | 0.066 | 0.131 | 27.20 | 27.11 | 0.134 | 4.0 | | Hand front | DTS | 06 | 2437 | 0.098 | 0.069 | 0.167 | 27.20 | 27.11 | 0.170 | 4.0 | | Edge 1 (Top) | DTS | 06 | 2437 | 0.794 | 0.740 | 1.534 | 27.20 | 27.11 | 1.566 | 4.0 | #### Note: - The test separation of all above table is 0mm. - According to KDB248227, SAR is not required for 802.11n HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11a/b channels. Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Festing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written perhorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. Page 37 of 92 # SAR MEASUREMENT Depth of Liquid (cm):>15 Product: PARROT SKYCONTROLLER USA Test Mode: 5.2GHz WIFI -Ant.1 | Position | Ch. | Fr.
(MHz) | Power
Drift
(<±0.2dB) | 10-g
Extremity
SAR
(W/kg) | Max.
Tune-up
Power
(dBm) | Meas.
output
Power
(dBm) | Scaled
SAR
(W/kg) | Limit
(W/kg) | |-------------------|------------|--------------|-----------------------------|------------------------------------|-----------------------------------|-----------------------------------|-------------------------|------------------| | OFDM with data ra | te 6 -10MI | Ηz | | - 0 | ® | | | | | Hand back | 40 | 5200 | 0.11 | 0.067 | 16.20 | 16.00 | 0.070 | 4.0 | | Hand front | 40 | 5200 | 0.18 | 0.094 | 16.20 | 16.00 | 0.098 | ₀ 4.0 | | Edge 1 (Top) | 40 | 5200 | 0.05 | 0.467 | 16.20 | 16.00 | 0.489 | 4.0 | | OFDM with data ra | te MCS0- | 10MHz | 9 | .0 | | (a) | | | | Hand back | 40 🏻 | 5200 | 0.11 | 0.028 | 13.50 | 13.09 | 0.031 | 4.0 | | Hand front | 40 | 5200 | 0.10 | 0.039 | 13.50 | 13.09 | 0.043 | 4.0 | | Edge 1 (Top) | 40 | 5200 | 0.12 | 0.170 | 13.50 | 13.09 | 0.187 | 4.0 | | 802.11a-20MHz | | | | - 6 | @ | | | < (c) | | Hand back | 40 | 5200 | 0.16 | 0.128 | 19.30 | 18.88 | 0.141 | 4.0 | | Hand front | 40 | 5200 | -0.18 | 0.173 | 19.30 | 18.88 | 0.191 | 4.0 | | Edge 1 (Top) | 40 | 5200 | -0.18 | 0.708 | 19.30 | 18.88 | 0.780 | 4.0 | | 802.11n20-20MHz | | | | | | | | | | Hand back | 40 | 5200 | 0.19 | 0.111 | 16.30 | 15.86 | 0.123 | 4.0 | | Hand front | 40 | 5200 | -0.15 | 0.149 | 16.30 | 15.86 | 0.165 | _4.0 | | Edge 1 (Top) | 40 | 5200 | -0.05 | 0.622 | 16.30 | 15.86 | 0.688 | 4.0 | Note: ^{1.} The test separation of all above table is 0mm. Page 38 of 92 ### SAR MEASUREMENT Depth of Liquid (cm):>15 Product: PARROT SKYCONTROLLER USA Test Mode: 5.2GHz WIFI -Ant.2 | | | <u> </u> | | 10-g | Max. | Meas. | | | |---------------------|----------|--------------|-----------------------------|----------------------|---------------------------|--------------------------|-------------------------|-----------------| | Position | Ch. | Fr.
(MHz) | Power
Drift
(<±0.2dB) | Extremity SAR (W/kg) | Tune-up
Power
(dBm) | output
Power
(dBm) | Scaled
SAR
(W/kg) | Limit
(W/kg) | | OFDM with data rate | e 6 -10M | Hz | | | | | | | | Hand back | 40 | 5200 | -0.10 | 0.103 | 16.30 | 16.15 | 0.107 | 4.0 | | Hand front | 40 | 5200 | 0.10 | 0.138 | 16.30 | 16.15 | 0.143 | 4.0 | | Edge 1 (Top) | 40 | 5200 | 0.08 | 0.756 | 16.30 | 16.15 | 0.783 | 4.0 | | OFDM with data rate | MCS0- | 10MHz | | | | (0) | | | | Hand back | 40 | 5200 | -0.12 | 0.090 | 13.20 | 12.66 | 0.102 | 4.0 | | Hand front | 40 | 5200 | 0.13 | 0.106 | 13.20 | 12.66 | 0.120 | 4.0 | | Edge 1 (Top) | 40 | 5200 | -0.14 | 0.540 | 13.20 | 12.66 | 0.611 | 4.0 | | 802.11a-20MHz | | | | - C | @ | | | | | Hand back | 40 | 5200 | -0.11 | 0.161 | 19.20 | 18.90 | 0.173 | 4.0 | | Hand front | 40 | 5200 | -0.11 | 0.173 | 19.20 | 18.90 | 0.185 | 4.0 | | Edge 1 (Top) | 40 | 5200 | -0.11 | 0.816 | 19.20 | 18.90 | 0.874 | 4.0 | | 802.11n20-20MHz | | | | | ** | 0 | | | | Hand back | 40 | 5200 | -0.08 | 0.130 | 15.90 | 15.79 | 0.133 | 4.0 | | Hand front | 40 | 5200 | 0.08 | 0.155 | 15.90 | 15.79 | 0.159 | 4.0 | | Edge 1 (Top) | 40 | 5200 | 0.07 | 0.802 | 15.90 | 15.79 | 0.823 | 4.0 | Note: ^{1.} The test separation of all above table is 0mm. Page 39 of 92 ### **SAR MEASUREMENT** Depth of Liquid (cm):>15 Product: PARROT SKYCONTROLLER USA Test Mode: 5.2GHz WIFI -MIMO | Position | Ch. | Fr.
(MHz) | 10-g
Extremity
SAR
(W/kg)
-Ant.1 | 10-g
Extremity
SAR
(W/kg)
-Ant.2 | 10-g
Extremity
SAR
(W/kg)
-MIMO | Max.
Tune-up
Power
(dBm) | Meas.
output
Power
(dBm) | Scaled
SAR
(W/kg) | Limit
(W/kg) | |---------------------|---------|--------------|--|--|---|-----------------------------------|-----------------------------------|-------------------------|-----------------| | OFDM with data rate | e MCS0- | 10MHz | | | | | (8) | | | | Hand back | 40 | 5200 | 0.028 | 0.090 | 0.118 | 16.40 | 15.89 | 0.133 | 4.0 | | Hand front | 40 | 5200 | 0.039 | 0.106 | 0.145 | 16.40 | 15.89 | 0.163 | 4.0 | | Edge 1 (Top) | 40 | 5200 | 0.170 | 0.540 | 0.710 | 16.40 | 15.89 | 0.798 | 4.0 | | 802.11n20-20MHz | | | | | -6 |
(6) | | | | | Hand back | 40 | 5200 | 0.111 | 0.130 | 0.241 | 19.20 | 18.84 | 0.262 | 4.0 | | Hand front | 40 | 5200 | 0.149 | 0.155 | 0.304 | 19.20 | 18.84 | 0.330 | 4.0 | | Edge 1 (Top) | 40 | 5200 | 0.622 | 0.802 | 1.424 | 19.20 | 18.84 | 1.547 | 4.0 | Note: ^{1.} The test separation of all above table is $0\,\mathrm{mm}$. Page 40 of 92 ### SAR MEASUREMENT Depth of Liquid (cm):>15 Product: PARROT SKYCONTROLLER USA Test Mode: 5.8GHz WIFI -Ant.1 | Position | Ch. | Fr.
(MHz) | Power
Drift
(<±0.2dB) | 10-g
Extremity
SAR
(W/kg) | Max.
Tune-up
Power
(dBm) | Meas.
output
Power
(dBm) | Scaled
SAR
(W/kg) | Limit
(W/kg) | |---------------------|----------|--------------|-----------------------------|------------------------------------|-----------------------------------|-----------------------------------|-------------------------|------------------| | OFDM with data rate | e MCS0-1 | I0MHz | -60 | | @ | | | 60 | | Hand back | 157 | 5785 | -0.13 | 0.123 | 24.10 | 24.00 | 0.126 | 4.0 | | Hand front | 157 | 5785 | 0.16 | 0.061 | 24.10 | 24.00 | 0.062 | _© 4.0 | | Edge 1 (Top) | 157 | 5785 | -0.11 | 0.400 | 24.10 | 24.00 | 0.409 | 4.0 | | 802.11a-20MHz | | | 9 | | | (0) | | | | Hand back | 157 🏻 | 5785 | 0.16 | 0.187 | 24.50 | 24.26 | 0.198 | 4.0 | | Hand front | 157 | 5785 | 0.18 | 0.231 | 24.50 | 24.26 | 0.244 | 4.0 | | Edge 1 (Top) | 157 | 5785 | -0.05 | 0.550 | 24.50 | 24.26 | 0.581 | 4.0 | | 802.11n20-20MHz | | | | | 8 | | | | | Hand back | 157 | 5785 | 0.13 | 0.149 | 24.50 | 24.24 | 0.158 | 4.0 | | Hand front | 157 | 5785 | 0.12 | 0.089 | 24.50 | 24.24 | 0.094 | 4.0 | | Edge 1 (Top) | 157 | 5785 | -0.18 | 0.428 | 24.50 | 24.24 | 0.454 | 4.0 | Note: ^{1.} The test separation of all above table is 0mm. Page 41 of 92 ### SAR MEASUREMENT Depth of Liquid (cm):>15 Product: PARROT SKYCONTROLLER USA Test Mode: 5.8GHz WIFI -Ant.2 | Position | Ch. | Fr.
(MHz) | Power
Drift
(<±0.2dB) | 10-g
Extremity
SAR
(W/kg) | Max.
Tune-up
Power
(dBm) | Meas.
output
Power
(dBm) | Scaled
SAR
(W/kg) | Limit
(W/kg) | |---------------------|----------|--------------|-----------------------------|------------------------------------|-----------------------------------|-----------------------------------|-------------------------|------------------| | OFDM with data rate | e 6-10MH | z | .60 | - 6 | @ | | | | | Hand back | 157 | 5785 | 0.04 | 0.066 | 24.10 | 23.83 | 0.070 | 4.0 | | Hand front | 157 | 5785 | 0.14 | 0.108 | 24.10 | 23.83 | 0.115 | _© 4.0 | | Edge 1 (Top) | 157 | 5785 | 0.14 | 0.139 | 24.10 | 23.83 | 0.148 | 4.0 | | OFDM with data rate | e MCS0-1 | 10MHz | 9 | | | | | | | Hand back | 157 | 5785 | 0.15 | 0.043 | 23.90 | 23.72 | 0.045 | 4.0 | | Hand front | 157 | 5785 | 0.17 | 0.106 | 23.90 | 23.72 | 0.110 | 4.0 | | Edge 1 (Top) | 157 | 5785 | -0.07 | 0.134 | 23.90 | 23.72 | 0.140 | 4.0 | | 802.11a-20MHz | | | | 2.0 | © | | | | | Hand back | 157 | 5785 | 0.18 | 0.100 | 24.30 | 24.17 | 0.103 | 4.0 | | Hand front | 157 | 5785 | -0.15 | 0.223 | 24.30 | 24.17 | 0.230 | 4.0 | | Edge 1 (Top) | 157 | 5785 | -0.12 | 0.364 | 24.30 | 24.17 | 0.375 | 4.0 | | 802.11n20-20MHz | | | | | - 0 | 8 | | | | Hand back | 157 | 5785 | 0.16 | 0.097 | 24.30 | 23.61 | 0.114 | 4.0 | | Hand front | 157 | 5785 | 0.03 | 0.201 | 24.30 | 23.61 | 0.236 | 4.0 | | Edge 1 (Top) | 157 | 5785 | -0.15 | 0.239 | 24.30 | 23.61 | 0.280 | 4.0 | #### Note: ^{1.} The test separation of all above table is 0mm. Page 42 of 92 ### SAR MEASUREMENT Depth of Liquid (cm):>15 Product: PARROT SKYCONTROLLER USA Test Mode: 5.8GHz WIFI -MIMO | Position | Ch. | Fr.
(MHz) | 10-g
Extremity
SAR
(W/kg)
-Ant.1 | 10-g
Extremity
SAR
(W/kg)
-Ant.2 | 10-g
Extremity
SAR
(W/kg)
-MIMO | Max.
Tune-up
Power
(dBm) | Meas.
output
Power
(dBm) | Scaled
SAR
(W/kg) | Limit
(W/kg) | |---------------------|-------|--------------|--|--|---|-----------------------------------|-----------------------------------|-------------------------|-----------------| | OFDM with data rate | MCS0- | 10MHz | | | | | ® | | | | Hand back | 157 | 5785 | 0.123 | 0.043 | 0.166 | 26.90 | 26.87 | 0.167 | 4.0 | | Hand front | 157 | 5785 | 0.061 | 0.106 | 0.167 | 26.90 | 26.87 | 0.168 | 4.0 | | Edge 1 (Top) | 157 | 5785 | 0.400 | 0.134 | 0.534 | 26.90 | 26.87 | 0.538 | 4.0 | | 802.11n20-20MHz | | | | | 7.0 | | (6) | | | | Hand back | 157 | 5785 | 0.149 | 0.097 | 0.246 | 27.30 | 26.95 | 0.267 | 4.0 | | Hand front | 157 | 5785 | 0.089 | 0.201 | 0.290 | 27.30 | 26.95 | 0.314 | 4.0 | | Edge 1 (Top) | 157 | 5785 | 0.428 | 0.239 | 0.667 | 27.30 | 26.95 | 0.723 | 4.0 | Note: ^{1.} The test separation of all above table is 0mm. Page 43 of 92 ### APPENDIX A. SAR SYSTEM CHECK DATA Test Laboratory: AGC Lab Date: Jun. 04,2021 System Check Head 2450 MHz DUT: Dipole 2450 MHz Type: D2450V2 Communication System CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.76$ mho/m; $\epsilon r = 38.63$; $\rho = 1000$ kg/m³; Phantom section: Flat Section; Input Power=18dBm Ambient temperature (°C): 22.2, Liquid temperature (°C): 22.0, Relative Humidity (%): 55.8 ## **DASY Configuration:** Probe: EX3DV4 – SN:3953; ConvF(7.66, 7.66, 7.66); Calibrated: Jul. 29,2020; • Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 • Electronics: DAE4 SN1398; Calibrated: May 17,2021 • Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; • DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) Configuration/System Check Head 2450MHz/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.01 W/kg Configuration/System Check Head 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 33.149 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 7.37 W/kg SAR(1 g) = 3.43 W/kg; SAR(10 g) = 1.53 W/kg Maximum value of SAR (measured) = 5.36 W/kg Page 44 of 92 Date: Jun. 05,2021 Test Laboratory: AGC Lab System Check Head 5200 MHz DUT: Dipole 5000MHz Type: SWG5500 Communication System: CW; Communication System Band: D5000 (5000.0 MHz); Duty Cycle: 1:1; Frequency: 5200 MHz; Medium parameters used: f = 5250 MHz; $\sigma = 5.31$ mho/m; $\epsilon r = 35.63$; $\rho = 1000$ kg/m³; Phantom section: Flat Section; Input Power=10dBm Ambient temperature (°C): 21.6, Liquid temperature (°C): 21.4, Relative Humidity (%):54.3 ## **DASY Configuration:** - Probe: EX3DV4 SN3953; ConvF(5.53, 5.53, 5.53); Calibrated: Jul. 29,2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) Configuration/System Check 5200MHz Head/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 3.98 W/kg Configuration/System Check 5200MHz Head/Zoom Scan (8x8x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 27.246 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 9.42 W/kg SAR(1 g) = 1.66 W/kg; SAR(10 g) = 0.538 W/kg Maximum value of SAR (measured) = 4.14 W/kg Page 45 of 92 Date: Jun. 07,2021 Test Laboratory: AGC Lab System Check Head 5800 MHz DUT: Dipole 5000MHz Type: SWG5500 Communication System: CW; Communication System Band: D5000 (5000.0 MHz); Duty Cycle: 1:1; Frequency: 5800 MHz; Medium parameters used: f = 5750 MHz; $\sigma = 5.47$ mho/m; $\epsilon r = 34.80$; $\rho = 1000$ kg/m³; Phantom section: Flat Section; Input Power=10dBm Ambient temperature (°C): 21.5 Liquid temperature (°C): 21.2, Relative Humidity (%):58.1 ## **DASY Configuration:** - Probe: EX3DV4 SN3953; ConvF(4.99, 4.99, 4.99); Calibrated: Jul. 29,2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) Configuration/System Check 5800MHz Head/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.88 W/kg Configuration/System Check 5800MHz Head/1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.888 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 14.4 W/kg SAR(1 g) = 1.89 W/kg; SAR(10 g) = 0.591 W/kg Maximum value of SAR (measured) = 4.32 W/kg Page 46 of 92 ### APPENDIX B. SAR MEASUREMENT DATA 2.4GHz WIFI -Ant.1 Test Laboratory: AGC Lab Date: Jun. 04,2021 CCK -10MHz Mid- Hand- Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: CCK; Duty Cycle: 1:1; Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.73$ mho/m; $\epsilon r = 39.52$;; $\rho = 1000$ kg/m³; Phantom section: Flat Section Ambient temperature ($^{\circ}$ C): 22.2, Liquid temperature ($^{\circ}$ C):22.0 ### **DASY Configuration:** - Probe: EX3DV4 SN:3953; ConvF(7.66, 7.66, 7.66); Calibrated: Jul. 29,2020; - Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) HAND/EDGE 1/Area Scan (7x16x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.24 W/kg HAND/EDGE 1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.051 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 4.17 W/kg SAR(1 g) = 1.87 W/kg; SAR(10 g) = 0.886 W/kg Maximum value of SAR (measured) = 2.47 W/kg Page 48 of 92 Test Laboratory: AGC Lab Date: Jun. 04,2021 OFDM with data rate MCS0-10MHz Mid- Hand- Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication
System: Wi-Fi; Communication System Band: OFDM with data rate MCS0; Duty Cycle: 1:1; Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.73$ mho/m; $\epsilon = 39.52$;; $\rho = 1000$ kg/m³; Phantom section: Flat Section Ambient temperature (°C): 22.2, Liquid temperature (°C):22.0 ### **DASY Configuration:** - Probe: EX3DV4 SN:3953; ConvF(7.66, 7.66, 7.66); Calibrated: Jul. 29,2020; - Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) **HAND/EDGE 1/Area Scan (7x16x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.11 W/kg HAND/EDGE 1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 22.533 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.46 W/kg SAR(1 g) = 0.871 W/kg; SAR(10 g) = 0.555 W/kg Maximum value of SAR (measured) = 1.13 W/kg Page 50 of 92 Date: Jun. 04,2021 Test Laboratory: AGC Lab 802.11b-20MHz Mid- Hand- Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.73$ mho/m; $\epsilon r = 39.52$; $\rho = 1000$ kg/m³; Phantom section: Flat Section Ambient temperature (°C): 22.2, Liquid temperature (°C):22.0 ### **DASY Configuration:** - Probe: EX3DV4 SN:3953; ConvF(7.66, 7.66, 7.66); Calibrated: Jul. 29,2020; - Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) HAND/EDGE 1/Area Scan (7x16x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.35 W/kg HAND/EDGE 1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 31.786 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 4.51 W/kg SAR(1 g) = 2 W/kg; SAR(10 g) = 0.931 W/kg Page 52 of 92 Test Laboratory: AGC Lab Date: Jun. 04,2021 802.11n(20)-20MHz Mid- Hand- Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: 802.11n(20); Duty Cycle: 1:1; Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.73 \text{ mho/m}$; $\epsilon r = 39.52$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section Ambient temperature (°C): 22.2, Liquid temperature (°C):22.0 ## **DASY Configuration:** - Probe: EX3DV4 SN:3953; ConvF(7.66, 7.66, 7.66); Calibrated: Jul. 29,2020; - Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) HAND/EDGE 1/Area Scan (7x16x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.41 W/kg HAND/EDGE 1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 26.039 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.25 W/kg SAR(1 g) = 1.56 W/kg; SAR(10 g) = 0.794 W/kg Page 54 of 92 2.4GHz WIFI -Ant.2 Test Laboratory: AGC Lab Date: Jun. 04,2021 CCK -10MHz Mid- Hand- Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: CCK; Duty Cycle: 1:1; Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.73$ mho/m; $\epsilon r = 39.52$;; $\rho = 1000$ kg/m³; Phantom section: Flat Section Ambient temperature ($^{\circ}$ C): 22.2, Liquid temperature ($^{\circ}$ C):22.0 ### **DASY Configuration:** Probe: EX3DV4 – SN:3953; ConvF(7.66, 7.66, 7.66); Calibrated: Jul. 29,2020; • Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0 • Electronics: DAE4 SN1398; Calibrated: May 17,2021 Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; • DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) HAND/EDGE 1/Area Scan (7x16x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.05 W/kg HAND/EDGE 1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.856 V/m; Power Drift = -0.05dB Peak SAR (extrapolated) = 2.87 W/kg SAR(1 g) = 1.35 W/kg; SAR(10 g) = 0.685 W/kg Maximum value of SAR (measured) = 2.16 W/kg Page 56 of 92 Test Laboratory: AGC Lab Date: Jun. 04,2021 OFDM with data rate MCS0-10MHz Mid- Hand- Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: OFDM with data rate MCS0; Duty Cycle: 1:1; Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.73$ mho/m; $\epsilon = 39.52$;; $\rho = 1000$ kg/m³; Phantom section: Flat Section Ambient temperature ($^{\circ}$ C): 22.2, Liquid temperature ($^{\circ}$ C):22.0 ## **DASY Configuration:** - Probe: EX3DV4 SN:3953; ConvF(7.66, 7.66, 7.66); Calibrated: Jul. 29,2020; - Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) **HAND/EDGE 1/Area Scan (7x16x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.43 W/kg HAND/EDGE 1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.055 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 2.01 W/kg SAR(1 g) = 0.940 W/kg; SAR(10 g) = 0.479 W/kg Page 58 of 92 Test Laboratory: AGC Lab Date: Jun. 04,2021 802.11b-20MHz Mid- Hand- Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.73$ mho/m; $\epsilon r = 39.52$; $\rho = 1000$ kg/m³; Phantom section: Flat Section Ambient temperature (°C): 22.2, Liquid temperature (°C):22.0 ### **DASY Configuration:** - Probe: EX3DV4 SN:3953; ConvF(7.66, 7.66, 7.66); Calibrated: Jul. 29,2020; - Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) HAND/EDGE 1/Area Scan (7x16x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.51 W/kg HAND/EDGE 1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.850 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 4.37 W/kg SAR(1 g) = 1.98 W/kg; SAR(10 g) = 0.920 W/kg Page 60 of 92 Test Laboratory: AGC Lab Date: Jun. 04,2021 802.11n(20)-20MHz Mid- Hand- Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: 802.11n(20); Duty Cycle: 1:1; Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.73 \text{ mho/m}$; $\epsilon r = 39.52$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section Ambient temperature (°C): 22.2, Liquid temperature (°C):22.0 ## **DASY Configuration:** - Probe: EX3DV4 SN:3953; ConvF(7.66, 7.66, 7.66); Calibrated: Jul. 29,2020; - Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) **HAND/EDGE 1/Area Scan (7x16x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.35 W/kg HAND/EDGE 1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.279 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 3.36 W/kg SAR(1 g) = 1.6 W/kg; SAR(10 g) = 0.740 W/kg Maximum value of SAR (measured) = 2.55 W/kg Page 62 of 92 5.2GHz WIFI -Ant.1 Test Laboratory: AGC Lab Date: Jun. 05,2021 OFDM with data rate 6 -10MHz CH40-Hand - Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: OFDM with data rate 6; Duty Cycle: 1:1 Frequency: 5200 MHz; Medium parameters used: f = 5250 MHz; $\sigma = 5.31 mho/m$; $\epsilon = 35.63$; $\rho = 1000 kg/m^3$; Phantom section: Flat Section Ambient temperature ($^{\circ}$): 21.6, Liquid temperature ($^{\circ}$): 21.4 ### **DASY Configuration:** Probe: EX3DV4 – SN3953; ConvF(5.53, 5.53, 5.53); Calibrated: Jul. 29,2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 • Electronics: DAE4 SN1398; Calibrated: May 17,2021 Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; • DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) **HAND/EDGE 1/Area Scan (7x16x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.803 W/kg HAND/EDGE 1/Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 21.129 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.46 W/kg SAR(1 g) = 0.771 W/kg; SAR(10 g) = 0.467 W/kg Maximum value of SAR (measured) = 0.919 W/kg Page 64 of 92 Test Laboratory: AGC Lab Date: Jun. 05,2021 OFDM with data rate MCS0-10MHz CH40-Hand - Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: OFDM with data rate MCS0; Duty Cycle: 1:1 Frequency: 5200 MHz; Medium parameters used: f = 5250MHz; $\sigma = 5.31mho/m$; $\epsilon = 35.63$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section Ambient temperature ($^{\circ}$ C): 21.6, Liquid temperature ($^{\circ}$ C): 21.4 ## **DASY Configuration:** - Probe: EX3DV4 SN3953; ConvF(5.53, 5.53, 5.53); Calibrated: Jul. 29,2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) **HAND/EDGE 1/Area Scan (7x16x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.395
W/kg HAND/EDGE 1/Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 7.135 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 1.06 W/kg SAR(1 g) = 0.431 W/kg; SAR(10 g) = 0.170 W/kg Maximum value of SAR (measured) = 0.592 W/kg Page 66 of 92 Date: Jun. 05,2021 Test Laboratory: AGC Lab 802.11a -20MHz CH40-Hand - Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: 802.11a; Duty Cycle: 1:1 Frequency: 5200 MHz; Medium parameters used: f = 5250MHz; $\sigma = 5.31mho/m$; $\epsilon r = 35.63$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section Ambient temperature ($^{\circ}$ C): 21.6, Liquid temperature ($^{\circ}$ C): 21.4 ## **DASY Configuration:** - Probe: EX3DV4 SN3953; ConvF(5.53, 5.53, 5.53); Calibrated: Jul. 29,2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) HAND/EDGE 1/Area Scan (7x16x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.48 W/kg HAND/EDGE 1/Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 4.580 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 5.08 W/kg SAR(1 g) = 1.63 W/kg; SAR(10 g) = 0.708 W/kg Page 68 of 92 Test Laboratory: AGC Lab Date: Jun. 05,2021 802.11n20 -20MHz CH40-Hand - Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: 802.11n20; Duty Cycle: 1:1 Frequency: 5200 MHz; Medium parameters used: f = 5250MHz; $\sigma = 5.31mho/m$; $\epsilon r = 35.63$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section Ambient temperature ($^{\circ}$ C): 21.6, Liquid temperature ($^{\circ}$ C): 21.4 ## **DASY Configuration:** - Probe: EX3DV4 SN3953; ConvF(5.53, 5.53, 5.53); Calibrated: Jul. 29,2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) HAND/EDGE 1/Area Scan (7x16x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.19 W/kg HAND/EDGE 1/Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 27.097 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.81 W/kg SAR(1 g) = 0.992 W/kg; SAR(10 g) = 0.622 W/kg Maximum value of SAR (measured) = 1.17 W/kg Page 70 of 92 5.2GHz WIFI -Ant.2 Test Laboratory: AGC Lab Date: Jun. 05,2021 OFDM with data rate 6 -10MHz CH40-Hand - Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: OFDM with data rate 6; Duty Cycle: 1:1 Frequency: 5200 MHz; Medium parameters used: f = 5250MHz; $\sigma = 5.31mho/m$; $\epsilon = 35.63$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section Ambient temperature ($^{\circ}$ C): 21.6, Liquid temperature ($^{\circ}$ C): 21.4 ### **DASY Configuration:** • Probe: EX3DV4 – SN3953; ConvF(5.53, 5.53, 5.53); Calibrated: Jul. 29,2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) **HAND/EDGE 1/Area Scan (7x16x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.85 W/kg HAND/EDGE 1/Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 18.106 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 3.18 W/kg SAR(1 g) = 1.6 W/kg; SAR(10 g) = 0.756 W/kg Maximum value of SAR (measured) = 2.12 W/kg Page 72 of 92 Test Laboratory: AGC Lab Date: Jun. 05,2021 OFDM with data rate MCS0-10MHz CH40-Hand - Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: OFDM with data rate MCS0; Duty Cycle: 1:1 Frequency: 5200 MHz; Medium parameters used: f = 5250MHz; $\sigma = 5.31mho/m$; $\epsilon = 35.63$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section Ambient temperature ($^{\circ}$ C): 21.6, Liquid temperature ($^{\circ}$ C): 21.4 ## **DASY Configuration:** - Probe: EX3DV4 SN3953; ConvF(5.53, 5.53, 5.53); Calibrated: Jul. 29,2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) **HAND/EDGE 1/Area Scan (7x16x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.840 W/kg HAND/EDGE 1/Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 4.456 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 1.02 W/kg SAR(1 g) = 0.758 W/kg; SAR(10 g) = 0.540 W/kg Page 74 of 92 Date: Jun. 05,2021 Test Laboratory: AGC Lab 802.11a -20MHz CH40-Hand - Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: 802.11a; Duty Cycle: 1:1 Frequency: 5200 MHz; Medium parameters used: f = 5250MHz; $\sigma = 5.31mho/m$; $\epsilon r = 35.63$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section Ambient temperature ($^{\circ}$ C): 21.6, Liquid temperature ($^{\circ}$ C): 21.4 ## **DASY Configuration:** - Probe: EX3DV4 SN3953; ConvF(5.53, 5.53, 5.53); Calibrated: Jul. 29,2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) HAND/EDGE 1/Area Scan (7x16x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.81 W/kg HAND/EDGE 1/Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 6.246 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 6.75 W/kg SAR(1 g) = 2.04 W/kg; SAR(10 g) = 0.816 W/kg Maximum value of SAR (measured) = 3.67 W/kg Page 76 of 92 Test Laboratory: AGC Lab Date: Jun. 05,2021 802.11n20 -20MHz CH40-Hand - Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: 802.11n20; Duty Cycle: 1:1 Frequency: 5200 MHz; Medium parameters used: f = 5250MHz; $\sigma = 5.31mho/m$; $\epsilon r = 35.63$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section Ambient temperature ($^{\circ}$ C): 21.6, Liquid temperature ($^{\circ}$ C): 21.4 ## **DASY Configuration:** - Probe: EX3DV4 SN3953; ConvF(5.53, 5.53, 5.53); Calibrated: Jul. 29,2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) HAND/EDGE 1/Area Scan (7x16x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.05 W/kg HAND/EDGE 1/Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 5.079 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 6.62 W/kg SAR(1 g) = 2.01 W/kg; SAR(10 g) = 0.802 W/kg Page 78 of 92 5.8GHz WIFI -Ant.1 Test Laboratory: AGC Lab Date: Jun. 07,2021 OFDM with data rate MCS0-10MHz CH157- Hand - Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: OFDM with data rate MCS0; Duty Cycle: 1:1 Frequency: 5785 MHz; Medium parameters used: f = 5750 MHz; $\sigma = 5.43$ mho/m; $\epsilon = 35.34$; $\rho = 1000$ kg/m³; Phantom section: Flat Section Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.2 #### **DASY Configuration:** - Probe: EX3DV4 SN3953; ConvF(4.99, 4.99, 4.99); Calibrated: Jul. 29,2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) **HAND/EDGE 1/Area Scan (7x16x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.573 W/kg HAND/EDGE 1/Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 9.981 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.728 W/kg SAR(1 g) = 0.537 W/kg; SAR(10 g) = 0.400 W/kg Maximum value of SAR (measured) = 0.594 W/kg Page 80 of 92 Test Laboratory: AGC Lab Date: Jun. 07,2021 802.11a-20MHz CH157- Hand - Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: 802.11a; Duty Cycle: 1:1 Frequency: 5785 MHz; Medium parameters used: f = 5750 MHz; $\sigma = 5.43$ mho/m; $\epsilon r = 35.34$; $\rho = 1000$ kg/m³; Phantom section: Flat Section Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.2 ## **DASY Configuration:** - Probe: EX3DV4 SN3953; ConvF(4.99, 4.99, 4.99); Calibrated: Jul. 29,2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) HAND/EDGE 1/Area Scan (7x16x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.89 W/kg HAND/EDGE 1/Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 6.940 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 4.06 W/kg SAR(1 g) = 1.17 W/kg; SAR(10 g) = 0.550 W/kg Maximum value of SAR (measured) = 2.06 W/kg Page 82 of 92 Test Laboratory: AGC Lab Date: Jun. 07,2021 802.11n20-20MHz CH157- Hand - Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: 802.11n20; Duty Cycle: 1:1 Frequency: 5785 MHz; Medium parameters used: f = 5750 MHz; $\sigma = 5.43$ mho/m; $\epsilon r = 35.34$
; $\rho = 1000$ kg/m³; Phantom section: Flat Section Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.2 ## **DASY Configuration:** - Probe: EX3DV4 SN3953; ConvF(4.99, 4.99, 4.99); Calibrated: Jul. 29,2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) HAND/EDGE 1/Area Scan (7x16x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.73 W/kg HAND/EDGE 1/Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 2.097 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 3.59 W/kg SAR(1 g) = 0.994 W/kg; SAR(10 g) = 0.428 W/kg Maximum value of SAR (measured) = 1.80 W/kg Page 84 of 92 5.8GHz WIFI -Ant.2 Test Laboratory: AGC Lab Date: Jun. 07,2021 OFDM with data rate 6-10MHz CH157- Hand - Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: OFDM with data rate 6; Duty Cycle: 1:1 Frequency: 5785 MHz; Medium parameters used: f = 5750 MHz; $\sigma = 5.43$ mho/m; $\epsilon = 35.34$; $\rho = 1000$ kg/m³; Phantom section: Flat Section Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.2 #### **DASY Configuration:** - Probe: EX3DV4 SN3953; ConvF(4.99, 4.99, 4.99); Calibrated: Jul. 29,2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) **HAND/EDGE 1/Area Scan (7x16x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.233 W/kg HAND/EDGE 1/Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 5.792 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.315 W/kg SAR(1 g) = 0.213 W/kg; SAR(10 g) = 0.139 W/kg Maximum value of SAR (measured) = 0.247 W/kg Page 86 of 92 Test Laboratory: AGC Lab Date: Jun. 07,2021 OFDM with data rate MCS0-10MHz CH157- Hand - Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: OFDM with data rate MCS0; Duty Cycle: 1:1 Frequency: 5785 MHz; Medium parameters used: f = 5750 MHz; $\sigma = 5.43$ mho/m; $\epsilon = 35.34$; $\rho = 1000$ kg/m³; Phantom section: Flat Section Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.2 ## **DASY Configuration:** - Probe: EX3DV4 SN3953; ConvF(4.99, 4.99, 4.99); Calibrated: Jul. 29,2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) **HAND/EDGE 1/Area Scan (7x16x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.237 W/kg HAND/EDGE 1/Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 4.824 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.383 W/kg SAR(1 g) = 0.226 W/kg; SAR(10 g) = 0.134 W/kg Maximum value of SAR (measured) = 0.273 W/kg Page 88 of 92 Test Laboratory: AGC Lab Date: Jun. 07,2021 802.11a-20MHz CH157- Hand - Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: 802.11a; Duty Cycle: 1:1 Frequency: 5785 MHz; Medium parameters used: f = 5750 MHz; $\sigma = 5.43$ mho/m; $\epsilon r = 35.34$; $\rho = 1000$ kg/m³; Phantom section: Flat Section Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.2 ## **DASY Configuration:** - Probe: EX3DV4 SN3953; ConvF(4.99, 4.99, 4.99); Calibrated: Jul. 29,2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) HAND/EDGE 1/Area Scan (7x16x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.26 W/kg HAND/EDGE 1/Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 7.859 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 2.97 W/kg SAR(1 g) = 0.855 W/kg; SAR(10 g) = 0.364 W/kg Maximum value of SAR (measured) = 1.56 W/kg Page 90 of 92 Test Laboratory: AGC Lab Date: Jun. 07,2021 802.11n20-20MHz CH157- Hand - Edge 1 (Top) DUT: PARROT SKYCONTROLLER USA; Type: MPPUA Communication System: Wi-Fi; Communication System Band: 802.11n20; Duty Cycle: 1:1 Frequency: 5785 MHz; Medium parameters used: f = 5750 MHz; $\sigma = 5.43$ mho/m; $\epsilon r = 35.34$; $\rho = 1000$ kg/m³; Phantom section: Flat Section Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.2 ## **DASY Configuration:** - Probe: EX3DV4 SN3953; ConvF(4.99, 4.99, 4.99); Calibrated: Jul. 29,2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE4 SN1398; Calibrated: May 17,2021 - Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD; - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) HAND/EDGE 1/Area Scan (7x16x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.337 W/kg HAND/EDGE 1/Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 13.615 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.398 W/kg SAR(1 g) = 0.316 W/kg; SAR(10 g) = 0.239 W/kg Maximum value of SAR (measured) = 0.346 W/kg 0.284 0.222 0.161 0.099 Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Residual Page 92 of 92 ## APPENDIX C. TEST SETUP PHOTOGRAPHS Refer to Attached files. # APPENDIX D. CALIBRATION DATA Refer to Attached files. #### Conditions of Issuance of Test Reports - 1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients"). - 2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders. - 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders. - 4. The non-CMA report issued by AGC is only permitted to be used by the client as internal reference use and shall not be used for public demonstration purpose. - 5. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate. - 6. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company. - 7. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations. - 8. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing. - 9. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them. - 10. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.