

TEST REPORT

FCC ID: 2AG87ACM-DB-2M-R2

Product: Wi-Fi® Radio Transceiver

Model No.: ACM-DB-2M-R2
Additional Model No.: N/A

Trade Mark: N/A

Report No.: TCT201111E025 Issued Date: Dec. 21, 2020

Issued for:

Doodle Labs (SG) Pte Ltd
150 Kampong Ampat, KA Center, Suite 05-03, Singapore 368324

Issued By:

Shenzhen Tongce Testing Lab. 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

> TEL: +86-755-27673339 FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	Test Certification	 3
2.	Test Result Summary	 4
3.	EUT Description	5
4.	General Information	7
	4.1. Test environment and mode	
	4.2. Description of Support Units	
5.	Facilities and Accreditations	10
	5.1. Facilities	
	5.2. Location	
	5.3. Measurement Uncertainty	10
6.	Test Results and Measurement Data	
	6.1. Antenna requirement	
	6.2. Conducted Emission	12
	6.3. Maximum Conducted Output Power	
	6.4. 6dB Emission Bandwidth	
	6.5. 26dB Bandwidth and 99% Occupied Bandwidth	23
	6.6. Power Spectral Density	
	6.7. Band edge	
	6.8. Unwanted Emissions	
	6.9. Frequency Stability Measurement	 68
Α	ppendix A: Test Result of Conducted Test	
A	ppendix B: Photographs of Test Setup	
Α	ppendix C: Photographs of EUT	

1. Test Certification

Report No.: TCT201111E025

Product:	Wi-Fi® Radio Transceiver	
Model No.:	ACM-DB-2M-R2	
Additional Model No.:	N/A	
Trade Mark:	N/A	
Applicant:	Doodle Labs (SG) Pte Ltd	
Address:	150 Kampong Ampat, KA Center, Suite 05-03, Singapore 368324	
Manufacturer:	Doodle Labs (SG) Pte Ltd	
Address: 150 Kampong Ampat, KA Center, Suite 05-03, Singapore 3683		
Date of Test:	Nov. 12, 2020 – Dec. 18, 2020	
Applicable Standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407: 2016 KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General U-NII Test Procedures New Rul		

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Date: Dec. 18, 2020

Rleo

Reviewed By:

Benyl zhano

Date:

Dec. 21, 2020

Beryl Zhao

Approved By:

Tomsin

Tomsin

Date:

Dec. 21, 2020

TESTING CENTRE TECHNOLOGY Report No.: TCT201111E025

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(a)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Restricted Bands around fundamental frequency	§15.407(b)	PASS
Radiated Emission	§15.407(b)	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5.For the band 5.15-5.25GHz,EUT meet the requirements of 15.407(a)(ii).

Page 4 of 363

3. EUT Description

` <u> </u>			
Product:	Wi-Fi® Radio Transceiver		
Model No.:	ACM-DB-2M-R2		
Additional Model No.:	N/A		
Trade Mark:	N/A		
Operation Frequency:	Band 1: 5180 MHz -5240 MHz Band 2A: 5260 MHz -5320 MHz Band 2C: 5500 MHz -5700 MHz Band 3: 5745 MHz -5825 MHz		
Channel Bandwidth:	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz		
Modulation Technology:	Orthogonal Frequency Division Multiplexing(OFDM)		
Modulation Type	256QAM, 64QAM, 16QAM, BPSK, QPSK		
Antenna Type:	External Antenna		
Antenna Gain:	5dBi		
Power Supply:	DC 3.3V		

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

Test Frequency each of channel

Band 1

20MHz		40MHz		
Channel Frequency		Channel	Frequency	
36 5180		38	5190	
40	5200	46	5230	
48	5240			

Band 2A

20M	1Hz	40MHz		
Channel Frequency		Channel	Frequency	
52	52 5260		5270	
60	5300	62	5310	
64	5320			

Band 2C

20N	lHz	40MHz		
Channel Frequency		Channel	Frequency	
100 5500		102	5510	
120	5600	118	5590	
140	5700	134	5670	

Band 3

20MHz		40MHz		
Channel Frequency		Channel	Frequency	
149	5745	151	5755	
157	5785	159	5795	
165	165 5825		(C)	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 6 of 363

4. General Information

4.1. Test environment and mode

Operating Environment:					
Temperature:	25.0 °C				
Humidity:	56 % RH				
Atmospheric Pressure:	1010 mbar				
Test Mode:					
Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is above 98%)					

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

was worst case.			
Mode	Data rate		
802.11a(SISO)	6 Mbps		
802.11n(HT20) (MIMO)	6.5 Mbps		
802.11n(HT40) (MIMO)	13.5 Mbps		
802.11ac(VHT20) (MIMO)	6.5 Mbps		
802.11ac(VHT40) (MIMO)	13.5 Mbps		
Final Test Mode:			
Operation mode: Keep the EUT in continuous transm with modulation			

Page 7 of 363

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment Model No.		Serial No.	FCC ID	Trade Name	
Laptop	ThinkPad T430	PO1908049	1	Lenovo	
AC Adapter	92P1154	11S92P1154Z1ZD XP7CL957	1	Lenovo	

Page 8 of 363

Setting level of test tool

802.11a		802.111	802.11n(HT20)		802.11n(HT40)	
Frequency (MHz)	Setting level	Frequency (MHz)	Setting level	Frequency (MHz)	Setting level	
5180	18	5180	18	5190	18	
5200	18	5200	18	5230	18	
5240	18	5240	18	5270	18	
5260	20	5260	17	5310	18	
5300	20	5300	17	5510	18	
5320	20	5320	17	5590	14	
5500	19	5500	15	5670	13	
5600	15	5600	11	5755	18	
5700	15	5700	11	5795	19	
5745	18	5745	18			
5785	18	5785	18			
5825	18	5825	18	100		

802.11a	ac(HT20)	802.11ac(HT40)				
Frequency (MHz)	Setting level	Frequency (MHz)	Setting level			
5180	18	5190	18			
5200	18	5230	18			
5240	18	5270	18			
5260	17	5310	18			
5300	17	5510	18			
5320	17	5590	14			
5500	15	5670	13			
5600	11	5755	18			
5700	11	5795	19			
5745	18					
5785	18					
5825	18		(2)			

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of SHENZHEN TONGCE TESTING LAB has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab.

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District,

Shenzhen, Guangdong, China

TEL: +86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

	The of approximately 66 76.	
No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

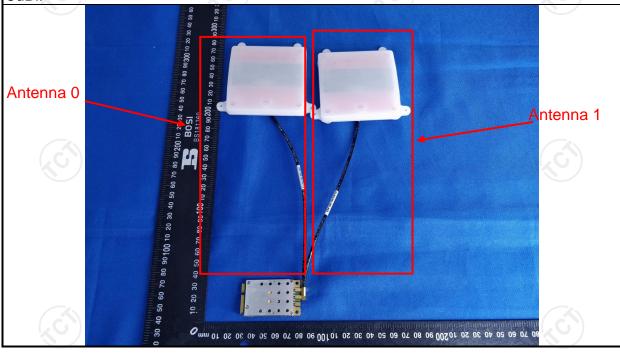
Page 10 of 363

Report No.: TCT201111E025

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement: FCC P


FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT has two external antennas, and the best case gains of the both antennas are 5dBi.

6.2. Conducted Emission

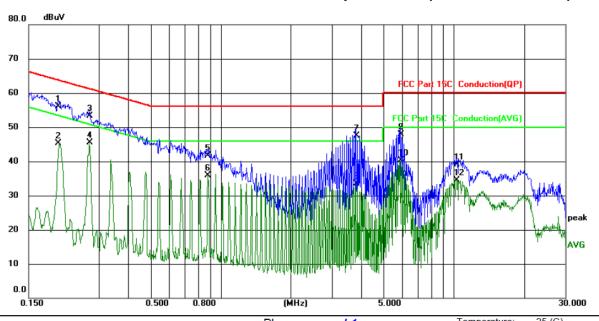
6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207	
Test Method:	ANSI C63.10:2013		
Frequency Range:	150 kHz to 30 MHz		
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (c Quasi-peak 66 to 56* 56 60	Average 56 to 46* 46 50
Test Setup:	Reference 40cm 40cm E.U.T AC power Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	Filter -	— AC power
Test Mode:	Tx Mode		
Test Procedure:	1. The E.U.T and simulation power through a line (L.I.S.N.). This proimpedance for the magnetic power through a Licoupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interference emission, the relative the interface cables ANSI C63.10: 2013	e impedance stabelides a 500hm, leasuring equipments are also connected with 500hm term diagram of the line are checkence. In order to fire positions of equipments are changed must be changed.	ilization network /50uH coupling ent. ected to the main a 50ohm/50uH hination. (Please test setup and d for maximum of the maximum ipment and all of ed according to
Test Result:	PASS		

6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)										
Equipment	Manufacturer	Model	Serial Number	Calibration Due						
Test Receiver	R&S	ESCI3	100898	Jul. 27, 2021						
LISN-2	Schwarzbeck	NSLK 8126	8126453	Sep. 11, 2021						
Line-5	TCT	CE-05	N/A	Sep. 02, 2021						
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A						

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).



6.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site						Phas	se:	L1		remperature	e. 25 (C)
Limit	: FC	C Part 150	C Conducti	on(QP)		Powe	er:			Humidity:	55 %RH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment		
1		0.2006	45.89	10.12	56.01	63.59	-7.58	QP			
2		0.2006	35.15	10.12	45.27	53.59	-8.32	AVG			
3		0.2740	43.15	10.13	53.28	61.00	-7.72	QP			
4	*	0.2740	35.43	10.13	45.56	51.00	-5.44	AVG			
5		0.8780	31.64	10.12	41.76	56.00	-14.24	QP			
6		0.8780	25.69	10.12	35.81	46.00	-10.19	AVG			
7		3.8020	37.28	10.13	47.41	56.00	-8.59	QP			
8		3.8020	23.30	10.13	33.43	46.00	-12.57	AVG			
9		5.9058	37.73	10.13	47.86	60.00	-12.14	QP			
10		5.9058	30.26	10.13	40.39	50.00	-9.61	AVG			
11		10.2500	28.94	10.15	39.09	60.00	-20.91	QP			
12		10.2500	24.41	10.15	34.56	50.00	-15.44	AVG			

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

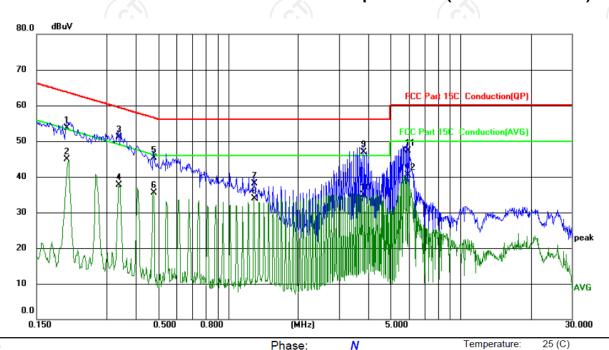
Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

AVG =average


The test mode is MIMO.

Report No.: TCT201111E025

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

								•			-		
	Limi	it: FC	C Part 15	C Conducti	on(QP)		Powe	er:			Humidity:	55 %RH	
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over					
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment			
-	1		0.2020	43.54	10.13	53.67	63.53	-9.86	QP				
	2		0.2020	34.69	10.13	44.82	53.53	-8.71	AVG				
-	3	*	0.3379	41.06	10.13	51.19	59.25	-8.06	QP				
K	4		0.3379	27.53	10.13	37.66	49.25	-11.59	AVG				
)	5		0.4778	35.11	10.13	45.24	56.38	-11.14	QP				
	6		0.4778	25.47	10.13	35.60	46.38	-10.78	AVG				
-	7		1.2940	28.01	10.12	38.13	56.00	-17.87	QP				
-	8		1.2940	23.83	10.12	33.95	46.00	-12.05	AVG				
-	9		3.8100	36.71	10.13	46.84	56.00	-9.16	QP				
	10		3.8100	24.78	10.13	34.91	46.00	-11.09	AVG				
-	11		5.9138	37.14	10.13	47.27	60.00	-12.73	QP				
k	12		5.9138	30.41	10.13	40.54	50.00	-9.46	AVG				

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

AVG =average

Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), and the worst case Mode (Lowest channel and 802.11n(HT20)) was submitted only. The test mode is MIMO.

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

6.3. Maximum Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 E Section 2.1046	on 15.407(a)& Part 2 J Section				
Test Method:	KDB662911 D01 Mu	ultiple Transmitter Output v02r01 eneral UNII Test Procedures New n E				
	Frequency Band (MHz)	Limit				
	5180 - 5240	30dBm(1W)				
Limit:	5260 - 5320	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz				
	5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz				
	5745 - 5825	30dBm(1W)				
Test Setup:	Power meter	EUT				
Test Mode:	Transmitting mode w	vith modulation				
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 					
Test Result:	PASS					
Remark:	+10log(1/x) X is duty	ower= measurement power cycle=1, so 10log(1/1)=0 ower= measurement power				

Page 16 of 363

6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
Power Meter	Agilent	E4418B	GB43312526	Sep. 21, 2021
Power Sensor	Agilent	E9301A	MY41497725	Sep. 21, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

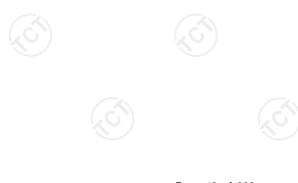
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.3.3. Test Data

Report No.: TCT201111E025

Configuration Bar	nd 1 (5180 - 5240	MHz) / Anten	na 0+Antenna 1				
Mode	Test channel		Maximum Conducted (Average) Output Power (dBm)				
mede		Ant0	Ant1	Total	(dBm)	Result	
11a	CH36	18.63	18.91	/	30	PASS	
11a	CH40	18.89	18.39	/	30	PASS	
11a	CH48	18.71	18.17	/	30	PASS	
11n(HT20)	CH36	18.74	18.93	21.85	30	PASS	
11n(HT20)	CH40	18.94	18.45	21.71	30	PASS	
11n(HT20)	CH48	18.80	18.15	21.50	30	PASS	
11n(HT40)	CH38	18.27	18.74	21.52	30	PASS	
11n(HT40)	CH46	18.58	18.70	21.65	30	PASS	
11ac(VHT20)	CH36	18.46	18.95	21.72	30	PASS	
11ac(VHT20)	CH40	18.73	18.83	21.79	30	PASS	
11ac(VHT20)	CH48	18.85	18.61	21.74	30	PASS	
11ac(VHT40)	CH38	18.27	18.36	21.33	30	PASS	
11ac(VHT40)	CH46	18.55	18.69	21.63	30	PASS	

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01:


For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any NANT,

Array Gain = 5 log(Nant/Nss) dB or 3 dB, whichever is less, for 20-MHz channel widths with Nant≥ 5.

Directional gain = G_{ant} + Array Gain = 5dBi, so limit of conducted output power is 1W(30dBm).

Configuration Ba	and 2A (526	60 - 5320 MH	lz) / Anten	na 0+Anten	na 1			
Mode	Test	Maximum Conducted (Average) Output Power (dBm)			26 dB Bandwidth	11dBm+ 10logB	Limit	Result
Wiede	channel	Ant0	Ant1	Total	(MHz)	(dBm)	(dBm)	rtocait
11a	CH52	18.66	18.22	1	22.40	24.50	24	PASS
11a	CH60	18.86	18.91	1	22.00	24.42	24	PASS
11a	CH64	18.85	18.89	/	22.82	24.58	24	PASS
11n(HT20)	CH52	18.49	18.23	21.37	23.36	24.68	24	PASS
11n(HT20)	CH60	18.88	18.91	21.91	24.01	24.80	24	PASS
11n(HT20)	CH64	18.81	18.74	21.79	23.08	24.63	24	PASS
11n(HT40)	CH54	18.82	18.58	21.71	45.60	27.59	24	PASS
11n(HT40)	CH62	18.39	18.38	21.40	44.83	27.52	24	PASS
11ac(VHT20)	CH52	18.50	18.23	21.38	23.41	24.69	24	PASS
11ac(VHT20)	CH60	18.95	18.98	21.98	23.31	24.68	24	PASS
11ac(VHT20)	CH64	18.74	18.85	21.81	23.10	24.64	24	PASS
11ac(VHT40)	CH54	18.93	18.95	21.95	44.54	27.49	24	PASS
11ac(VHT40)	CH62	18.36	18.25	21.32	44.80	27.51	24	PASS

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01:

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT} ,

Array Gain = $5 \log(N_{ANT}/N_{SS})$ dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$. Directional gain = $G_{ant} + Array Gain = 5dBi$, so limit of conducted output power is 250mW(24dBm).

Note: The maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz

Configuration Ba	and 2C (550	00 - 5720 MF	lz) / Anten	na 0+Anten	na 1			
Mode	Test	Maximum Conducted (Average) Output Power (dBm)			26 dB Bandwidth	11dBm+ 10logB	Limit	Result
	channel	Ant0	Ant1	Total	(MHz)	(dBm)	(dBm)	rtoodit
11a	CH100	18.92	18.64	1	22.07	24.44	24	PASS
11a	CH120	18.79	18.67	1	22.38	24.50	24	PASS
11a	CH144	18.81	18.72	/	22.63	24.55	24	PASS
11n(HT20)	CH100	18.98	18.52	21.77	23.32	24.68	24	PASS
11n(HT20)	CH120	18.73	18.90	21.83	22.11	24.45	24	PASS
11n(HT20)	CH144	18.52	18.60	21.57	23.04	24.62	24	PASS
11n(HT40)	CH102	18.16	18.20	21.19	45.80	27.61	24	PASS
11n(HT40)	CH118	18.90	18.70	21.81	44.67	27.50	24	PASS
11n(HT40)	CH134	18.57	18.23	21.41	43.85	27.42	24	PASS
11ac(VHT20)	CH100	18.64	18.64	21.65	23.62	24.73	24	PASS
11ac(VHT20)	CH120	18.64	18.71	21.69	23.17	24.65	24	PASS
11ac(VHT20)	CH144	18.69	18.80	21.76	22.73	24.57	24	PASS
11ac(VHT40)	CH102	18.32	18.32	21.33	44.13	27.45	24	PASS
11ac(VHT40)	CH118	18.89	18.69	21.80	45.31	27.56	24	PASS
11ac(VHT40)	CH134	18.24	18.57	21.42	45.28	27.56	24	PASS

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01:

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT} ;

Array Gain = $5 \log(N_{ANT}/N_{SS})$ dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$. Directional gain = $G_{ant} + Array Gain = 5dBi$, so limit of conducted output power is 250mW(24dBm).

Note: The maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz

Configuration Bar	nd 3 (5745 - 5825	MHz) / Antenn	a 0+Antenna 1				
Mode	Test channel		Maximum Conducted (Average) Output Power (dBm)				
Widdo		Ant0	Ant1	Total	(dBm)	Result	
11a	CH149	18.48	18.50	/	30	PASS	
11a	CH157	18.46	18.14	/	30	PASS	
11a	CH165	18.46	18.47	/	30	PASS	
11n(HT20)	CH149	18.95	18.64	21.81	30	PASS	
11n(HT20)	CH157	18.24	18.85	21.57	30	PASS	
11n(HT20)	CH165	18.29	18.30	21.31	30	PASS	
11n(HT40)	CH151	18.60	18.13	21.38	30	PASS	
11n(HT40)	CH159	18.62	18.20	21.43	30	PASS	
11ac(VHT20)	CH149	18.64	18.64	21.65	30	PASS	
11ac(VHT20)	CH157	18.52	18.47	21.51	30	PASS	
11ac(VHT20)	CH165	18.37	18.40	21.40	30	PASS	
11ac(VHT40)	CH151	18.42	18.16	21.30	30	PASS	
11ac(VHT40)	CH159	18.62	18.22	21.43	30	PASS	

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01:

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT} ;

Array Gain = 5 log(Nant/Nss) dB or 3 dB, whichever is less, for 20-MHz channel widths with Nant≥ 5.

Directional gain = G_{ant} + Array Gain = 5dBi, so limit of conducted output power is 1W(30dBm).

6.4. 6dB Emission Bandwidth

6.4.1. Test Specification

Toot Doggivernout	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section				
Test Requirement:	2.1049				
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C				
Limit:	>500kHz				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 				
Test Result:	PASS				

6.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 22 of 363

6.5. 26dB Bandwidth and 99% Occupied Bandwidth

6.5.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049				
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D				
Limit:	No restriction limits				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report. 				
Test Result:	PASS				

6.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 23 of 363

6.6. Power Spectral Density

6.6.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407 (a)					
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F					
Limit:	≤17.00dBm/MHz for Band 5150MHz - 5250MHz ≤11.00dBm/MHz for Band 5250-5350&5470 - 5725 ≤30.00dBm/500KHz for Band 5725MHz - 5850MHz					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment. 					
Test Result:	PASS					

6.6.2. Test Instruments

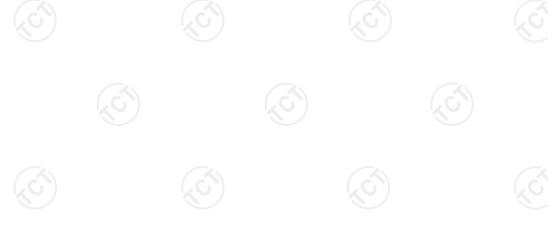
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 24 of 363

6.6.3. Test data

Report No.: TCT201111E025


Configuration Bar	nd 1 (5180 - 5240	MHz) / Anten	na 0+Antenna 1			
Mada	Took ob owned	Pov	wer Spectral Dens	sity	Limit (dBm/MHz)	1
Mode	Test channel	Ant0	Ant1	Total		Result
11a	CH36	1.62	3.57	1	14.99	PASS
11a	CH40	1.48	3.64	/	14.99	PASS
11a	CH48	0.32	3.00	1	14.99	PASS
11n(HT20)	CH36	1.40	3.32	5.48	14.99	PASS
11n(HT20)	CH40	1.13	3.50	5.49	14.99	PASS
11n(HT20)	CH48	0.14	2.60	4.55	14.99	PASS
11n(HT40)	CH38	-1.44	-0.37	2.14	14.99	PASS
11n(HT40)	CH46	1.10	-0.80	3.26	14.99	PASS
11ac(VHT20)	CH36	1.35	3.20	5.38	14.99	PASS
11ac(VHT20)	CH40	1.18	3.46	5.48	14.99	PASS
11ac(VHT20)	CH48	0.09	2.64	4.56	14.99	PASS
11ac(VHT40)	CH38	2.02	-0.46	3.96	14.99	PASS
11ac(VHT40)	CH46	1.10	-1.15	3.13	14.99	PASS

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01:

For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(N_{ANT}/N_{SS}) dB$.

Directional gain = G_{ant} + Array' Gain = 8.01dBi, 8.01dBi > 6dBi, so limit of power spectral density is 17 - (8.01-6) = 14.99.

Configuration Bar	nd 2A (5260-5320	MHz) /Antenn	a 0+Antenna 1			
Mada	Toot channel	Pow	er Spectral Den	sity	Limit	Dogult
Mode	Test channel	Ant0	Ant1	Total	(dBm/MHz)	Result
11a	CH52	3.98	2.41	/	8.99	PASS
11a	CH60	2.99	0.75	1	8.99	PASS
11a	CH64	2.48	0.64	/	8.99	PASS
11n(HT20)	CH52	3.21	2.13	5.71	8.99	PASS
11n(HT20)	CH60	2.40	0.26	4.47	8.99	PASS
11n(HT20)	CH64	2.20	0.16	4.31	8.99	PASS
11n(HT40)	CH54	0.68	-2.43	2.41	8.99	PASS
11n(HT40)	CH62	-1.20	-3.18	0.93	8.99	PASS
11ac(VHT20)	CH52	3.55	1.82	5.78	8.99	PASS
11ac(VHT20)	CH60	2.51	0.21	4.52	8.99	PASS
11ac(VHT20)	CH64	2.25	0.23	4.37	8.99	PASS
11ac(VHT40)	CH54	0.71	-1.94	2.59	8.99	PASS
11ac(VHT40)	CH62	-1.19	-3.55	0.80	8.99	PASS

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01:

For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(N_{ANT}/N_{SS}) dB$.

Directional gain = G_{ant} + $Array\ Gain$ = 8.01dBi, 8.01dBi > 6dBi, so limit of power spectral density is 11 - (8.01-6) = 8.99.

Configuration Bar	Configuration Band 2C (5500-5720 MHz) /Antenna 0+Antenna 1						
Mada	Took ob annol	Power Spectral Density			Limit	Daguit	
Mode	Test channel	Ant0	Ant1	Total	(dBm/MHz)	Result	
11a	CH100	1.89	4.72	/	8.99	PASS	
11a	CH120	2.15	4.36	1	8.99	PASS	
11a	CH144	0.93	2.71	/	8.99	PASS	
11n(HT20)	CH100	-3.67	2.84	3.72	8.99	PASS	
11n(HT20)	CH120	1.83	4.10	6.12	8.99	PASS	
11n(HT20)	CH144	0.70	3.16	5.11	8.99	PASS	
11n(HT40)	CH102	-6.83	-1.28	-0.21	8.99	PASS	
11n(HT40)	CH118	-2.15	2.28	3.62	8.99	PASS	
11n(HT40)	CH134	-2.04	1.77	3.28	8.99	PASS	
11ac(VHT20)	CH100	-3.63	0.87	2.19	8.99	PASS	
11ac(VHT20)	CH120	1.79	2.06	4.94	8.99	PASS	
11ac(VHT20)	CH144	0.69	2.11	4.47	8.99	PASS	
11ac(VHT40)	CH102	-6.26	-1.36	-0.14	8.99	PASS	
11ac(VHT40)	CH118	-2.01	1.88	3.37	8.99	PASS	
11ac(VHT40)	CH134	-2.00	1.77	3.29	8.99	PASS	

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01:

For power spectral density (PSD) measurements on all devices,

Array Gain = 10 log(Nant/Nss) dB.

Directional gain = G_{ant} + Array Gain = 8.01dBi, 8.01dBi > 6dBi, so limit of power spectral density is 11 - (8.01-6) = 8.99.

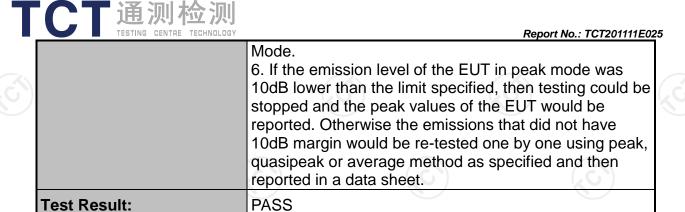
Configuration Bar	Configuration Band 3(5745-5825MHz) / Antenna 0+Antenna 1						
Mada	Took ob own ol	Power Spectral Density				D	
Mode	Test channel	Ant0	Ant1	Total	(dBm/MHz)	Result	
11a	CH52	6.64	6.05	/	27.99	PASS	
11a	CH60	6.11	5.37	1	27.99	PASS	
11a	CH64	6.21	5.17	/	27.99	PASS	
11n(HT20)	CH52	6.02	5.63	8.84	27.99	PASS	
11n(HT20)	CH60	6.14	5.16	8.69	27.99	PASS	
11n(HT20)	CH64	5.26	4.76	8.03	27.99	PASS	
11n(HT40)	CH54	3.54	2.92	6.25	27.99	PASS	
11n(HT40)	CH62	2.94	2.86	5.91	27.99	PASS	
11ac(VHT20)	CH52	6.40	6.37	9.40	27.99	PASS	
11ac(VHT20)	CH60	5.89	5.82	8.87	27.99	PASS	
11ac(VHT20)	CH64	5.11	5.11	8.12	27.99	PASS	
11ac(VHT40)	CH54	3.68	3.30	6.50	27.99	PASS	
11ac(VHT40)	CH62	3.29	2.91	6.11	27.99	PASS	

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01:

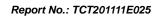
For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(N_{ANT}/N_{SS}) dB$.

Directional gain = G_{ant} + Array Gain = 8.01dBi, 8.01dBi > 6dBi, so limit of power spectral density is 30 - (8.01-6) = 27.99.



6.7. Band edge


6.7.1. Test Specification

o.r.n. rest opecinication		<u> </u>			
Test Requirement:	FCC CFR47 Pa	rt 15E Sectio	n 15.407		
Test Method:	ANSI C63.10 20	013			
	In un-restricted ba For Band 1&2A&2 For Band 3:		Z	(0)	
	Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)	
	< 5650	-27	5850~5855	27~15.6	
Limit:	5650~5700	-27~10	5855~5875	15.6~10	
	5700~5720	10~15.6	5875~5925	10~-27	
	5720~5725	15.6~27	> 5925	-27	
	E[dBµV/m] = EIR In restricted band:	(0)		2200	
	Detect Peak		Limit@ 74dBµ		
	AVG				
Test Mede:	Ground Reference Plants Test Receiver To 10 Controller				
Test Mode:		/			
Test Procedure:	Transmitting mode with modulation 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold				

Report No.: TCT201111E025

6.7.2. Test Instruments

	Radiated En	nission Test Sit	e (966)		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 27, 2021	
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 11, 2021	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021	
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 02, 2021	
Pre-amplifier	HP	8447D	2727A05017	Sep. 02, 2021	
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022	
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022	
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022	
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 02, 2021	
Line-4	тст	RE-high-04	N/A	Sep. 02, 2021	
Line-8	TCT	RE-01	N/A	Jul. 27, 2021	
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

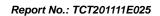
Page 31 of 363

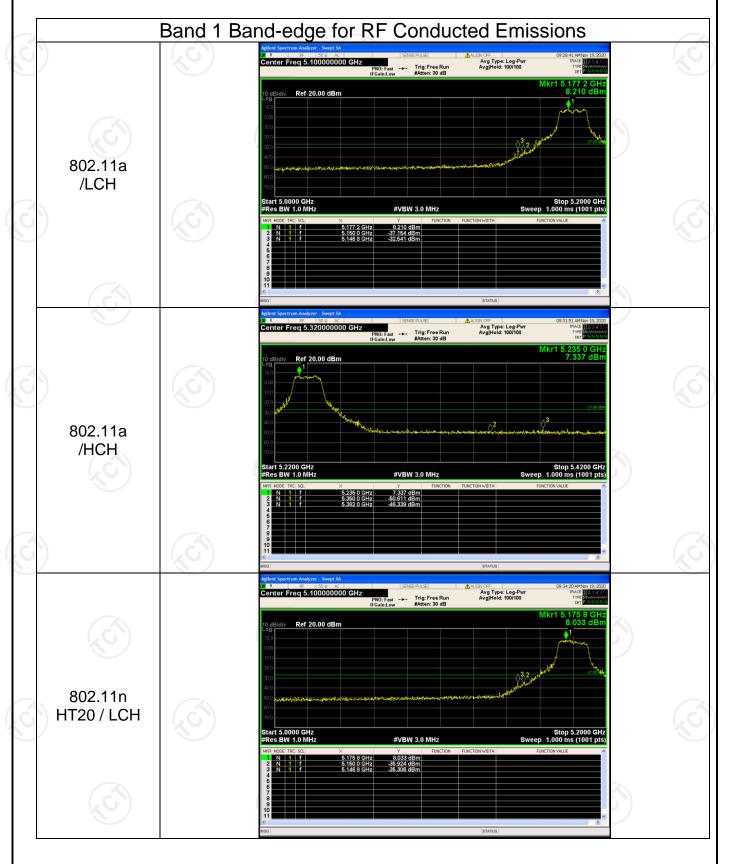
6.7.3. Test Data

Report	No.:	TCT20111	1E025
, lope, t			,

			-							
	802.11 a	СН	Freq. (MHz)	Read_level (dBuV/m)	Factor (dB)	Peak (dBuV/m)	Limit (dBuV/m) (Peak)	Limit (dBuV/m) (Avg)	Over	Ant. Pol. H/V
		Lowoot	5150	42.48	5.82	48.30	74	54	-5.70	Н
	Band 1 & Band	Lowest	5150	38.24	5.82	44.06	74	54	-9.94	V
	2A	Highest	5350	41.70	6.52	48.22	74	54	-5.78	Н
			5350	39.39	6.52	45.91	74	54	-8.09	V
	Band 2C & Band 3	Lowest	5470	53.51	5.82	59.33	68.2	/	-8.87	Н
			5470	47.92	5.82	53.74	68.2	1	-14.46	V
			5850	65.69	6.52	72.21	112.2	<i>// /</i>	-39.99	Н
	_ 5 (4. 0		5850	62.18	6.52	68.70	112.2	/	-43.50	V
	Remark:	Factor(dB)	=Ant. Fac	tor+Cable Los	ss-Amp. F	actor	7.			

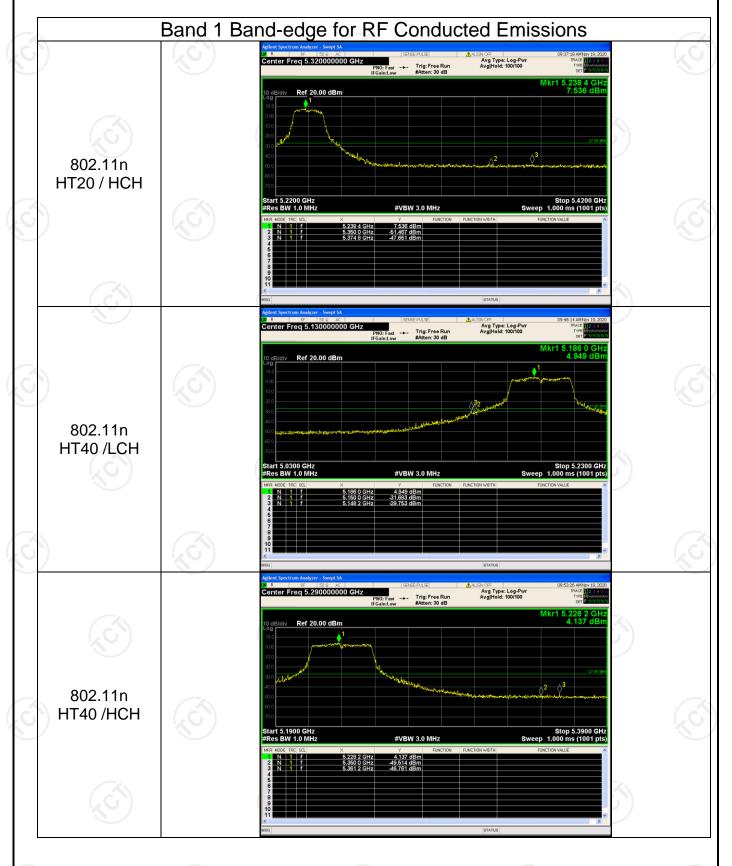
СН	Freq. (MHz)	Read_level (dBuV/m)	Factor (dB)	Peak (dBuV/m)	Limit (dBuV/m) (Peak)	Limit (dBuV/m) (Avg)	Over	Ant. Pol. H/V
Lowoot	5150	41.83	6.96	48.79	74	54	-5.21	Н
Lowest	5150	40.94	6.96	47.90	74	54	-6.10	٧
Highest	5350	36.55	8.21	44.76	74	54	-9.24	Н
	5350	38.69	8.21	46.90	74	54	-7.10	V
(0)		(C)		(20			<u>(,)</u>	
Lowest	5470	52.56	8.21	60.77	68.2	1	-7.43	Н
	5470	48.94	8.21	57.15	68.2	/	-11.05	V
Highest	5850	62.05	8.87	70.92	112.2	Z /	-41.28	Н
	5850	59.98	8.87	68.85	112.2) /	-43.35	V
	Lowest Highest Lowest	Lowest 5150 Lowest 5150 Highest 5350 Lowest 5470 5470 Highest 5850	CH (MHz) (dBuV/m) Lowest 5150 41.83 5150 40.94 Highest 5350 36.55 5350 38.69 Lowest 5470 52.56 5470 48.94 Highest 5850 62.05	CH (MHz) (dBuV/m) (dB) Lowest 5150 41.83 6.96 5150 40.94 6.96 Highest 5350 36.55 8.21 5350 38.69 8.21 Lowest 5470 52.56 8.21 5470 48.94 8.21 Highest 5850 62.05 8.87	CH (MHz) (dBuV/m) (dB) (dBuV/m) Lowest 5150 41.83 6.96 48.79 5150 40.94 6.96 47.90 Highest 5350 36.55 8.21 44.76 5350 38.69 8.21 46.90 Lowest 5470 52.56 8.21 60.77 5470 48.94 8.21 57.15 Highest 5850 62.05 8.87 70.92	CH Freq. (MHz) Read_level (dBuV/m) Factor (dB) Peak (dBuV/m) (dBuV/m) (Peak) Lowest 5150 41.83 6.96 48.79 74 5150 40.94 6.96 47.90 74 Highest 5350 36.55 8.21 44.76 74 5350 38.69 8.21 46.90 74 Lowest 5470 52.56 8.21 60.77 68.2 Lowest 5850 62.05 8.87 70.92 112.2	CH Freq. (MHz) Read_level (dBuV/m) Factor (dB) Peak (dBuV/m) (dBuV/m) (dBuV/m) (Avg) Lowest 5150 41.83 6.96 48.79 74 54 5150 40.94 6.96 47.90 74 54 Highest 5350 36.55 8.21 44.76 74 54 5350 38.69 8.21 46.90 74 54 Lowest 5470 52.56 8.21 60.77 68.2 / Highest 5850 62.05 8.87 70.92 112.2 /	CH Freq. (MHz) Read_level (dBuV/m) Factor (dB) Peak (dBuV/m) (dBuV/m) (Peak) (dBuV/m) (Avg) Over (Avg) Lowest 5150 41.83 6.96 48.79 74 54 -5.21 5150 40.94 6.96 47.90 74 54 -6.10 Highest 5350 36.55 8.21 44.76 74 54 -9.24 5350 38.69 8.21 46.90 74 54 -7.10 Lowest 5470 52.56 8.21 60.77 68.2 / -7.43 Highest 5850 62.05 8.87 70.92 112.2 / -41.28

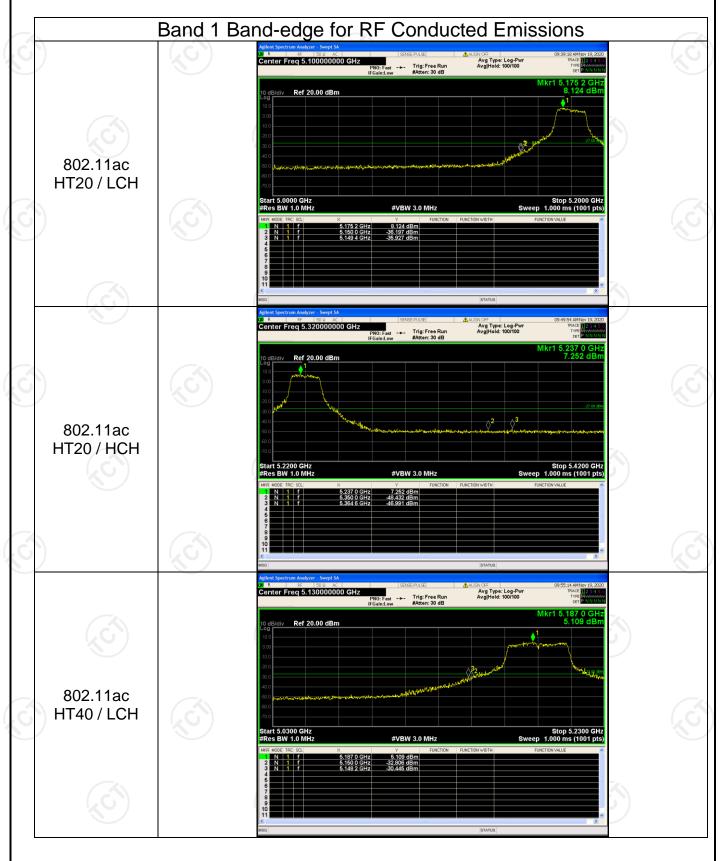

Remark: Factor(dB)=Ant. Factor+Cable Loss-Amp. Factor

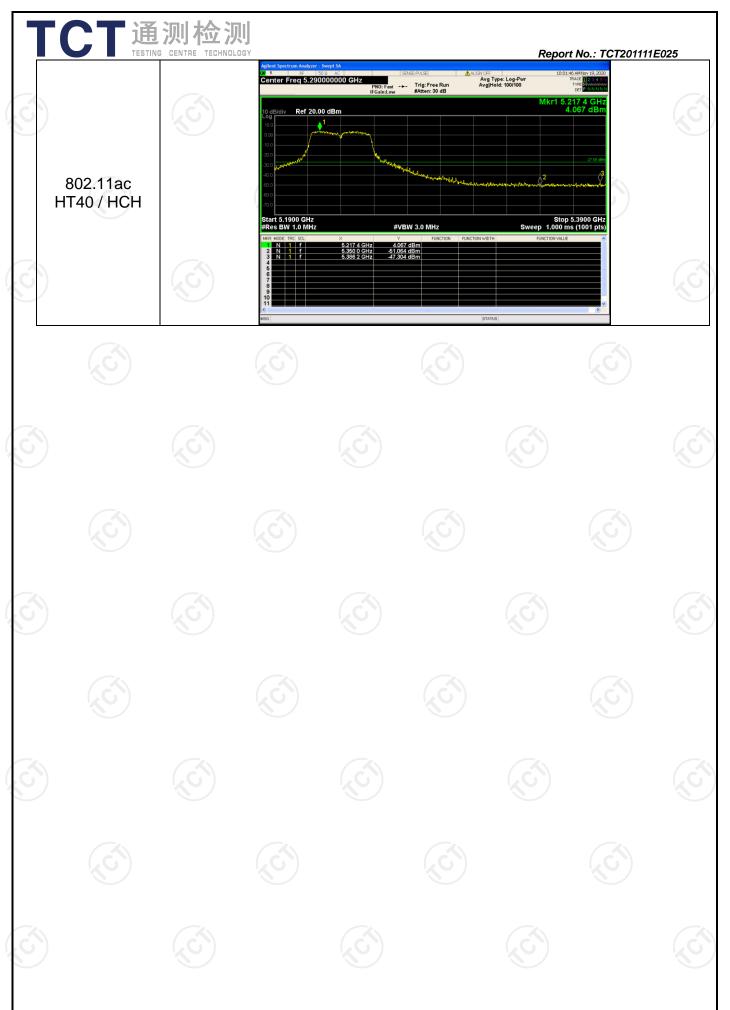


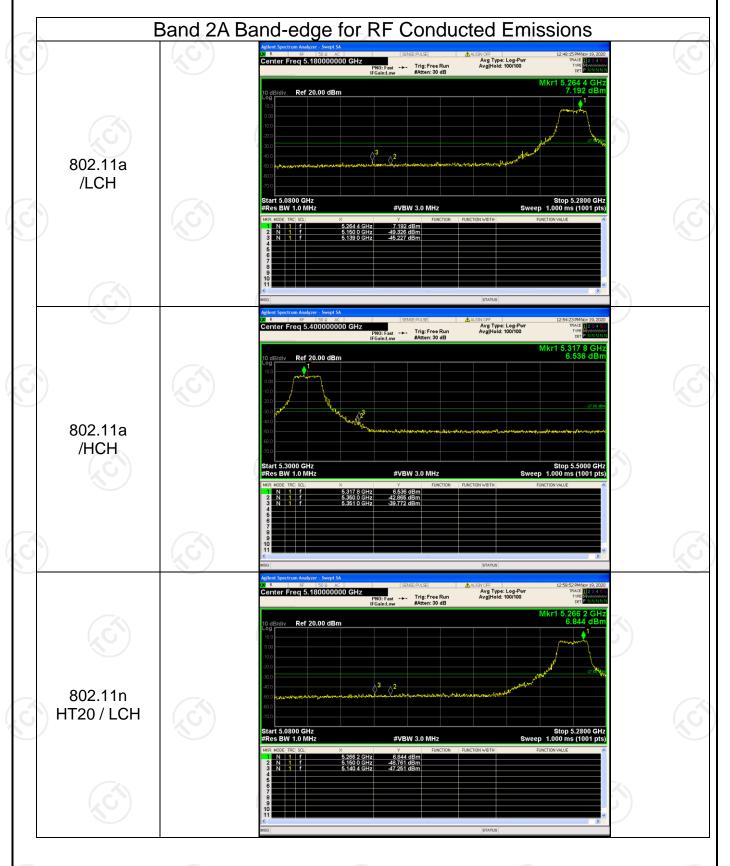
	(MHz)	(dBuV/m)	Factor (dB)	Peak (dBuV/m)	(dBuV/m) (Peak)	(dBuV/m) (Avg)	Over	Pol. H/V
Lowest	5150	42.91	5.82	48.73	74	54	-5.27	Н
	5150	38.59	5.82	44.41	74	54	-9.59	V
Llighaat	5350	42.05	6.52	48.57	74	54	-5.43	Н
Hignest	5350	39.13	6.52	45.65	74	54	-8.35	V
	5470	53.64	5.82	59.46	68.2	/	-8.74	Н
Lowest	5470	48.02	5.82	53.84	68.2		-14.36	V
	5850	64.71	6.52	71.23	112.2		-40.97	Н
Highest	5850	62.06	6.52	68.58	112.2	/	-43.62	V
actor(dB)	=Ant. Fac	ctor+Cable Los	ss-Amp. F	actor				
СН	Freq. (MHz)	Read_level (dBuV/m)	Factor (dB)	Peak (dBuV/m)	Limit (dBuV/m) (Peak)	Limit (dBuV/m) (Avg)	Over	Ant. Pol. H/V
Lavusat	5150	42.77	6.96	49.73	74	54	-4.27	Н
Lowest	5150	40.85	6.96	47.81	74	54	-6.19	V
112.1	5350	36.14	8.21	44.35	74	54	-9.65	Н
Highest	5350	38.83	8.21	47.04	74	54	-6.96	V
	5470	51.59	8.21	59.80	68.2	/ /	-8.40	Н
Lowest	5470	46.85	8.21	55.06	68.2	1	-13.14	V
	5850	61.73	8.87	70.60	112.2	/	-41.60	Н
Highest			8.87	68.39	112.2		-43.81	V
	Lowest Highest CH Lowest Highest	Lowest 5150 Highest 5350 5350 5350 Lowest 5470 5470 5850 5850 5850 Factor(dB)=Ant. Factor(MHz) 5150 Lowest 5150 5150 5350 Towest 5470 Lowest 5470 5470 5470	Lowest 5150 38.59 Highest 5350 42.05 5350 39.13 Lowest 5470 53.64 5470 48.02 Highest 5850 64.71 5850 62.06 Factor(dB)=Ant. Factor+Cable Lost CH Freq. (MHz) Read_level (dBuV/m) Lowest 5150 42.77 5150 40.85 Highest 5350 36.14 5350 38.83 Lowest 5470 51.59 5470 46.85	Lowest 5150 38.59 5.82 Highest 5350 42.05 6.52 5350 39.13 6.52 Lowest 5470 53.64 5.82 5470 48.02 5.82 Highest 5850 64.71 6.52 Factor(dB)=Ant. Factor+Cable Loss-Amp. F Factor (MHz) Factor (dBuV/m) Factor (dB) Lowest 5150 42.77 6.96 6.96 Highest 5350 36.14 8.21 Highest 5350 38.83 8.21 Lowest 5470 51.59 8.21 Lowest 5470 46.85 8.21	Simple S	Lowest 5150 42.91 5.82 48.73 74 5150 38.59 5.82 44.41 74 Highest 5350 42.05 6.52 48.57 74 Lowest 5470 53.64 5.82 59.46 68.2 5470 48.02 5.82 53.84 68.2 Highest 5850 64.71 6.52 71.23 112.2 Factor(dB)=Ant. Factor+Cable Loss-Amp. Factor Factor Limit (dBuV/m) (Peak) CH Freq. (MHz) Read_level (dBuV/m) Factor (dB) Peak (dBuV/m) Limit (dBuV/m) (Peak) Lowest 5150 42.77 6.96 49.73 74 Highest 5350 36.14 8.21 44.35 74 Highest 5350 38.83 8.21 47.04 74 Lowest 5470 51.59 8.21 59.80 68.2 Lowest 5470 46.85 8.21 55.06 68.2	Lowest 5150 42.91 5.82 48.73 74 54 5150 38.59 5.82 44.41 74 54 Highest 5350 42.05 6.52 48.57 74 54 Lowest 5470 53.64 5.82 59.46 68.2 / Highest 5850 64.71 6.52 71.23 112.2 / Factor(dB)=Ant. Factor+Cable Loss-Amp. Factor Factor Peak (dBuV/m) (dBuV/m) (Peak) Limit (dBuV/m) (Avg) Limit (dBuV/m) (Avg) Lowest 5150 42.77 6.96 49.73 74 54 Highest 5350 36.14 8.21 44.35 74 54 Highest 5350 36.14 8.21 44.35 74 54 Lowest 5470 51.59 8.21 59.80 68.2 / Lowest 5470 46.85 8.21 55.06 68.2 /	Lowest 5150 42.91 5.82 48.73 74 54 -5.27 5150 38.59 5.82 44.41 74 54 -9.59 Highest 5350 42.05 6.52 48.57 74 54 -5.43 5350 39.13 6.52 45.65 74 54 -8.35 Lowest 5470 48.02 5.82 59.46 68.2 / -14.36 Highest 5850 64.71 6.52 71.23 112.2 / -40.97 5850 62.06 6.52 68.58 112.2 / -43.62 Factor(dB)=Ant. Factor+Cable Loss-Amp. Factor CH Freq. (MHz) Read_level (dBuV/m) (dB) Reak (dBuV/m) (Peak) (Avg) Lowest 5150 42.77 6.96 49.73 74 54 -4.27 5150 40.85 6.96 47.81 74 54 -6.19 Highest 5350 36.14 8.21 44.35 74 54 -6.69 Lowest 5470 51.59 8.21 59.80 68.2 / -8.40 Lowest 5470 51.59 8.21 59.80 68.2 / -13.14

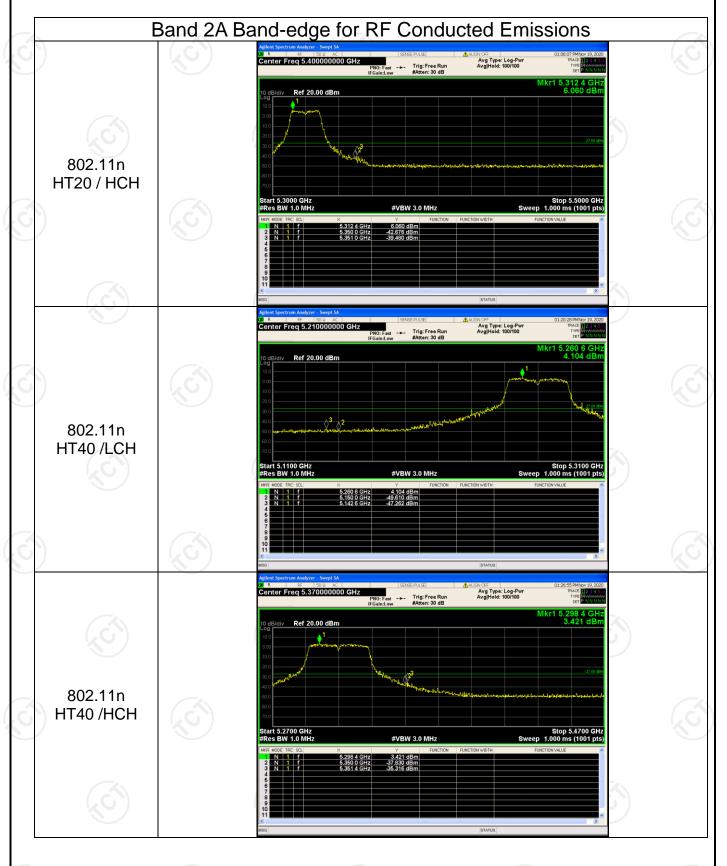
802.11 ac HT40	СН	Freq. (MHz)	Read_level (dBuV/m)	Factor (dB)	Peak (dBuV/m)	Limit (dBuV/m) (Peak)	Limit (dBuV/m) (Avg)	Over	Ant. Pol. H/V	
	Lowest	5150	43.10	5.82	48.92	74	54	-5.08	Н	
Band 1 &Band	Lowest	5150	38.58	5.82	44.40	74	54	-9.60	V	
2A	Highest	5350	42.49	6.52	49.01	74	54	-4.99	Н	
		5350	39.65	6.52	46.17	74	54	-7.83	V	
	Lowest	5470	53.52	5.82	59.34	68.2	/	-8.86	Н	
Band	Lowest	5470	47.70	5.82	53.52	68.2	1	-14.68	V	
2C & Band 3	Highest	5850	65.41	6.52	71.93	112.2	1	-40.27	Н	
		5850	62.29	6.52	68.81	112.2	1	-43.39	V	
Remark:	Remark: Factor(dB)=Ant. Factor+Cable Loss-Amp. Factor									

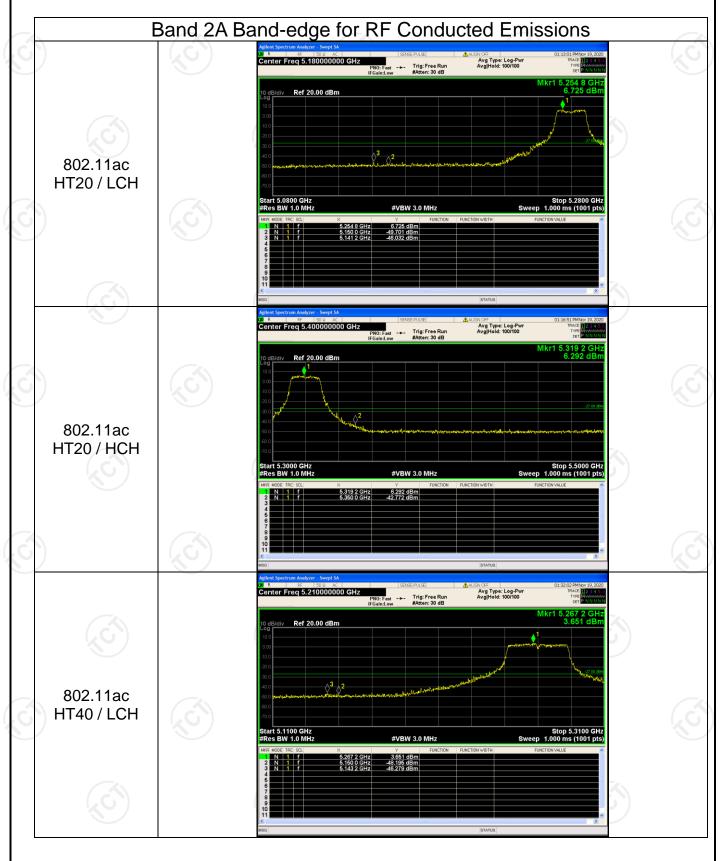


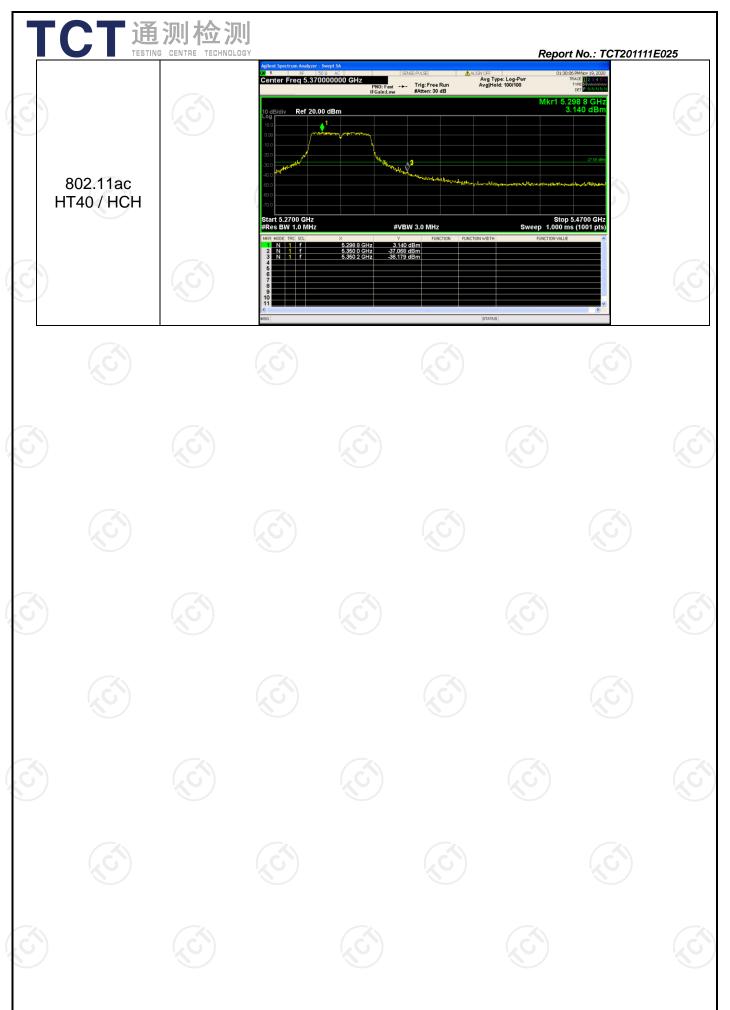


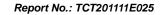


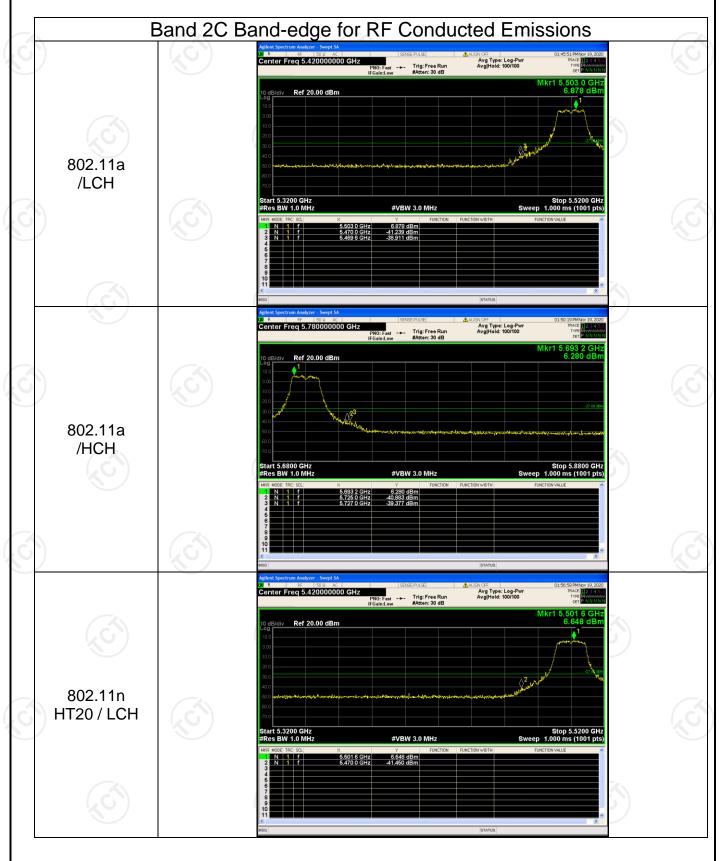


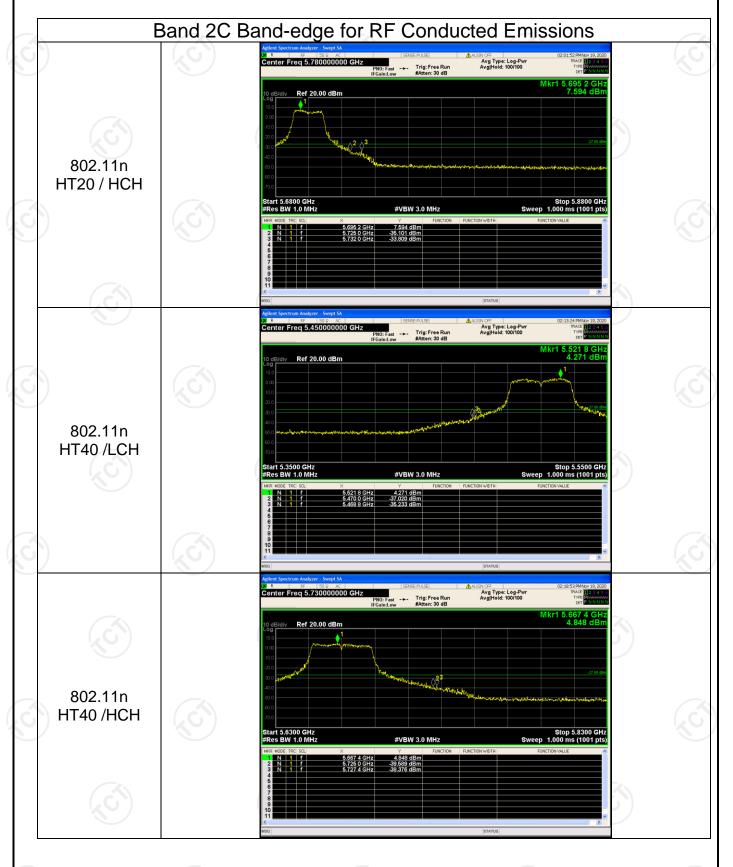


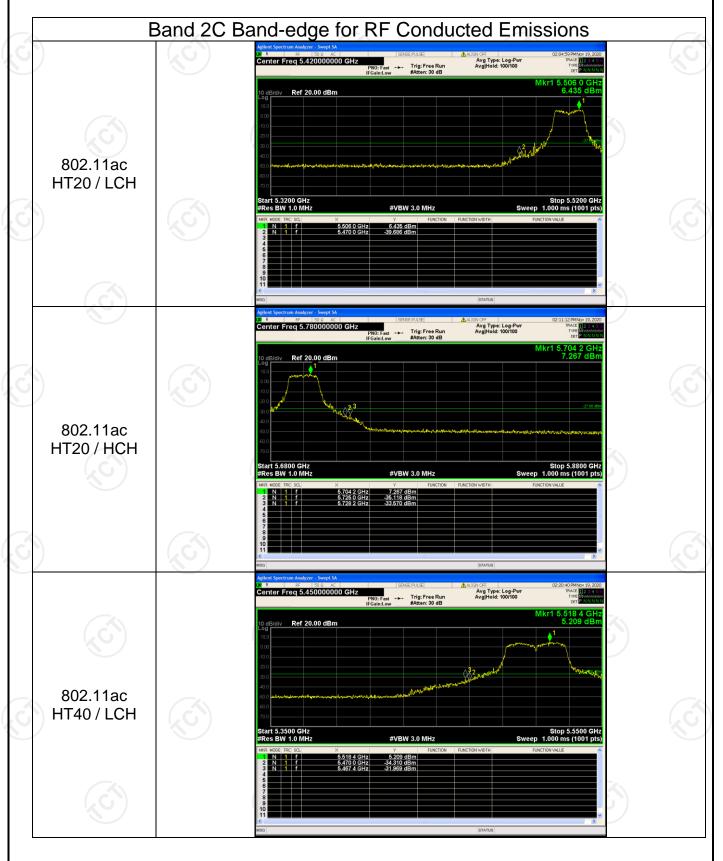


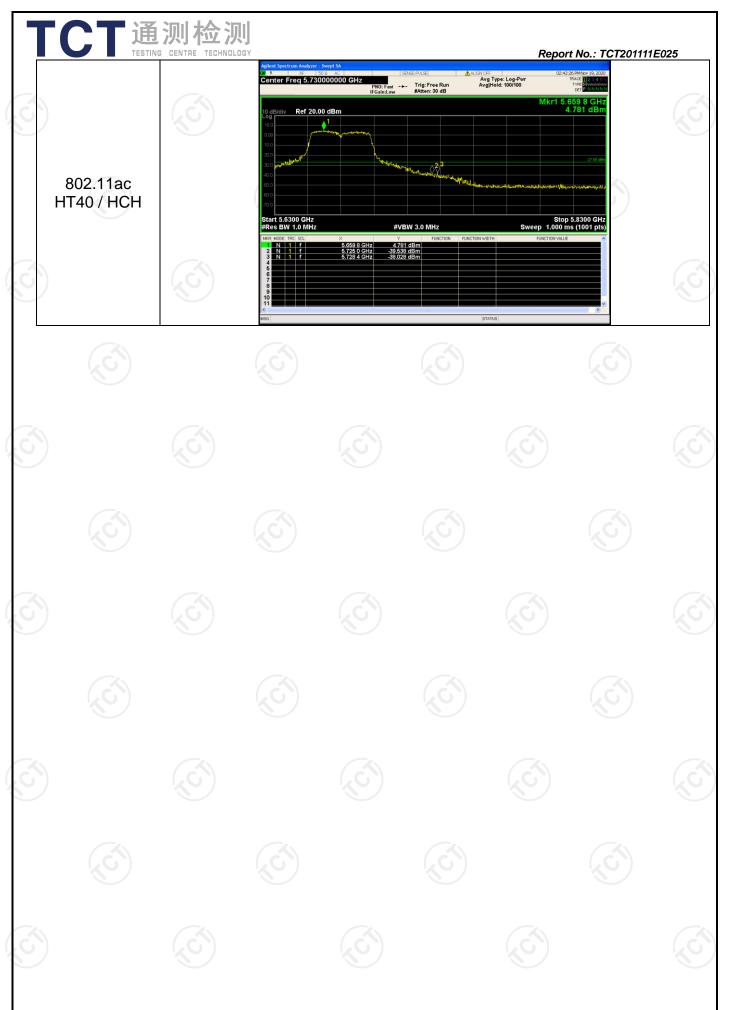


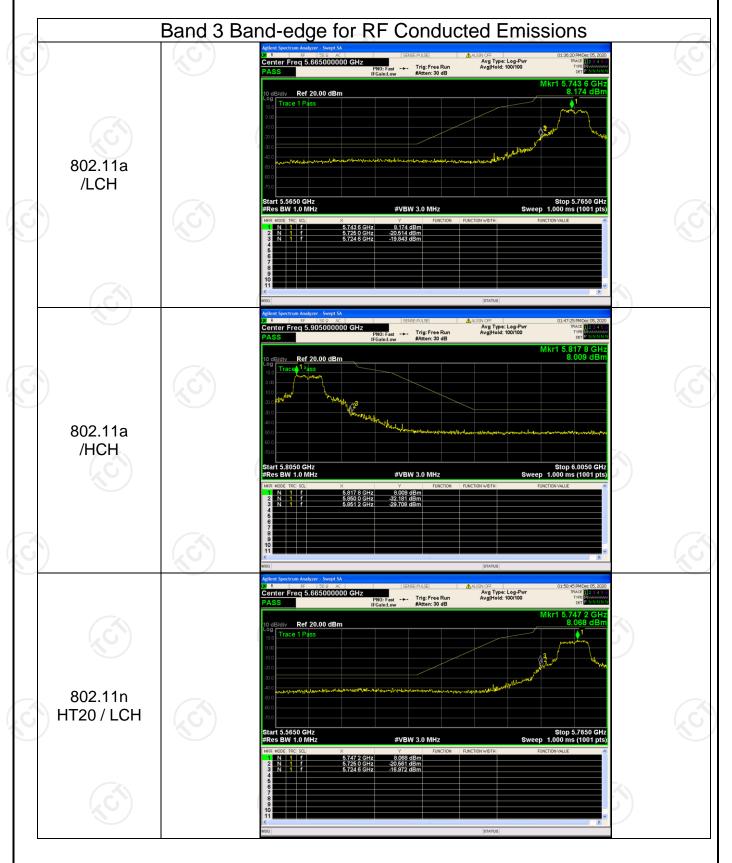


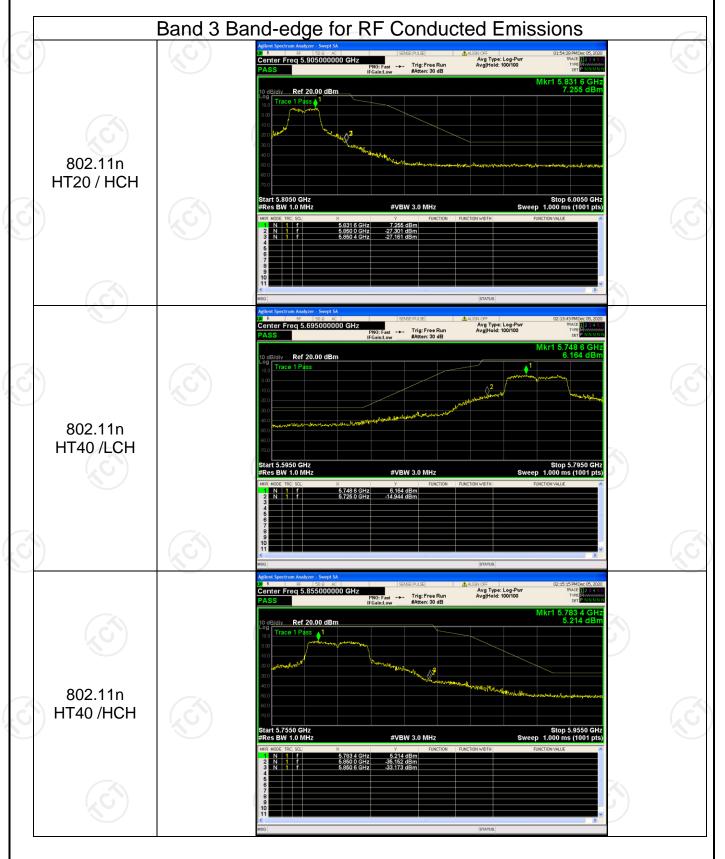


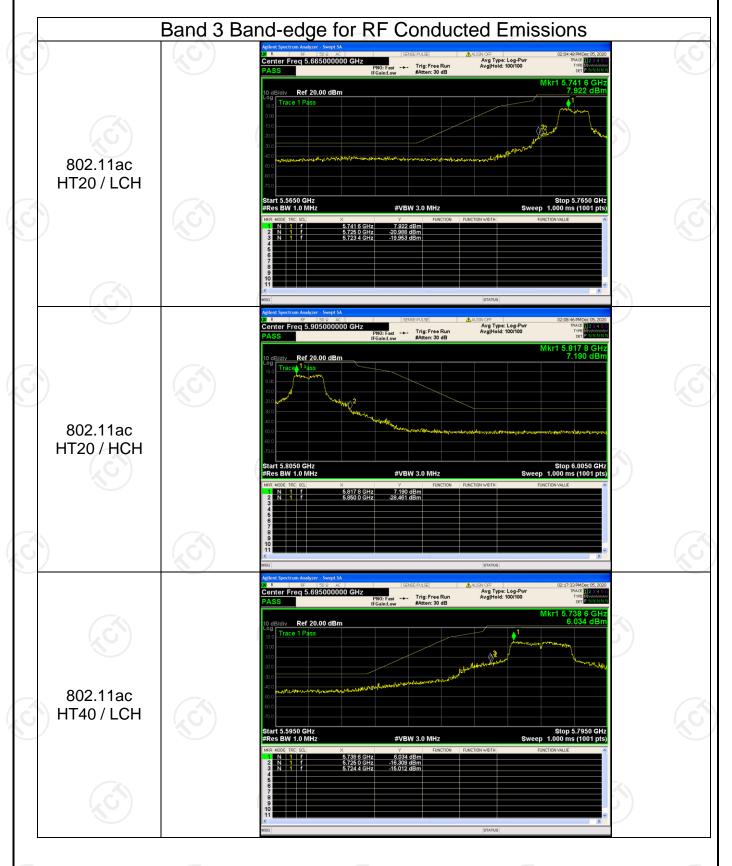


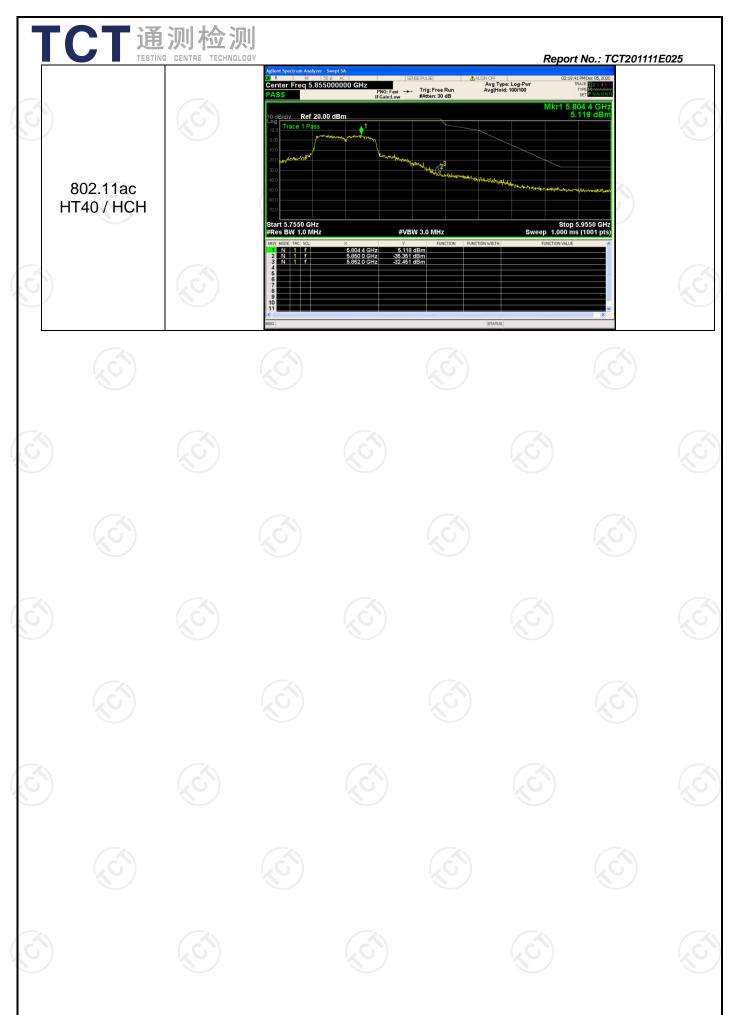


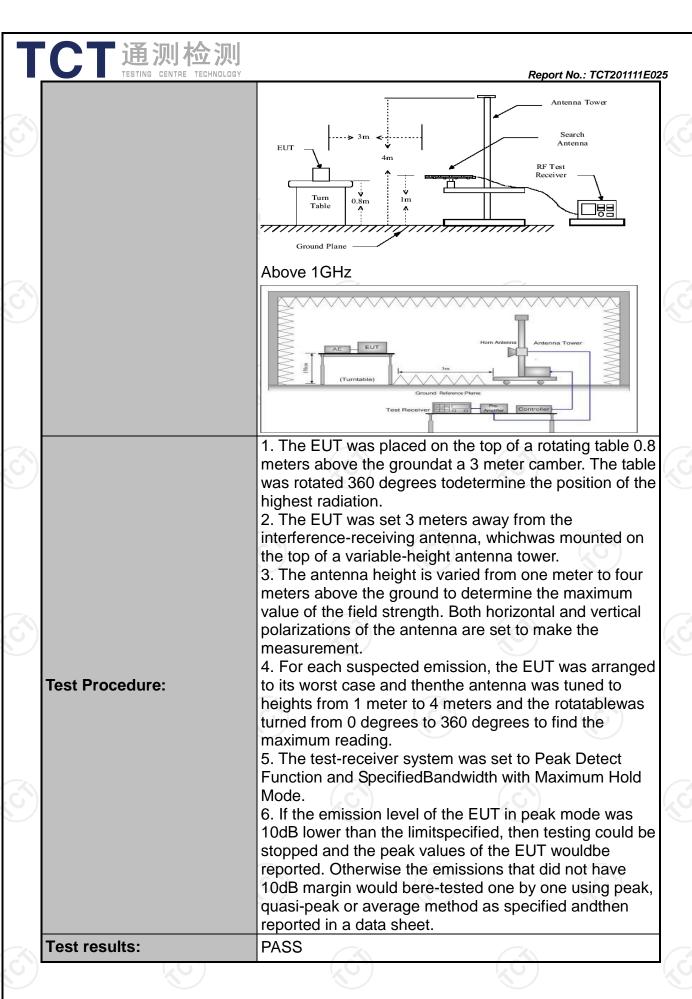








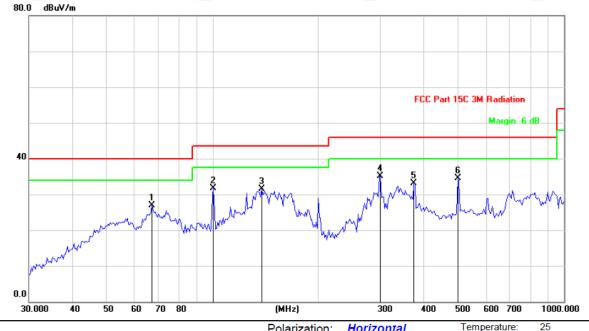




6.8. Unwanted Emissions

6.8.1. Test Specification

Test Requirement:	FCC CFR47	Part 15 S	Section 15.	407 & 1	5.209 & 15.205
Test Method:	KDB 789033				
Frequency Range:	9kHz to 40G	Hz	.61)		(3)
Measurement Distance:	3 m				
Antenna Polarization:	Horizontal &	Vortical			
		*			
Operation mode:	Transmitting	mode wit	h modulat	ion	
	Frequency	Detector	RBW	VBW	Remark
	9kHz- 150kHz	Quasi-peal	k 200Hz	1kHz	Quasi-peak Value
Receiver Setup:	150kHz- 30MHz	Quasi-peal	k 9kHz	30kHz	Quasi-peak Value
	30MHz-1GHz	Quasi-peal	k 120KHz	300KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	7.5070 101.2	Peak	1MHz	10Hz	Average Value
	general field below table, In restricted Frequer	bands:		tor k	n § 15.209 as Limit@3m 74dBµV/m
	Above	i G	AVC	9	54dBµV/m
Limit:	Frequency		Field Strengtl (microvolts/m		Measurement Distance (meters)
	0.009-0.490	Z	2400/F(KHz)		300
	0.490-1.705	/	24000/F(KHz		3
	1.705-30		30		30
	30-88		100		3
	88-216 216-960		150 200		3
	Above 960		500		3
		<u>'</u> '			
	In un-restrict	ed bands	: 68.2dBu\	//m	
Test setup:	For radiated	Distance = 3m Turn table	s below 30	OMHz	Pre -Amplifier Receiver



6.8.2. Test Data

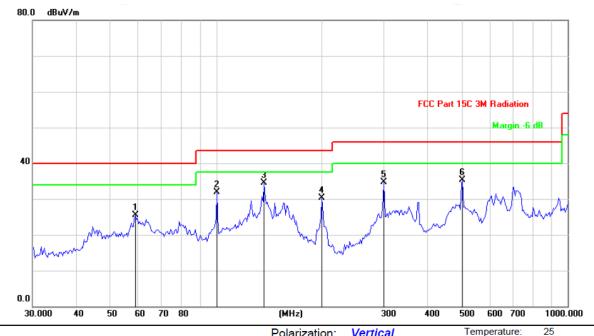
Please refer to following diagram for individual **Below 1GHz**

Horizontal:

Limit: FCC Part 15C 3M Radiation

Polarization: Horizontal DC 3.3V Power:

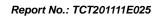
Temperature:


Humidity:

55 %

	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
	1		67.3109	41.64	-14.76	26.88	40.00	-13.12	peak
	2		100.4711	39.67	-8.04	31.63	43.50	-11.87	peak
	3		137.8400	47.43	-15.94	31.49	43.50	-12.01	peak
_	4	*	300.6988	46.09	-10.90	35.19	46.00	-10.81	peak
K .	5		373.8860	42.51	-9.34	33.17	46.00	-12.83	peak
_	6		498.7302	41.96	-7.42	34.54	46.00	-11.46	peak

Vertical:



Site Polarization: Vertical Temperature: 25
Limit: FCC Part 15C 3M Radiation Power: DC 3.3V Humidity: 55 %

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
-	1		58.8977	37.72	-12.12	25.60	40.00	-14.40	peak
X	2		100.4711	39.95	-8.04	31.91	43.50	-11.59	peak
- ر	3	*	136.8745	50.43	-15.88	34.55	43.50	-8.95	peak
	4		200.0432	44.23	-14.01	30.22	43.50	-13.28	peak
	5		300.6988	45.68	-10.90	34.78	46.00	-11.22	peak
	6		502.2472	42.65	-7.38	35.27	46.00	-10.73	peak

Note: 1.The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), and the worst case Mode (Lowest channel and 802.11n(HT20)) was submitted only.
- 3.Measurement (dBµV) = Reading level + Correction Factor , correction Factor = Antenna Factor + Cable loss Pre-amplifier.
- 4. The test mode is MIMO

			M		ype: Band	1			
					5180MHz				
Frequency	Ant. Pol.	Peak	AV reading	Correction	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	Н	39.35		8.02	47.37		68.2		-20.83
15540	Н	40.04		9.87	49.91		74	54	-4.09
(Н				(-1-			
		•					•		
10360	V	38.82		8.02	46.84		68.2		-21.36
15540	V	40.34		9.87	50.21		74	54	-3.79
	V								
	•				: 5200MHz				
		Peak		Correction		on Level			
Frequency	Ant. Pol.	reading	AV reading	Factor	Peak	AV	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10400	Н	41.47		7.97	49.44		68.2		-18.76
15600	ZH.	39.68		9.83	49.51		74	54	-4.49
13600	GH	39.00		9.03	49.51				-4.49
1	U II		120			(O -)		7.7	
40400		44.00		7.07	40.00		00.0		40.51
10400	V	41.69		7.97	49.66		68.2		-18.54
15600	V	39.21		9.83	49.04		74	54	-4.96
	V				Z				
					: 5240MHz				
Frequency	Ant. Pol.	Peak	AV reading	Correction	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	39.92		7.97	47.89		68.2		-20.31
15720	Н	39.54	<i></i>	9.83	49.37	-1-	74	54	-4.63
(H		(70)					<u> </u>	
		I.					I		
10480	V	40.58		7.97	48.55		68.2		-19.65
15720	V	37.91		9.83	47.74		74	54	-6.26
13720	V			9.00	41.14		4		-0.20
	v			 (UT20) CL	126: E100M				
1		Dook			136: 5180M	n Level	T		
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Peak		Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)		AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10260	П	`					69.2		17.06
10360	H	43.12		8.02	51.14		68.2		-17.06
15540	H	39.75	##G\	9.87	49.62	.G ³)	74	54	-4.38
1	Н								
		I	, , , , , , , , , , , , , , , , , , , 		r	T	T		
10360	V	42.89		8.02	50.91		68.2		-17.29
15540	V	39.76		9.87	49.63		74	54	-4.37
	V			(/					/
			11r	n(HT20) CH	140: 5200M	Hz			
	A-1 D 1	Peak		Correction		n Level	David III II	4) (1)	N.C
Frequency	Ant. Pol.	reading	AV reading	Factor	Peak	AV	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
	χH	42.19		7.97	50.16		68.2		-18.04
10400	ЭH	39.65	46	9.83	49.48	.62	74	54	-4.52
10400 15600			-22			7.7.			-4.02
10400 15600									
	Н								
15600	Н			7.07	E0 20		60.0	Ţ	17.04
15600	H V	42.32		7.97	50.29		68.2		-17.91
15600	Н			7.97 9.83	50.29 49.61		68.2 74	 54 	-17.91 -4.39

『通测检测

10400

15600

V

40.50

39.44

Report No.: TCT201111E025 Peak Correction **Emission Level** AV reading Frequency Ant. Pol. Peak limit **AV** limit Margin reading Factor Peak (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB) (dB/m) (dBµV) (dBµV/m) (dBµV/m) 10480 42.64 7.97 68.2 -17.59 Н 50.61 15720 Н 40.21 9.83 50.04 74 54 -3.96 Η ٧ 42.14 7.97 10480 ---50.11 ---68.2 ----18.09V 40.95 4-15720 *_*---, 9.83 50.78 74 54 -3.22V 11n(HT40) CH38: 5190MHz Peak Correction **Emission Level** AV reading Ant. Pol. Peak limit **AV** limit Frequency Margin reading Factor Peak AV H/V (dB) (MHz) (dBµV) (dBµV/m) (dBµV/m) (dB/m) (dBµV) dBµV/m) (dBµV/m) 10380 Н 42.00 7.75 49.75 68.2 -18.45-4.97 15570 Н 39.16 9.87 49.03 74 54 Η ------------------------10380 V 42.08 4... 7.75 49.83 77-68.2 -18.37٧ 39.72 -4.41 15570 9.87 49.59 74 54 ٧ 11n(HT40) CH46: 5230MHz **Emission Level** Peak Correction Frequency Ant. Pol. AV reading Peak limit **AV** limit Margin reading Factor Peak (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB) (dBµV) (dB/m) (dBµV/m) (dBuV/m) 10460 7.97 -17.69 Н 42.54 50.51 68.2 Η 39.31 9.83 49.14 74 54 15690 -4.86Η 10460 V 42.87 7.97 50.84 68.2 -17.3615690 ۷ 39.30 9.83 49.13 74 54 -4.87 -24 ---V -------------11ac(VHT20) CH36: 5180MHz Peak Correction **Emission Level** Ant. Pol. AV reading **AV** limit Frequency Peak limit Margin reading Factor Peak AV (dB)H/V (dBµV) (dBµV/m) (dBµV/m) (MHz) (dBµV) (dB/m) (dBµV/m) dBuV/m) 10360 42.04 8.02 50.06 68.2 -18.14 Н 15540 Н 39.17 9.87 49.04 74 54 -4.96 Н ---------------------------V 10360 40.41 8.02 48.43 68.2 -19.7754 15540 ٧ 40.62 9.87 50.49 74 -3.51 ٧ 11ac(VHT20) CH40: 5200MHz Peak Correction **Emission Level** AV reading Ant. Pol. Frequency Peak limit **AV** limit Margin reading Factor Peak AV (dBµV/m) H/V (dBµV/m) (dB)(MHz) (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10400 Η 41.62 ---7.97 49.59 68.2 -18.61 -3.78 15600 Η 40.39 9.83 50.22 74 54 Н 77 ---

54

-19.73

-4.73

68.2

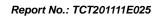
74

48.47

49.27

7.97

9.83



			11a	c(VHT20) C	H48: 5240ľ	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10480	Н	38.56		7.97	46.53		68.2		-21.67
15720	Н	39.40		9.83	49.23		74	54	-4.77
/	Н		7		/				
	(0)		70			(0)		(20)	
10480	V	40.34		7.97	48.31		68.2		-19.89
15720	V	39.62		9.83	49.45		74	54	-4.55
	V								
			11a	c(VHT40) C	H38: 5190	MHz			
Frequency	Ant. Pol.	Peak	AV reading	Correction	Emissic	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10380	Н	42.16		7.75	49.91		68.2		-18.29
15570	Н	40.52		9.87	50.39		74	54	-3.61
(Н		(C.)		(· C · - }-		(C)	
10380	V	39.89		7.75	47.64		68.2		-20.56
15570	V	40.40		9.87	50.27		74	54	-3.73
	V								
			11a	c(VHT40) C	H46: 5230	MHz			
Fraguenav	Ant. Pol.	Peak	A)/reading	Correction	Emissic	n Level	Peak limit	AV limit	Morain
Frequency (MHz)	H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	Margin (dB)
10460	Н	40.46		7.97	48.43		68.2		-19.77
15690	Н	39.88	/	9.83	49.71		74	54	-4.29
/	Ж		40			<u> </u>		<u>(40</u>	
4					•				
10460	V	41.02		7.97	48.99		68.2		-19.21
15690	V	39.53		9.83	49.36		74	54	-4.64
<	V				X\				/

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

			Mo		ype: Band 2	2A			
				11a CH52:	: 5260MHz				
requency	Ant. Pol.	Peak	AV reading	Correction	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10520	Η	39.41		7.97	47.38		68.2		-20.82
15780	H	37.73		9.83	47.56		74	54	-6.44
(Н				(-1-			
							•		
10520	V	43.32		7.97	51.29		68.2		-16.91
15780	V	39.48		9.83	49.31		74	54	-4.69
	V								
	V				: 5300MHz				
		Peak		Correction		on Level	I		
Frequency	Ant. Pol.	reading	AV reading	Factor	Peak	AV	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10600	Н	40.20		7.98	48.18		74	54	-5.82
15900	XH .	39.67		9.85	49.52		74	54	-4.48
13900	O H	39.07		9.00	49.52				-4.40
1	7		120			(O -)		7.7	
40000	17	40.70		7.00	40.00		74	F.4	F 00
10600	V	40.70		7.98	48.68		74	54	-5.32
15900	V	39.62		9.85	49.47		74	54	-4.53
	V				X				
					: 5320MHz				
requency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10640	Н	41.44		7.98	49.42		74	54	-4.58
15960	Н	38.18	<i></i>	9.85	48.03	-1-	74	54	-5.97
(Н		(20)					120	
							I.		
10640	V	41.01		7.98	48.99		74	54	-5.01
15960	V	37.09		9.85	46.94		74	54	-7.06
15500	V			5.00					7.00
	V			n/UT20) C	52: 5260MF				
		Peak		Correction		n Level			
Frequency	Ant. Pol.	reading	Av reading	Factor	Peak	AV	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)		(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10520	-,Н	42.27		7.97	50.24	(ubµ v/III)	68.2		-17.96
								- / *	
15780	H	39.50	##C	9.83	49.33	(C)	74	54	-4.67
1	Н		-						
40500	.,	00.55	 		4	ı	60.5	Г	
10520	V	39.32		7.97	47.29		68.2		-20.91
15780	V	36.78		9.83	46.61		74	54	-7.39
	V			(<u></u>		7		(
			11r		H60: 5300M				
requency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10600	ZH.	40.53		7.98	48.51		74	54	-5.49
15900	H	39.07	(C)	9.85	48.92	. (3-2-)	74	54	-5.08
	H					<u></u>			
10600	V	41.01		7.98	48.99		74	54	-5.01
15900	V	40.52		9.85	50.37		74	54	-3.63
	V			((

╹通测检测

15780

38.12

Report No.: TCT201111E025 Peak Correction **Emission Level** AV reading Frequency Ant. Pol. Peak limit **AV** limit Margin reading Factor Peak AV (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB)(dB/m) (dBµV) (dBµV/m) (dBµV/m) 7.98 47.49 74 54 -6.51 10640 Н 39.51 15960 Н 36.27 9.85 46.12 74 54 -7.88 Η ٧ 41.04 7.98 74 10640 ---49.02 ---54 -4.9815960 V 40.22 4-74 -3.93 *_*---, 9.85 50.07 54 V 11n(HT40) CH54: 5270MHz Peak Correction **Emission Level** Ant. Pol. AV reading Peak limit **AV** limit Frequency Margin reading Factor Peak AV (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB) (dBµV) (dB/m) dBµV/m) (dBµV/m) 10540 Η 42.11 7.97 50.08 68.2 -18.12 -5.35 15810 Н 38.82 9.83 48.65 74 54 Н ------------------------10540 V 39.26 7.97 47.23 7 68.2 -20.97 15810 ٧ 37.79 W. 9.83 47.62 _4_ 74 54 -6.38 ٧ ---11n(HT40) CH62: 5310MHz Peak Correction **Emission Level** Peak limit Ant. Pol. AV reading **AV** limit Frequency Margin reading Factor Peak H/V (dBµV) (dBµV/m) (dBµV/m) (dB) (MHz) $(dB\mu V)$ (dB/m) (dBµV/m) (dBµV/m) 10620 Η 41.84 7.98 49.82 74 54 -4.18 39.76 74 -4.39 15930 Н 9.85 49.61 54 Н ---10620 39.48 7.98 47.46 74 54 -6.5415930 ٧ 38.37 9.85 48.22 74 54 -5.78 V -------------------------11ac(VHT20) C52: 5260MHz Peak Correction **Emission Level AV** limit Ant. Pol. AV reading Peak limit Frequency Margin reading Factor Peak AV (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB) (dBµV) (dB/m) (dBµV/m) dBµV/m 10520 Η 40.89 7.97 48.86 68.2 -19.3415780 Η 40.36 9.83 50.19 74 -3.81 Н ------------------10520 V 41.45 7.97 49.42 -/-68.2 -18.78 ___

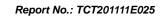
	V								
			11a	c(VHT20) C	H60: 5300I	MHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10600	Η	40.11		7.98	48.09		74	54	-5.91
15900	Η	37.97		9.85	47.82		74	54	-6.18
/	Ŧ		7					7	
	(0)		KO			(0)		KO	
10600	>	38.78		7.98	46.76		74	54	-7.24
15900	V	37.46		9.85	47.31		74	54	-6.69
	V								

47.95

74

54

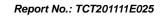
-6.05


9.83

			11a	c(VHT20) C	H64: 5320I	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10640	Н	41.93		7.98	49.91		74	54	-4.09
15960	Н	40.07		9.85	49.92		74	54	-4.08
/	Н		/		/	- 		/	
			KO)			(0)		(VO)	
10640	V	41.11		7.98	49.09		74	54	-4.91
15960	V	37.94		9.85	47.79		74	54	-6.21
	V								
			11a	c(VHT40) C	H54: 5270I	MHz			
	Ant Dal	Peak	^ \ / ro o din m	Correction	Emissio	n Level	Dools limit	Λ\ / lima it	Maraia
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10540	Н	41.40		7.97	49.37		68.2		-18.83
15810	(H	38.86	7 (1)	9.83	48.69	Z	74	54	-5.31
()	G H		(C)		(·C `- }-		(C)	
~					×				
10540	V	41.02		7.97	48.99		68.2		-19.21
15810	V	38.85		9.83	48.68		74	54	-5.32
	V			-					/
			11a	c(VHT40) C	H60: 5310I	MHz			
Croquenes.	Ant. Pol.	Peak	A)/ reading	Correction	Emissic	n Level	Peak limit	AV limit	Morgin
Frequency (MHz)	H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	Margin (dB)
10620	H	39.59		7.98	47.57		74	54	-6.43
15930	Н	38.36	(9.85	48.21	-	74	54	-5.79
1/2	Н		(KO)			7-			
10620	V	40.14		7.98	48.12		74	54	-5.88
15930	V	38.83		9.85	48.68		74	54	-5.32
	V			((

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.



					ype: Band 2				
				11a CH100): 5500MHz				
	Ant Dal	Peak	0 \ / == = =!:= =:	Correction	Emissio	on Level	Do ale limeit	A \ /	N 4 =
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11000	Н	40.48		8.03	48.51		74	54	-5.49
16500	Н	41.17		9.76	50.93		68.2		-17.27
(Н		fc		(.C. 3		fc	
					7				
11000	V	42.21		8.03	50.24		74	54	-3.76
16500	V	41.36		9.76	51.12		68.2		-17.08
·	V	 ,							
): 5600MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11200	Н	41.12		8.04	49.16		74	54	-4.84
16800	H	41.58		9.74	51.32		68.2	- -	-16.88
(C H		1,, C		((C)		[2 0]	
`									
11200	V	39.55		8.04	47.59		74	54	-6.41
16800	V	40.73		9.74	50.47		68.2		-17.73
X	V				X\		 x		
					4: 5700MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11400	Н	39.74		8.05	47.79		74	54	-6.21
17100	Н	41.30		9.72	51.02		68.2	- /- -	-17.18
	(OH					(0.7		<u>[4</u> 0]	
					1				
11400	V	40.11		8.05	48.16		74	54	-5.84
17100	V	41.85		9.72	51.57		68.2		-16.63
	V			(/
			11n		1100: 5500N				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11000	Н	41.34		8.03	49.37		74	54	-4.63
16500	Н	39.69		9.76	49.45		68.2	4-6	-18.75
'	Н					-			
			, 			ı	1		
11000	V	39.59		8.03	47.62		74	54	-6.38
16500	V	42.20		9.76	51.96		68.2		-16.24
	V			(1.170.2) (1.			7		(
		·	11n	· /	1120: 5600N				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11200	ζH	40.46		8.04	48.50		74	54	-5.50
16800	, C H	41.73	(-C)	9.74	51.47	, C 	68.2	1 -, C	-16.73
	Н							-13	
					•		•		
							74	<i>E</i> 4	-6.21
11200	V	39.75		8.04	47.79		74	54	-0.21
	V	39.75 40.38		8.04 9.74	47.79 50.12		68.2	54	-18.08

╹通测检测

Report No.: TCT201111E025 Peak Correction **Emission Level** AV reading Peak limit Frequency Ant. Pol. **AV** limit Margin reading Factor Peak AV (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB)(dBµV) (dB/m) (dBµV/m) (dBµV/m) 11400 -5.33 Н 40.62 8.05 74 54 48.67 17100 Н 42.17 9.72 51.89 68.2 -16.31 Η ٧ 11400 39.41 47.46 74 ---8.05 ---54 -6.5417100 V 41.30 *ֈ*--, 9.72 51.02 4-68.2 -17.18 V __ 4. 11n(HT40)CH102: 5510MHz Peak Correction **Emission Level** Ant. Pol. **AV** reading Peak limit **AV** limit Frequency Margin reading Factor Peak AV (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB) (dBµV) (dB/m) dBµV/m) (dBµV/m) 11020 Η 40.01 8.03 48.04 74 54 -5.96 16530 Н 40.75 9.76 50.51 68.2 -17.69 Н ------------------------11020 V 39.90 */--*. 8.03 47.93 7 74 54 -6.07V 16530 39.23 <u>___</u> 9.76 48.99 4-68.2 -19.21 ٧ ------11n(HT40) CH118: 5590MHz Peak Correction **Emission Level** Ant. Pol. AV reading Peak limit **AV** limit Frequency Margin reading Factor Peak ΑV (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB) $(dB\mu V)$ (dB/m) (dBµV/m) (dBµV/m) 11180 Η 40.50 ---8.04 48.54 74 54 -5.46 16770 Н 40.22 9.74 49.96 68.2 -18.24 Н -------7.44 11180 38.52 8.04 46.56 74 54 9.74 16770 ٧ 42.30 52.04 68.2 -16.16 V ----------------------------11n(HT40) CH134: 5670MHz

Frequency	Ant. Pol.	Peak	AV reading	ing Correction Factor		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11340	Н	41.44		8.05	49.49		74	54	-4.51
17010	Н	42.95		9.72	52.67		68.2		-15.53
	Н								
	. ()		(.c.)		(
11340	V	40.57		8.05	48.62	-/-	74	54	-5.38
17010	V	38.99		9.72	48.71		68.2		-19.49
	V								
			11ac	(VHT20) CI	H100: 5500	MHz			
Fraguenav	Ant. Pol.	Peak	AV reading	Correction	Emissic	n Level	Peak limit	AV limit	Morgin
Frequency (MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	Margin (dB)
11000	Н	38.81		8.03	46.84		74	54	-7.16
16500	Н	40.65		9.76	50.41		68.2		-17.79
/	Н				/				
	(0)		KO			(0)		12O	
11000	V	39.81		8.03	47.84		74	54	-6.16
16500	V	41.09		9.76	50.85		68.2		-17.35
	V								
			·						


			11ac	(VHT20) C	H120: 5600	MHz			
Frequency	Ant. Pol.	Peak	AV reading	Correction	Emissic	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11200	Н	41.48		8.04	49.52		74	54	-4.48
16800	Н	40.63		9.74	50.37		68.2		-17.83
/	Н		<i></i>		/			<i></i>	
			KO)				(VO)	
11200	V	40.22		8.04	48.26		74	54	-5.74
16800	V	40.57		9.74	50.31		68.2		-17.89
	V								
			11ac	(VHT20) C	H144: 5720	MHz			
Fraguenavi	Ant Dol	Peak	AV/ reading	Correction	Emissio	n Level	Dook limit	Λ\/ limit	Morgin
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11440	Н	40.22		8.05	48.27		74	54	-5.73
17160	ΛH.	40.01		9.72	49.73		68.2		-18.47
(Н		[C]		(·C/-}-		(C)	
					*				
11440	V	41.88		8.05	49.93		74	54	-4.07
17160	V	40.53		9.72	50.25		68.2		-17.95
	V				Z				
			11ac	(VHT40) C	H102: 5510	MHz			
			1	, ,					
	Ant Dal	Peak	A \ /	Correction	Emissic	n Level	D = = -	Λ \ / I: : t	Manain
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
		reading	AV reading (dBµV)	Factor	Peak	AV			
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
(MHz) 11020	H/V H	reading (dBµV) 39.40	(dBµV)	Factor (dB/m) 8.03	Peak (dBµV/m) 47.43	AV (dBµV/m)	(dBµV/m) 74	(dBµV/m) 54	(dB) -6.57
(MHz) 11020 16530	H/V H H	reading (dBµV) 39.40 40.58	(dBµV)	Factor (dB/m) 8.03 9.76	Peak (dBµV/m) 47.43 50.34	ΑV (dBμV/m) 	(dBµV/m) 74 68.2	(dBµV/m) 54 	-6.57 -17.86
(MHz) 11020 16530	H/V H H	reading (dBµV) 39.40 40.58	(dBµV)	Factor (dB/m) 8.03 9.76	Peak (dBµV/m) 47.43 50.34	ΑV (dBμV/m) 	(dBµV/m) 74 68.2	(dBµV/m) 54 	-6.57 -17.86
11020 16530	H/V H H H	reading (dBµV) 39.40 40.58	(dBµV)	Factor (dB/m) 8.03 9.76	Peak (dBµV/m) 47.43 50.34	AV (dBµV/m) 	(dBμV/m) 74 68.2 	(dBµV/m) 54 	(dB) -6.57 -17.86
(MHz) 11020 16530 	H/V H H H	reading (dBµV) 39.40 40.58 	(dBµV)	Factor (dB/m) 8.03 9.76 8.03	Peak (dBµV/m) 47.43 50.34 49.79	ΑV (dBμV/m) 	(dBµV/m) 74 68.2 74	(dBµV/m) 54 54	(dB) -6.57 -17.86
11020 16530 11020 16530	H/V H H H V V	reading (dBµV) 39.40 40.58 41.76 39.81	(dBµV)	Factor (dB/m) 8.03 9.76 8.03 9.76	Peak (dBµV/m) 47.43 50.34 49.79 49.57	ΑV (dBμV/m) 	(dBµV/m) 74 68.2 74 68.2	(dBµV/m) 54 54	(dB) -6.57 -17.864.21 -18.63
11020 16530 11020 16530 	H/V H H V V V	reading (dBµV) 39.40 40.58 41.76 39.81	(dBµV)	8.03 9.76 8.03 9.76 ac(VHT40)	Peak (dBµV/m) 47.43 50.34 49.79 49.57 CH118:55	AV (dBμV/m) 90	(dBµV/m) 74 68.2 74 68.2	(dBµV/m) 54 54	(dB) -6.57 -17.864.21 -18.63
11020 16530 11020 16530 	H/V H H H V V	reading (dBµV) 39.40 40.58 41.76 39.81	(dBµV)	8.03 9.76 8.03 9.76 ac(VHT40)	Peak (dBµV/m) 47.43 50.34 49.79 49.57 CH118:555 Emissio	AV (dBµV/m) 90 n Level AV	(dBµV/m) 74 68.2 74 68.2	(dBµV/m) 54 54	(dB) -6.57 -17.864.21 -18.63
11020 16530 11020 16530 Frequency (MHz)	H/V H H V V V Ant. Pol. H/V	reading (dBµV) 39.40 40.58 41.76 39.81 Peak reading (dBµV)	(dBµV) 11 AV reading	Factor (dB/m) 8.03 9.76 8.03 9.76 ac(VHT40) Correction Factor	Peak (dBµV/m) 47.43 50.34 49.79 49.57 CH118:555 Emissio	AV (dBµV/m) 90 on Level	(dBµV/m) 74 68.2 74 68.2	(dBµV/m) 54 54 AV limit	-6.57 -17.86 -4.21 -18.63 Margin (dB)
11020 16530 11020 16530 Frequency (MHz) 11180	H/V H H V V V Ant. Pol. H/V	reading (dBµV) 39.40 40.58 41.76 39.81 Peak reading (dBµV) 39.65	(dBµV) 11 AV reading (dBµV)	Factor (dB/m) 8.03 9.76 8.03 9.76 ac(VHT40) Correction Factor (dB/m)	Peak (dBµV/m) 47.43 50.34 49.79 49.57 CH118:55 Emissic Peak (dBµV/m) 47.69	AV (dBµV/m) 90 on Level AV (dBµV/m)	74 68.2 74 68.2 Peak limit (dBµV/m)	(dBµV/m) 54 54 AV limit (dBµV/m)	(dB) -6.57 -17.864.21 -18.63 Margin
11020 16530 11020 16530 Frequency (MHz)	H/V H H V V V Ant. Pol. H/V	reading (dBµV) 39.40 40.58 41.76 39.81 Peak reading (dBµV)	(dBµV) 11 AV reading (dBµV)	8.03 9.76 8.03 9.76 ac(VHT40) Correction Factor (dB/m) 8.04	Peak (dBµV/m) 47.43 50.34 49.79 49.57 CH118:555 Emission Peak (dBµV/m)	AV (dBµV/m) 90 on Level AV (dBµV/m)	74 68.2 74 68.2 Peak limit (dBμV/m)	(dBμV/m) 54 54 AV limit (dBμV/m) 54	-6.57 -17.86 -4.21 -18.63 Margin (dB) -6.31
11020 16530 11020 16530 Frequency (MHz) 11180	H/V H H V V V Ant. Pol. H/V	reading (dBµV) 39.40 40.58 41.76 39.81 Peak reading (dBµV) 39.65 38.34	(dBµV) 11 AV reading (dBµV)	Factor (dB/m) 8.03 9.76 8.03 9.76 ac(VHT40) Correction Factor (dB/m) 8.04 9.74	Peak (dBµV/m) 47.43 50.34 49.79 49.57 CH118:550 Emissic Peak (dBµV/m) 47.69 48.08	AV (dBµV/m) 90 on Level AV (dBµV/m) 	(dBµV/m) 74 68.2 74 68.2 Peak limit (dBµV/m) 74 68.2	(dBµV/m) 54 54 AV limit (dBµV/m) 54	-6.57 -17.86 -4.21 -18.63 Margin (dB) -6.31 -20.12
11020 16530 11020 16530 Frequency (MHz) 11180	H/V H H V V V Ant. Pol. H/V	reading (dBµV) 39.40 40.58 41.76 39.81 Peak reading (dBµV) 39.65 38.34	(dBµV) 11 AV reading (dBµV)	Factor (dB/m) 8.03 9.76 8.03 9.76 ac(VHT40) Correction Factor (dB/m) 8.04 9.74	Peak (dBµV/m) 47.43 50.34 49.79 49.57 CH118:550 Emissic Peak (dBµV/m) 47.69 48.08	AV (dBµV/m) 90 on Level AV (dBµV/m) 	(dBµV/m) 74 68.2 74 68.2 Peak limit (dBµV/m) 74 68.2	(dBµV/m) 54 54 AV limit (dBµV/m) 54	-6.57 -17.86 -4.21 -18.63 Margin (dB) -6.31 -20.12
11020 16530 11020 16530 Frequency (MHz) 11180 16770	H/V H H H V V V Ant. Pol. H/V H H	reading (dBµV) 39.40 40.58 41.76 39.81 Peak reading (dBµV) 39.65 38.34	(dBµV) AV reading (dBµV)	Factor (dB/m) 8.03 9.76 8.03 9.76 ac(VHT40) Correction Factor (dB/m) 8.04 9.74	Peak (dBµV/m) 47.43 50.34 49.79 49.57 CH118:555 Emissic Peak (dBµV/m) 47.69 48.08	AV (dBμV/m) 90 on Level AV (dBμV/m) 	(dBµV/m) 74 68.2 74 68.2 Peak limit (dBµV/m) 74 68.2	(dBµV/m) 54 54 AV limit (dBµV/m) 54	-6.57 -17.86 -4.21 -18.63 (dB) -6.31 -20.12

11ac(VHT40) CH134: 5670MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissio Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)			
11340	Н	38.64		8.05	46.69		74	54	-7.31			
17010	Н	37.22		9.72	46.94		68.2		-21.26			
	H		-7- (1)					- 				
	(°C)		('C'))	()	(°C)		(,0)				
11340	V	39.17	-33	8.05	47.22		74	54	-6.78			
17010	V	40.80		9.72	50.52		68.2		-17.68			
	V											

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page 63 of 363

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

			N	lodulation T	ype: Band	3							
			11a	(HT20) CH	149: 5745N	ИHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
11490	Н	39.23		8.09	47.32		74	54	-6.68				
17235	Н	38.64		9.67	48.31	-	68.2		-19.89				
/	H		<i>f</i>		(<i></i>					
,			'K'		· ·								
11490	٧	41.61		8.09	49.70		74	54	-4.30				
17235	17235 V 42.08 9.67 51.75 68.216.45												

	11a(HT20) CH157: 5785MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)			
11570	H	40.51	- 	8.10	48.61		74	54	-5.39			
17355	CH	40.26	1 C	9.65	49.91	·C+	68.2	(-, C)	-18.29			
"	Н											
11570	V	39.38		8.10	47.48		74	54	-6.52			
17355	V	40.54		9.65	50.19		68.2		-18.01			
	V			((, (

			11a	(HT20) CH	161: 5825N	ИHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11650	CO H	39.47	70	8.12	47.59	(O-1	74	54	-6.41
17475	H	38.18	-22	9.62	47.80		68.2		-20.40
	Н								
11650	V	40.32		8.12	48.44		74	54	-5.56
17475	V	39.76		9.62	49.38		68.2		-18.82
/	V				<i></i>				\

	11n(HT20) CH151: 5745MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
11510	Н	40.29		8.09	48.38		74	54	-5.62				
17265	Η	39.50		9.67	49.17		68.2		-19.03				
	Н												
					-11								
11510	V	40.97		8.09	49.06		74	54	-4.94				
17265	V	39.31		9.67	48.98		68.2		-19.22				
	V												

			11n	(HT20) CH	157: 5785N	1Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBμV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11570	Н	40.15		8.10	48.25		74	54	-5.75
17355	Н	41.38		9.65	51.03		68.2		-17.17
	H					-			
11570	V	39.77	-4.	8.10	47.87	<i>-</i> 4-	74	54	-6.13
17355	V	40.29		9.65	49.94	1	68.2		-18.26
	V	-							

			11n	(HT20) CH	165: 5825N	ИHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11650	Η	40.30		8.12	48.42		74	54	-5.58
17475	H	38.75	-7-	9.62	48.37		68.2	-7-	-19.83
(C H		[- C]		(.C ?}			
				/					
11650	V	37.28		8.12	45.40		74	54	-8.60
17475	V	40.56		9.62	50.18		68.2		-18.02
	V								

			11n	(HT40) CH	151: 5755N	1Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissio Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11510	H	41.85		8.09	49.94		74	54	-4.06
17265	Эн	42.22	140	9.67	51.89	(O-4	68.2	170	-16.31
	Ŧ					<u></u>			
11510	V	41.72		8.09	49.81		74	54	-4.19
17265	V	40.39		9.67	50.06		68.2		-18.14
(` ر	V	(CO.)		(, ((`` ر				(, (

	11n(HT40) CH159: 5795MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
11590	Н	40.16	-4-	8.10	48.26	/-	74	54	-5.74				
17385	Н	39.77		9.65	49.42		68.2		-18.78				
	Н												
					-,								
11590	V	39.68		8.10	47.78		74	54	-6.22				
17385	V	38.91		9.65	48.56		68.2		-19.64				
	V												

			11ac	(VHT20) CI	H149: 5745	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)
11490	Н	41.51		8.09	49.60		74	54	-4.40
17235	Н	42.34		9.67	52.01		68.2		-16.19
	T								
				\	(
11490	V	40.76		8.09	48.85	-/-	74	54	-5.15
17235	V	43.03		9.67	52.70	1	68.2		-15.50
	V								

			11ac	(VHT20) C	H157: 5785	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11570	Н	39.45		8.10	47.55		74	54	-6.45
17355	H	37.86	-7- A	9.65	47.51	X	68.2	(A)	-20.69
(Η		1-O.		(· C - }		(-, C)	
11570	V	38.82		8.10	46.92		74	54	-7.08
17355	V	40.07		9.65	49.72		68.2		-18.48
Z	V				Z				/
		(.G)		(.0		•	(.C)		
				() (I ITOO) O	= = = = = =				

	,				A \				
		(.G.)		(,0			(.G.)		(,(
			11ac	(VHT20) CI					
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11650	H	40.67		8.12	48.79		74	54	-5.21
17475	H	39.53	140	9.62	49.15	(O-1	68.2	750	-19.05
	Н					<u></u>			
11650	V	40.29		8.12	48.41		74	54	-5.59
17475	V	42.01		9.62	51.63		68.2		-16.57
)	V			() ·		(<u>/</u> C ')		

	11ac(VHT40) CH151: 5755MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
11510	Н	40.58	-4-	8.09	48.67		74	54	-5.33				
17265	Н	38.93		9.67	48.60		68.2		-19.60				
	Η												
					-,								
11510	V	41.75		8.09	49.84		74	54	-4.16				
17265	V	38.16		9.67	47.83		68.2		-20.37				
	V												

	11ac(VHT40) CH159: 5795MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11590	Τ	41.28		8.10	49.38		74	54	-4.62
17385	Н	38.79		9.65	48.44		68.2		-19.76
	H								
					(
11590	V	41.46		8.10	49.56	-/-	74	54	-4.44
17385	V	40.52		9.65	50.17	1	68.2		-18.03
	V								

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page 67 of 363

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.9. Frequency Stability Measurement

6.9.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g) &Part2 J Section 2.1055						
Test Method:	ANSI C63.10: 2013						
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.						
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply						
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.						
Test Result:	PASS						
Remark:	Pre-scan was performed at Antenna 0 and Antenna 1, the worst case was found. Only the test data of Antenna 0 was shown in this report.						

Test plots as follows:

Test mode:		802.11n(H	IT20)	Frequency(MHz):		lz):	5180			
Temperature (°C)	Volta	ac(\/DC)	Measurement		Delta		D	Result		
Temperature (C)	volta	Voltage(VDC)		Frequency(MHz)		Frequency(Hz)		Kesuit		
45						5180.0095		9500		ASS
35				.0061	6100		P	ASS		
25	3.3V	5179.	9874	-12600		P	ASS			
15	•	3.30	5179.	.9986	-1	400	P.	ASS		
5			5180.	.0032	3	200	P.	ASS		
0	0		5180.	0047	4	700	P.	ASS		
	(CO.)	3.0	5179.	9833	-16	6700	P.	ASS		
20		3.3	5180.	0039	3	900	P.	ASS		
		3.6	5179.	9820	-18	3000	P.	ASS		

						7 7 2 3	
Test mode:	802.11n(HT20)	Frequency(MHz):		5200		
Temperature (°C)	Voltage(VDC)	Measur	ement	Delta Frequency(Hz)		Result	
remperature (C)	voltage(vDC)	Frequenc	cy(MHz)				
45		5200.	0091	9100	-,	PASS	
35		5200.	0084	8400		PASS	
25	3.3V	5200.	0075	7500		PASS	
15	3.31	5200.	0040	4000		PASS	
5		5199.9	9988	-1200		PASS	
0		5199.9	9879	-12100		PASS	
	3.0	5199.9	9952	9952 -4800		PASS	
20	3.3	5200.0	0033	3300		PASS	
	3.6	5200.0	0056	5600		PASS	

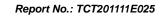
Test mode:	802.11n(l	HT20) Frequer		ency(MHz):		5240	
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta		Result	
Temperature (C)	voltage(vDC)	Frequen	cy(MHz)	Frequency(Hz)		Nesult	
45		5240.	.0041	4100		PASS	
35		5240.	.0024	2400		PASS	
25	3.3V	5240.	.0027	2700		PASS	
15	3.3 V	5239.	9993	-700		PASS	
5		5239.	9986	-1400	7	PASS	
0	(² C ₂)	5239.	9972	-2800	O()	PASS	
	3.0	5240.0038		3800		PASS	
20	3.3		.0015	1500		PASS	
	3.6	5239.	9983	-1700		PASS	

Test mode:	802.11n	(HT20)	Frequency(MHz):			5745	
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta Frequency(Hz)		Result	
Temperature (C)	voitage(vDC)	Frequen	cy(MHz)			Nesuit	
45		5745	.0011	1100		PASS	
35		5745	.0019	1900		PASS	
25	3.3V	5744	.9965	-3500		PASS	
15	3.31	5744	.9953	-4700		PASS	
5		5745	.0038	3800		PASS	
0		5745	.0040	4000		PASS	
	3.0	5745	.0074	7400		PASS	
20	20 3.3	5745	.0076	7600	5)	PASS	K
	3.6	5745	.0022	2200		PASS	

Test mode:	802.11n(HT20) Freque	ency(MHz):	5785
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5785.0088	8800	PASS
35		5785.0032	3200	PASS
25	3.3V	5785.0027	2700	PASS
15	3.31	5784.9981	-1900	PASS
5		5785.0029	2900	PASS
0		5784.9978	-2200	PASS
$(C_{\mathcal{O}})$	3.0	5785.0054	5400	PASS
20	3.3	5785.0025	2500	PASS
	3.6	5784.9970	-3000	PASS

Test mode:	802.11n(HT20) Frequ	uency(MHz):	5825
Temperature (°C)	Voltage(VDC)	Measurement	Delta	Result
Temperature (C)	voitage(vDC)	Frequency(MHz) Frequency(Hz)	Nesuit
45		5824.9811	-18900	PASS
35		5825.0085	8500	PASS
25	3.3V	5824.9956	-4400	PASS
15	3.37	5824.9984	-1600	PASS
5		5825.0012	1200	PASS
0		5825.0049	4900	PASS
	3.0	5825.0043	4300	PASS
20	3.3	5824.9987	-1300	PASS
	3.6	5825.0022	2200	PASS

Test mode:	802.11n(HT40)	Frequency(MHz):			5190	
Tomporature (°C)	Voltage(VDC)	Measu	rement	Delta		Result	
Temperature (°C)	voitage(vDC)	Frequen	icy(MHz)	Frequency(Hz)		Result	
45		5190	.0122	12200		PASS	
35		5190	.0118	11800		PASS	
25	3.3V	5190	.0105	10500		PASS	
15	3.30	5190	.0031	3100		PASS	
5		5190	.0060	6000		PASS	
0		5190	.0074	7400		PASS	
	3.0	5189	.9916	-8400		PASS	
20	3.3	5189	.9979	-2100	5)	PASS	K
	3.6	5190	.0043	4300		PASS	


Test mode:	802.1	1n(HT40)	Frequency(MHz):			5230	
Temperature (°C)	Temperature (°C) Voltage(VDC)		urement	Delta		Result	
remperature (C)	voltage(vD	Frequer	ncy(MHz)	Frequency(H	Hz)	Nesuit	
45		5230).0114	11400		PASS	
35		5230	0.0125	12500	X \	PASS	
25	3.3V	5230	0.0092	9200	57)	PASS	
15	3.3V	5229	9.9988	-1200		PASS	
5		5229	9.9981	-1900		PASS	
0		5230	0.0056	5600		PASS	
(.6)	3.0		0.0047	4700		PASS	
20	3.3	5230	0.0029	2900		PASS	
	3.6	5229	9.9973	-2700		PASS	

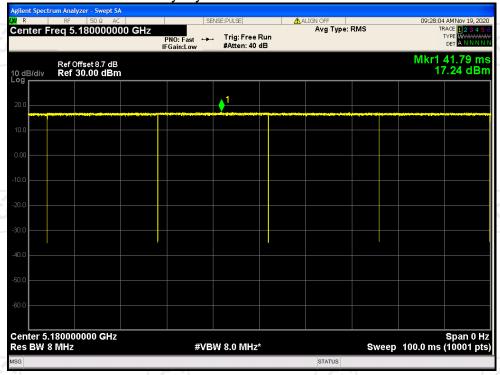
Test mode:	802.11n(HT40) Fre	quency(MHz):	5755
Temperature (°C)	Voltage(VDC)	Measuremer	nt Delta	Result
Temperature (C)	voitage(vDC)	Frequency(Mh	Hz) Frequency(H	Hz)
45		5755.0107	10700	PASS
35		5755.0025	2500	PASS
25	3.3V	5755.0113	11300	PASS
15	3.37	5755.0094	9400	PASS
5		5755.0036	3600	PASS
0		5755.0070	7000	PASS
	3.0	5755.0044	4400	PASS
20	3.3	5755.0038	3800	PASS
	3.6	5755.0066	6600	PASS

Test mode:	802.11n(l	HT40) Fred	uency(MHz):	5795
Temperature (°C)	Temperature (°C) Voltage(VDC)		Delta z) Frequency(H:	z) Result
45		5794.9805	-19500	PASS
35	35		-15300	PASS
25	3.3V	5795.0041	4100	PASS
15	3.31	5795.0033	3300	PASS
5		5795.0028	2800	PASS
0		5795.0066	6600	PASS
	3.0	5795.0054	5400	PASS
20	3.3	5794.9982	-1800	PASS
	3.6	5795.0089	8900	PASS

Appendix A: Test Result of Conducted Test

Antenna 0

Duty Cycle

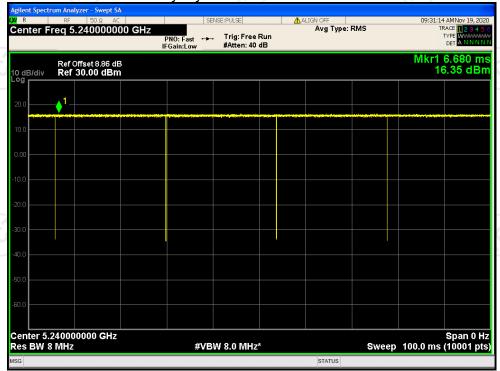

Mode a a ac20 ac20 ac20 ac40 ac40 n20	Frequency (MHz) 5180 5200 5240 5180 5200 5240 5190 5230	99.75 99.80 99.84 100 100 100 99.80	0.01 0.01 0.01 0.01 0 0
a ac20 ac20 ac20 ac40 ac40	5200 5240 5180 5200 5240 5190	99.80 99.84 100 100	0.01 0.01 0
a ac20 ac20 ac20 ac40 ac40	5240 5180 5200 5240 5190	99.84 100 100 100	0.01 0 0
ac20 ac20 ac20 ac40 ac40	5180 5200 5240 5190	100 100 100	0
ac20 ac20 ac40 ac40	5200 5240 5190	100 100	0
ac20 ac40 ac40	5240 5190	100	
ac40 ac40	5190		
ac40		00.00	0.01
	0200	99.80	0.01
	5180	100	0
n20	5200	100	0
n20	5240	100	0
n40	5190	99.75	0.01
n40	5230	99.82	0.01
а	5260	99.84	0.01
a	5300	99.84	0.01
a	5320	99.84	0.01
ac20	5260	99.80	0.01
ac20	5300	99.80	0.01
ac20	5320	99.80	0.01
ac40	5270	99.80	0.01
ac40	5310	99.80	0.01
n20	5260	99.76	0.01
n20	5300	99.82	0.01
n20	5320	99.75	0.01
n40	5270	99.77	0.01
n40	5310	99.80	0.01
а	5500	99.83	0.01
a	5600	99.84	0.01
a	5700	99.80	0.01
ac20	5500	99.80	0.01
ac20	5600	99.81	0.01
ac20	5700	99.81	0.01
ac40	5510	99.80	0.01
ac40	5590	99.81	0.01
ac40	5670	99.80	0.01
n20	5500	99.82	0.01
n20	5600	99.80	0.01
n20	5700	99.80	0.01
n40	5510	99.80	0.01
n40	5590	99.80	0.01
n40	5670	99.81	0.01
а	5745	98.67	0.06

TCT通测检测
TESTING CENTRE TECHNOLOGY

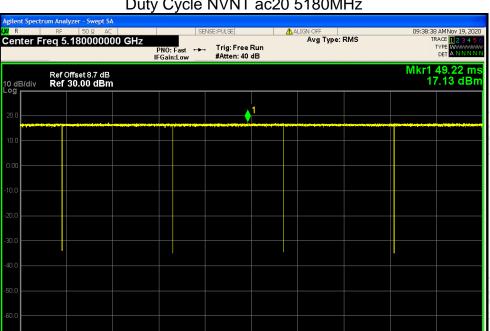
Report No.: TCT201111E025

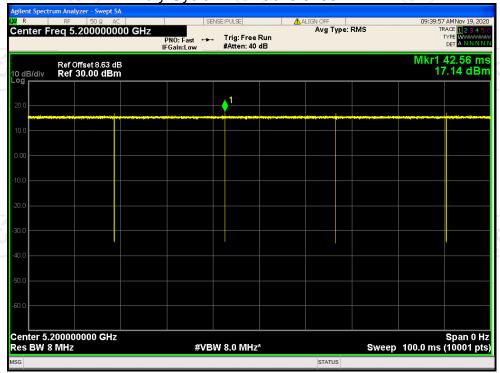
			i topo: tilo:: 1
а	5785	98.13	0.08
а	5825	99.80	0.01
ac20	5745	99.17	0.04
ac20	5785	98.99	0.04
ac20	5825	99.82	0.01
ac40	5755	98.40	0.07
ac40	5795	98.94	0.05
n20	5745	98.93	0.05
n20	5785	99.25	0.03
n20	5825	99.80	0.01
n40	5755	98.02	0.09
n40	5795	98.30	0.07


Duty Cycle NVNT a 5180MHz



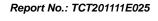
Duty Cycle NVNT a 5200MHz


Duty Cycle NVNT a 5240MHz


Center 5.180000000 GHz Res BW 8 MHz

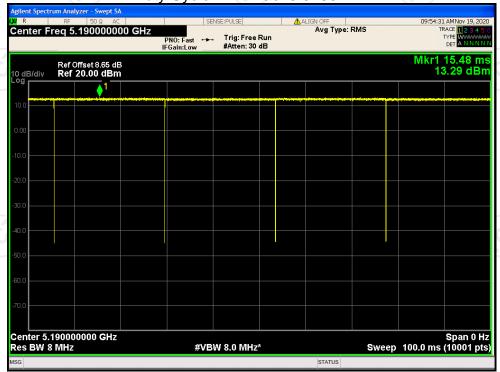
Duty Cycle NVNT ac20 5180MHz

#VBW 8.0 MHz*



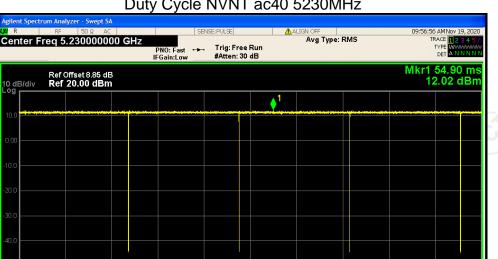
Report No.: TCT201111E025

Span 0 Hz Sweep 100.0 ms (10001 pts)



Duty Cycle NVNT ac20 5240MHz

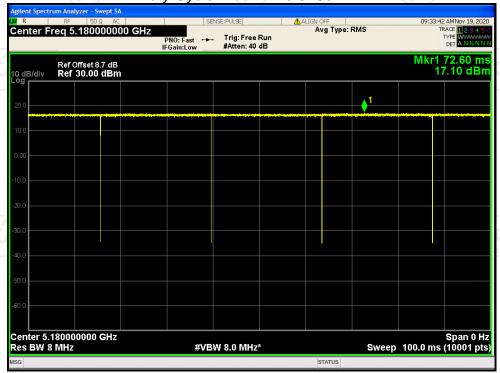
Duty Cycle NVNT ac40 5190MHz



Ref Offset 8.85 dB Ref 20.00 dBm

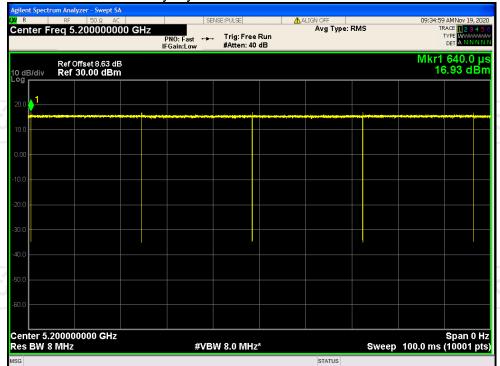
Center 5.230000000 GHz Res BW 8 MHz

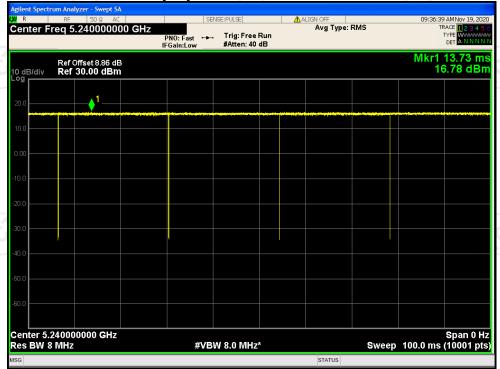
Duty Cycle NVNT ac40 5230MHz



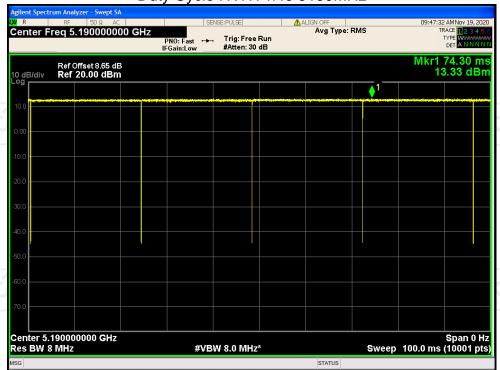
Report No.: TCT201111E025

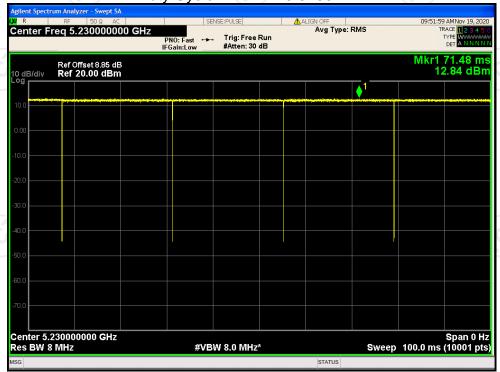
Span 0 Hz Sweep 100.0 ms (10001 pts)


#VBW 8.0 MHz*



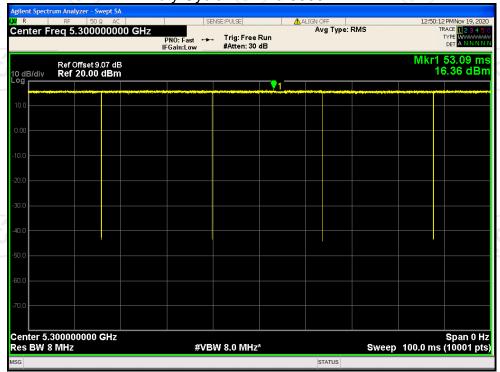
Duty Cycle NVNT n20 5200MHz


Duty Cycle NVNT n20 5240MHz



Duty Cycle NVNT n40 5190MHz

Duty Cycle NVNT n40 5230MHz

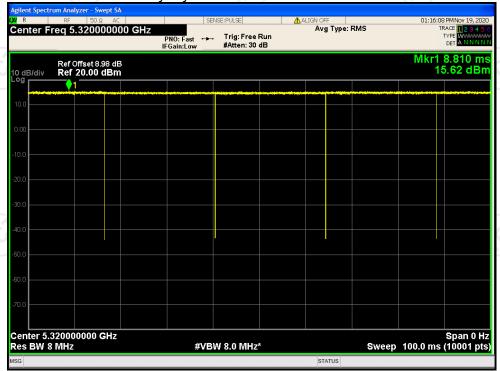


Duty Cycle NVNT a 5260MHz

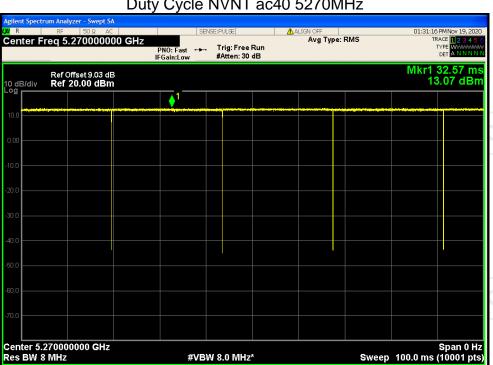
Duty Cycle NVNT a 5300MHz

Duty Cycle NVNT a 5320MHz

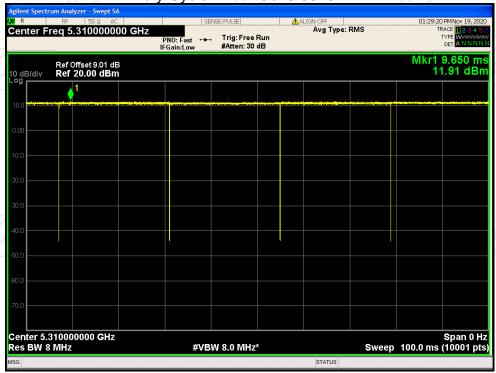
Duty Cycle NVNT ac20 5260MHz



Duty Cycle NVNT ac20 5300MHz

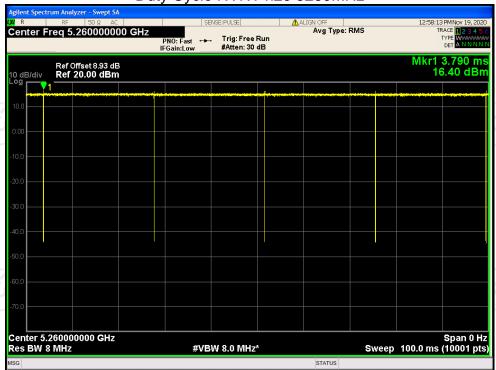


Duty Cycle NVNT ac20 5320MHz

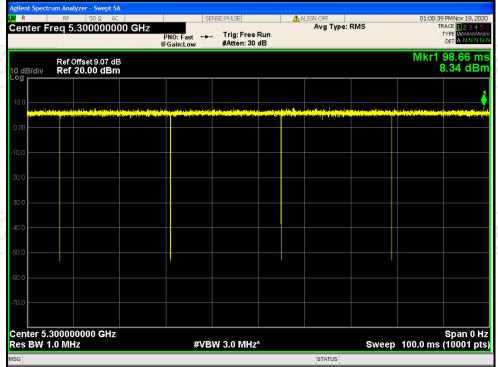


Duty Cycle NVNT ac40 5270MHz

#VBW 8.0 MHz*



Report No.: TCT201111E025



Duty Cycle NVNT n20 5260MHz

Duty Cycle NVNT n20 5300MHz

