

Report No: JYTSZB-R12-2102658

FCC REPORT

Applicant:	SWAGTEK
Address of Applicant:	10205 NW 19th St. Suite 101, Miami, FL, 33172
Equipment Under Test (E	EUT)
Product Name:	6.517 inch 4G Smart Phone
Model No.:	L65 LITE, ULTRAx, N65 Lite
Trade mark:	LOGIC, iSWAG, UNONU
FCC ID:	O55653921
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	24 Nov., 2021
Date of Test:	25 Nov., to 31 Dec., 2021
Date of report issued:	05 Jan., 2022
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	05 Jan., 2022	Original

Tested by:

Mike.DU Test Engineer

Date: 05 Jan., 2022

Winner Thang

Reviewed by:

Project Engineer

Date:

05 Jan., 2022

Project No.: JYTSZE2111092

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	
3		TENTS	
			_
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5		-
	5.6 5.7	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7 5.8	LABORATORY FACILITY	
	5.9	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	
•	6.1		
	6.2	CONDUCTED EMISSION	-
	6.3	CONDUCTED OUTPUT POWER	
	6.4	Occupy Bandwidth	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7 6.7.1	SPURIOUS EMISSION	
	6.7.1		
_	0		_
7	_	Г SETUP PHOTO	
8	EUT	CONSTRUCTIONAL DETAILS	29

4 Test Summary

Test Items		Section in CFR 47	Test Data	Result	
Anter	nna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass	
AC Power Lir	ne Conducted Emission	15.207	See Section 6.2	Pass	
Conducted	Peak Output Power	15.247 (b)(3)	Appendix A - BLE	Pass	
	nission Bandwidth ccupied Bandwidth	15.247 (a)(2)	Appendix A - BLE	Pass	
Power	Spectral Density	15.247 (e)	Appendix A - BLE	Pass	
Conducted Band Edge		15 047 (d)	Appendix A - BLE	Pass	
Radia	ated Band Edge	15.247 (d)	See Section 6.6.2	Pass	
Conducted	Spurious Emission	15.205 & 15.209	Appendix A - BLE	Pass	
Radiated	Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass	
Remark: 1. Pass: The EUT complies with the essential requirements in the standard. 2. N/A: Not Applicable. 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer). ANSI C63.10-2013					
Test Method:	KDB 558074 D01 15.247	Meas Guidance v05r02			

5 General Information

5.1 Client Information

Applicant:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172
Manufacturer/ Factory:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172

5.2 General Description of E.U.T.

Dre duret Name er	0.547 in sh. 40. Ore art Dhan a		
Product Name:	6.517 inch 4G Smart Phone		
Model No.:	L65 LITE, ULTRAx, N65 Lite		
Operation Frequency:	2402-2480 MHz		
Channel numbers:	40		
Channel separation:	2 MHz		
Modulation technology:	GFSK		
Data speed :	1Mbps		
Antenna Type:	Internal Antenna		
Antenna gain:	1.34 dBi		
Power supply:	Rechargeable Li-ion Polymer Battery DC3.85V, 4000mAh		
AC adapter:	Model: MST-0502000-FCC		
	Input: AC100-240V, 50/60Hz, 0.3A		
	Output: DC 5.0V, 2000mA		
Test Sample Condition:	The test samples were provided in good working order with no visible defects.		
Remark:	Model No.: L65 LITE, ULTRAx, N65 Lite were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being trademark. LOGIC is for L65 LITE. iSWAG is for ULTRAx. UNONU is for N65 Lite.		
	There are two kinds of EUT, single SIM card slot and dual SIM card slot, EUT is the same except for the difference of the card slot. Select Test Dual Card Slots EUT.		

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and mode

Operating Environment:

Operating Environment.	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB
Radiated Emission (30MHz ~ 1GHz) for 10m SAC	4.32 dB

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-044	03-07-2021	03-06-2022	
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022	
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022	
Spectrum analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022	
Simulated Station	Anritsu	MT8820C	6201026545	03-03-2021	03-02-2022	
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022	
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022	
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022	
EMI Test Software	Tonscend	TS+		Version:3.0.0.1		
10m SAC	ETS	RFSD-100-F/A	Q2005	04-28-2021	04-27-2024	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	04-02-2021	04-01-2022	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	04-02-2021	04-01-2022	
EMI Test Receiver	R&S	ESR 3	102800	04-08-2021	04-07-2022	
EMI Test Receiver	R&S	ESR 3	102802	04-08-2021	04-07-2022	
Low Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-05-2022	
Low Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-05-2022	
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-1	04-02-2021	04-01-2022	
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-2	04-02-2021	04-01-2022	
Test Software	R&S	EMC32	١	/ersion: 10.50.4	0	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	03-18-2021	03-17-2022	
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022	
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

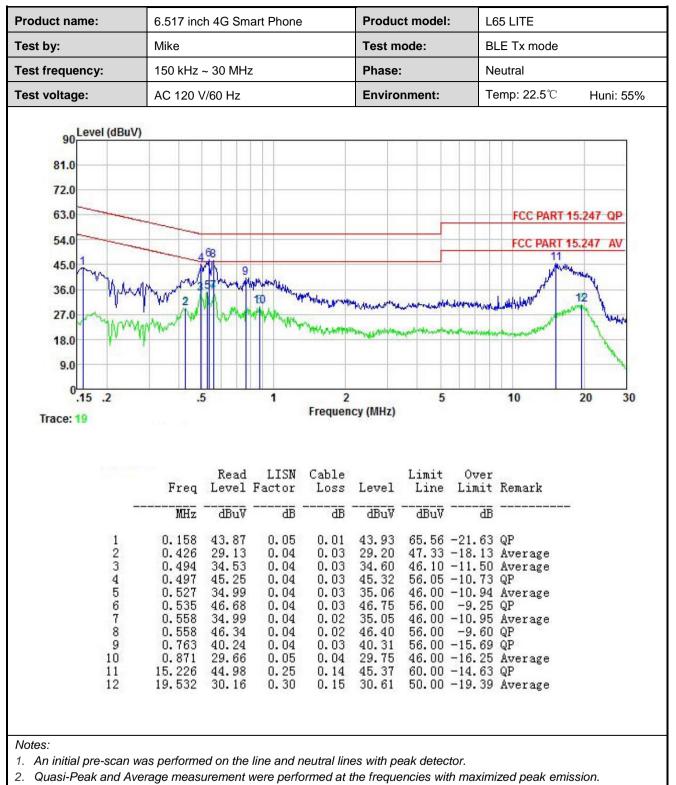
Conducted method:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022	
Vector Signal Generator	Keysight	N5182B	MY59101009	10-27-2021	10-26-2022	
Analog Signal Generator	Keysight	N5173B	MY59100765	10-27-2021	10-26-2022	
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-19-2021	11-18-2022	
Simulated Station	Rohde & Schwarz	CMW270	102335	10-27-2021	10-26-2022	
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A	
PDU	MWRF-test	XY-G10	N/A	N/A	N/A	
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2023	
Temperature Humidity Chamber	Deli	8840	N/A	03-08-2021	03-07-2022	
Test Software	MWRF-tes	MTS 8310	Version: 2.0.0.0			

6 Test results and Measurement Data

6.1 Antenna requirement:

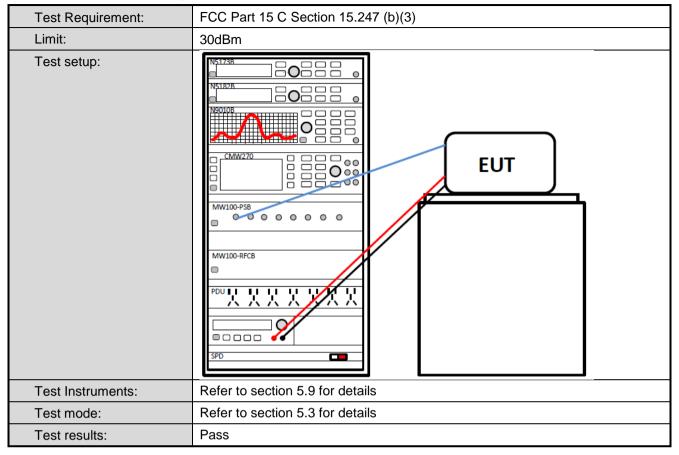
Standard requirement:	FCC Part 15 C Section 15.203 /247(b)						
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohil 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anter power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit in be replaced by the user, but the use of a standard antenna jack or bited. ower limit specified in paragraph (b) of this section is based on the use of this that do not exceed 6 dBi. Except as shown in paragraph (c) of this inas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), tion, as appropriate, by the amount in dB that the directional gain of the						
E.U.T Antenna:							
The BLE antenna is an Interr antenna is 1.34 dBi.	The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the						

6.2 Conducted Emission

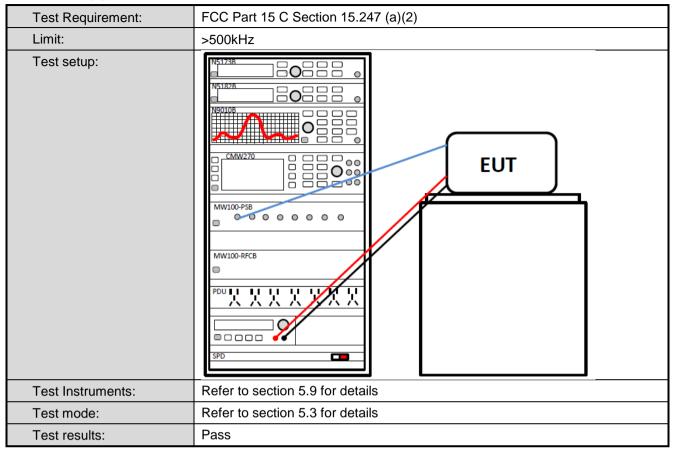

Test Requirement:	FCC Part 15 C Section 15.207	7					
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	Frequency range (MHz)						
	Quasi-peak Average						
	0.15-0.5 66 to 56* 56 to 46*						
	0.5-5 56 46						
	5-30 * Decreases with the logarithm	60	50				
Test procedure:	 The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im The peripheral devices ar LISN that provides a 50ol termination. (Please refer photographs). Both sides of A.C. line ard interference. In order to fi positions of equipment ar according to ANSI C63.10 	are connected to the ma on network (L.I.S.N.), wh pedance for the measuring re also connected to the hm/50uH coupling imped to the block diagram of the checked for maximum and the maximum emission and all of the interface cab D(latest version) on cond	hich provides a ng equipment. main power through a ance with 500hm the test setup and conducted on, the relative les must be changed				
Test setup:	Reference	80cm Filter EMI Receiver	– AC power				
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

Measurement Data:

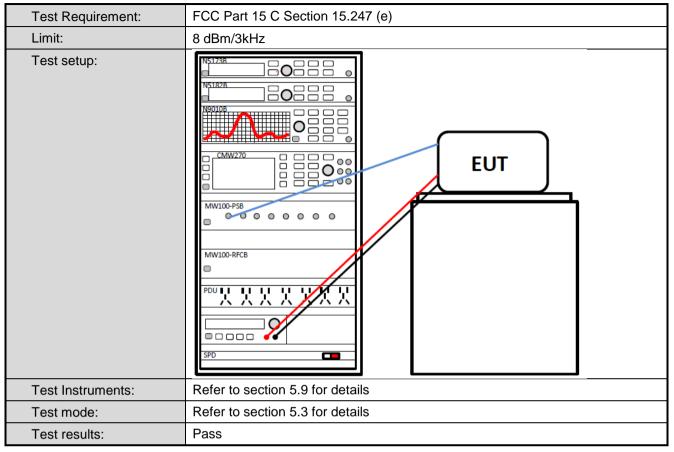
Product name:	6.517 in	6.517 inch 4G Smart Phone				Product model: L6			L65 LITE		
Test by:	Mike				Test n	node:	: BLE Tx mode				
Test frequency:	150 kHz	~ 30 MH	lz		Phase):	L	Line			
Test voltage:	AC 120	V/60 Hz			Enviro	Environment:		emp: 22.5℃	Huni: 55%		
90 Level (dBu	IV)										
81.0											
72.0							_				
63.0								ECC DART	15.247 QP		
		79						and the second s			
54.0	5	Mh.						FCC PART	15.247 AV		
45.0	Ma un M	1ª WTh	WANTAN How	1.4.5	-				12		
36.0	311/1 14	10	HIM WY HAWAS	pro-Alidyhanse	huyiphurham	and the second s	And the stand in the stand	How we want	man 1		
27.0	Mar VI	1 Mill	Her Wither	art all a second	La stranger story	-		and a start and a start and a start a			
18.0				al file and					1 24		
9.0									1 hours		
0.15 .2	-	5	1	2	City and the	5		10	20 30		
Trace: 17				Frequer	icy (MHz)						
		Read	LISN	Cable		Limit	Over				
	Freq		Factor	Loss	Level	Line		Remark			
	MHz	dBuV	ā	āB	dBu∛	dBu∛	āB				
1	0.194	45.82	0.04	0.03	45.89	63, 84	-17.95	OP			
	0.249	44.91	0.04	0.01	44.96	61.78	-16.82	QP			
2 3 4	0.262	33.88 35.22	$0.04 \\ 0.04$	0.01 0.03	33.93 35.29			Average Average			
5		47.93	0.04	0.03			-9.02				
6 7	0.529 0.535	41.94 52.97	0.04 0.04	0.03 0.03	42.01 53.04	46.00 56.00	-2.99	Average QP			
8	0.558	39.91	0.04	0.02	39.97	46.00	-6.03	Average			
9	0.558	53.14	0.04	0.02	53.20 32.90	56.00	-2.80	QP Average			
10 11	0.675 14.750	32.83 50.63	0.04 0.27	0.03 0.13	51.03		-13.10				
12	16.661	36.54	0.29	0.16	36.99			Average			
Notes:											
1. An initial pre-scar	-				-						
2. Quasi-Peak and A	Average meas	surement	were per	tormed at	the frequ	encies wi	ıtn maxin	uzed peak er	nission.		



3. Final Level = Receiver Read level + LISN Factor + Cable Loss.



6.3 Conducted Output Power



6.4 Occupy Bandwidth

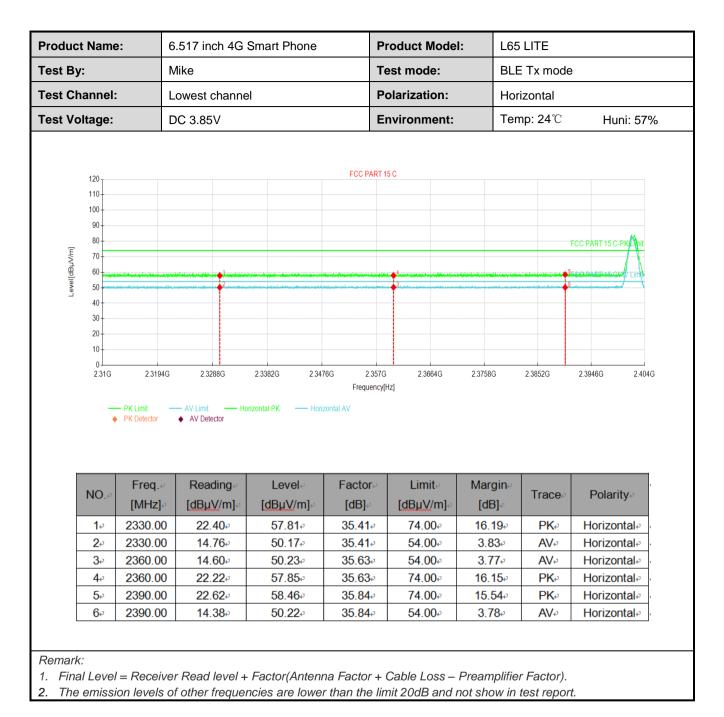
6.5 Power Spectral Density

6.6 Band Edge

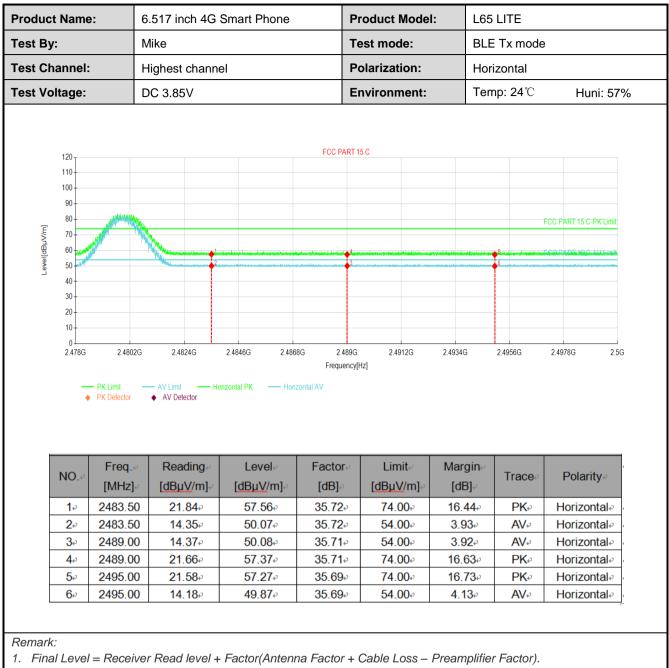
6.6.1 Conducted Emission Method


Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

6.6.2 Radiated Emission Method


Test Requirement:	FCC Part 15 C Section 15.205 and 15.209							
Test Frequency Range:	2310 MHz to 2	390 MHz and	2483.5MHz to 2	2500 M	lHz			
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VB	3W	Remark		
·	Above 1GHz	Peak	1MHz	-	1Hz	Peak Value		
		RMS			1Hz	Average Value		
Limit:	Frequen	icy L	imit (dBuV/m @:	3m)		Remark		
	Above 1GHz 54.00 Average Value 74.00 Peak Value							
Test Procedure:	 the groun to determ 2. The EUT antenna, y tower. 3. The anter the groun Both horiz make the 4. For each case and meters ar to find the 5. The test-r Specified 6. If the emist the limit s of the EU have 10 d 	d at a 3 meter ine the position was set 3 meter which was meter and height is d to determine contal and ver measurement suspected ent then the anter and the rota tall end tal	nission, the EUT nna was tuned to ble was turned fro	ble was radiation he inter of a van meter to value of us of the was ar o heigh om 0 de ak Dete la Mode stoppe se the e one by	s rotated on. rference ariable- o four m f the fiel e antenr rranged nts from egrees t ect Fund e. was 10 ed and t emissior one usi	d 360 degrees e-receiving height antenna neters above ld strength. ha are set to to its worst 1 meter to 4 to 360 degrees ction and dB lower than he peak values hs that did not ng peak, quasi-		
Test setup:		LEUT urntable) Grou Test Receive	Horn Antenna 3m Horn Antenna are the second seco	Antenna Tow				
Test Instruments:	Refer to sectio	n 5.9 for deta	ills					
Test mode:	Refer to sectio							
Test results:	Pass							

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



		0.517 INCH 40	G Smart Phone	;	Product Mc	del:	L65 LITE			
est By:		Mike		Test mode: BLE			Tx mode			
Test Channel:		Highest chan	inel		Polarization	ו:	Vertical			
est Voltage:		DC 3.85V			Environme	nt:	Temp: 24℃ Huni: 57%			
120 110 100 90 80 00 80 00 100 90 80 00 100 90 80 00 100 90 80 80 00 100 90 80 80 80 80 80 80 80 80 80 80 80 80 80				FCC PART 1				FCC PART 15 C-PK Limit		
40 40 20 10 2.478G	2.4802G PK Limit PK Detector	2.4824G AV Limit Ve AV Detector	2.4846G 2.4860 ertical PK — Vertical	Frequency[I	2.4912G Hz]	2.4934G	2.4956G	2.4978G 2.5G		
40 30 20 10	— PK Limit —	— AV Limit — Ve		Frequency[I		24934G Margin⊮ [dB]⊮	2.4956G	24978G 25G		
40 30 20 10 0 2.478G	PK Limit PK Detector	AV Limit Va AV Detector Va Reading V [dBuV/m] P	ertical PK — Vertical Level⊷	Frequency[AV Factor	tz] Limit⊷	Margin.∉ [dB]-⊱				
40 30 20 10 0 2.478G	PK Limit - PK Detector -	AV Limit Ve AV Detector	ertical PK — Vertical Level⊭ [dBµV/m]₽	Frequency[AV Factor⊌ [dB]-∂	لنmit بر [dBuV/m] ک	Margine	Trace	Polarity		
40 30 20 10 0 2.478G	Freq.* [MHz].2 2483.50	AV Limit Va AV Detector Va Reading Va [dBµV/m] P 23.16P	Level [dBµV/m] 58.88	Frequency[AV Factor [dB] 35.72	Limit.⊷ [dBµV/m].∞ 74.00.∘	Margin⊮ [dB]∞ 15.12₽	Trace⊧ PK₂	Polarity <i>⇔</i> Vertical <i>⊷</i>		
40 30 20 10 0 2.4786 NO2 1+2 2+2	PK Limit PK Detector [MHz] 2483.50 2483.50	AV Limit	ertical PK — Vertical Level ← [dBµV/m] ← 58.88 ← 51.21 ←	Frequency[AV Factor [dB] 35.72+- 35.72+-	±z] Limit⊮ [dBµV/m]⊮ 74.00⊮ 54.00€	Margin⊮ [dB]₽ 15.12₽ 2.79₽	Trace PK AV	Polarity Verticale Verticale		
40 30 20 10 0 2 478G NO. 4 1-2 2-4 3-2 3-2	PK Limit PK Detector [MHz], ² 2483.50 2483.50 2489.00	AV Limit	ertical PK → Vertical Level↔ [dBµV/m]↔ 58.88↔ 51.21↔ 50.69↔	Frequency(AV Factor [dB] 35.72 35.72 35.71	Limite [dBµV/m]e 74.00e 54.00e 54.00e	Margin.∉ [dB].∉ 15.12.∉ 2.79.¢ 3.31.€	Trace PK AV AV	Polarity₀ Vertical₀ Vertical₀ Vertical₀		

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209							
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m or 10m							
Receiver setup:	Frequency	Detector	r	RBW	VB	W	Remark	
· ·	30MHz-1GHz	Quasi-pea	eak 120KHz		300KHz		Quasi-peak Value	
	Above 1GHz	Peak			3MHz		Peak Value	
		RMS		1MHz	3M	Hz	Average Value	
Limit:	Frequency Limit (dBuV/m @10m) Remark 30MHz-88MHz 30.0 Quasi-peak Value							
	30MHz-88MHz30.0Quasi-peak Value88MHz-216MHz33.5Quasi-peak Value							
							Quasi-peak Value	
	960MHz-1GHz 44.0 Quasi-peak							
	Frequency		Lir	nit (dBuV/m @	3m)		Remark	
	Above 1GH	1-7		54.0			Average Value	
				74.0			Peak Value table 0.8m(below	
Test Procedure:	 (below 1G rotated 36 radiation. 2. The EUT w away from on the top of 3. The antenr the ground Both horizo make the m 4. For each s case and t meters and to find the r 5. The test-re Specified B 6. If the emiss the limit sp of the EUT have 10 dB 	Hz)or 3 n 0 degrees vas set 10 the interfe of a variable a height i to detern ontal and v neasureme suspected hen the ar I the rota ta maximum r eceiver sy andwidth v sion level of ecified, the would be margin w	meters to meters to reference le-h is van mine vert ent. em nten able reaco vster with of th en te e rep vould	er chamber(a o determine ters(below 10 nce-receiving eight antenna aried from or the maximu ical polarizat ission, the E ma was turned ling. m was set Maximum H ne EUT in pe esting could b ported. Other d be re-tested	Above the p GHz) or antenia tower ne met um valu ions of UT wa d to he from 0 to Pea old Mod ak moc be stop wise th d one b	1GHz cosition 3 me na, wh er to f the a as arra eights degre de was ped ar e emis y one	10 meter chamber). The table was n of the highest eters(above 1GHz) nich was mounted four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 des to 360 degrees tect Function and a 10 dB lower than nd the peak values ssions that did not using peak, quasi- reported in a data	
Test setup:		10m < 4m			S A RF	Antenna To earch intenna Test ceiver	ower	

Project No.: JYTSZE2111092

	Above 1GHz
	AE EUT Horn Arlanna Horn Arlanna (Turntable) Ground Reference Plane Test Receiver
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is lower than the limit 20dB, so only shows the data of above 30MHz in this report.

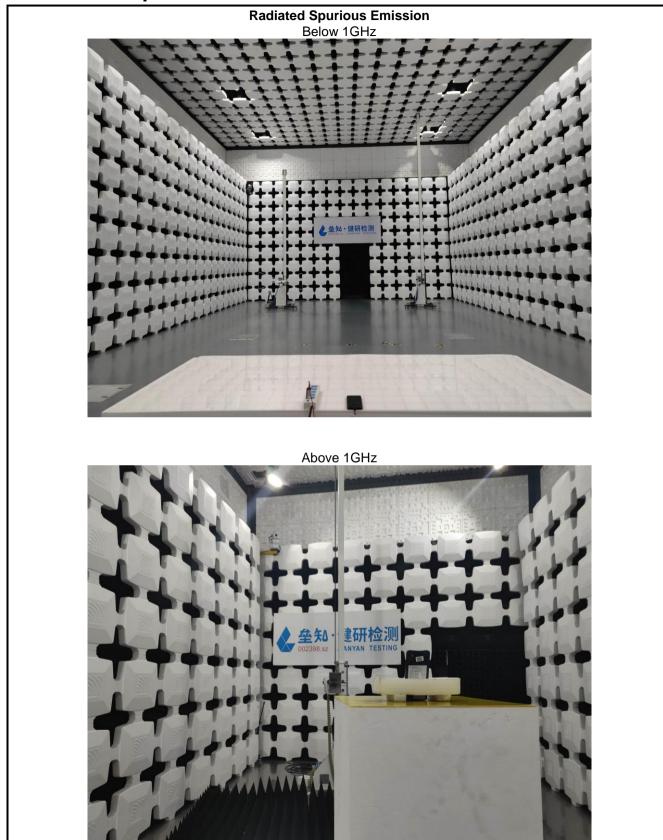
Measurement Data (worst case):

Below 1GHz:

6.517 inch 4G Smart Phone			Product M	lodel:	L65 LITE	L65 LITE		
Mike	Mike			e:	BLE Tx m	node		
30 MHz ~ 1 GHz			Polarizati	on:	Vertical &	Horizontal		
AC 120V/60H	lz		Environm	ent:	Temp: 24	°C Huni:		
		Full	S p e c	tru m	F C C	PART		
5 0 6 0	8 01 0		2 0 0		0 8 0 0	8000		
- MaxPeak↓ (dB ዞ V/m)∂	Limit↓ (dB ዞ V/m)∉	Prre Margin↓ (dB)⊷	quent Height∔ (cm)⊷	c y in Pole₂	H Z Azimuth↓ (deg)↩	Corr.↓ (dB/m)⊷		
	30.00 ↔	9.03¢			56.0 ∉	-15.7+		
22.37≓ 22.51≓	36.00∉ 36.00∉	13.63∉ 13.49∉	100.0↩ 100.0↩		279.0∉ 289.0∉	-9.8÷ -9.6÷		
22.31↔ 22.36↔	36.00↔ 36.00↔	13.49↔ 13.64↔	100.0↔ 100.0↔		289.0↔ 255.0↔	-9.6⊬ -9.4⊮		
	36.00¢ 36.00¢	13.64÷ 13.51₽	100.0∉ 100.0∉		255.0¢ 270.0¢	-9.4÷ -8.4÷		
22.49∉		101011	100.01	• • •	210.01	-0.2		
	AC 120V/60⊢	AC 120V/60Hz	AC 120V/60Hz F u II * * * * * * * * * * * * * * * * * *	AC 120V/60Hz Environm F u II S p e c F u II S p e c 0 0 0	AC 120V/60Hz Environment: F u II S p e c tru m 0 0	AC 120V/60Hz Full Spectrum FCC FCC FCC FCC FCC FCC FCC FC		

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Above 1GHz


		Test ch	annel: Lowest ch	nannel		
			tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	55.64	-9.60	46.04	74.00	27.96	Vertical
4804.00	55.06	-9.60	45.46	74.00	28.54	Horizontal
	·	Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	48.21	-9.60	38.61	54.00	15.39	Vertical
4804.00	47.22	-9.60	37.62	54.00	16.38	Horizontal
			annel: Middle ch			
	1	Det	tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	55.75	-9.04	46.71	74.00	27.29	Vertical
4884.00	55.07	-9.04	46.03	74.00	27.97	Horizontal
	•	Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	48.29	-9.04	39.25	54.00	14.75	Vertical
4884.00	47.69	-9.04	38.65	54.00	15.35	Horizontal
		Test sh	annel: Highest cl			
			tector: Peak Valu			
Fraguanay	Read Level	De		Limit Line	Margin	
Frequency (MHz)	(dBuV)	Factor(dB)	Level (dBuV/m)	(dBuV/m)	(dB)	Polarization
4960.00	55.26	-8.45	46.81	74.00	27.19	Vertical
4960.00	55.51	-8.45	47.06	74.00	26.94	Horizontal
	T	Dete	ctor: Average Va	alue	I	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4960.00	48.67	-8.45	40.22	54.00	13.78	Vertical
4960.00	46.88	-8.45	38.43	54.00	15.57	Horizontal
Remark: 1. Final Level =F	Receiver Read level	+ Factor.				

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

7 Test Setup Photo

Project No.: JYTSZE2111092

Project No.: JYTSZE2111092

8 EUT Constructional Details

Reference to the test report No.: JYTSZB-R12-2102653.

-----End of report-----