

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Comp	iled by:	Jirazer. Li	Rev	iewed by:	Ton	- chen
CAPPE	NATION IL	Frazer Li Javon Ma Aaron Ma	Date	e:		m Chen 18, 2022
BULIES Repo	ort Seal					Check No.: 9624060922

1 Contents

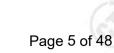
Page

1 CONTENTS	••••••	••••••	 2
2 VERSION			 3
3 TEST SUMMARY			
4 GENERAL INFORMATION	•••••••	••••••	 4
4 GENERAL INFORMATION			 5
4.1 CLIENT INFORMATION			 5
4.2 GENERAL DESCRIPTION OF EUT			 5
4.3 TEST CONFIGURATION			
4.4 Test Environment			
4.5 DESCRIPTION OF SUPPORT UNITS			8
5 TEST RESULTS AND MEASUREMENT DAT	A		 13
5.1 ANTENNA REQUIREMENT			 . 13
5.2 MAXIMUM CONDUCTED OUTPUT POWER	2		 14
5.3 20DB EMISSION BANDWIDTH			
5.4 CARRIER FREQUENCY SEPARATION			
5.5 NUMBER OF HOPPING CHANNEL			
5.6 TIME OF OCCUPANCY 5.7 Band edge Measurements			
5.7 BAND EDGE MEASUREMENTS 5.8 Conducted Spurious Emissions			
5.9 PSEUDORANDOM FREQUENCY HOPPING SEQUE			
5.10 RADIATED SPURIOUS EMISSION & RESTRICT			
6 APPENDIX A			
7 PHOTOGRAPHS OF TEST SETUP			
8 PHOTOGRAPHS OF EUT CONSTRUCTION	AL DETAILS		 . 48

2 Version

15	Version No	10	Date	10		Descriptio	on	100
6	00	0	ct. 18, 2022	(\mathcal{C})		Original		
	(A)				(A)			

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com


Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	N/A
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark:

N/A:The product is powered by DC 12.0V.

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

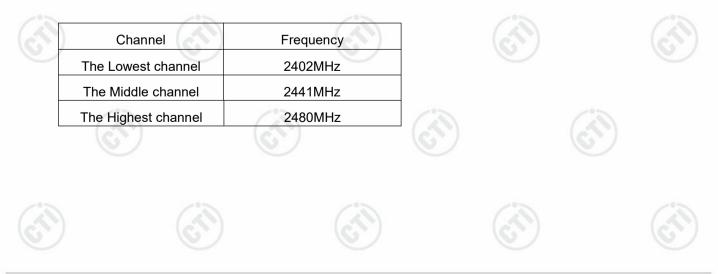
4 General Information

4.1 Client Information

	Applicant:	SC Autosports, LLC		
	Address of Applicant:	8050 Forest Lane Dallas,TX 75243		- 11
2	Manufacturer:	SC Autosports, LLC	-	
2	Address of Manufacturer:	8050 Forest Lane Dallas,TX 75243	/	6
	Factory:	SC Autosports, LLC		
	Address of Factory:	8050 Forest Lane Dallas,TX 75243	1000	

4.2 General Description of EUT

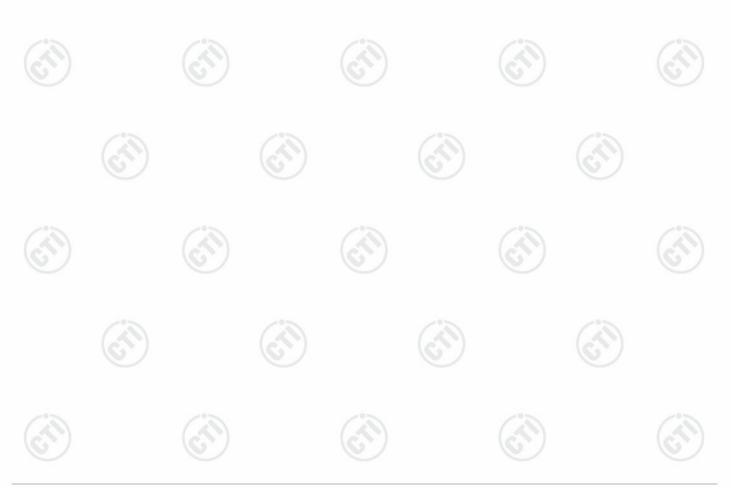
· · · · ·			
Product Name:	10.1-inch central control screen		
Model No.:	TOP101		
Trade Mark:	KANDI		
Product Type:	Fix Location		(\mathcal{O})
Operation Frequency:	2402MHz~2480MHz		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Modulation Type:	GFSK, π/4DQPSK, 8DPSK	1	
Number of Channel:	79	(\mathcal{C})	
Hopping Channel Type:	Adaptive Frequency Hopping systems		
Antenna Type:	Internal antenna		
Antenna Gain:	1.5dBi		10
Power Supply:	DC 12.0V		(3)
Test Voltage:	DC 12.0V		
Sample Received Date:	Sep. 21, 2022		
Sample tested Date:	Sep. 21, 2022 to Sep. 26, 2022		
		6	


CTI 华测检测 Report No.: EED32081396702

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:



4.3 Test Configuration

EUT Test Software Settings	:					
Software:	RF test					
EUT Power Grade:	Default(Power level is built-in set parameters and cannot be changed and selected)					
Use test software to set the lo transmitting of the EUT.	west frequency, the mid	dle frequency and the l	highest frequency keep			
Mode	Chan	nel	Frequency(MHz)			
	СН	0	2402			
DH1/DH3/DH5	СНЗ	9	2441			
	CH7	'8	2480			
	СН	0	2402			
2DH1/2DH3/2DH5	CH3	9	2441			
	CH7	'8	2480			
	СН	0	2402			
3DH1/3DH3/3DH5	CH	9	2441			
(3)	CH7	8	2480			

4.4 Test Environment

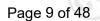
1	11.2	()			(5)	
C	Derating Environment					
R	Radiated Spurious Emis	ssions:				
Т	emperature:	22~25.0 °C				
Н	lumidity:	50~55 % RH		(in)		12
A	tmospheric Pressure:	1010mbar		(\mathcal{O})		6
С	conducted Emissions:					
Т	emperature:	22~25.0 °C				
Н	lumidity:	50~55 % RH	12		100	
А	tmospheric Pressure:	1010mbar	(\mathcal{A})		(\mathcal{A})	
R	RF Conducted:					
Т	emperature:	22~25.0 °C				
Н	lumidity:	50~55 % RH				
А	tmospheric Pressure:	1010mbar				

4.5 Description of Support Units

The EUT has been tested independently.

4.6 Test Location

All tests were performed at:



Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

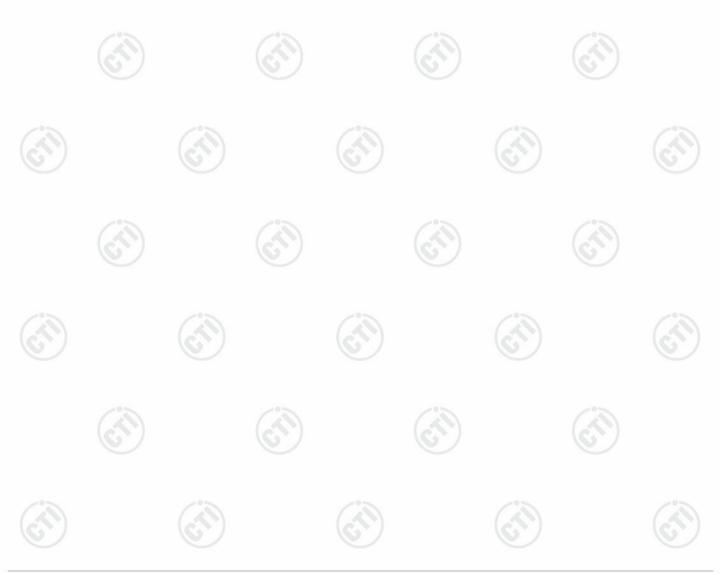
4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	PE newer conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-40GHz)	
	(IS) (IS)	3.3dB (9kHz-30MHz)	
3	Pediated Spurious omission test	4.3dB (30MHz-1GHz) 4.5dB (1GHz-18GHz)	
	Radiated Spurious emission test		
200		3.4dB (18GHz-40GHz)	
4	Conduction omission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	Ey 7.9 x 10 ⁻⁸ 0.46dB (30MHz-1GHz) 0.55dB (1GHz-40GHz) 0.55dB (1GHz-40GHz) 3.3dB (9kHz-30MHz) 4.3dB (30MHz-1GHz) 4.3dB (30MHz-1GHz) 4.3dB (1GHz-40GHz) 3.4dB (1GHz-40GHz) 3.4dB (18GHz-40GHz) 3.5dB (9kHz to 150kHz) 3.5dB (9kHz to 150kHz) 3.1dB (150kHz to 30MHz) st 0.64°C 3.8% 3.8%	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

4.8 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022
Spectrum Analyzer	R&S	FSV40	101200	07-29-2022	07-28-2023
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	120765	12-22-2021	12-21-2022
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518	(S)

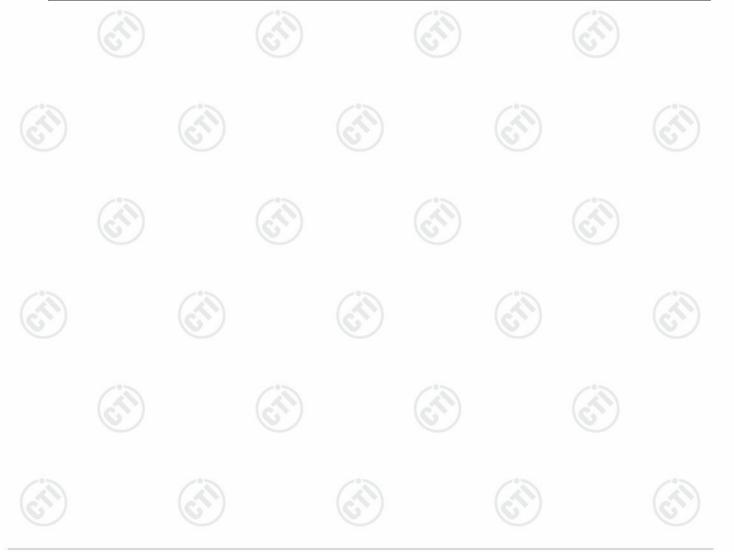


Page 11 of 48

3M Semi-an	echoic Chamber (2)	- Radiated distu	rbance Test	
Manufacturer	Model	Serial No.	Cal. Date	Due Date
TDK	SAC-3		05/22/2022	05/21/2025
R&S	ESCI7	100938-003	10/14/2021	10/13/2022
schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2023
maturo	NCD/070/10711112			
ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Schwarzbeck	FMZB 1519B	1519B-076	04/17/2021	04/16/2024
Agilent	8449B	3008A02425	06/20/2022	06/19/2023
	Manufacturer TDK R&S schwarzbeck maturo ETS-LINGREN Schwarzbeck	ManufacturerModelTDKSAC-3R&SESCI7schwarzbeckVULB 9163maturoNCD/070/10711112ETS-LINGRENBBHA 9120DSchwarzbeckFMZB 1519B	ManufacturerModelSerial No.TDKSAC-3R&SESCI7100938-003schwarzbeckVULB 91639163-618maturoNCD/070/10711112ETS-LINGRENBBHA 9120D9120D-1869SchwarzbeckFMZB 1519B1519B-076	TDK SAC-3 05/22/2022 R&S ESCI7 100938-003 10/14/2021 schwarzbeck VULB 9163 9163-618 05/22/2022 maturo NCD/070/10711112 ETS-LINGREN BBHA 9120D 9120D-1869 04/15/2021 Schwarzbeck FMZB 1519B 1519B-076 04/17/2021

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

				Cal. Date	Cal. Due date	
Equipment	Manufacturer	Model No.	Serial Number	(mm-dd-yyyy)	(mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166			
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023	
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023	
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023	
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023	
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022	
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023	
Fully Anechoic Chamber	TDK	FAC-3	(2)	01-09-2021	01-08-2024	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001			
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	~~~	- /	
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	(S)-	-6	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001			
Cable line	Times	EMC104-NMNM-1000	SN160710		-	
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(3	9 -	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001			
Cable line	Times	SFT205-NMSM-7.00M	394815-0001			
Cable line	Times	HF160-KMKM-3.00M	393493-0001	(c)	(C	



5 **Test results and Measurement Data**

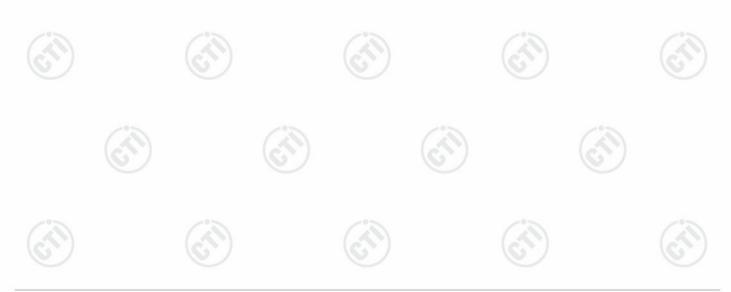
5.1 Antenna Requirement

	Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
	15.203 requirement:	
	An intentional radiator shall responsible party shall be u antenna that uses a unique so that a broken antenna ca electrical connector is prohi 15.247(b) (4) requirement: The conducted output powe antennas with directional ga section, if transmitting anter power from the intentional r	be designed to ensure that no antenna other than that furnished by the used with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit an be replaced by the user, but the use of a standard antenna jack or ibited. er limit specified in paragraph (b) of this section is based on the use of ains that do not exceed 6 dBi. Except as shown in paragraph (c) of this nnas of directional gain greater than 6 dBi are used, the conducted output radiator shall be reduced below the stated values in paragraphs (b)(1), etion, as appropriate, by the amount in dB that the directional gain of the
/	EUT Antenna:	Please see Internal photos

The antenna is integral antenna. The best case gain of the antenna is 1.5dBi.

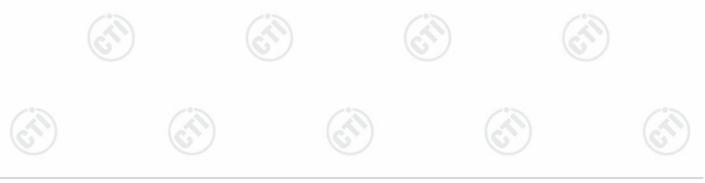
5.2 Maximum Conducted Output Power

	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Computer Computer Computer Power port Power port TeMPERATURE CABNET Table
	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
	Limit:	21dBm
2	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
3	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Test Results:	Refer to Appendix BT Classic
	S	



5.3 20dB Emission Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
(K)	Test Setup:	Control Control Power Supply Table RF test System Instrument
(K)	Test Procedure:	 Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.
	Limit:	NA
1	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Ś	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Test Results:	Refer to Appendix BT Classic
	C)	



5.4 Carrier Frequency Separation

••••	ounior requency	
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	RF test Congular Compute
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
	Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Ć	Test Results:	Refer to Appendix BT Classic

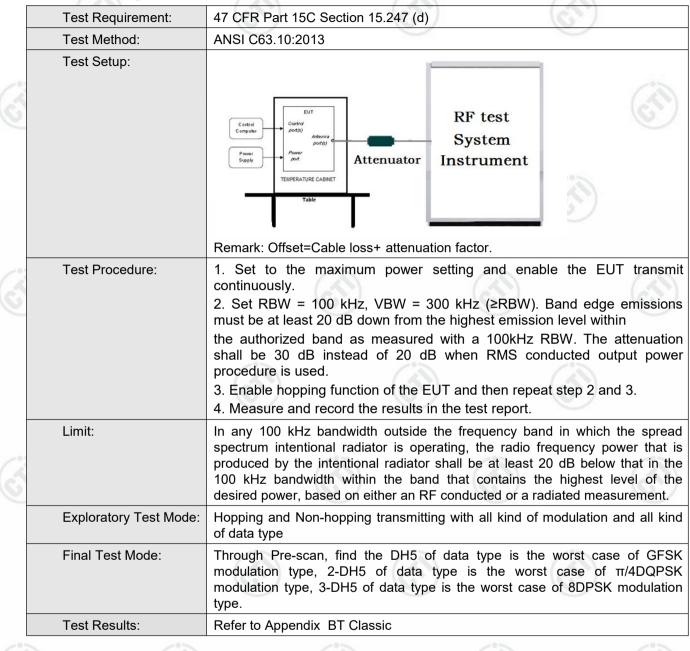
5.5 Number of Hopping Channel

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
S.	Test Setup:	Control Control Control Power Supply TEMPERATURE CABNET RF test System Instrument
_	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF
8		 cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold.
3		5. The number of hopping frequency used is defined as the number of total channel.6. Record the measurement data in report.
	Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
	Test Mode:	Hopping transmitting with all kind of modulation
	Test Results:	Refer to Appendix BT Classic

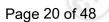


5.6 Time of Occupancy

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Control Double Power Supply Tele Table RF test System Instrument
		Remark: Offset=Cable loss+ attenuation factor.
· < >	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
2	Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
	Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
	Test Results:	Refer to Appendix BT Classic



5.7 Band edge Measurements



5.8 Conducted Spurious Emissions

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
	Test Method:	ANSI C63.10:2013
ŝ	Test Setup:	Control Control Power Supply TemPerature CABNET Table
		Remark: Offset=Cable loss+ attenuation factor.
Ĩ	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
ŝ	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Test Results:	Refer to Appendix BT Classic

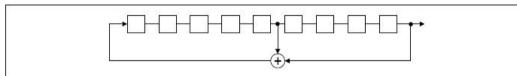
5.9 Pseudorandom Frequency Hopping Sequence

Test Requirement:

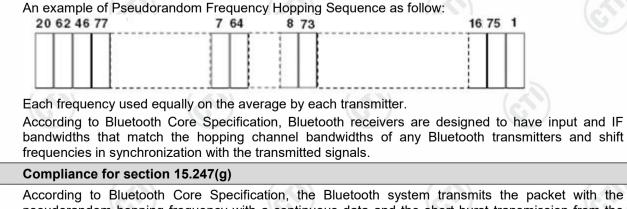
47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)


According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a ninestage shift register whose 5th and 9th stage

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom

Report No. : EED32O81396702

hopping frequency system.

Compliance for section 15.247(h)

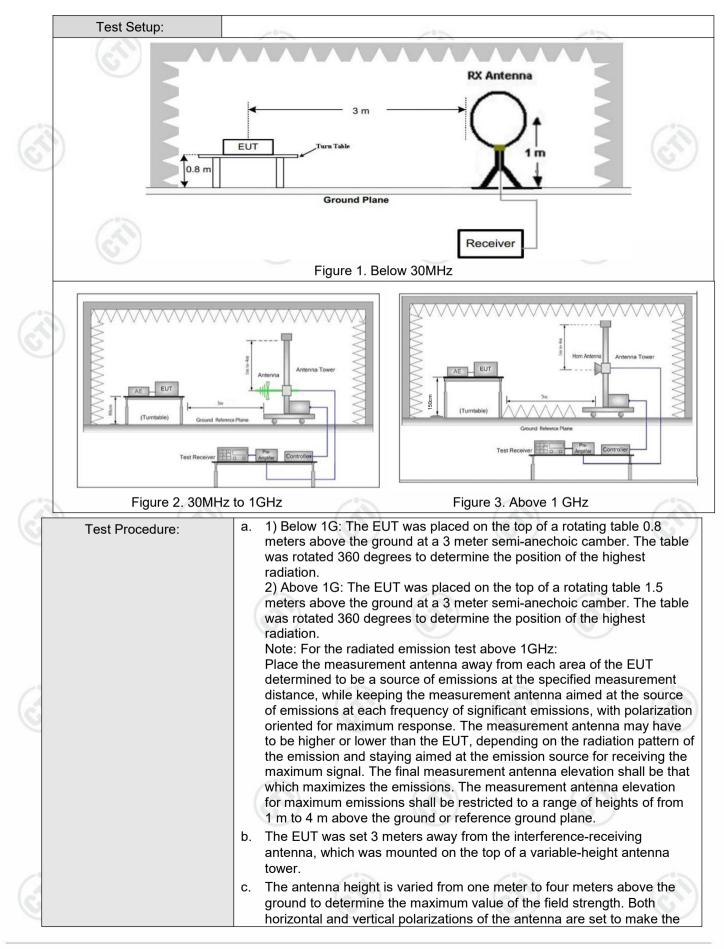
According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

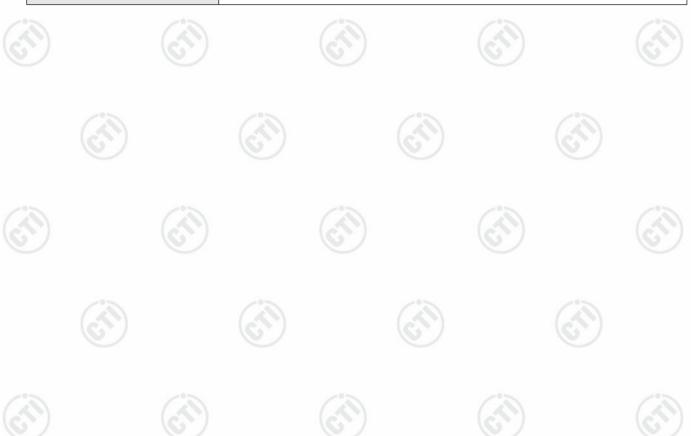
Page 23 of 48

5.10 Radiated Spurious Emission & Restricted bands

	Test Requirement:	47 CFR Part 15C Secti	on ´	15.209 and 15	.205	G)			
	Test Method:	ANSI C63.10: 2013								
	•	Measurement Distance	: 3n	n (Semi-Anecł	noic Chaml	per)				
	Receiver Setup:	Frequency	5	Detector	RBW	VBW	Remark			
		0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak			
		0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average			
		0.090MHz-0.110MH		Quasi-peak	10kHz	30kHz	Quasi-peak			
		0.110MHz-0.490MHz		Peak	10kHz	30kHz	Peak			
	Test Method: ANSI C6 Test Site: Measurer Receiver Setup: F 0.0091 0.0091 0.0091 0.0091 0.0091 0.0091 0.0091 0.0091 0.1101 0.1101 0.1101 0.490 0.490 300 Limit: Free 0.009MH 0.490MH 1.705M 300MH 88MH 216MH 960M Aboo Note: 15. emin	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average			
		0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak			
		30MHz-1GHz		Peak	100 kH	z 300kHz	Peak			
	Test Method: Test Site: Receiver Setup:	Above 1GHz		Peak 1M		3MHz	Peak			
		Above 10112		Peak	1MHz	10kHz	Average			
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)			
		0.009MHz-0.490MHz		2400/F(kHz)	-	-	300			
		0.490MHz-1.705MHz	24	4000/F(kHz)	-	-73	30			
		1.705MHz-30MHz	30		-	0	30			
		30MHz-88MHz		100	40.0	Quasi-peak	3			
		88MHz-216MHz		150	43.5	Quasi-peak	3			
		216MHz-960MHz 960MHz-1GHz		200	46.0	Quasi-peak	3			
				500	54.0	Quasi-peak	3			
		Above 1GHz	Above 1GHz 500		54.0	Average	3			
		Note: 15.35(b), Unless emissions is 20df applicable to the peak emission lev	3 ab equ	ove the maxin ipment under t	num permi test. This p	tted average	emission limit			

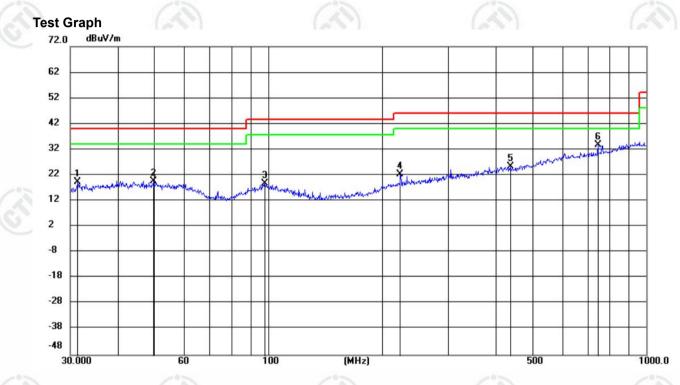


Page 24 of 48



Report No. : EED32O81396702

	measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	 g. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz)
	 The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.
	Pretest the EUT at Transmitting mode, For below 1GHz part, through pre- scan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass
	Final Test Mode:



Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		31.3992	6.25	13.00	19.25	40.00	-20.75	QP	200	204	
2		49.7066	<mark>5.4</mark> 9	14.28	<mark>19.77</mark>	40.00	-20.23	QP	100	16 <mark>0</mark>	
3		98.1418	5.04	13.80	18.84	43.50	-24.66	QP	200	255	
4		223.7333	7.88	14.60	22.48	46.00	-23.52	QP	100	270	
5		437.1200	<mark>5.18</mark>	20.18	25.36	46.00	-20.64	QP	200	358	
6	*	744.8660	8.42	25.48	33.90	46.00	-12.10	QP	200	265	

Vertical: **Test Graph** dBuV/m 72.0 62 52 42 6 X 32 1 X2 5 22 12 2 -8 -18 -28 -38 -48 30.000 100 (MHz) 1000.0 500 60

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	44.1202	10.80	14.43	25.23	40.00	-14.77	QP	100	20	
2	45.8553	7.43	14.38	21.81	40.00	-18.19	QP	100	62	
3	101.2885	4.86	13.87	18.73	43.50	-24.77	QP	100	265	
4	223.7334	7.81	14.60	22.41	46.00	-23.59	QP	100	265	
5	467.2349	4.84	20.84	25.68	46.00	-20.32	QP	200	290	
6 *	744.8661	8.07	25.48	33.55	46.00	-12.45	QP	100	354	

Radiated Spurious Emission above 1GHz:

г	Mode:									1	
	Ereg Fac			GF	SK Transmit	ting		Channel:		2402 MHz	<u>.</u>
	NO	Freq. [MHz]	Factor [dB]	r	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1121.2121	0.84		40.92	41.76	74.00	32.24	Pass	н	PK
4	2	1652.0652	2.63		39.88	42.51	74.00	31.49	Pass	Н	PK
2	3	4804.1203	-16.23	5	58.05	41.82	74.00	32.18	Pass	н	PK
	4	6776.2518	-12.43	;	52.70	40.27	74.00	33.73	Pass	н	PK
Ī	5	9309.4206	-7.95		51.59	43.64	74.00	30.36	Pass	Н	PK
Ī	6	13716.7144	-1.75		49.95	48.20	74.00	25.80	Pass	Н	PK
Ī	7	1244.2244	0.91		40.86	41.77	74.00	32.23	Pass	V	PK
Ī	8	2058.5059	4.74		40.74	45.48	74.00	28.52	Pass	V	PK
Ī	9	4220.0813	-17.86	;	53.94	36.08	74.00	37.92	Pass	V	PK
Ī	10	5942.1961	-13.34		52.90	39.56	74.00	34.44	Pass	V	PK
-	11	9275.4184	-7.93		50.83	42.90	74.00	31.10	Pass	V	PK
	12	11991.5994	-5.30		50.97	45.67	74.00	28.33	Pass	V	PK
1	1			1					/	•	

	Mode:			GFSK Transm	tting		Channel:		2441 MHz	
	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1027.8028	0.92	41.10	42.02	74.00	31.98	Pass	н	PK
	2	2000.3000	4.55	39.39	43.94	74.00	30.06	Pass	н	PK
	3	3334.0223	-19.94	4 62.17	42.23	74.00	31.77	Pass	н	PK
4	4	5047.1365	-15.75	5 55.51	39.76	74.00	34.24	Pass	н	PK
2	5	8941.3961	-8.90	50.95	42.05	74.00	31.95	Pass	н	PK
	6	14347.7565	0.35	48.15	48.50	74.00	25.50	Pass	н	PK
	7	1185.4185	0.81	41.21	42.02	74.00	31.98	Pass	V	PK
	8	2035.7036	4.67	39.17	43.84	74.00	30.16	Pass	V	PK
	9	3333.0222	-19.93	62.55	42.62	74.00	31.38	Pass	V	PK
	10	5572.1715	-14.34	4 52.70	38.36	74.00	35.64	Pass	V	PK
	11	8741.3828	-9.86	51.51	41.65	74.00	32.35	Pass	V	PK
	12	12610.6407	-4.19	50.04	45.85	74.00	28.15	Pass	V	PK
0-			100		10		-0-	S		-05

Report No. : EED32081396702

Page 29 of 48

	Mode	:	GF	SK Transmit	ting		Channel:		2480 MHz	<u>:</u>
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1218.6219	0.85	41.25	42.10	74.00	31.90	Pass	Н	PK
10	2	1896.0896	4.00	39.78	43.78	74.00	30.22	Pass	Н	PK
6	3	3848.0565	-19.17	56.35	37.18	74.00	36.82	Pass	Н	PK
(V)	4	5774.1849	-13.66	53.51	39.85	74.00	34.15	Pass	Н	PK
	5	7036.2691	-11.73	52.38	40.65	74.00	33.35	Pass	Н	PK
	6	10278.4852	-6.60	51.33	44.73	74.00	29.27	Pass	Н	PK
	7	1332.4332	1.17	40.76	41.93	74.00	32.07	Pass	V	PK
	8	2127.1127	4.58	39.20	43.78	74.00	30.22	Pass	V	PK
	9	3334.0223	-19.94	65.96	46.02	74.00	27.98	Pass	V	PK
	10	5071.1381	-15.72	53.37	37.65	74.00	36.35	Pass	V	PK
	11	9367.4245	-7.98	51.63	43.65	74.00	30.35	Pass	V	PK
6	12	16904.9270	3.08	47.31	50.39	74.00	23.61	Pass	V	PK
6	7		67)		6)	G)		6)

1			/		· · · · · · · · · · · · · · · · · · ·				
Mode:			π/4DQPSK Tra	nsmitting		Channel:		2402 MHz	<u>r</u>
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1293.4293	1.04	40.78	41.82	74.00	32.18	Pass	н	PK
2	1939.4939	4.24	39.45	43.69	74.00	30.31	Pass	Н	PK
3	3334.0223	-19.94	61.68	41.74	74.00	32.26	Pass	Н	PK
4	4474.0983	-16.98	54.90	37.92	74.00	36.08	Pass	Н	PK
5	6349.2233	-12.89	52.97	40.08	74.00	33.92	Pass	Н	PK
6	9207.4138	-7.89	52.08	44.19	74.00	29.81	Pass	Н	PK
7	1207.2207	0.82	40.62	41.44	74.00	32.56	Pass	V	PK
8	1752.8753	3.12	40.34	43.46	74.00	30.54	Pass	V	PK
9	3791.0527	-19.30	54.51	35.21	74.00	38.79	Pass	V	PK
10	7239.2826	-11.78	52.34	40.56	74.00	33.44	Pass	V	PK
11	10946.5298	-6.27	51.19	44.92	74.00	29.08	Pass	V	PK
12	14393.7596	1.12	47.51	48.63	74.00	25.37	Pass	V	PK
	NO 1 2 3 4 5 6 7 8 9 10 11	NO Freq. [MHz] 1 1293.4293 2 1939.4939 3 3334.0223 4 4474.0983 5 6349.2233 6 9207.4138 7 1207.2207 8 1752.8753 9 3791.0527 10 7239.2826 11 10946.5298	Freq. [MHz] Factor [dB] 1 1293.4293 1.04 2 1939.4939 4.24 3 3334.0223 -19.94 4 4474.0983 -16.98 5 6349.2233 -12.89 6 9207.4138 -7.89 7 1207.2207 0.82 8 1752.8753 3.12 9 3791.0527 -19.30 10 7239.2826 -11.78 11 10946.5298 -6.27	NO Freq. [MHz] Factor [dB] Reading [dBµV] 1 1293.4293 1.04 40.78 2 1939.4939 4.24 39.45 3 3334.0223 -19.94 61.68 4 4474.0983 -16.98 54.90 5 6349.2233 -12.89 52.97 6 9207.4138 -7.89 52.08 7 1207.2207 0.82 40.62 8 1752.8753 3.12 40.34 9 3791.0527 -19.30 54.51 10 7239.2826 -11.78 52.34 11 10946.5298 -6.27 51.19	NO Freq. [MHz] Factor [dB] Reading [dBµV] Level [dBµV/m] 1 1293.4293 1.04 40.78 41.82 2 1939.4939 4.24 39.45 43.69 3 3334.0223 -19.94 61.68 41.74 4 4474.0983 -16.98 54.90 37.92 5 6349.2233 -12.89 52.97 40.08 6 9207.4138 -7.89 52.08 44.19 7 1207.2207 0.82 40.62 41.44 8 1752.8753 3.12 40.34 43.46 9 3791.0527 -19.30 54.51 35.21 10 7239.2826 -11.78 52.34 40.56 11 10946.5298 -6.27 51.19 44.92	NO Freq. [MHz] Factor [dB] Reading [dBµV] Level [dBµV/m] Limit [dBµV/m] 1 1293.4293 1.04 40.78 41.82 74.00 2 1939.4939 4.24 39.45 43.69 74.00 3 3334.0223 -19.94 61.68 41.74 74.00 4 4474.0983 -16.98 54.90 37.92 74.00 5 6349.2233 -12.89 52.97 40.08 74.00 6 9207.4138 -7.89 52.08 44.19 74.00 7 1207.2207 0.82 40.62 41.44 74.00 8 1752.8753 3.12 40.34 43.46 74.00 9 3791.0527 -19.30 54.51 35.21 74.00 10 7239.2826 -11.78 52.34 40.56 74.00 11 10946.5298 -6.27 51.19 44.92 74.00	NO Freq. [MHz] Factor [dB] Reading [dBµV] Level [dBµV/m] Limit [dBµV/m] Margin [dB] 1 1293.4293 1.04 40.78 41.82 74.00 32.18 2 1939.4939 4.24 39.45 43.69 74.00 30.31 3 3334.0223 -19.94 61.68 41.74 74.00 32.26 4 4474.0983 -16.98 54.90 37.92 74.00 36.08 5 6349.2233 -12.89 52.97 40.08 74.00 33.92 6 9207.4138 -7.89 52.08 44.19 74.00 32.56 8 1752.8753 3.12 40.34 43.46 74.00 32.56 8 1752.8753 3.12 40.34 43.46 74.00 30.54 9 3791.0527 -19.30 54.51 35.21 74.00 38.79 10 7239.2826 -11.78 52.34 40.56 74.00 33.44 <td< td=""><td>NOFreq. [MHz]Factor [dB]Reading [dB]Level [dBµV]Limit [dBµV/m]Margin [dB]Result11293.42931.0440.7841.8274.0032.18Pass21939.49394.2439.4543.6974.0030.31Pass33334.0223-19.9461.6841.7474.0032.26Pass44474.0983-16.9854.9037.9274.0036.08Pass56349.2233-12.8952.9740.0874.0033.92Pass69207.4138-7.8952.0844.1974.0032.56Pass71207.22070.8240.6241.4474.0032.56Pass81752.87533.1240.3443.4674.0030.54Pass93791.0527-19.3054.5135.2174.0038.79Pass107239.2826-11.7852.3440.5674.0029.08Pass1110946.5298-6.2751.1944.9274.0029.08Pass</td><td>NOFreq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV]Limit [dBµV/m]Margin [dB]ResultPolarity11293.42931.0440.7841.8274.0032.18PassH21939.49394.2439.4543.6974.0030.31PassH33334.0223-19.9461.6841.7474.0032.26PassH44474.0983-16.9854.9037.9274.0036.08PassH56349.2233-12.8952.9740.0874.0033.92PassH69207.4138-7.8952.0844.1974.0032.56PassH71207.22070.8240.6241.4474.0032.56PassV81752.87533.1240.3443.4674.0030.54PassV93791.0527-19.3054.5135.2174.0038.79PassV107239.2826-11.7852.3440.5674.0029.08PassV</td></td<>	NOFreq. [MHz]Factor [dB]Reading [dB]Level [dBµV]Limit [dBµV/m]Margin [dB]Result11293.42931.0440.7841.8274.0032.18Pass21939.49394.2439.4543.6974.0030.31Pass33334.0223-19.9461.6841.7474.0032.26Pass44474.0983-16.9854.9037.9274.0036.08Pass56349.2233-12.8952.9740.0874.0033.92Pass69207.4138-7.8952.0844.1974.0032.56Pass71207.22070.8240.6241.4474.0032.56Pass81752.87533.1240.3443.4674.0030.54Pass93791.0527-19.3054.5135.2174.0038.79Pass107239.2826-11.7852.3440.5674.0029.08Pass1110946.5298-6.2751.1944.9274.0029.08Pass	NOFreq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV]Limit [dBµV/m]Margin [dB]ResultPolarity11293.42931.0440.7841.8274.0032.18PassH21939.49394.2439.4543.6974.0030.31PassH33334.0223-19.9461.6841.7474.0032.26PassH44474.0983-16.9854.9037.9274.0036.08PassH56349.2233-12.8952.9740.0874.0033.92PassH69207.4138-7.8952.0844.1974.0032.56PassH71207.22070.8240.6241.4474.0032.56PassV81752.87533.1240.3443.4674.0030.54PassV93791.0527-19.3054.5135.2174.0038.79PassV107239.2826-11.7852.3440.5674.0029.08PassV

Report No. : EED32081396702

	Mode	:	т	r/4DQPSK Tra	nsmitting		Channel:		2441 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1254.4254	0.94	40.64	41.58	74.00	32.42	Pass	Н	PK
19	2	1753.0753	3.12	39.49	42.61	74.00	31.39	Pass	Н	PK
6	3	4221.0814	-17.85	56.44	38.59	74.00	35.41	Pass	Н	PK
1 al	4	6284.2189	-12.97	53.12	40.15	74.00	33.85	Pass	Н	PK
	5	9153.4102	-8.26	50.70	42.44	74.00	31.56	Pass	Н	PK
	6	16240.8827	1.23	48.19	49.42	74.00	24.58	Pass	Н	PK
	7	1238.6239	0.90	41.49	42.39	74.00	31.61	Pass	V	PK
	8	1794.6795	3.26	40.16	43.42	74.00	30.58	Pass	V	PK
	9	4298.0865	-17.25	54.14	36.89	74.00	37.11	Pass	V	PK
	10	5987.1991	-13.04	52.48	39.44	74.00	34.56	Pass	V	PK
	11	9181.4121	-8.03	50.75	42.72	74.00	31.28	Pass	V	PK
(2	12	12789.6526	-4.25	50.31	46.06	74.00	27.94	Pass	V	PK
G			67)		(0))	6)		6)

_	1			C 1		· · · · · · · · · · · · · · · · · · ·		/		
	Mode:			π/4DQPSK Tra	nsmitting	_	Channel:		2480 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1102.2102	0.85	41.50	42.35	74.00	31.65	Pass	Н	PK
	2	2071.3071	4.79	39.46	44.25	74.00	29.75	Pass	Н	PK
	3	4650.1100	-16.64	55.49	38.85	74.00	35.15	Pass	Н	PK
ű,	4	7109.2740	-11.60	53.52	41.92	74.00	32.08	Pass	Н	PK
5	5	10722.5148	-6.42	50.56	44.14	74.00	29.86	Pass	Н	PK
2	6	12532.6355	-4.60	51.18	46.58	74.00	27.42	Pass	Н	PK
	7	1275.0275	1.00	41.34	42.34	74.00	31.66	Pass	V	PK
	8	1883.6884	3.91	39.38	43.29	74.00	30.71	Pass	V	PK
	9	3332.0221	-19.93	61.02	41.09	74.00	32.91	Pass	V	PK
	10	4807.1205	-16.23	53.86	37.63	74.00	36.37	Pass	V	PK
	11	8345.3564	-10.98	51.86	40.88	74.00	33.12	Pass	V	PK
	12	11346.5564	-6.40	51.66	45.26	74.00	28.74	Pass	V	PK

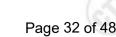
Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No. : EED32O81396702

Page 31 of 48

	Mode	:	80	PSK Transm	itting		Channel:		2402 MHz	<u> </u>
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1135.0135	0.83	41.16	41.99	74.00	32.01	Pass	Н	PK
10	2	1729.8730	3.04	40.03	43.07	74.00	30.93	Pass	Н	PK
6	3	4233.0822	-17.76	54.85	37.09	74.00	36.91	Pass	Н	PK
(V)	4	5943.1962	-13.33	53.37	40.04	74.00	33.96	Pass	Н	PK
	5	8604.3736	-10.34	51.72	41.38	74.00	32.62	Pass	Н	PK
	6	11292.5528	-6.62	52.20	45.58	74.00	28.42	Pass	Н	PK
	7	1135.4135	0.83	41.50	42.33	74.00	31.67	Pass	V	PK
	8	1774.0774	3.19	39.54	42.73	74.00	31.27	Pass	V	PK
	9	3337.0225	-19.95	60.69	40.74	74.00	33.26	Pass	V	PK
	10	5422.1615	-14.53	52.13	37.60	74.00	36.40	Pass	V	PK
	11	7731.3154	-11.15	51.50	40.35	74.00	33.65	Pass	V	PK
6	12	11957.5972	-5.50	51.60	46.10	74.00	27.90	Pass	V	PK
6)		67)		0)	6)		6)

	Mode	:		8DPSK Transm	itting		Channel:		2441 MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1216.0216	0.84	41.42	42.26	74.00	31.74	Pass	н	PK
	2	1925.0925	4.16	38.81	42.97	74.00	31.03	Pass	Н	PK
	3	4315.0877	-17.20	55.06	37.86	74.00	36.14	Pass	н	PK
(iii	4	6313.2209	-12.91	53.26	40.35	74.00	33.65	Pass	Н	PK
4	5	9263.4176	-7.92	52.12	44.20	74.00	29.80	Pass	н	PK
2	6	12522.6348	-4.67	51.78	47.11	74.00	26.89	Pass	н	PK
	7	1400.8401	1.39	40.20	41.59	74.00	32.41	Pass	V	PK
	8	2000.9001	4.55	39.35	43.90	74.00	30.10	Pass	V	PK
	9	3329.0219	-19.92	63.91	43.99	74.00	30.01	Pass	V	PK
	10	4978.1319	-15.90	53.35	37.45	74.00	36.55	Pass	V	PK
	11	7879.3253	-11.01	52.69	41.68	74.00	32.32	Pass	V	PK
	12	11017.5345	-6.17	51.68	45.51	74.00	28.49	Pass	V	PK



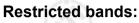
Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No. : EED32O81396702

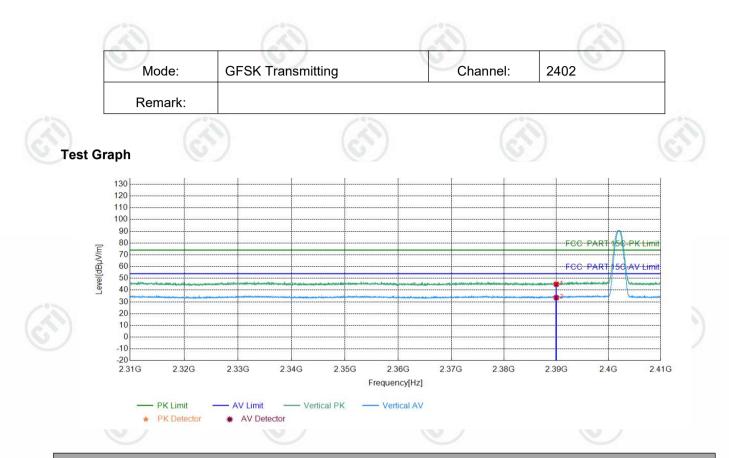
Mode	:		8DPSK Transm	itting	_	Channel:	_	2480 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1148.6149	0.83	41.33	42.16	74.00	31.84	Pass	н	PK
2	1968.2968	4.39	39.83	44.22	74.00	29.78	Pass	н	PK
3	4293.0862	-17.28	55.06	37.78	74.00	36.22	Pass	н	PK
4	6346.2231	-12.89	53.09	40.20	74.00	33.80	Pass	Н	PK
5	8582.3722	-10.39	52.00	41.61	74.00	32.39	Pass	Н	PK
6	12048.6032	-5.55	51.37	45.82	74.00	28.18	Pass	н	PK
7	1235.8236	0.89	40.71	41.60	74.00	32.40	Pass	V	PK
8	1880.8881	3.89	39.20	43.09	74.00	30.91	Pass	V	PK
9	4452.0968	-17.00	54.37	37.37	74.00	36.63	Pass	V	PK
10	5908.1939	-13.56	52.35	38.79	74.00	35.21	Pass	V	PK
11	8863.3909	-9.30	50.61	41.31	74.00	32.69	Pass	V	PK
12	10847.5232	-6.30	50.82	44.52	74.00	29.48	Pass	V	PK

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

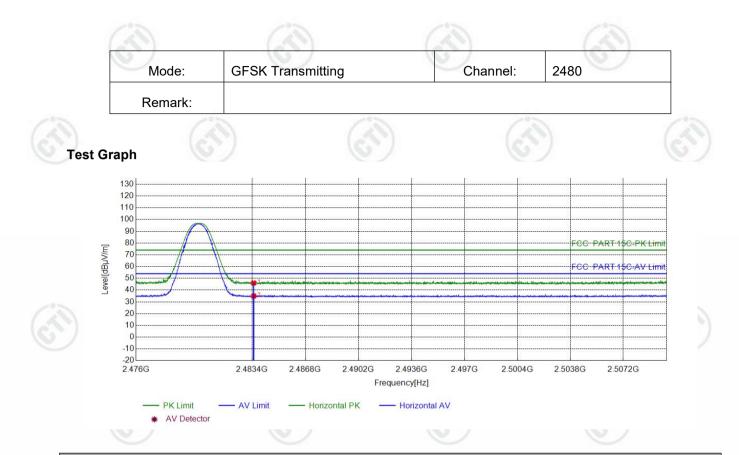

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

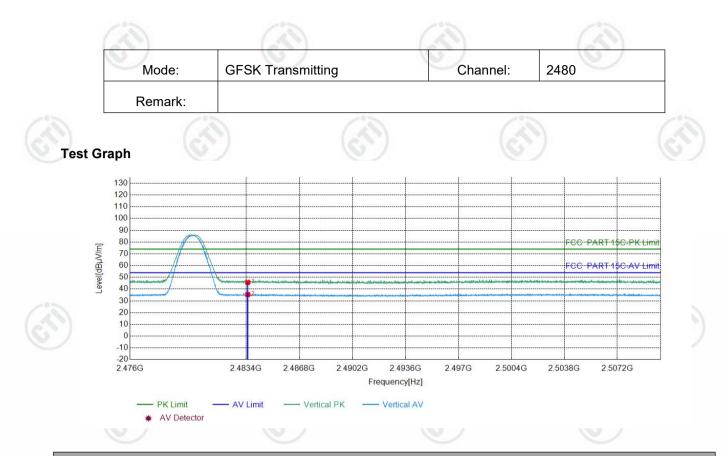


Test plot as follows:

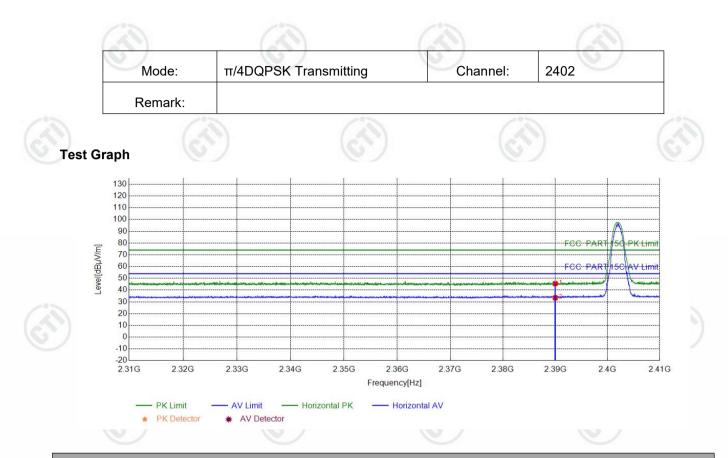
	Mode:	GF	SK Transm	itting		Channel:	2402	2	6
	Remark:								
Test (Graph								
	130 120 110 100 100 90 80 60 50 60 20 10 10 20 10 20 10 20 20 20 10 20 231G 233	26 2.3:	3G 2.34G	2.35G	2.36G 2.370 juency[Hz]	3 2.38G	22-	CC-PART 150-PK LI	
Sucr	← PK Limi		V Limit — H AV Detector	orizontal PK —	- Horizontal AV	(6	37)		6
Suspe	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Rema
NO 1			_				Result PASS	Polarity Horizontal	Remai PK
	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]			
1	[MHz] 2390.0000	[dB] 5.77	[dBµV] 39.14	[dBµV/m] 44.91	[dBµV/m] 74.00 54.00	[dB] 29.09 19.67	PASS	Horizontal	PK



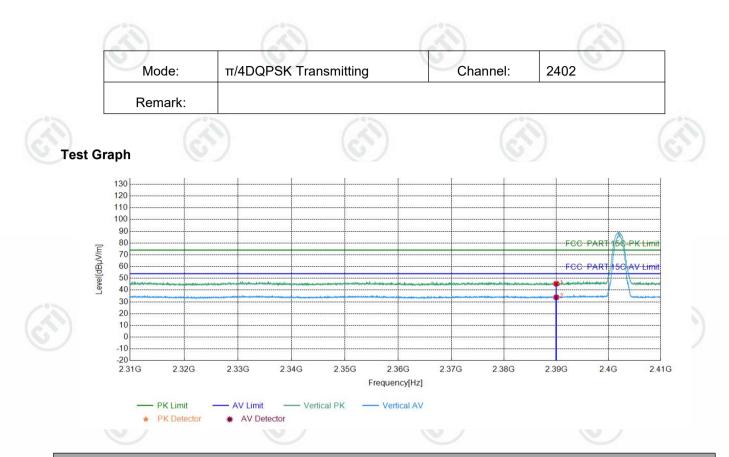
	Suspe	cted List								
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	2390.0000	5.77	39.16	44.93	74.00	29.07	PASS	Vertical	PK
	2	2390.0000	5.77	27.81	33.58	54.00	20.42	PASS	Vertical	AV
		(S)		(S)		6)		(S)	


	Suspe	cted List								
(S	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	2483.5000	6.57	39.47	46.04	74.00	27.96	PASS	Horizontal	РК
	2	2483.5000	6.57	28.41	34.98	54.00	19.02	PASS	Horizontal	AV

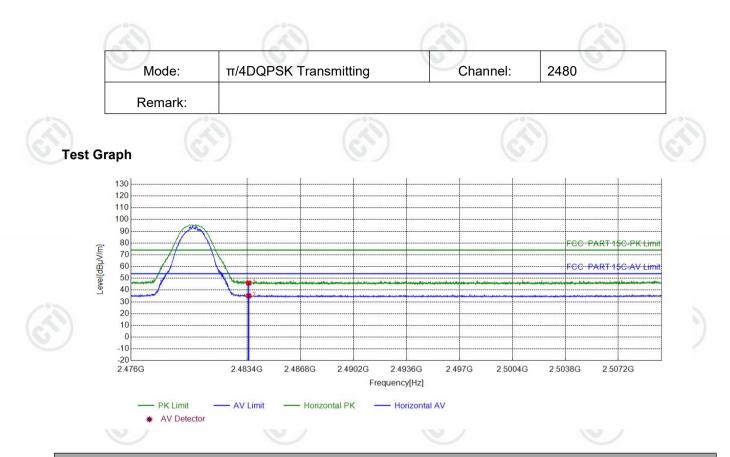
Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com



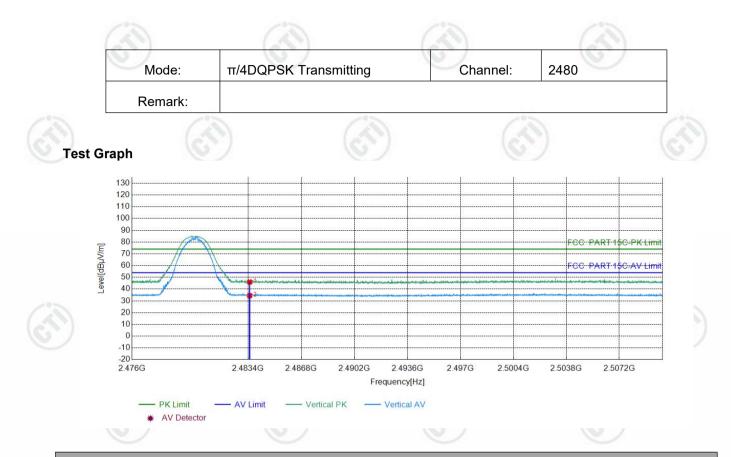
	Suspected List									
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	2483.5000	6.57	39.17	45.74	74.00	28.26	PASS	Vertical	PK
	2	2483.5000	6.57	28.81	35.38	54.00	18.62	PASS	Vertical	AV
		67)		67)		(C))		$\langle \mathcal{O} \rangle$	



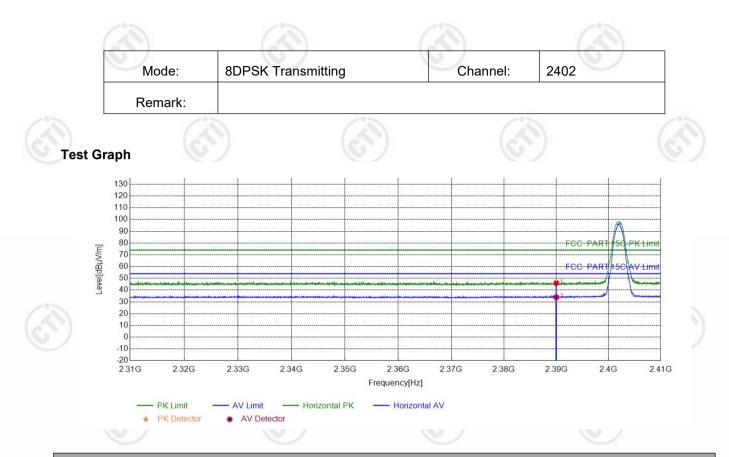
	Suspe	cted List								
12	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
G	No	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Tolanty	Kontark
0	1	2390.0000	5.77	39.74	45.51	74.00	28.49	PASS	Horizontal	PK
	2	2390.0000	5.77	27.71	33.48	54.00	20.52	PASS	Horizontal	AV
				C C		e e				



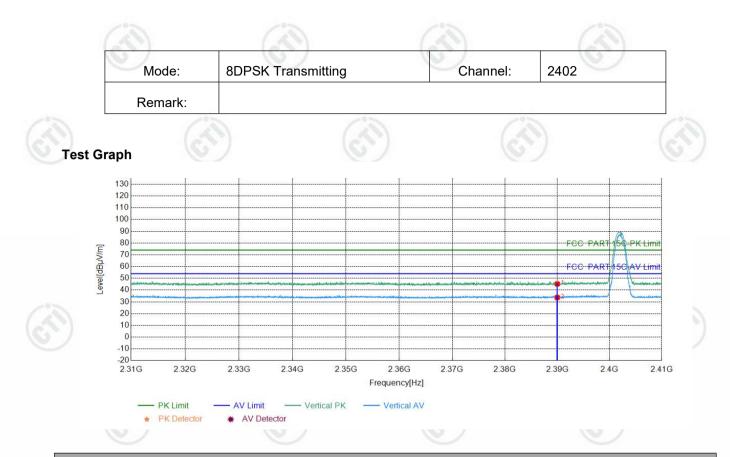
	Suspe	ected List								
12	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
		[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folanty	
0	1	2390.0000	5.77	39.61	45.38	74.00	28.62	PASS	Vertical	PK
	2	2390.0000	5.77	28.08	33.85	54.00	20.15	PASS	Vertical	AV
		67)		67		G)		$\langle \mathbf{G} \rangle$	



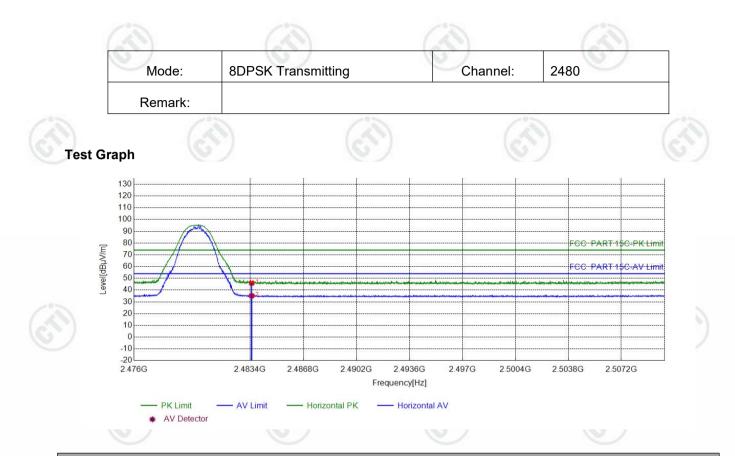
	Suspe	cted List								
(S	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	2483.5000	6.57	39.49	46.06	74.00	27.94	PASS	Horizontal	PK
	2	2483.5000	6.57	28.55	35.12	54.00	18.88	PASS	Horizontal	AV
		67)	-	67		(C))		$\langle \mathcal{O} \rangle$	



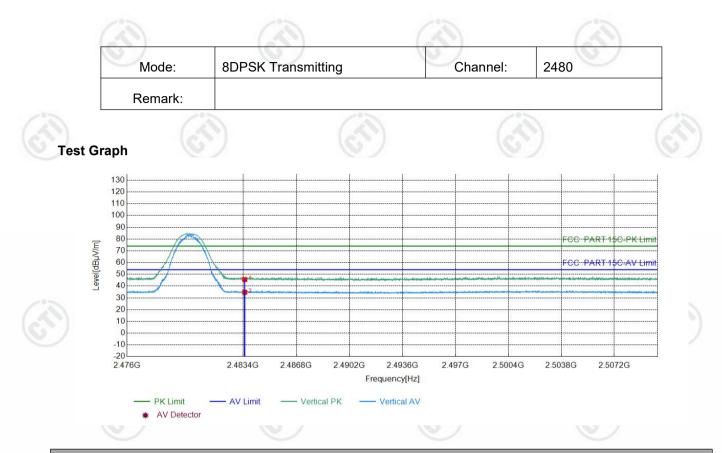
	Suspe	ected List								
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5000	6.57	39.48	46.05	74.00	27.95	PASS	Vertical	PK
	2	2483.5000	6.57	27.89	34.46	54.00	19.54	PASS	Vertical	AV
		(\mathcal{C})		(67)		6)		(\mathcal{O})	



	Suspe	ected List								
S	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	2390.0000	5.77	40.15	45.92	74.00	28.08	PASS	Horizontal	PK
	2	2390.0000	5.77	28.20	33.97	54.00	20.03	PASS	Horizontal	AV
		(C)	1	67		(C))		S	



	Suspe	cted List								
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	39.49	45.26	74.00	28.74	PASS	Vertical	PK
	2	2390.0000	5.77	27.95	33.72	54.00	20.28	PASS	Vertical	AV
		67		6)		(C))		$\langle \mathcal{O} \rangle$	



	Susp	ected List								
6	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ċ	1	2483.5000	6.57	39.42	45.99	74.00	28.01	PASS	Horizontal	PK
	2	2483.5000	6.57	28.60	35.17	54.00	18.83	PASS	Horizontal	AV
		(\mathcal{S})	•	(5)		6)		(S)	

	Suspe	cted List								
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	2483.5000	6.57	39.05	45.62	74.00	28.38	PASS	Vertical	PK
	2	2483.5000	6.57	28.19	34.76	54.00	19.24	PASS	Vertical	AV
1		(\mathbf{C})		(\mathbf{G})		0)		$\langle \mathcal{O} \rangle$	II

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

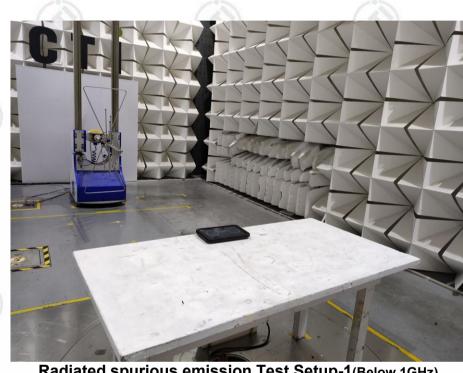
Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

Page 45 of 48

6 Appendix A

Refer to Appendix: Bluetooth Classic of EED32O81396702



Page 46 of 48


7 PHOTOGRAPHS OF TEST SETUP

Test model No.: TOP101

Radiated spurious emission Test Setup-2(Above 1GHz)

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

8 PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32O81396701 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

