

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Telephone (905) 829-1570 Facsimile (905) 829-8050

Website: www.ultratech-labs.com Email: vic@ultratech-labs.com April 01, 2002

TIMCO ENGINEERING INC.

P O BOX 370 849 N.W. STATE ROAD 45 NEWBERRY, FLORIDA USA 32669

Subject: FCC Certification Authorization Application under FCC PART

15, Subpart C, Sec. 15.209 - Low Power Transmitter operating at 125 kHz and Sec. 15.231(e) - Momentarily Operation at

433.92 MHz.

Product: Exciter
Model No.: E95
FCC ID: PQGE95

Dear Sir/Madam

As appointed agent for Lyngsoe Industries Ltd., we would like to submit the application to the Federal Communications Commission for certification of the above product. Please review all necessary files uploaded to FCC OET site for detailed information.

If you have any queries, please do not hesitate to contact us.

Yours truly,

Tri Minh Luu, P. Eng., V.P., Engineering

Encl

31040/SIT

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Telephone (905) 829-1570 Facsimile (905) 829-8050

Website: www.ultratech-labs.com Email: vic@ultratech-labs.com April 01, 2002

Lyngsoe Industries Ltd. 5570 Kennedy Road, Unit B Mississauga, Ontario Canada, L4Z 2A9

Attn.: Don Ferguson

Subject: FCC Certification Application Testing under FCC PART 15,

Subpart C, Sec. 15.209 - Low Power Transmitter operating at 125 kHz and Sec. 15.231(e) - Momentarily Operation at

433.92 MHz.

Product: Exciter
Model No.: E95
FCC ID: PQGE95

Dear Mr. Ferguson,

The product sample, as provided by you, has been tested and found to comply with FCC PART 15, Subpart C, Sec. 15.209 - Low Power Transmitter operating at 125 kHz and Sec. 15.231(e) - Momentarily Operation at 433.92 MHz.

Enclosed you will find copies of the engineering report. If you have any queries, please do not hesitate to contact us.

Yours truly,

Tri Minh Luu, P. Eng., V.P., Engineering

Encl

ENGINEERING TEST REPORT

Exciter Model No.: E95

FCC ID: PQGE95

Lyngsoe Industries Ltd. Applicant:

> 5570 Kennedy Road, Unit B Mississauga, Ontario Canada, L4Z 2A9

> > In Accordance With

FEDERAL COMMUNICATIONS COMMISSION (FCC) PART 15, SUBPART C Sec. 15.231(e) - Momentarily Operation at 433.92 MHz

UltraTech's File No.: LYT-003FTX

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs

Date: April 01, 2002

Report Prepared by: Tri M. Luu, P.Eng.

Tested by: Hung Trinh, RFI Technician

Issued Date: April 01, 2002 Test Dates: Mar. 22-25, 2002

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

lltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Telephone (905) 829-1570 Facsimile (905) 829-8050 Website: www.ultrat4ech-labs.com Email: vic@ultratech-labs.com

TABLE OF CONTENTS

EXHIBIT	1.	SUBMITTAL CHECK LIST	4
EXHIBIT	1.	INTRODUCTION	5
1.2.	RELAT	E ED SUBMITAL(S)/GRANT(S)ATIVE REFERENCES	5
EXHIBIT	2.	PERFORMANCE ASSESSMENT	6
2.2. 2.3. 2.4. 2.5.	EQUIP EUT'S LIST OF ANCIL	r INFORMATION	6 7 7 7
EXHIBIT	3.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	9
		TE TEST CONDITIONSTIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST S	
EXHIBIT	'4.	SUMMARY OF TEST RESULTS	10
4.2.	APPLI	TION OF TESTSCABILITY & SUMMARY OF EMC EMISSION TEST RESULTSICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	11 11
EXHIBIT	5.	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	12
5.2. 5.3. 5.4. 5.5.	MEASU MEASU ESSEN 125 KF	PROCEDURES JREMENT UNCERTAINTIES JREMENT EQUIPMENT USED: JITIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER: JITIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER: JITIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER: JITIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER:	12 12 12 CC CFR
,		09 & 15.205	
5.5.1 5.5.2 5.5.3 5.5.4	2. M 3. T	imitslethod of Measurementsest Arrangement List	14 14
5.5.5		hotographs of Test Setup	
5.5.6 5.6. 5.6.1	125 KH	est DataZ TRANSMITTER - 25 DB BANDWIDTH	17
5.6.2 5.6.3 5.6.4	3. T	lethod of Measurementsest Equipment Listest Dataest Data	17
5.7. 5.7.1 5.8.	433.92 !. E	MHZ TRANSMITTER - PROVISIONS OF FCC 15.231(E)(A) FOR PERIODIC OPERATIONngineering Analysis	18
5.8.1 5.8.2	19 !. <i>L</i> .	imitsethod of Measurements	19

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Accreditation: FCC & NVLAP (USA), ACA (Australia), VCCI (Japan), ITI (UK), ACC-LAB (Canada, Europe/APEC/Canada MRA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

5.8.3.	Test Equipment List	20
5.8.4.	Photograph of Test Setup	20
5.8.5.	Test Data	21
5.9. 433	.92 MHZ TRANSMITTER - 20 DB BANDWIDTH @ FCC CFR 47, PARA. 15.209(C)	23
5.9.1.	Limits	23
5.9.2.	Method of Measurements	
5.9.3.	Test Arrangement	23
5.9.4.	Test Equipment List	23
5.9.5.	Plots	23
5.9.6.	Test Data	23
EXHIBIT 6.	MEASUREMENT UNCERTAINTY	24
6.1. RAI	DIATED EMISSION MEASUREMENT UNCERTAINTY	24
EXHIBIT 7.	MEASUREMENT METHODS	25
7.1. GEN	NERAL TEST CONDITIONS	25
7.1.1.	Normal temperature and humidity	25
7.1.2.	Normal power source	25
7.1.3.	Operating Condition of Equipment under Test	
7.2. RAI	DIATED EMISSIONS	

EXHIBIT 1. SUBMITTAL CHECK LIST

Annex No.	Exhibit Type	Description of Contents	Quality Check (OK)
	Test Report	Exhibit 1: Submittal check lists	OK
		Exhibit 2: Introduction	
		• Exhibit 3: Performance Assessment	
		• Exhibit 4: EUT Operation and	
		Configuration during Tests	
		Exhibit 5: Summary of test Results	
		Exhibit 6: Measurement Data	
		Exhibit 7: Measurement Uncertainty	
		Exhibit 8: Measurement Methods	
1	Test Report - Plots of Measurement Data	Plots # 1 to 6	OK
2	Test Setup Photos Photos # 1 to 3		OK
3	External Photos of EUT	Photos # 1 to 3	OK
4	Internal Photos of EUT	Photos of 1 to 3	OK
5	Cover Letters	Letter from Ultratech for Certification	OK
		Request	
		• Letter from the Applicant to appoint	OK
		Ultratech to act as an agent	
		• Letter from the Applicant to request for	OK
		Confidentiality Filing	
6	ID Label/Location Info	• ID Label	OK
		Location of ID Label	OK
7	Block Diagrams	Block diagrams	OK
8	Schematic Diagrams	Schematic diagrams	OK
9	Parts List/Tune Up Info		OK
10	Operational Description		OK
11	RF Exposure Info		N/A
12	Users Manual		OK

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Accreditation: FCC & NVLAP (USA), ACA (Australia), VCCI (Japan), ITI (UK), ACC-LAB (Canada, Europe/APEC/Canada MRA)

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart C, Sections 15.209 and 15.231(e)		
Title	Telecommunication - Code of Federal Regulations, CFR 47, Part 15		
Purpose of Test:	To gain FCC Certification Authorization for Low Power Transmitter operating at 125 kHz and Sec. 15.231(e) - Momentarily Operation at 433.92 MHz.		
Test Procedures	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.		
Environmental Classification:	Light-industry, CommercialIndustry		

1.2. RELATED SUBMITAL(S)/GRANT(S)

None

1.3. NORMATIVE REFERENCES

Publication	YEAR	Title
FCC CFR Parts	2001	Code of Federal Regulations – Telecommunication
0-19		
ANSI C63.4	1992	American National Standard for Methods of Measurement of Radio-Noise Emissions
		from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
CISPR 22 &	1997	Limits and Methods of Measurements of Radio Disturbance Characteristics of
EN 55022	1998	Information Technology Equipment
CISPR 16-1		Specification for Radio Disturbance and Immunity measuring apparatus and methods
FCC Public	2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems
Notice DA 00-		
705		
FCC Public	2000	Part 15 Unlicensed Modular Transmitter Approval
Notice DA 00-		
1407		

PERFORMANCE ASSESSMENT **EXHIBIT 2.**

2.1. **CLIENT INFORMATION**

APPLICANT:		
Name:	Lyngsoe Industries Ltd.	
Address:	5570 Kennedy Road, Unit B	
	Mississauga, Ontario	
	Canada, L4Z 2A9	
Contact Person: Don Ferguson		
	Phone #: 905 501 1533	
	Fax #: 905 501 1538	
	Email Address: mhu@lyngsoe-industries.com	

MANUFACTURER:	
Name:	Lyngsoe Industries Ltd.
Address:	5570 Kennedy Road, Unit B
	Mississauga, Ontario
	Canada, L4Z 2A9
Contact Person:	Don Ferguson
	Phone #: 905 501 1533
	Fax #: 905 501 1538
	Email Address: mhu@lyngsoe-industries.com

2.2. **EQUIPMENT UNDER TEST (EUT) INFORMATION**

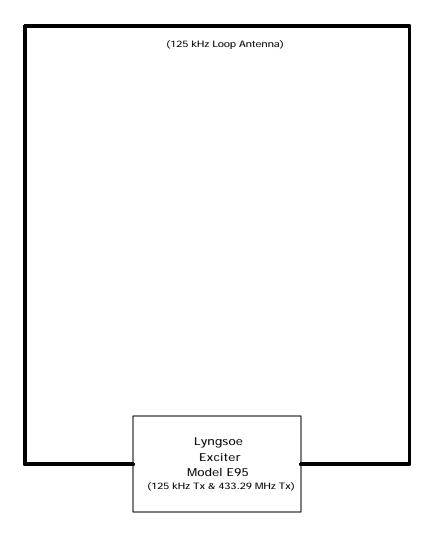
The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name	Lyngsoe Industries Ltd.
Product Name	Exciter
Model Name or Number	E95
Serial Number	Pre-production sample
Type of Equipment	Low Power Transmitter
Input Power Supply Type	25 Vdc
Primary User Functions of	This equipment is a part of the RFID System S95 and together with
EUT:	Reader R95 creates a reading point. The main function of the Exciter
	E95 is to generate the LF Field which "excite" transponder T95.
	Exciter E95 incorporates also electronic blocks for self-testing and for
	testing the UHF receiving capability of Reader R95 (an UHF
	transmitter which stimulates a transponder T95).

2.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER @ 125 kHz		
Equipment Type:	 Base station (fixed use) 	
Intended Operating Environment:	Commercial, light industry & heavy industry	
RF Output Power Rating: 0.0		
Operating Frequency Range:	125 kHz	
Duty Cycle: 45.2%		
25 dB Bandwidth:	8.7 KHz	
Modulation Type:	Pulse modulation with recognition coding	
Emission Designation:	9K3NON	
Antenna Connector Type:	Integral, permanently attached loop antenna	

TRANSMITTER @ 433.92 MHz		
Equipment Type:	Base station (fixed use)	
Intended Operating Environment:	Commercial, light industry & heavy industry	
RF Output Power Rating:	0.0	
Operating Frequency Range:	433.92 MHz	
Duty Cycle:	10.8%	
20 dB Bandwidth:	40 kHz	
Modulation Type:	Pulse modulation with recognition coding	
Emission Designation:	40K0L1D	
Antenna Connector Type:	Integral antenna (part of on the printed circuit board)	
housed inside the enclosure.		


2.4. LIST OF EUT'S PORTS

None

2.5. ANCILLARY EQUIPMENT

None

2.6. GENERAL TEST SETUP

FCC ID: PQGE95

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	25 Vdc

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	The EUT was set to transmit continuously by means of special
	setting of jumpers on the printed circuit board for testing purpose
	only.
Special Test Software:	None
Special Hardware Used:	None
Transmitter Test Antenna:	The EUT is tested with the antenna fitted in a manner typical of
	normal intended use as an integral antenna equipment.

Transmitter Test Signals:	
Frequencies:	125 kHz & 433. 92 MHz

File #: LYT-0031

FCC PART 15, SUB. C, Sec. 15.209 (125 kHz) and Sec. 15.231(e) (433.92 MHz) Exciter, Model E95

Page 10

FCC ID: PQGE95

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Powerline Conducted Emissions were performed in UltraTech's shielded room, 16'(L) by 12'(W) by 12'(H).
- Radiated Emissions were performed at the Ultratech's 3 Meter Open Field Test Site (OFTS) situated in the Town of Oakville, province of Ontario.

The above sites have been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville Open Field Test Site has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049). Last Date of Site Calibration: Aug. 08, 2001.

FCC ID: PQGE95

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC 15.209 - LOW POWER TRANSMITTER @ 125 kHz				
FCC PARAGRAPH.	COMPLIANCE (YES/NO)			
15.203	Antenna Requirement	Yes. Permanently attached loop antenna.		
15.209 & 15.205	Transmitter Radiated Emissions - Fundamental, Harmonic and Spurious	Yes		
	25 dB Bandwidth	Yes		
15.107(a)	AC Power Line Conducted Emissions Measurements (Transmit & Receive)	N/A for DC supplied device		

FCC 15.231(e) - MOMENTARILY TRANSMITTER @ 433.92 MHz				
FCC PARAGRAPH.	TEST REQUIREMENTS	COMPLIANCE (YES/NO)		
15.203	Antenna Requirement	Yes. Integral antenna (part of the printed circuit board) housed inside the enclosure.		
15.231(e)(a)	Provisions of FCC 15.231(e)	Yes		
15.231(e)(a) & (b)	Transmitter Radiated Emissions - Fundamental, Harmonic and Spurious	Yes		
15.231(e)(c)	20 dB Bandwidth	Yes		
15.107(a)	AC Power Line Conducted Emissions Measurements (Transmit & Receive)	N/A for DC supplied device		

Unintentional Radiators

The digital circuit portion of the EUT has been tested and verified to comply with FCC Part 15, Subpart B, Class A Digital Devices. The engineering test report can be provided upon FCC requests.

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Accreditation: FCC & NVLAP (USA), ACA (Australia), VCCI (Japan), ITI (UK), ACC-LAB (Canada, Europe/APEC/Canada MRA)

FCC ID: PQGE95

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in Exhibit 8 of this report, ANSI C63-4:1992 and FCC Public Notice @ DA 00-705 (March 30, 2000) - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

5.2. **MEASUREMENT UNCERTAINTIES**

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document NIS 81 with a confidence level of 95%. Please refer to Exhibit 7 for Measurement Uncertainties.

MEASUREMENT EQUIPMENT USED: 5.3.

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C64-3:1992, FCC 15.209 and CISPR 16-1.

ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER: 5.4.

The essential function of the EUT is to correctly communicate data to and from radios over RF link.

5.5. 125 KHZ TRANSMITTER - FUNDAMENTAL & SPURIOUS EMISSIONS (RADIATED @ 3 METERS), FCC CFR 47, PARA. 15.209 & 15.205

5.5.1. Limits

- The fundamental frequency shall not fall within any restricted frequency band specified in 15.205
- All rf other emissions shall not exceed the general radiated emission limits specified in @ 15.209(a).

FCC CFR 47, Part 15, Subpart C, Para. 15.205(a) - Restricted Frequency Bands

MHz	MHz	MHz	GHz
0.090 - 0.110	162.0125 - 167.17	2310 - 2390	9.3 - 9.5
0.49 - 0.51	167.72 - 173.2	2483.5 - 2500	10.6 - 12.7
2.1735 - 2.1905	240 - 285	2655 - 2900	13.25 - 13.4
8.362 - 8.366	322 - 335.4	3260 - 3267	14.47 - 14.5
13.36 - 13.41	399.9 - 410	3332 - 3339	14.35 - 16.2
25.5 – 25.67	608 - 614	3345.8 - 3358	17.7 - 21.4
37.5 – 38.25	960 - 1240	3600 - 4400	22.01 - 23.12
73 - 75.4	1300 - 1427	4500 - 5250	23.6 - 24.0
108 – 121.94	1435 - 1626.5	5350 - 5460	31.2 - 31.8
123 – 138	1660 - 1710	7250 - 7750	36.43 - 36.5
149.9 – 150.05	1718.8 - 1722.2	8025 - 8500	Above 38.6
156.7 – 156.9	2200 - 2300	9000 - 9200	

FCC CFR 47, Part 15, Subpart C, Para. 15.209(a)

-- Field Strength Limits within Restricted Frequency Bands --

FREQUENCY (MHz)	FIELD STRENGTH LIMITS (microvolts/m)	DISTANCE (Meters)
0.009 - 0.490	2,400 / F (KHz)	300
0.490 - 1.705	24,000 / F (KHz)	30
1.705 - 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3

5.5.2. Method of Measurements

Refer to Exhibit 8, Sec. 7.2 of this test report and **ANSI 63.4-1992**, **Para. 8** for detailed radiated emissions measurement procedures.

The following measurement procedures were also applied:

- Applies to harmonics/spurious that fall in the restricted bands listed in Section 15.205. the maximum permitted average field strength is listed in Section 15.209. A Pre-Amp and highpass filter are used for this measurement.
- For 9 kHz \leq frequencies \leq 150 kHz: RBW = 1 KHz, VBW \geq 1 KHz, SWEEP=AUTO.
- For 150 MHz ≤ frequencies ≤ 30 MHz: RBW = 10 KHz, VBW ≥ 10 KHz, SWEEP=AUTO.
- For 30 MHz ≤ frequencies ≤ 1 GHz: RBW = 100 KHz, VBW ≥ 100 KHz, SWEEP=AUTO.
- For frequencies ≥ 1 GHz: RBW = 1 MHz, VBW = 1 MHz (Peak) & VBW = 10 Hz (Average), SWEEP=AUTO.
- If the emission is pulsed, modified the unit for continuous operation, then use the settings above for measurements, then correct the reading by subtracting the peak-average correction factor derived from the appropriate duty cycle calculation. See Section 15.35(b) and (c).

5.5.3. Test Arrangement

Please refer to Test Arrangement in Sec. 5.5.3 for details of test setup for emission measurements.

5.5.4. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Advantest	R3271	15050203	100 Hz to 32 GHz with
EMI Receiver				external mixer for
				frequency above 32 GHz
Microwave Amplifier	Hewlett	HP 83017A		1 GHz to 26.5 GHz
	Packard			
Biconilog Antenna	EMCO	3143	1029	20 MHz to 2 GHz
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz
Horn Antenna	EMCO	3160-09		18 GHz – 26.5 GHz
Horn Antenna	EMCO	3160-10		26.5 GHz – 40 GHz
Mixer	Tektronix	118-0098-00		18 GHz – 26.5 GHz
Mixer	Tektronix	119-0098-00	••	26.5 GHz – 40 GHz

5.5.5. Photographs of Test Setup

Refer to the Photos #1 & #2 in Annex 2 (tested at 10 meters and 30 meters distances) for setup and arrangement of equipment under tests and its ancillary equipment.

Exciter, Model E95 FCC ID: PQGE95

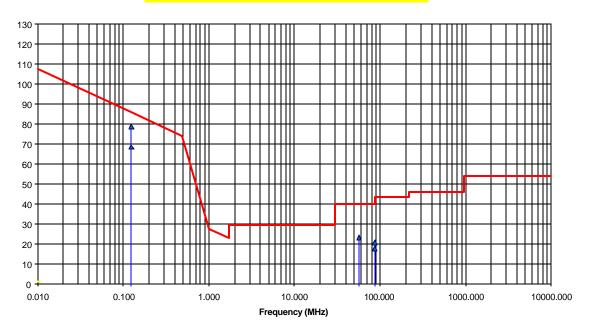
5.5.6. Test Data

	RF	RF	ANTENNA	LIMIT	LIMIT		
FREQUENCY	PEAK LEVEL	AVG LEVEL	PLANE	15.209	MARGIN	PASS/	Distance
(MHz)	(dBuV/m)	(dBuV/m)	(H/V)	(dBuV/m)	(dB)	FAIL	(m)
0.125	85.5	78.6	V	85.7	-7.1	PASS	30
0.125	75.2	68.3	Н	85.7	-17.4	PASS	30
57.30	22.9	22.9	V	40.0	-17.1	PASS	3
57.30	23.2	23.2	Н	40.0	-16.8	PASS	3
86.70	20.6	20.6	V	40.0	-19.4	PASS	3
86.70	17.7	17.7	Н	40.0	-22.3	PASS	3

- The emissions were scanned from 10 kHz to 1 GHz and all emissions within 20 dB below the limits were recorded.
- Highest measurements were recorded when the transmitter was tested with 3 different orthogonal positions as shown in photos # 1 to 3 in Annex 2.

Remarks:

(1) Duty Cycle = 0.7 mS/1.55 mS = 0.452Peak-to-Average factor = $20*\log (0.452) = -6.9 \text{ dB}$ Please refer to Plot #1 in Annex 1 for detailed measurements.


- (2) The 300m limit was converted to 30 m using cube factor (x) as it was found by measurements as follows:
 - Maximum E-field at 10 meters distance: 114.82 dBuV/m (vertical)
 - Maximum E-field at 30 meters distance: 85.45 dBuV/m (vertical)

Difference eof measurement between 10 m & 30 m: $\Delta E = 114.82 - 85.45 = 29$ dB $\Delta E = 20* \log(30/10)^x = 29$ dB or $x = 29/(20*\log 3) = 3.0$

Therefore the limit for 125 kHz at 30 meters were calculated as: $Limit_{30m} = Limit_{300m} + 20*log(300/30)^3 = 20*log[2400/125] + 60 = 85.67 \ dBuV/m$

Transmitter Radiated Emissions Measurements at OFTS 9 kHz to 30 MHz measured at 30 meters & 30 MHz to 1000 MHz measured at 3 meters (Conversion Factor from 30 to 300 meters distance = 60 dB)

Lyngsoe Model E95, Tx: 125 kHz

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

FCC ID: PQGE95

5.6. 125 KHZ TRANSMITTER - 25 DB BANDWIDTH

5.6.1. Limits

The rf spectrum shall not stay in the restricted band specified in FCC 15.205

5.6.2. Method of Measurements

Refer to ANSI C63-4:1992

The transmitter output was loosely coupled to the spectrum analyzer through a receiving antenna and the bandwidth of bandwidth of the fundamental frequency was measured with the spectrum analyzer with the resolution bandwidth of the spectrum analyzer set per ANSI 63-4:1992, Sec. 13.1.6.2

5.6.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Hewlett	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
EMI Receiver	Packard			

5.6.4. Test Data

CHANNEL FREQUENCY	25 dB BANDWIDTH	MAXIMUM LIMIT	PASS/FAIL
(kHz)	(kHz)	(kHz)	
125	9.3	N/A	N/A

Please refer to Plot #2 in Annex 1 for detailed measurments.

5.7. 433.92 MHZ TRANSMITTER - PROVISIONS OF FCC 15.231(E)(A) FOR PERIODIC OPERATION

5.7.1. Engineering Analysis

FCC PROVISSIONS	ANALYSIS ON COMPLIANCE
Permitted Type of Devices (alarm systems, door opener,	Alarm systems
remote switches etc)	
Prohibited Type of Devices (radio control of toys)	N/A
Prohibited Transmission Type (voice, video or data	Recognition codes to identify other particular
continuous transmission)	component as part of the system
A Manually Operated Transmitter (shall employ with the	The transmitter is automatically deactivated within
switch that automatically deactivate the transmitter within 5	less than 1 seconds of being releases.
seconds of being released)	
	The transmitter sent 40 pulses for maximum 975 mS
	(39x25mS) and than automatically deactivate.
Periodic Transmissions: at regular predetermined intervals are	N/A
not permitted. However, polling or supervision transmissions	
to determine system integrity of transmitter used in security or	
safety applications are allowed if the periodic rate of	
transmission does not exceed one transmission of not more	
than one second duration per hour for the transmitter	
Internal Radiators which are not employed for radio control	
purposes during emergencies involving fire, security, and	
safety of life, when activated to signal an alarm, may operate	
during the pendency of the alarm condition.	

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Accreditation: FCC & NVLAP (USA), ACA (Australia), VCCI (Japan), ITI (UK), ACC-LAB (Canada, Europe/APEC/Canada MRA)

5.8. 433.92 MHZ TRANSMITTER - RADIATED EMISSIONS @ 3 METERS, FCC CFR 47, PARA. 15.231(E), 15.209 & 15.205

5.8.1. Limits

The RF radiated emissions measured at 3 Meter distance shall not exceed the field strength below:

Fundamental	Average Field Strength Limits (Nm)		
Frequency (MHz)	Fundamental Harmonic/Spurious		
260 - 470 MHz	1,500 to 5,000	150 to 500	

LIMIT @ 433.92 MHz = 72.9 dBuV/m at 3 meters
HARMONIC/SPURIOUS LIMIT (outside restricted bands) = 52.9 dBuV/m

All other emissions inside restricted bands specified in @ 15.205(a) shall not exceed the general radiated emission limits specified in @ 15.209(a)

Remarks:

- Applies to harmonics/spurious emissions that fall in the restricted bands listed in Section 15.205. The maximum permitted average field strength is listed in Section 15.209.
- @ FCC CFR 47, Para. 15.237(c) The emission limits as specified above are based on measurement instrument employing an average detector. The provisions in @15.35 for limiting peak emissions apply.

FCC CFR 47, Part 15, Subpart C, Para. 15.205(a) - Restricted Frequency Bands

,	1 0 0 0111 11)1 111 12) Suspent 0,1 11111 12 12 (ti) 110 111 111 11 11 11 11 11 11 11 11 11					
MHz	MHz	MHz	GHz			
0.090 - 0.110	162.0125 - 167.17	2310 - 2390	9.3 - 9.5			
0.49 - 0.51	167.72 - 173.2	2483.5 - 2500	10.6 - 12.7			
2.1735 - 2.1905	240 - 285	2655 - 2900	13.25 - 13.4			
8.362 - 8.366	322 - 335.4	3260 - 3267	14.47 - 14.5			
13.36 - 13.41	399.9 - 410	3332 - 3339	14.35 - 16.2			
25.5 - 25.67	608 - 614	3345.8 - 3358	17.7 - 21.4			
37.5 - 38.25	960 - 1240	3600 - 4400	22.01 - 23.12			
73 - 75.4	1300 - 1427	4500 - 5250	23.6 - 24.0			
108 - 121.94	1435 - 1626.5	5350 - 5460	31.2 - 31.8			
123 - 138	1660 - 1710	7250 - 7750	36.43 - 36.5			
149.9 - 150.05	1718.8 - 1722.2	8025 - 8500	Above 38.6			
156.7 - 156.9	2200 - 2300	9000 - 9200				

Accreditation: FCC & NVLAP (USA), ACA (Australia), VCCI (Japan), ITI (UK), ACC-LAB (Canada, Europe/APEC/Canada MRA)

FCC CFR 47, Part 15, Subpart C, Para. 15.209(a)

-- Field Strength Limits within Restricted Frequency Bands --

FREQUENCY	FIELD STRENGTH LIMITS	DISTANCE
(MHz)	(microvolts/m)	(Meters)
0.009 - 0.490	2,400 / F (KHz)	300
0.490 - 1.705	24,000 / F (KHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

5.8.2. Method of Measurements

Refer to Exhibit 8, Sec. 7.2 of this test report & ANSI C63-4:1992

Applies to harmonics/spurious that fall in the restricted bands listed in Section 15.205. the maximum permitted average field strength is listed in Section 15.209. A Pre-Amp and highpass filter are used for this measurement.

- For measurements from 9 KHz to 150 KHz, set RBW = 200 Hz, VBW ≥ RBW, SWEEP=AUTO.
- For measurements from 150 KHz to 30 MHz, set RBW = 10 KHz, VBW ≥ RBW, SWEEP=AUTO.
- For measurements from 30 MHz to 1 GHz, set RBW = 100 KHz, VBW ≥ RBW, SWEEP=AUTO.
- For measurement above 1 GHz, set RBW = 1 MHz, VBW = 1 MHz, SWEEP=AUTO.

If the emission is pulsed, modified the unit for continuous operation, then use the settings above for measurements, then correct the reading by subtracting the peak-average correction factor derived from the appropriate duty cycle calculation. See Section 15.35(b) and (c).

5.8.3. Test Equipment List

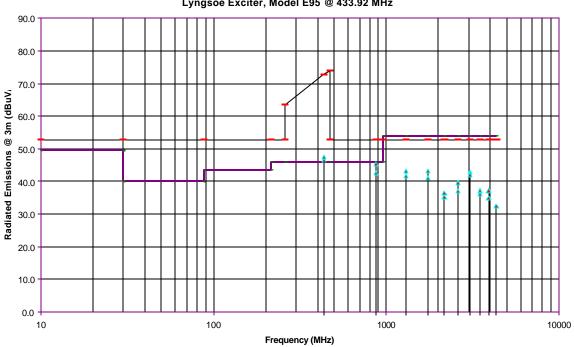
Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Hewlett	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
EMI Receiver	Packard			
Peak Power Meter &	Hewlett	8900	2131A00124	0.1-18 GHz
Peak Power Sensor	Packard	8481A	2551A01965	50 Ohms Input
Microwave Amplifier	Hewlett	HP 83017A		1 GHz to 26.5 GHz
	Packard			
Active Loop Antenna	EMCO	6507	8906-1167	1 kHz – 30 MHz
Log Periodic/Bow-Tie Antenna	EMCO	3143	1029	20 - 1000 MHz
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz

5.8.4. Photograph of Test Setup

Please refer to Photos # 3 through #4 (tested at 3 meter distance) for Measurements data

5.8.5. Test Data

The emissions were scanned from 10 MHz to 5 GHz and all emissions less 20 dB below the limits were recorded.


Notes:

- Transmitter was placed in three different orthogonal position for searching maximum field strength level.
- In the restricted band per FCC 15.205: Limit (2) per 15.209 is applied
- Outside the restricted band per FCC 15.205: Limit (1) per FCC 15.231(e) or Limit (2) per 15.209 whichever allows higher field strength emission, is applied.
- Duty Cycle = 4*2.7mS/100 mS = 0.108
 Peak-to-Average factor = 20*log (0.108) = -19.3 dB
 Please refer to Plot #4 in Annex 1 for detailed measurements.
- * Emissions fall in FCC restricted bands @ 15.205.

	Peak	Avergae		Average (1)	Restricted (2)		
	E-FIELD	E-FIELD	ANTENNA	LIMIT	Band Limits	MARGIN	MARGIN
FREQUENCY	@3m	@3m	PLANE	@3m	@3m	(Pass/Fail)	(Pass/Fail)
(MHz)	(dBuV/m)	(dBuV/m)	(V/H)	(dBuV/m)	(dBuV/m)		
433.92	65.8	46.5	V	72.9		-26.4	PASS
433.92	66.8	47.5	Н	72.9		-25.4	PASS
867.84	64.8	45.5	V	52.9	46.0	-7.4	PASS
867.84	62.0	42.7	Н	52.9	46.0	-10.2	PASS
1301.76	62.6	43.3	V	52.9	54.0	-9.6	*PASS
1301.76	60.9	41.6	Н	52.9	54.0	-11.3	*PASS
1735.68	60.4	41.1	V	52.9	54.0	-11.8	PASS
1735.68	62.6	43.3	Н	52.9	54.0	-9.6	PASS
2169.60	54.5	35.2	V	52.9	54.0	-17.7	PASS
2169.60	55.7	36.4	Н	52.9	54.0	-16.5	PASS
2603.52	56.3	37.0	V	52.9	54.0	-15.9	PASS
2603.52	59.0	39.7	Н	52.9	54.0	-13.2	PASS
3037.44	62.3	43.0	V	52.9	54.0	-9.9	PASS
3037.44	61.4	42.1	Н	52.9	54.0	-10.8	PASS
3471.36	56.5	37.2	V	52.9	54.0	-15.7	PASS
3471.36	55.5	36.2	Н	52.9	54.0	-16.7	PASS
3905.28	54.2	34.9	V	52.9	54.0	-18.0	* PASS
3905.28	56.5	37.2	Н	52.9	54.0	-15.7	* PASS
4339.20	51.8	32.5	V	52.9	54.0	-20.4	* PASS

ULTRATECH GROUP OF LABS

Radiated Emissions Measurments @ 3m OFTS FCC Section 15.231(e) Lyngsoe Exciter, Model E95 @ 433.92 MHz

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Accreditation: FCC & NVLAP (USA), ACA (Australia), VCCI (Japan), ITI (UK), ACC-LAB (Canada, Europe/APEC/Canada MRA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Exciter, Model E95 FCC ID: PQGE95

5.9. 433.92 MHZ TRANSMITTER - 20 DB BANDWIDTH @ FCC CFR 47, PARA. 15.209(C)

5.9.1. Limits

The 20dB bandwidth of the emission shall be no more than 0.25% of the centre frequency for devices operating above 70MHz.

5.9.2. Method of Measurements

Refer to FCC 15.231(e)(c) & ANSI C63-4:1992

The transmitter output was loosely coupled to the spectrum analyzer through a receiving antenna and the bandwidth of bandwidth of the fundamental frequency was measured with the spectrum analyzer with the resolution bandwidth of the spectrum analyzer set per ANSI 63-4:1992, Sec. 13.1.6.2

5.9.3. Test Arrangement

5.9.4. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Hewlett	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
EMI Receiver	Packard			

5.9.5. Plots

Please refer to Plot # 5 Annex 1 for Measurements data

5.9.6. Test Data

CHANNEL FREQUENCY	20 dB BANDWIDTH	MAXIMUM LIMIT	PASS/FAIL
(MHz)	(kHz)	(kHz)	
433.92	40.0	1085	PASS

ULTRATECH GROUP OF LABS

EXHIBIT 6. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994)

6.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (<u>+</u> dB)		
(Radiated Emissions)	DISTRIBUTION	3 m	10 m	
Antenna Factor Calibration	Normal (k=2)	<u>+</u> 1.0	<u>+</u> 1.0	
Cable Loss Calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5	
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
Antenna Directivit	Rectangular	+0.5	+0.5	
Antenna factor variation with height	Rectangular	<u>+</u> 2.0	<u>+</u> 0.5	
Antenna phase center variation	Rectangular	0.0	<u>+</u> 0.2	
Antenna factor frequency interpolation	Rectangular	<u>+</u> 0.25	<u>+</u> 0.25	
Measurement distance variation	Rectangular	<u>+</u> 0.6	<u>+</u> 0.4	
Site imperfections	Rectangular	<u>+</u> 2.0	<u>+</u> 2.0	
Mismatch: Receiver VRC $\Gamma_1 = 0.2$ Antenna VRC $\Gamma_R = 0.67$ (Bi) 0.3 (Lp) Uncertainty limits $20\text{Log}(1\pm\Gamma_1\Gamma_R)$	U-Shaped	+1.1	<u>+</u> 0.5	
System repeatability	Std. Deviation	<u>+</u> 0.5	<u>+</u> 0.5	
Repeatability of EUT		-	-	
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72	
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44	

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k=2 is used:

$$U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB}$$
 And $U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$

FCC ID: PQGE95

EXHIBIT 7. MEASUREMENT METHODS

7.1. GENERAL TEST CONDITIONS

The following test conditions shall be applied throughout the tests covered in this report.

7.1.1. Normal temperature and humidity

Normal temperature: +15°C to +35°C
 Relative Humidity: +20% to 75%

The actual values during tests shall be recorded in the test report.

7.1.2. Normal power source

7.1.2.1. Mains Voltage

The nominal test voltage of the equipment to be connected to mains shall be the nominal mains voltage which is the declared voltage or any of the declared voltages for which the equipment was designed.

The frequency of test power source corresponding to the AC mains shall be between 59 Hz and 61 Hz.

7.1.2.2. Battery Power Source.

For operation from battery power sources, the nominal test voltage shall be as declared by the equipment manufacturer. This shall be recorded in the test report.

7.1.3. Operating Condition of Equipment under Test

- All tests were carried out while the equipment operated at the following frequencies:
 - The lowest operating frequency,
 - The middle operating frequency and
 - The highest operating frequency
- Modulation were applied using the Test Data sequence
- The transmitter was operated at the highest output power, or in the case the equipment able to operate at more than one power level, at the lowest and highest output powers

7.2. RADIATED EMISSIONS

For both conducted and radiated measurements, the spurious emissions were scanned from the lowest frequency generated by the EUT or 10 MHz whichever is lower to 10th harmonic of the highest frequency generated by the EUT.

- The radiated emission measurements were performed at the UltraTech's 3 Meter Open Field Test Site (OFTS) situated in the Town of Oakville, province of Ontario. The Attenuation Characteristics of OFTS have been filed to FCC, Industry Canada, ACA/Austel, NVLap and ITI.
- Radiated emissions measurements were made using the following test instruments:
 - 1. Calibrated EMCO BiconiLog antenna in the frequency range from 30 MHz to 2000 MHz.
 - 2. Calibrated Emco Horn antennas in the frequency range above 1000 MHz (1GHz 40 GHz).
 - 3. The test is required for any spurious emission or modulation product that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:
 - RBW = 100 kHz for f < 1GHz and RBW = 1 MHz for $f \ge 1$ GHz
 - \triangleright VBW = RBW
 - ➤ Sweep = auto
 - Detector function = peak
 - ➤ Trace = max hold
 - Follows the guidelines in ANSI C63.4-1992 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc.. A pre-amp and highpass filter are required for this test, in order to provide the measuring system with sufficient sensitivity.
 - > Allow the trace to stabilize.
 - The peak reading of the emission, after being corrected by the antenna correction factor, cable loss, preamp gain, etc... is the peak field strength which comply with the limit specified in Section 15.35(b)

Calculation of Field Strength:

The field strength is calculated by adding the calibrated antenna factor and cable factor, and subtracting the Amplifier gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where FS = Field Strength

RA = Receiver/Analyzer Reading

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Ga in

Example: If a receiver reading of 60.0 dBuV is obtained, the antenna factor of 7.0 dB/m and cable factor of 1.0 dB are added, and the amplifier gain of 30 dB is subtracted. The actual field strength will be:

Field Level = 60 + 7.0 + 1.0 - 30 = 38.0 dBuV/m. Field Level = $10^{(38/20)} = 79.43 \text{ uV/m}$.

Submit this test data

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Accreditation: FCC & NVLAP (USA), ACA (Australia), VCCI (Japan), ITI (UK), ACC-LAB (Canada, Europe/APEC/Canada MRA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Exciter, Model E95 FCC ID: PQGE95

Now set the VBW to 10Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100ms, then the reading obtained may be further adjusted by a "duty cycle correction factor", derived from 10log(dwell time/100mS) in an effort to demonstrate compliance with the 15.209.

Submit test data

Maximizing The Radiated Emissions:

- The frequencies of emissions was first detected. Then the amplitude of the emissions was measured at the specified measurement distance using required antenna height, polarization, and detector characteristics.
- During this process, cables and peripheral devices were manipulated within the range of likely configuration.
- For each mode of operation required to be tested, the frequency spectrum was monitored. Variations in antenna heights (from 1 meter to 4 meters above the ground plane), antenna polarization (horizontal plane and vertical plane), cable placement and peripheral placement were explored to produce the highest amplitude signal relative to the limit.

The maximum radiated emission for a given mode of operation was found by using the following step-by-step procedure:

- Step1: Monitor the frequency range of interest at a fixed antenna height and EUT azimuth.
- Step2: Manipulate the system cables to produce highest amplitude signal relative to the limit. Note the amplitude and frequency of the suspect signal.
- Step3: Rotate the EUT 360 degrees to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, go back to the azimuth and repeat Step 2. Otherwise, orient the EUT azimuth to repeat the highest amplitude observation and proceed.
- Step4: Move the antenna over its full allowable range of travel (1 to 4 meters) to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, return to Step 2 with the highest amplitude observation and proceed.
- Step5: Change the polarization of the antenna and repeat Step 2 through 4. Compare the resulting suspected highest amplitude signal with that found for the other polarization. Select and note the higher of the two signals. This signal is termed the highest observed signal with respect to the limit for this EUT operational mode.
- Step6: The effects of various modes of operation is examined. This is done by varying the equipment modes as steps 2 through 5 are being performed.
- Step7: After completing steps 1 through 6, record the final highest emission level, frequency, antenna polarization and detector mode of the measuring instrument.

Page 27