

## FCC CFR47 CERTIFICATION

## PART 22H

## **TEST REPORT**

### **FOR**

## **DUAL-MODE AMPS/CDMA CELLULAR PHONE**

**MODEL NUMBER: VC-5U** 

**BRAND NAME: COMPAL** 

FCC ID: GKRVC-5U

REPORT NUMBER: 02I2379-1

**ISSUE DATE: DECEMBER 10, 2003** 

Prepared for COMPAL ELECTRONICS INC. 8F, NO. 500, JUI-KUANG RD. NEIHU, TAIPEI 114

**TAIWAN** 

*Prepared by* 

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, ROUTE 2 MORGAN HILL, CA 95037, USA

TEL: (408) 463-0885 FAX: (408) 463-0888

## TABLE OF CONTENT

| ı. | I. IESI RESULI CERTIFICATION                               |    |
|----|------------------------------------------------------------|----|
| 2. | 2. EUT DESCRIPTION                                         | 4  |
| 3. | 3. TEST METHODOLOGY                                        |    |
| 4. |                                                            |    |
| 5. |                                                            |    |
| 6. |                                                            |    |
| 7. |                                                            |    |
|    | 7.1. SECTION 2.1046: RF POWER OUTPUT                       |    |
|    | 7.2. SECTION 2.1047: MODULATION CHARACTERISTICS            |    |
|    | 7.3. SECTION 2.1049: OCCUPIED BANDWIDTH                    |    |
|    | 7.3.1. Un-modulated Signal                                 |    |
|    | 7.3.2. Voice                                               |    |
|    | 7.3.3. Signaling Tone (ST) + Supervisory Audio Tone (SAT)  |    |
|    | 7.3.4. Wide Band Data (WBD)                                |    |
|    | 7.3.5. Voice + Supervisory Audio Tone (SAT)                |    |
|    | 7.3.6. DTMF + Supervisory Audio Tone (SAT)                 |    |
|    | 7.4. SECTION 2.1051: SPURIOUS EMISSION AT ANTENNA TERMINAL |    |
|    | 7.5. SECTION 2.1053: FIELD STRENGTH OF SPURIOUS RADIATION  | 39 |
|    | 7.6. SECTION 2.1055: FREQUENCY STABILITY                   | 44 |
| 8. | 8. APENDIX                                                 | 47 |
|    | 8.1. EXTERNAL & INTERNAL PHOTOS                            | 47 |
|    | 8.2. SCHEMATICS                                            |    |
|    | 8.3. BLOCK DIAGRAM                                         |    |
|    | 84 LISER MANUAL                                            |    |

## 1. TEST RESULT CERTIFICATION

**COMPANY NAME:** COMPAL ELECTRONICS INC.

8F, NO. 500, JUI-KUANG RD.

NEIHU, TAIPEI 114

TAIWAN

**EUT DESCRIPTION:** DUAL-MODE AMPS/CDMA CELLULAR PHONE

MODEL NUMBER: VC-5U

**DATE TESTED:** DECEMBER 4, 2003 - DECEMBER 9, 2003

| TYPE OF EQUIPMENT     | INTENTIONAL RADIATOR          |
|-----------------------|-------------------------------|
| MEASUREMENT PROCEDURE | ANSI 63.4 / 1992, TIA/EIA 603 |
| PROCEDURE             | CERTIFICATION                 |
| FCC RULE              | CFR 47 PART 22 Subpart H      |

Compliance Certification Services, Inc. tested the above equipment for compliance with the requirement set forth in CFR 47, PART 22 Subpart H-Cellular Radiotelephone Service. The equipment in the configuration described in this report, shows the measured emission levels emanating from the equipment do not exceed the specified limit.

**Note**: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Tested By: Released For CCS By:

WILLIAM ZHUANG EMC ENGINEER

William Zhung

COMPLIANCE CERTIFICATION SERVICES

THU CHAN EMC SUPERVISOR

COMPLIANCE CERTIFICATION SERVICES

## 2. EUT DESCRIPTION

The 800MHz AMPS/CDMA Cellular Phone has an output power 25.6dBm / 363.08mW (AMPS, EIRP) and 27.9dm / 616.60mW (CDMA, EIRP). It has a fixed type antenna, and 0.75dBi gain which is designed for the Cellular band transmitting of frequency range 824 – 849 MHz.

## 3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures documented on chapter 13 of ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

## 4. TEST FACILITY

The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

## 5. ACCREDITATION AND LISTING

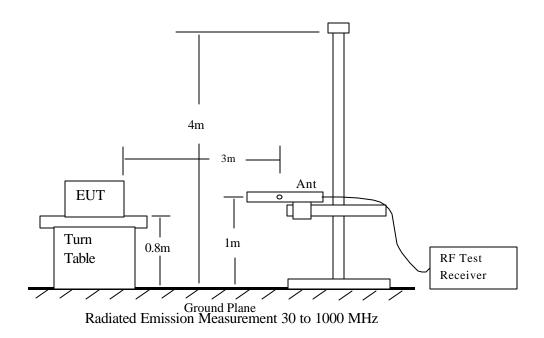
The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200065-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT (1300B3) and 31040/SIT (1300F2))

## 6. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

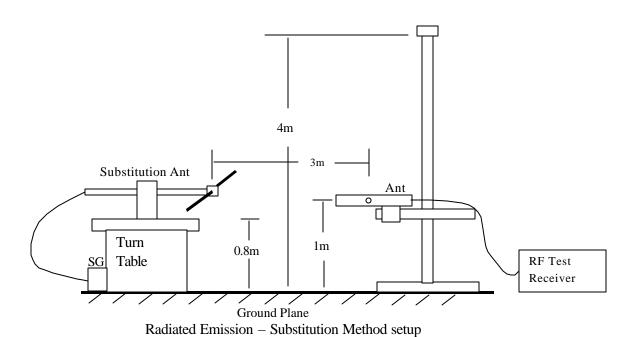
## 7. TEST SETUP, PROCEDURE AND RESULT

#### 7.1. SECTION 2.1046: RF POWER OUTPUT


#### INSTRUMENTS LIST

| EQUIPMENT                    | MANUFACTURE | MODEL NO. | CAL. DUE DATE |
|------------------------------|-------------|-----------|---------------|
| Signal Generator, 2 ~ 40 GHz | R & S       | SMP04     | 5/25/05       |
| Site C Antenna, Log Periodic | EMCO        | 3146      | 3/6/04        |
| Site C Preamplifier, 1300MHz | HP          | 8447D     | 8/18/04       |
| SA RF Section, 1.5 GHz       | HP          | 85680A    | 7/16/04       |
| SA Display Section 3         | HP          | 85662A    | 7/16/04       |
| Quasi-Peak Adaptor           | HP          | 85650A    | 7/16/04       |
| Dipole                       | ETS         | DB-4      | 5/7/04        |

#### MEASUREMENT PROCEDURE


- 1). On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.
- 2). The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the frequency of the transmitter.
- 3). The output of the test antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
- 4). The transmitter shall be switched on, if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
- 5). The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 6). The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 7). The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 8). The maximum signal level detected by the measuring receiver shall be noted.
- 9). The transmitter shall be replaced by a tuned dipole (substitution antenna).

- 10). The substitution antenna shall be oriented for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- 11). The substitution antenna shall be connected to a calibrated signal generator.
- 12). If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 13). The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.
- 14). The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
- 15). The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- 16). The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.
- 17). The measure of the effective radiated power is the larger of the two levels recorded, at the input to the substitution antenna, corrected for the gain of the substitution antenna if necessary.



Page 6 of 52

Radiated Emission Above 1000 MHz




Page 7 of 52

# Y position:



# Z position:



X position:



#### Test result:

## CDMA Output Power (ERP):

| 1      |                                              | CL                                                                                              | Gain                                                                                                                                                             | Gain                                                                                                                                                                                                 | ERP                                                               | Limit                               | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Notes                                                |
|--------|----------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| (dBuV) | (dBm)                                        | (dB)                                                                                            | (dBi)                                                                                                                                                            | (dBd)                                                                                                                                                                                                | (dBm)                                                             | (dBm)                               | (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |
|        | CDMA                                         | (Z WORST (                                                                                      | CASE)                                                                                                                                                            |                                                                                                                                                                                                      |                                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |
| I      | OW CHANNEL                                   |                                                                                                 |                                                                                                                                                                  |                                                                                                                                                                                                      |                                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |
| 88.4   | 159                                          | 0.3                                                                                             | 0.0                                                                                                                                                              | 0.5                                                                                                                                                                                                  | 16.1                                                              | 38.0                                | -21.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V                                                    |
| 100.2  | 27.7                                         | 0.3                                                                                             | 0.0                                                                                                                                                              | 0.5                                                                                                                                                                                                  | 27.9                                                              | 38.0                                | -10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H                                                    |
| MI     | DDLE CHANNEL                                 |                                                                                                 |                                                                                                                                                                  |                                                                                                                                                                                                      |                                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |
| 89.3   | 17.0                                         | 0.3                                                                                             | 0.0                                                                                                                                                              | 0.6                                                                                                                                                                                                  | 17.3                                                              | 38.0                                | -20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V                                                    |
| 99.6   | 27.3                                         | 0.3                                                                                             | 0.0                                                                                                                                                              | 0.6                                                                                                                                                                                                  | 27.6                                                              | 38.0                                | -10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H                                                    |
| I      | IIGH CHANNEL                                 |                                                                                                 |                                                                                                                                                                  |                                                                                                                                                                                                      |                                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |
| 87.3   | 14.2                                         | 0.3                                                                                             | 0.0                                                                                                                                                              | 0.7                                                                                                                                                                                                  | 14.6                                                              | 38.0                                | -23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V                                                    |
| 98.2   | 25.1                                         | 0.3                                                                                             | 0.0                                                                                                                                                              | 0.7                                                                                                                                                                                                  | 25.5                                                              | 38.0                                | -12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H                                                    |
|        | (dBuV)  I 88.4  100.2  MI 89.3  99.6  F 87.3 | CDMA LOW CHANNEL 88.4 15.9 100.2 27.7 MIDDLE CHANNEL 89.3 17.0 99.6 27.3 HIGH CHANNEL 87.3 14.2 | CDMA (Z WORST C LOW CHANNEL   88.4   15.9   0.3   100.2   27.7   0.3   MIDDLE CHANNEL   89.3   17.0   0.3   99.6   27.3   0.3   HIGH CHANNEL   87.3   14.2   0.3 | CDMA (Z WORST CASE)   LOW CHANNEL   88.4   15.9   0.3   0.0   100.2   27.7   0.3   0.0   MIDDLE CHANNEL   89.3   17.0   0.3   0.0   99.6   27.3   0.3   0.0   HIGH CHANNEL   87.3   14.2   0.3   0.0 | CDMA (Z WORST CASE)   LOW CHANNEL   88.4   15.9   0.3   0.0   0.5 | (dBuV) (dBm) (dB) (dBi) (dBd) (dBm) | (dBuV) (dBm) (dB) (dBi) (dBd) (dBm) (dBm) (dBm)   (dBm) (dBm) (dBm) (dBm)   (dBm) (dBm) (dBm)   (dBm) (dBm)   (dBm) (dBm)   (dBm) (dBm)   (dBm) (dBm)   (dBm) (dBm)   (dBm) (dBm)   (dBm) (dBm) (dBm)   (dBm) (dBm) (dBm) (dBm)   (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) (dBm) | (dBuV) (dBm) (dB) (dBi) (dBd) (dBm) (dBm) (dBm) (dB) |

## AMPS Output Power (ERP):

| (dBuV)         | (dBm)                                           | (dB)                                                                     | (dBi)                                                                                                    | (dBd)                                                                                                               | (dBm)                                                                                                                                                                                                                                                                                                                                                                 | (dBm)                                                                                                                                                                                                                                                                                                                                                                                                                                | (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------|-------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | AMPS (                                          |                                                                          |                                                                                                          |                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                     | (dDitt)                                                                                                                                                                                                                                                                                                                                                                                                                              | (415)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -              |                                                 | (Y WORST (                                                               | CASE)                                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| L              | OW CHANNEL                                      | ***************************************                                  |                                                                                                          |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 97.9           | 25.4                                            | 0.3                                                                      | 0.0                                                                                                      | 0.5                                                                                                                 | 25.6                                                                                                                                                                                                                                                                                                                                                                  | 38.0                                                                                                                                                                                                                                                                                                                                                                                                                                 | -12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 89.3           | 16.8                                            | 0.3                                                                      | 0.0                                                                                                      | 0.5                                                                                                                 | 17.0                                                                                                                                                                                                                                                                                                                                                                  | 38.0                                                                                                                                                                                                                                                                                                                                                                                                                                 | -21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MIDDLE CHANNEL |                                                 |                                                                          |                                                                                                          |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 97.2           | 24.9                                            | 0.3                                                                      | 0.0                                                                                                      | 0.0                                                                                                                 | 25.2                                                                                                                                                                                                                                                                                                                                                                  | 38.0                                                                                                                                                                                                                                                                                                                                                                                                                                 | -12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6.88           | 163                                             | 0.3                                                                      | 0.0                                                                                                      | 0.0                                                                                                                 | 16.6                                                                                                                                                                                                                                                                                                                                                                  | 38.0                                                                                                                                                                                                                                                                                                                                                                                                                                 | -21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| HIGH CHANNEL   |                                                 |                                                                          |                                                                                                          |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                      | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 97.3           | 24.2                                            | 0.3                                                                      | 0.0                                                                                                      | 0.7                                                                                                                 | 24.6                                                                                                                                                                                                                                                                                                                                                                  | 38.0                                                                                                                                                                                                                                                                                                                                                                                                                                 | -13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 88.7           | 15.6                                            | 0.3                                                                      | O.O                                                                                                      | 0.7                                                                                                                 | 16.0                                                                                                                                                                                                                                                                                                                                                                  | 38.0                                                                                                                                                                                                                                                                                                                                                                                                                                 | -22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | 97.9<br>89.3<br>MI<br>97.2<br>88.6<br>H<br>97.3 | 89.3 16.8  MIDDLE CHANNEL  97.2 24.9  88.6 16.3  HIGH CHANNEL  97.3 24.2 | 979 254 03<br>893 168 03<br>MIDDLE CHANNEL<br>97.2 249 03<br>88.6 163 03<br>HIGH CHANNEL<br>97.3 24.2 03 | 979 254 03 0.0 893 168 03 0.0  MIDDLE CHANNEL  97.2 249 0.3 0.0  88.6 16.3 0.3 0.0  HIGH CHANNEL  97.3 24.2 0.3 0.0 | 97.9         25.4         0.3         0.0         0.5           89.3         16.8         0.3         0.0         0.5           MIDDLE CHANNEL           97.2         24.9         0.3         0.0         0.6           88.6         16.3         0.3         0.0         0.6           HIGH CHANNEL           97.3         24.2         0.3         0.0         0.7 | 979         25.4         0.3         0.0         0.5         25.6           893         16.8         0.3         0.0         0.5         17.0           MIDDLE CHANNEL           97.2         24.9         0.3         0.0         0.6         25.2           88.6         16.3         0.3         0.0         0.6         16.6           HIGH CHANNEL           97.3         24.2         0.3         0.0         0.7         24.6 | 979         25.4         0.3         0.0         0.5         25.6         38.0           893         16.8         0.3         0.0         0.5         17.0         38.0           MIDDLE CHANNEL           972         24.9         0.3         0.0         0.6         25.2         38.0           88.6         16.3         0.3         0.0         0.6         16.6         38.0           HIGH CHANNEL           97.3         24.2         0.3         0.0         0.7         24.6         38.0 | 979         25.4         0.3         0.0         0.5         25.6         38.0         -12.4           893         16.8         0.3         0.0         0.5         17.0         38.0         -21.0           MIDDLE CHANNEL           97.2         24.9         0.3         0.0         0.6         25.2         38.0         -12.8           88.6         16.3         0.3         0.0         0.6         16.6         38.0         -21.4           HIGH CHANNEL           97.3         24.2         0.3         0.0         0.7         24.6         38.0         -13.4 |

RBW=VBW=3MHz

EUT: DUAL-MODE AMPS/CDMA CELLULAR PHONE

## <u>Conducted Output Power:</u>

## **AMPS**

|          | Ch.# | Freq. (MHz) | ERP Output Power (dBm) | Avg. Power Meter (dBm) |
|----------|------|-------------|------------------------|------------------------|
| Low Ch.  | 991  | 824.04      | 25.6                   | 26.52                  |
| Mid Ch.  | 383  | 836.49      | 25.2                   | 26.48                  |
| High Ch. | 799  | 848.97      | 24.6                   | 26.46                  |

RF Cable Loss 0.5 dB

## **CDMA**

|          | Ch.# | Freq. (MHz) | ERP Output Power (dBm) | Avg. Power Meter (dBm) |
|----------|------|-------------|------------------------|------------------------|
| Low Ch.  | 1013 | 824.7       | 27.9                   | 24.25                  |
| Mid Ch.  | 363  | 835.89      | 27.6                   | 24.32                  |
| High Ch. | 777  | 848.31      | 25.5                   | 24.22                  |

RF Cable Loss 0.5 dB

Note: Antenna Gain is +0.75 dBi

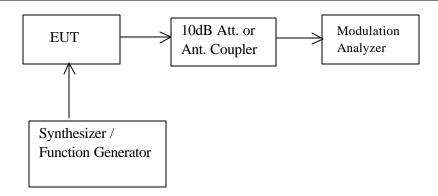
### 7.2. SECTION 2.1047: MODULATION CHARACTERISTICS

#### PROVISIONS APPLICABLE

According to CFR 47 section 2.1047 (a), for Voice Modulated Communication Equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000 Hz shall be measured.

According to CFR 47 section 22.915 (d) \_ Audio Filter Characteristics

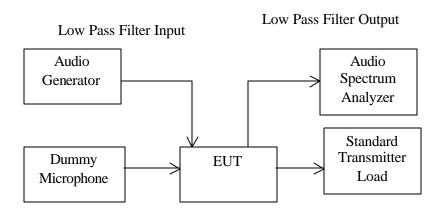
- (1) For mobile stations, these signals must be attenuated, relative to the level at 1KHz, as follows:
  - (i) In the frequency ranges of 3.0 to 5.9Khz and 6.1 to 15.0KHz, signals must be attenuated by at least 40 log (f / 3) dB, where f is the frequency of the signal in KHz.
  - (ii) In the frequency ranges of 5.9 to 6.1KHz, signals must be attenuated at least 35dB.
  - (iii) In the frequency ranges above 15KHz, signals must be attenuated at least 28dB.


#### MEASUREMENT METHOD

#### Modulation Limit

- 1). Configure the EUT as shown below, adjust the audio input for 60% of rated system deviation at 1 KHz using this level as a reference (0 dB) and vary the input level from -20 to +20 dB. Record the frequency deviation obtained as a function of the input level.
- 2). Repeat step 1 with input frequency changing to 300, 1004, 1500Hz, and 2500 Hz in sequence.

#### Audio Frequency Response


- 1). Configure the EUT as shown below.
- 2). Adjust the audio input for 20% of rated system deviation at 1 KHz using this level as a reference (0 dB).
- 3). Vary the Audio frequency from 100 Hz to 10 KHz and record the frequency deviation.
- 4). Audio Frequency Response =  $20 \log_{10}$  (Deviation of test frequency / Deviation of 1KHz reference).



Modulation characteristic measurement configuration

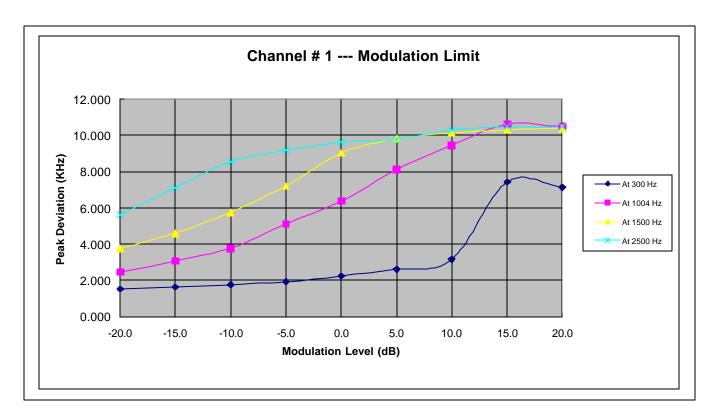
## Audio Low Pass Filter Response

- 1). Configure the EUT as shown below.
- 2). Connect the audio frequency generator as close as possible the input of the post limiter low pass filter within the transmitter under test.
- 3). Connect the audio spectrum analyzer to the output of the post limiter low pass filter within the transmitter under test.
- 4). Apply 1000 Hz tone from the audio frequency generator and adjust the level per manufacturer's specifications.
- 5). Record the dB level of the 1000 Hz spectral line on the audio spectrum analyzer as  $\ensuremath{\text{LEV}_{\text{REF}}}$ .
- 6). Set the audio frequency generator to the desired test frequency between 3000 Hz and the upper low pass filter limit.
- 7). Record audio spectrum analyzer levels, at the frequency in step 6).
- 8). Record the dB level on the audio spectrum analyzer as LEV<sub>FREO</sub>.
- 9). Calculate the audio frequency response at the test frequency as: low pass filter response =  $LEV_{FREO}$   $LEV_{REF}$
- 10). Repeat the 6) through 9) for all the desired test frequencies.



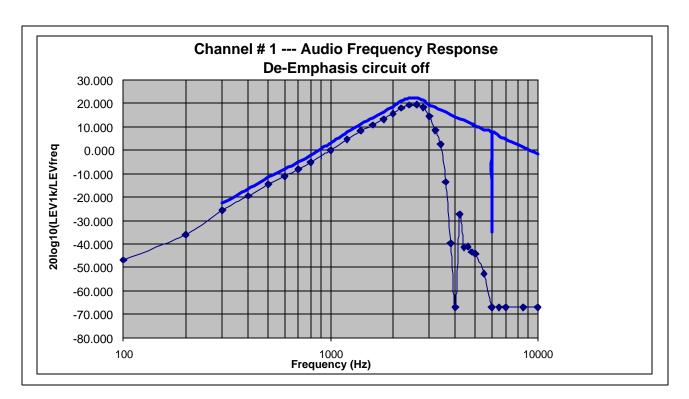
Audio low pass filter response measurement configuration

Page 12 of 52



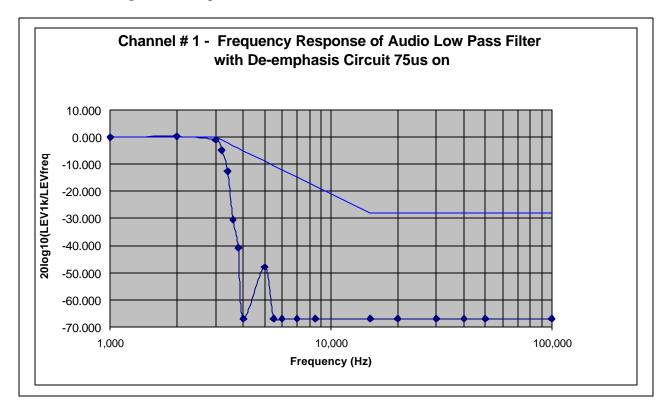

## MEASUREMENT INSTRUMENT

| EQUIPMENT           | MANUFACTURE   | MODEL NO.    | CAL. DUE DATE |
|---------------------|---------------|--------------|---------------|
| Spectrum Analyzer   | Agilent       | E4446A       | 1/13/04       |
| Modulation Analyzer | HP            | 8901B        | 6/23/04       |
| Attenuator          | MINI CIRCUITS | MCL BW-S10W2 | N/A           |
| Function Generator  | HP            | 3325A        | 5/8/04        |


#### MEASUREMENT RESULT

## a). Modulation Limit:

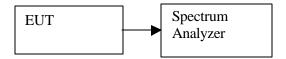



Page 14 of 52

## b). Audio Frequency Response:



Page 15 of 52


## c). Audio low pass filter response:

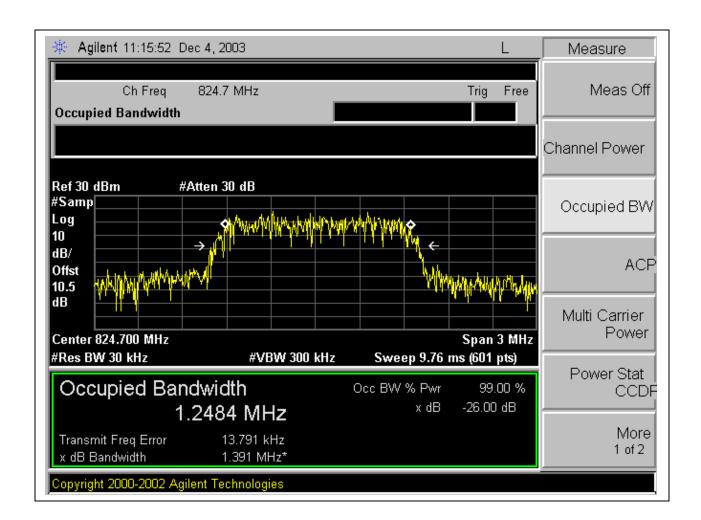


## 7.3. SECTION 2.1049: OCCUPIED BANDWIDTH

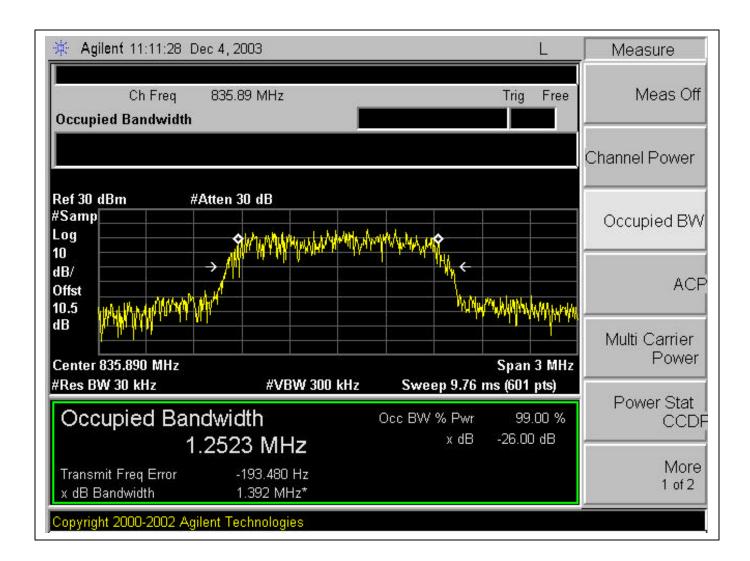
### OCCUPIED BANDWIDTH FOR CDMA MODULATION:

#### **TEST SETUP**

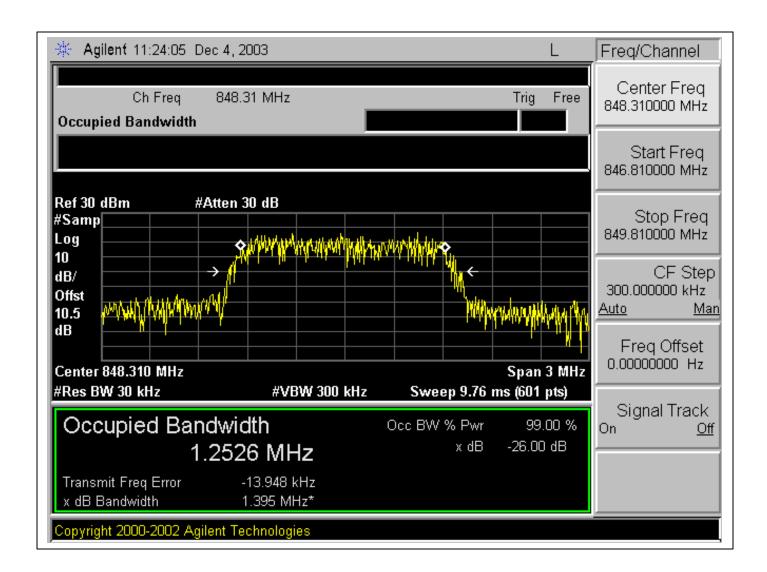



#### **TEST PROCEDURE**

The EUT's output RF connector (made solely for the purpose of the test) was connected with a short cable to the spectrum analyzer, RES BW was set to about 1% of emission BW , -26 dBc display line was placed on the screen (or 99% bandwidth), the occupied BW is the delta frequency between the two points where the display line intersects the signal trace.


#### **RESULT**

No non-compliance noted, reference only.

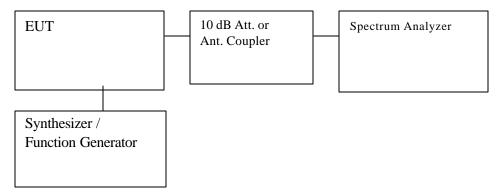

| Frequency | 26 dB Bandwidth |  |
|-----------|-----------------|--|
| (MHz)     | (MHz)           |  |
| 824.7     | 1.391           |  |
| 835.89    | 1.392           |  |
| 848.31    | 1.395           |  |



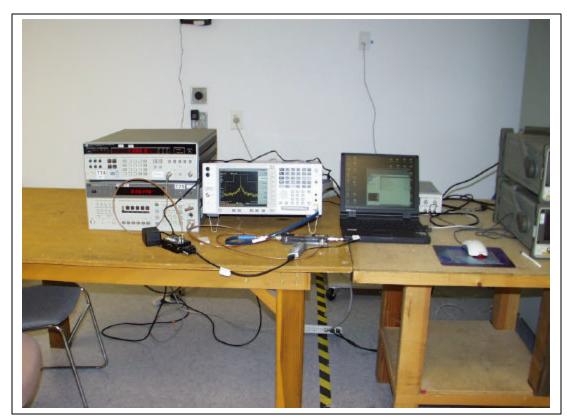
Page 18 of 52



Page 19 of 52




Page 20 of 52

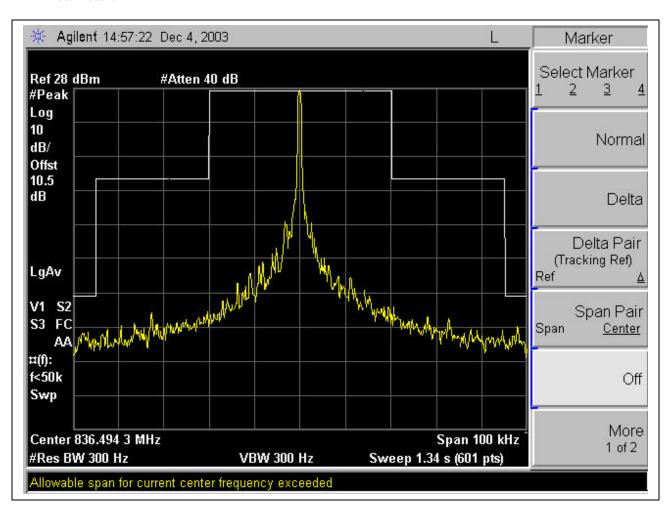

#### OCCUPIED BANDWIDTH FOR AMPS MODULATION:

#### PROVISIONS APPLICABLE

According to CFR 47 section 22.917, the authorized bandwidth for emission type of F3E unit is 20 KHz.



Set-up Configuration



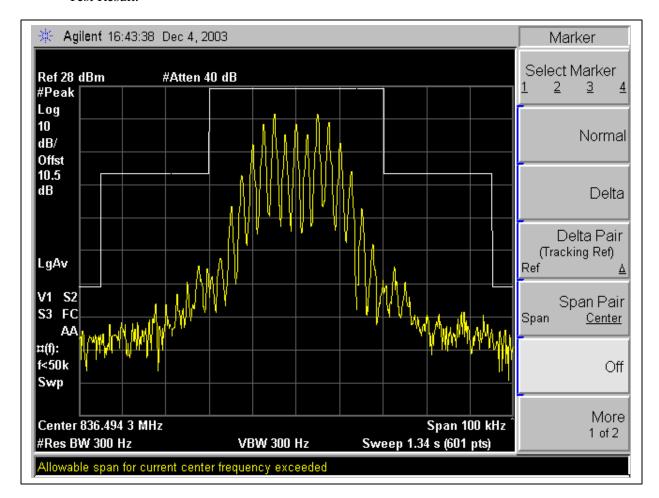

Page 21 of 52

## 7.3.1. Un-modulated Signal

INSTRUMENT SETTING: Resolution Bandwidth = 300Hz Video Bandwidth = 300Hz

Limit: N/A




#### 7.3.2. Voice

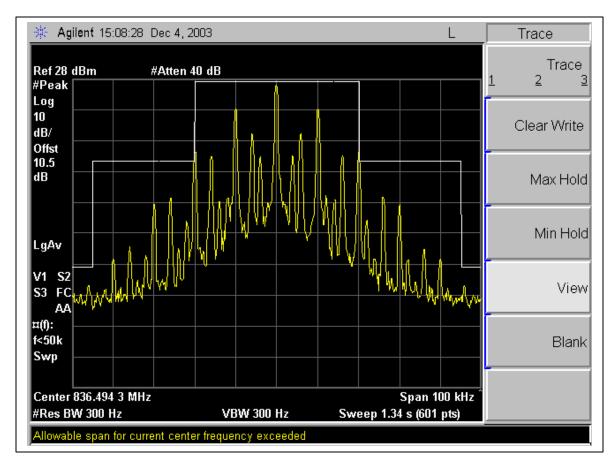
INSTRUMENT SETTING:
Resolution Bandwidth = 300Hz
Video Bandwidth = 300Hz
Audio Tone = 2.5KHz

Audio Level = 16dB greater than level required to produce  $\pm 6KHz$ 

## Limit (22.917b):

- a. On any frequency removed from the assigned carrier frequency by more than 20KHz, up to and including 45KHz, the sideband is at least 26dB below the carrier.
- b. On any frequency removed from the assigned carrier frequency by more than 45Khz, up to the first multiple of the carrier frequency, the sideband is at least 60dB below the carrier or 43  $+10 \log_{10}$  (mean output power in W) dB, whichever is the smaller attenuation




Page 23 of 52

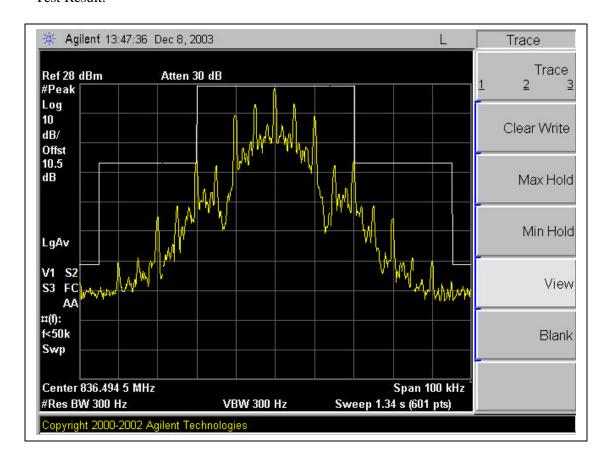
## 7.3.3. Signaling Tone (ST) + Supervisory Audio Tone (SAT)

INSTRUMENT SETTING: Resolution Bandwidth = 300Hz Video Bandwidth = 300Hz Signal Tone = 10KHz

### Limit (22.917d):

- a. On any frequency removed from the assigned carrier frequency by more than 20KHz, up to and including 45KHz, the sideband is at least 26dB below the carrier.
- b. On any frequency removed from the assigned carrier frequency by more than 45Khz, up to and including 90KHz, the sideband is at least 45dB below the carrier.
- c. On any frequency removed from the assigned carrier frequency by more than 90KHz, up to the first multiple of the carrier frequency, the sideband is at least 60dB below the carrier or 43 +10 log<sub>10</sub> (mean output power in W) dB, whichever is the smaller attenuation.




Page 24 of 52

## 7.3.4. Wide Band Data (WBD)

INSTRUMENT SETTING: Resolution Bandwidth = 300Hz Video Bandwidth = 300Hz

#### Limit (22.917d):

- a. On any frequency removed from the assigned carrier frequency by more than 20KHz, up to and including 45KHz, the sideband is at least 26dB below the carrier.
- b. On any frequency removed from the assigned carrier frequency by more than 45Khz, up to and including 90KHz, the sideband is at least 45dB below the carrier.
- c. On any frequency removed from the assigned carrier frequency by more than 90KHz, up to the first multiple of the carrier frequency, the sideband is at least 60dB below the carrier or 43 +10 log<sub>10</sub> (mean output power in W) dB, whichever is the smaller attenuation.

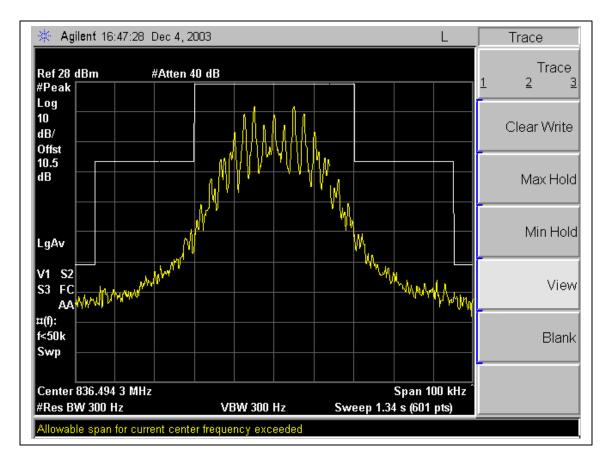


Page 25 of 52

## 7.3.5. Voice + Supervisory Audio Tone (SAT)

**INSTRUMENT SETTING:** 

Resolution Bandwidth = 300Hz


Video Bandwidth = 300Hz

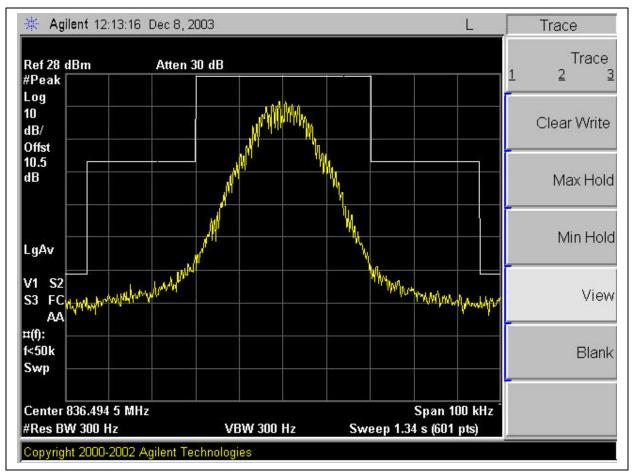
Audio Tone = 2.5KHz

Audio Level = 16dB greater than level required to produce  $\pm 8KHz$  (Minimum level from technical specifications)

#### Limit (22.917b):

- b. On any frequency removed from the assigned carrier frequency by more than 20KHz, up to and including 45KHz, the sideband is at least 26dB below the carrier.
- c. On any frequency removed from the assigned carrier frequency by more than 45Khz, up to the first multiple of the carrier frequency, the sideband is at least 60dB below the carrier or 43 +10 log<sub>10</sub> (mean output power in W) dB, whichever is the smaller attenuation




Page 26 of 52

## 7.3.6. DTMF + Supervisory Audio Tone (SAT)

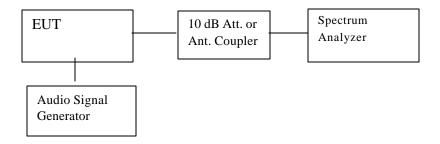
INSTRUMENT SETTING: Resolution Bandwidth = 300Hz Video Bandwidth = 300Hz

#### Limit (22.917d):

- a. On any frequency removed from the assigned carrier frequency by more than 20KHz, up to and including 45KHz, the sideband is at least 26dB below the carrier.
- b. On any frequency removed from the assigned carrier frequency by more than 45Khz, up to and including 90KHz, the sideband is at least 45dB below the carrier.
- c. On any frequency removed from the assigned carrier frequency by more than 90KHz, up to the first multiple of the carrier frequency, the sideband is at least 60dB below the carrier or 43 +10 log<sub>10</sub> (mean output power in W) dB, whichever is the smaller attenuation.



Page 27 of 52


SECTION 2.1051: SPURIOUS EMISSION AT ANTENNA TERMINAL

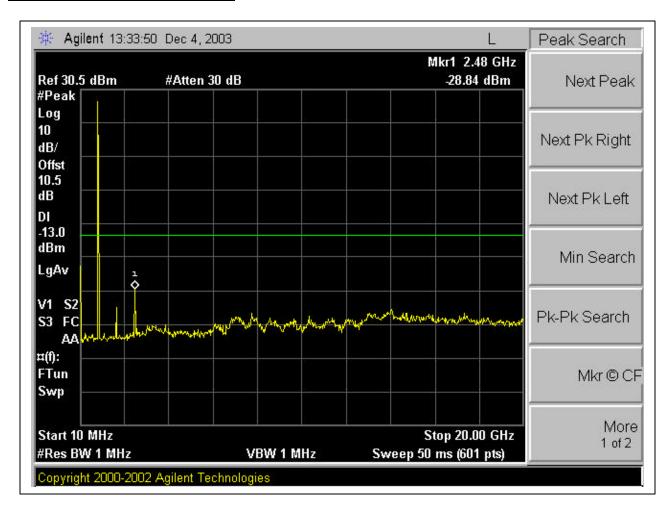
#### **INSTRUMENTS LIST**

| EQUIPMENT          | MANUFACTURE   | MODEL NO.    | CAL. DUE DATE |
|--------------------|---------------|--------------|---------------|
| Spectrum Analyzer  | Agilent       | E4446A       | 1/13/04       |
| Function Generator | HP            | 3325A        | 5/8/04        |
| Attenuator         | MINI CIRCUITS | MCL BW-S10W2 | N/A           |
|                    |               |              |               |

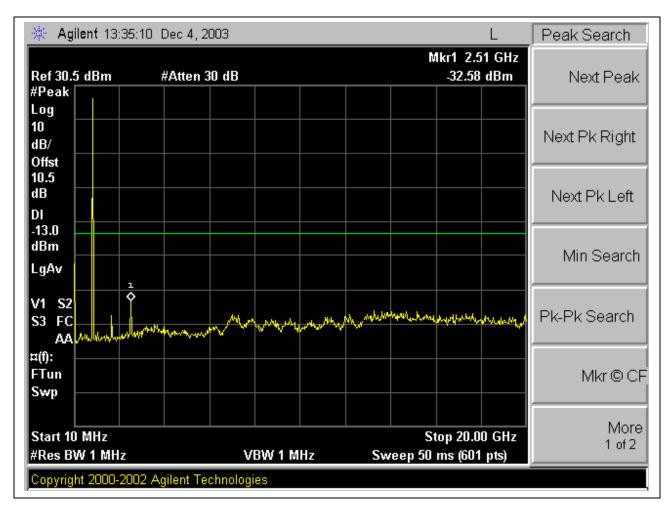
#### **TEST SETUP**

7.4.



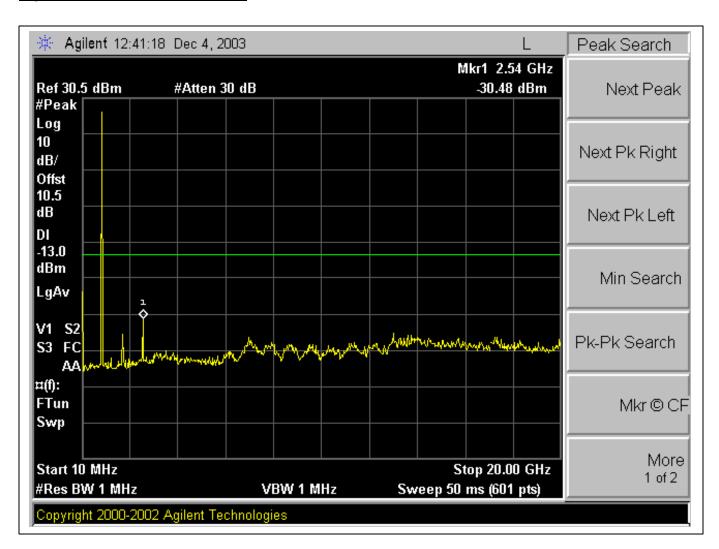

## **TEST PROCEDURE**

- 1) RF signal or three balanced signals (intermodulation measurement) were applied to the RF input. One set as close as possible to the bottom of the block edge and one set as close as possible to the top of the block edge. Set the RES BW to 1% of the emission bandwidth to show compliance with the -13dBm limit, in the 1 MHz bands immediately outside and adjacent to the top and bottom edges of the frequency block.
- 2) For the Out-of-Band measurements a 1 MHz RES BW was used to scan from 15 MHz to 10x fo of the fundamental carrier for all frequency block. A display line was placed at –13dBm to show compliance for spurious, harmonics, and intermodulation emissions.
- 3) 22.917(f); Mobile emissions in base frequency range. The mean power of any emissions appearing in the base station frequency range from cellular mobile transmitter operated must be attenuated to a level not to exceed –80dBm at the transmit antenna connector.


#### RESULT:

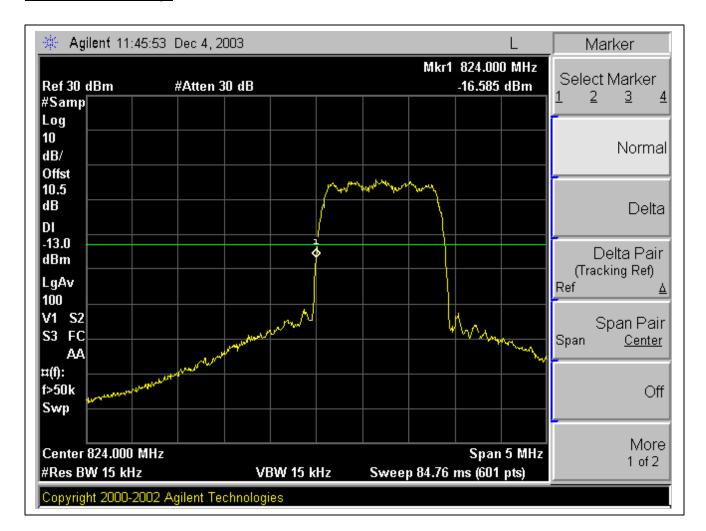
CDMA Modulation: Low / Mid / High, Band Edge, Out-Of-Band Emissions

#### Low Channel, Out-Of-Band Emissions

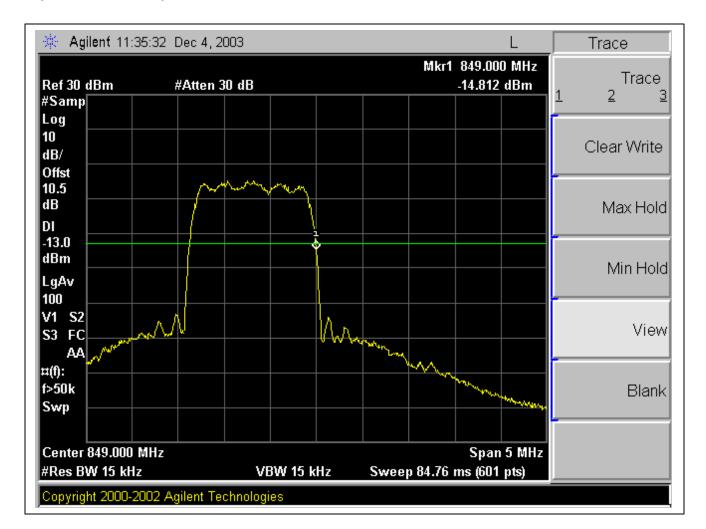



## Mid Channel, Out-Of-Band Emissions



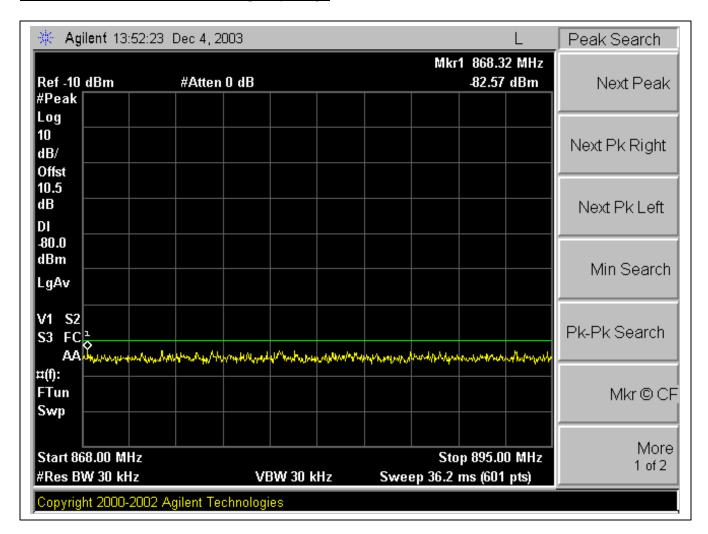

Page 30 of 52

#### High Channel, Out-Of-Band Emissions



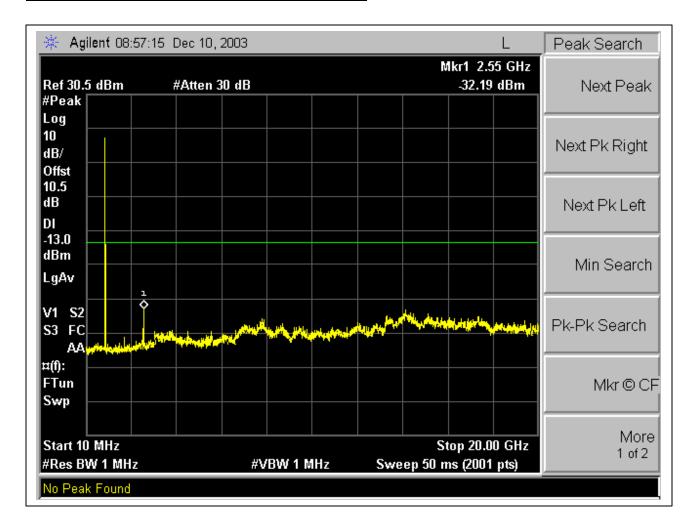

Page 31 of 52

#### Low Channel Band Edge

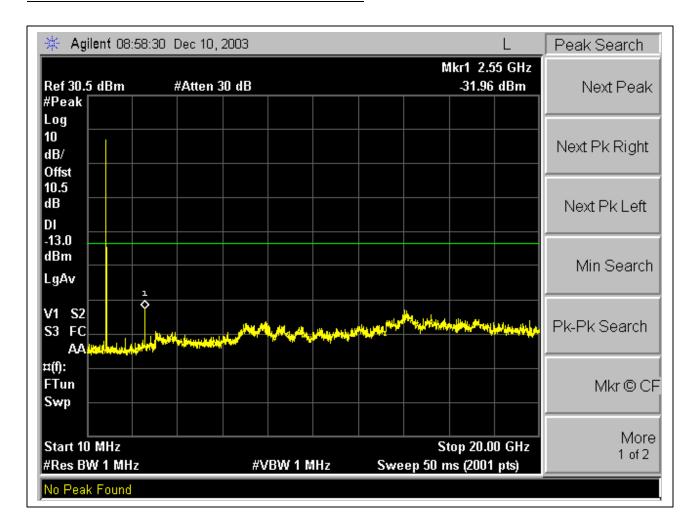



### High Channel Band Edge

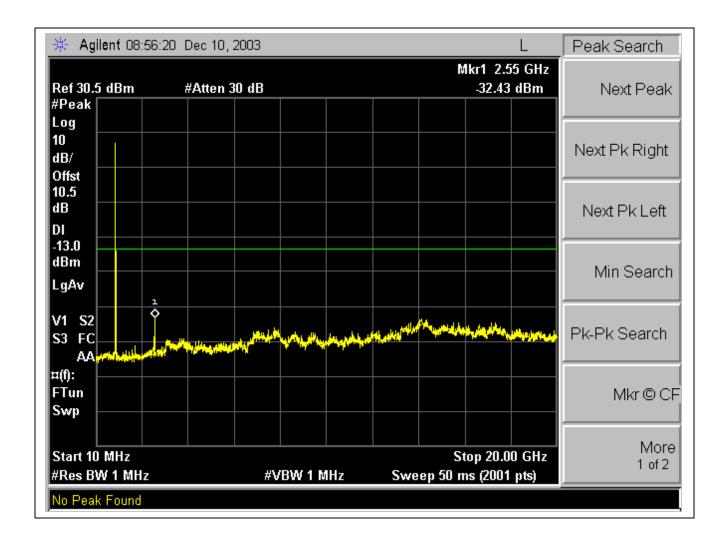



Page 33 of 52

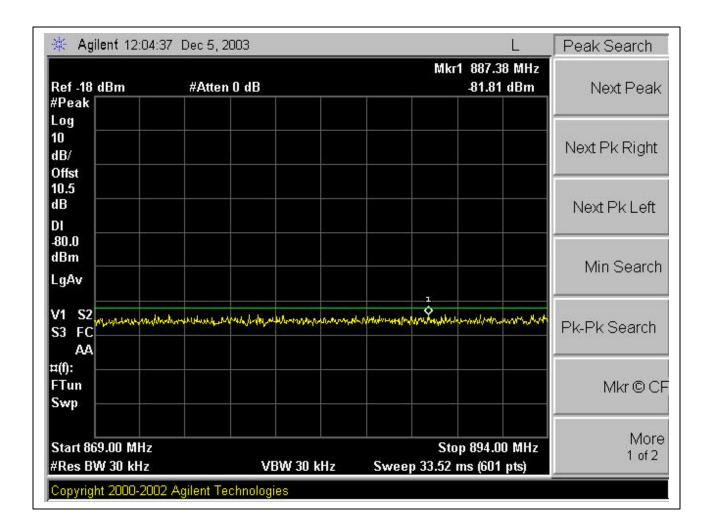
## CDMA Mobile Emissions in Base Frequency Range:




Page 34 of 52


#### AMPS Modulation: Low Channel Out-Of-Band Emissions




## AMPS Modulation: Mid Channel Out-Of-Band Emissions



AMPS Modulation: High Channel Out-Of-Band Emissions



AMPS Mobile Emissions in Base Frequency Range:



## 7.5. SECTION 2.1053: FIELD STRENGTH OF SPURIOUS RADIATION

#### **INSTRUMENTS LIST**

| EQUIPMENT                | MANUFACTURE | MODEL NO.   | CAL. DUE DATE |
|--------------------------|-------------|-------------|---------------|
| Antenna, Horn 1 ~ 18 GHz | EMCO        | 3115        | 2/4/04        |
| Preamplifier, 1 ~ 26 GHz | Miteq       | NSP10023988 | 4/25/04       |
| Spectrum Analyzer        | HP          | E4446A      | 7/23/04       |

## **Detector Function Setting of Test Receiver**

| Frequency Range (MHz) | Detector Function | Resolution<br>Bandwidth | Video Bandwidth                           |
|-----------------------|-------------------|-------------------------|-------------------------------------------|
| Above 1000            | Peak Average      | 1 MHz<br>1 MHz          | <ul><li>✓ 1 MHz</li><li>☐ 10 Hz</li></ul> |

## **TEST SETUP**

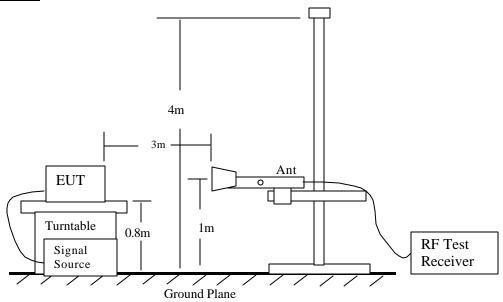



Fig 1: Radiated Emission Measurement

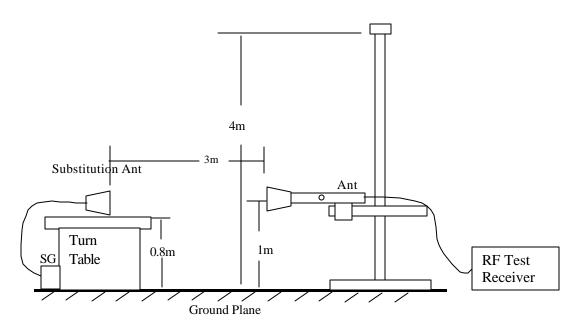



Fig 2: Radiated Emission – Substitution Method set-up

# **TEST PROCEDURE**

- 1). On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.
- 2). The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the frequency of the transmitter.
- 3). The output of the test antenna shall be connected to the measuring receiver and either a peak or average detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
- 4). The transmitter shall be switched on, if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
- 5). The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 6). The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 7). The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 8). The maximum signal level detected by the measuring receiver shall be noted.
- 9). The transmitter shall be replaced by a substitution antenna.
- 10). The substitution antenna shall be oriented for vertical polarization.
- 11). The substitution antenna shall be connected to a calibrated signal generator.
- 12). If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 13). The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.

### Page 40 of 52

- 14). The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
- 15). The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- 16). The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.
- 17). The measure of the effective radiated power is the larger of the two levels recorded, at the input to the substitution antenna, corrected for the gain of the substitution antenna if necessary.

#### **RESULT**

No non-compliance noted, as shown below

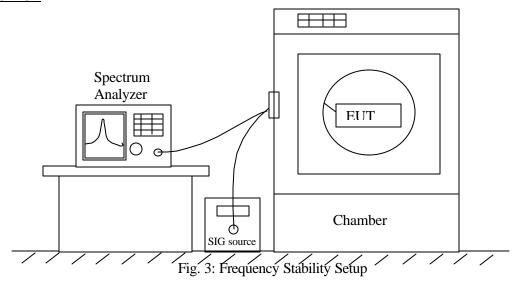
## CDMA: Low, Mid, & High Channels:

| f<br>GHz | SA reading (dBuV) | SG reading (dBm) | CL<br>(dB)  | Gain<br>(dBi) | Gain<br>(dBd) | ERP<br>(dBm) | Limit (dBm) | Margin<br>(dB) | Notes         |
|----------|-------------------|------------------|-------------|---------------|---------------|--------------|-------------|----------------|---------------|
| CDMA     | LOW Chann         | el 824.7 Mhz 2   | Z-Position  |               |               |              |             |                |               |
| 1.649    | 52.5              | -57.7            | 0.8         | 7.3           | 5.2           | -53.3        | -13.0       | -40.3          | V             |
| 2.474    | 45.8              | -60.7            | 1.2         | 8.4           | 6.3           | -55.6        | -13.0       | -42.6          | V             |
| 3.299    | 31.8              | -72.4            | 1.5         | 9.2           | 7.0           | -66.8        | -13.0       | -53.8          | V Noise Floor |
| 1.649    | 53.6              | -78.2            | 0.8         | 7.3           | 5.2           | -73.8        | -13.0       | -60.8          | Н             |
| 2.474    | 39.1              | -67.4            | 1.2         | 8.4           | 6.3           | -62.3        | -13.0       | -49.3          | Н             |
| 3.299    | 29.9              | -74.3            | 1.5         | 9.2           | 7.0           | -68.8        | -13.0       | -55.8          | H Noise Floor |
| CDMA     | MIDDLE Ch         | annel 835.89 N   | Ihz Z-Posit | ion           |               |              |             |                |               |
| 1.672    | 53.9              | -56.1            | 0.8         | 7.4           | 5.2           | -51.7        | -13.0       | -38.7          | Н             |
| 2.508    | 44.1              | -62.3            | 1.2         | 8.4           | 6.3           | -57.2        | -13.0       | -44.2          | Н             |
| 3.344    | 31.3              | -72.9            | 1.5         | 9.2           | 7.1           | -67.3        | -13.0       | -54.3          | H Noise Floor |
| 1.672    | 57.6              | -52.5            | 0.8         | 7.4           | 5.2           | -48.1        | -13.0       | -35.1          | V             |
| 2.508    | 43.5              | -62.9            | 1.2         | 8.4           | 6.3           | -57.8        | -13.0       | -44.8          | V             |
| 3.344    | 29.3              | -73.8            | 1.5         | 9.2           | 7.1           | -68.3        | -13.0       | -55.3          | V Noise Floor |
| CDMA     | HIGH Chann        | nel 848.31 Mhz   | Z-Position  |               |               |              |             |                |               |
| 1.697    | 62.2              | -47.7            | 0.8         | 7.4           | 5.3           | -43.3        | -13.0       | -30.3          | V             |
| 2.545    | 40.6              | -65.7            | 1.2         | 8.5           | 6.3           | -60.5        | -13.0       | -47.5          | V             |
| 3.393    | 30.9              | -72,2            | 1.5         | 9.2           | 7.1           | -66.6        | -13.0       | -53.6          | V Noise Floor |
| 1.697    | 57.4              | -52.5            | 0.8         | 7.4           | 5.3           | -48.1        | -13.0       | -35.1          | H             |
| 2.545    | 38.6              | -67.7            | 1.2         | 8.5           | 6.3           | -62.6        | -13.0       | -49.6          | H             |
| 3.393    | 30.9              | -72.2            | 1.5         | 9.2           | 7.1           | -66,6        | -13.0       | -53.6          | H Noise Floor |

## AMPS: Low, Mid, & High Channels:

| f<br>GHz                                          | SA reading<br>(dBuV)                 | SG reading<br>(dBm)                       | CL<br>(dB)                      | Gain<br>(dBi)              | Gain<br>(dBd)            | ERP<br>(dBm)                     | Limit<br>(dBm)                   | Margin<br>(dB)                   | Notes                        |
|---------------------------------------------------|--------------------------------------|-------------------------------------------|---------------------------------|----------------------------|--------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------|
|                                                   | LOW Channe                           | 1 824.04 Mhz                              | Y-Position                      | (#==)                      | (0.2.0)                  | (=====)                          | (====)                           | (4.2)                            |                              |
| 1.648                                             | 59.4                                 | -50.8                                     | 0.8                             | 7.3                        | 5.2                      | -46.4                            | -13.0                            | -33.4                            | V                            |
| 2.472                                             | 46.7                                 | -59.8                                     | 1.2                             | 8.4                        | 6.3                      | -54.7                            | -13.0                            | -41.7                            | v                            |
| 3.296                                             | 29.9                                 | -74.3                                     | 1.5                             | 9.2                        | 7.0                      | -68.8                            | -13.0                            | -55.8                            | V Noise Floor                |
| 1.648                                             | 60.4                                 | -71.4                                     | 0.8                             | 7.3                        | 5.2                      | -67.0                            | -13.0                            | -54.0                            | Н                            |
| 2.472                                             | 49.1                                 | -58.7                                     | 1.2                             | 8.4                        | 6.3                      | -53.6                            | -13.0                            | -40.6                            | Н                            |
| 3.296                                             | 36.8                                 | -67.4                                     | 1.5                             | 9.2                        | 7.0                      | -61.9                            | -13.0                            | -48.9                            | H                            |
| 1.120                                             | 36.4                                 | -65.6                                     | 1.7                             | 9.8                        | 7.7                      | -59.7                            | -13.0                            | -46.7                            | Н                            |
| 1.944                                             | 29.8                                 | -70.7                                     | 1.9                             | 10.9                       | 8.8                      | -63.9                            | -13.0                            | -50.9                            | H Noise Floor                |
| -                                                 | MIDDLE Cha                           |                                           |                                 |                            |                          |                                  |                                  |                                  |                              |
| 1.673                                             | 50.6                                 | -59.4                                     | 0.8                             | 7.4                        | 5.2                      | -55.0                            | -13.0                            | -42.0                            | Н                            |
| 2.509                                             | 54.6                                 | -51.8                                     | 1.2                             | 8.4                        | 6.3                      | -46.7                            | -13.0                            | -33.7                            | Н                            |
| 3.346                                             | 33.3                                 | -70.9                                     | 1.5                             | 9.2                        | 7.1                      | -65.3                            | -13.0                            | -52.3                            | Н                            |
| 4.182                                             | 32.0                                 | -70.0                                     | 1.7                             | 9.9                        | 7.8                      | -64.0                            | -13.0                            | -51.0                            | H Noise Floor                |
| 1.673                                             | 55.2                                 | -54.8                                     | 0.8                             | 7.4                        | 5.2                      | -50.4                            | -13.0                            | -37.4                            | V                            |
| 2.509                                             | 49.9                                 | -56.5                                     | 1.2                             | 8.4                        | 6.3                      | -51.3                            | -13.0                            | -38.3                            | V                            |
| 3.346                                             | 33.3                                 | -69.8                                     | 1.5                             | 9.2                        | 7.1                      | -64.3                            | -13.0                            | -51.3                            | V Noise Floor                |
|                                                   |                                      |                                           |                                 |                            |                          |                                  |                                  |                                  |                              |
|                                                   | HIGH Channe                          | el 848.97 Mhz                             | Y-Position                      |                            |                          |                                  |                                  |                                  |                              |
|                                                   | HIGH Channe                          | el 848.97 Mhz<br>-46.8                    | Y-Position<br>0.8               | 7.4                        | 5.3                      | -42.3                            | -13.0                            | -29.3                            | V                            |
| AMPS                                              |                                      |                                           |                                 | 7.4<br>8.5                 | 5.3<br>6.3               | -42.3<br>-51.6                   | -13.0<br>-13.0                   | -29.3<br>-38.6                   | V<br>V                       |
| AMPS 1.698                                        | 63.2                                 | -46.8                                     | 0.8                             |                            |                          |                                  |                                  |                                  | ·                            |
| AMPS<br>1.698<br>2.547                            | 63.2<br>49.5                         | -46.8<br>-56.7                            | 0.8<br>1.2                      | 8.5                        | 6.3                      | -51.6                            | -13.0                            | -38.6                            | V                            |
| AMPS 1.698<br>2.547<br>3.396                      | 63.2<br>49.5<br>38.6                 | -46.8<br>-56.7<br>-64.5                   | 0.8<br>1.2<br>1.5               | 8.5<br>9.2                 | 6.3<br>7.1               | -51.6<br>-58.9                   | -13.0<br>-13.0                   | -38.6<br>-45.9                   | V<br>V                       |
| AMPS<br>1.698<br>2.547<br>3.396<br>4.245          | 63.2<br>49.5<br>38.6<br>37.3         | -46.8<br>-56.7<br>-64.5<br>-63.7          | 0.8<br>1.2<br>1.5<br>1.7        | 8.5<br>9.2<br>10.0         | 6.3<br>7.1<br>7.9        | -51.6<br>-58.9<br>-57.5          | -13.0<br>-13.0<br>-13.0          | -38.6<br>-45.9<br>-44.5          | V<br>V<br>V                  |
| AMPS<br>1.698<br>2.547<br>3.396<br>4.245<br>5.094 | 63.2<br>49.5<br>38.6<br>37.3<br>29.9 | -46.8<br>-56.7<br>-64.5<br>-63.7<br>-69.5 | 0.8<br>1.2<br>1.5<br>1.7<br>2.0 | 8.5<br>9.2<br>10.0<br>11.1 | 6.3<br>7.1<br>7.9<br>8.9 | -51.6<br>-58.9<br>-57.5<br>-62.5 | -13.0<br>-13.0<br>-13.0<br>-13.0 | -38.6<br>-45.9<br>-44.5<br>-49.5 | V<br>V<br>V<br>V Noise Floor |

## 7.6. SECTION 2.1055: FREQUENCY STABILITY


#### **INSTRUMENTS LIST**

| EQUIPMENT             | MANUFACTURE | MODEL NO.    | CAL. DUE DATE |
|-----------------------|-------------|--------------|---------------|
| Spectrum Analyzer     | HP          | 8564E        | 6/4/04        |
| Environmental Chamber | Thermotron  | SE 600-10-10 | 4/26/04       |

## Detector Function Setting of Test Receiver

| Frequency Range (MHz) | Detector Function | Resolution<br>Bandwidth | Video Bandwidth |
|-----------------------|-------------------|-------------------------|-----------------|
| 800-1000              | Peak              | 300 Hz                  | 300 Hz          |

#### **TEST SETUP**







Page 44 of 52

EUT: DUAL-MODE AMPS/CDMA CELLULAR PHONE

#### **TEST PROCEDURE**

## • Frequency stability versus environmental temperature

- 1). Setup the configuration per figure 6 for frequencies measurement inside the environmental chamber. Set the temperature of the chamber to 25°C. Set SA Resolution Bandwidth low enough to obtain the desired frequency resolution and measure the EUT 25°C operating frequency as reference frequency.
- 2). Turn EUT off and set Chamber temperature to -30°C.
- 3). Allow sufficient time (approximately 20 to 30 minus after chamber reach the assigned temperature) for EUT to stabilize. Turn on EUT and measure the EUT operating frequency. Turn off EUT after the measurement.
- 4). Repeat step 3 with a 10°C increased per stage until the highest temperature of +50°C reached, record all measured frequencies on each temperature step.

## • Frequency stability versus AC input voltage

- 1). Setup the configuration per figure 6 and set chamber temperature to 25°C. Use a variable AC power supply to power the EUT and set AC output voltage to EUT nominal input AC voltage. Set SA Resolution Bandwidth low enough to obtain the desired frequency resolution and measure the EUT 25°C operating frequency as reference frequency.
- 2). Slowly reduce the EUT input voltage to specified extreme voltage variation ( $\pm 15\%$ ) and record the maximum frequency change.

#### **RESULT**

No non-compliance noted, as shown below because the EUT uses the same OSC in both receiver and transmitter LO circuit. As a result, the frequency does not shift in Frequency Stability Test.

Frequency stability versus environmental temperature

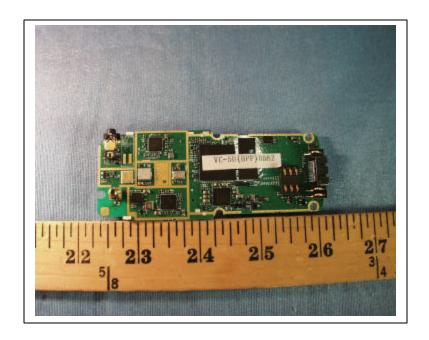
| Reference Frequency: AMPS Mid Channel 836.490000MHz @ 25°C<br>Limit: to stay ± 2.5 ppm = 2091.237 Hz |                  |                                              |             |             |  |  |  |
|------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------|-------------|-------------|--|--|--|
| Power Supply                                                                                         | Environment      | Frequency Deviation Measureed with Time Elap |             |             |  |  |  |
| (Vdc)                                                                                                | Temperature ('C) | (MHz)                                        | Delta (ppm) | Limit (ppm) |  |  |  |
| 3.70                                                                                                 | 50               | 836.49466                                    | 0.253       | ± 2.5       |  |  |  |
| 3.70                                                                                                 | 40               | 836.49480                                    | 0.090       | ± 2.5       |  |  |  |
| 3.70                                                                                                 | 30               | 836.49484                                    | 0.044       | ± 2.5       |  |  |  |
| 3.70                                                                                                 | 25               | 836.49488                                    | 0           | ± 2.5       |  |  |  |
| 3.70                                                                                                 | 20               | 836.49496                                    | -0.105      | ± 2.5       |  |  |  |
| 3.70                                                                                                 | 10               | 836.49538                                    | -0.598      | ± 2.5       |  |  |  |
| 3.70                                                                                                 | 0                | 836.49544                                    | -0.673      | ± 2.5       |  |  |  |
| 3.70                                                                                                 | -10              | 836.49541                                    | -0.643      | ± 2.5       |  |  |  |
| 3.70                                                                                                 | -20              | 836.49571                                    | -1.002      | ± 2.5       |  |  |  |
| 3.70                                                                                                 | -30              | 836.49540                                    | -0.628      | ± 2.5       |  |  |  |
| 3.08 (end point)                                                                                     | 25               | 836.49550                                    | -0.747      | ± 2.5       |  |  |  |
| 4.14                                                                                                 | 25               | 836.49518                                    | -0.365      | ± 2.5       |  |  |  |

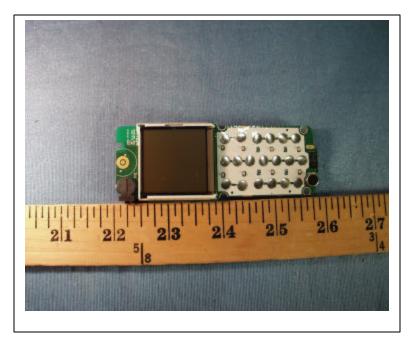
| Reference Frequency: CDMA Mid Channel 835.890000MHz @ 25°C<br>Limit: to stay ± 2.5 ppm = 2091.484 Hz |                  |               |                    |                 |  |  |  |
|------------------------------------------------------------------------------------------------------|------------------|---------------|--------------------|-----------------|--|--|--|
| Power Supply                                                                                         | Environment      | Frequency Dev | iation Measureed w | ith Time Elapse |  |  |  |
| (Vdc)                                                                                                | Temperature ('C) | (MHz)         | Delta (ppm)        | Limit (ppm)     |  |  |  |
| 3.70                                                                                                 | 50               | 836.59235     | 1.388              | ± 2.5           |  |  |  |
| 3.70                                                                                                 | 40               | 836.59224     | 1.519              | ± 2.5           |  |  |  |
| 3.70                                                                                                 | 30               | 836.59250     | 1.210              | ± 2.5           |  |  |  |
| 3.70                                                                                                 | 25               | 836.59351     | 0                  | ± 2.5           |  |  |  |
| 3.70                                                                                                 | 20               | 836.59554     | -2.435             | ± 2.5           |  |  |  |
| 3.70                                                                                                 | 10               | 836.59550     | -2.386             | ± 2.5           |  |  |  |
| 3.70                                                                                                 | 0                | 836.59558     | -2.472             | ± 2.5           |  |  |  |
| 3.70                                                                                                 | -10              | 836.59269     | 0.980              | ± 2.5           |  |  |  |
| 3.70                                                                                                 | -20              | 836.59421     | -0.845             | ± 2.5           |  |  |  |
| 3.70                                                                                                 | -30              | 836.59550     | -2.37989           | ± 2.5           |  |  |  |
| 3.00 - 3.15 (end point)                                                                              | 25               | 836.59525     | -2.08345           | ± 2.5           |  |  |  |
| 4.14                                                                                                 | 25               | 836.59360     | -0.11117           | ± 2.5           |  |  |  |

# 8. APENDIX

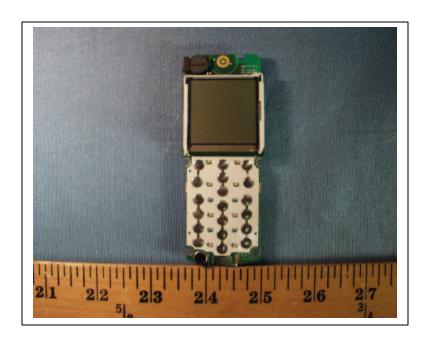
# 8.1. EXTERNAL & INTERNAL PHOTOS

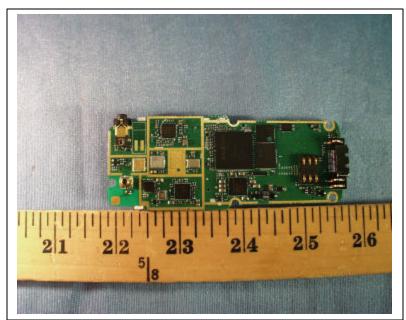






Page 47 of 52







Page 48 of 52





Page 49 of 52





Page 50 of 52





Page 51 of 52

## 8.2. SCHEMATICS

Please refer to attached sheets.

#### 8.3. BLOCK DIAGRAM

Please refer to attached sheets.

## 8.4. USER MANUAL

Please refer to attached sheets.

# **END OF REPORT**