FCC Test Report Report No.: RF180123D04A FCC ID: NKR-RI03 Test Model: UMD-RI03 Series Model: UMD-RI03-L, UMD-RI03-R Received Date: Jan. 23, 2018 Test Date: Feb. 02 to 12, 2018 **Issued Date:** Feb. 27, 2018 **Applicant:** Wistron NeWeb Corporation Address: 20 Park Avenue II, Hsinchu Science Park, Hsinchu 308, Taiwan, R.O.C. Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C. Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C. FCC Registration / Designation Number: 723255 / TW2022 This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies. Report No.: RF180123D04A Page No. 1 / 39 Report Format Version: 6.1.1 Reference No.: 180209D09 # **Table of Contents** | Re | Release Control Record3 | | | | | | |----|--|---|--|--|--|--| | 1 | | ertificate of Conformity | | | | | | 2 | ; | Summary of Test Results | 5 | | | | | | 2.1
2.2 | Measurement Uncertainty | | | | | | 3 | (| General Information | 6 | | | | | | 3.1
3.2
3.2.1
3.3
3.3.1
3.4 | Description of Support Units | 7
8
10
.11 | | | | | 4 | - | Test Types and Results | 13 | | | | | | 4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6 | Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedures. Deviation from Test Standard Test Setup. EUT Operating Conditions. Test Results Conducted Emission Measurement Limits of Conducted Emission Measurement Test Instruments Test Procedures. Deviation from Test Standard Test Setup. EUT Operating Conditions. Test Results 20dB bandwidth. Limits of 20dB bandwidth Measurement Test Setup. Test Instruments Test Procedures. Deviation from Test Standard Test Setup. Test Results 20dB bandwidth. Limits of 20dB bandwidth Measurement Test Setup. Test Instruments Test Procedures. Deviation from Test Standard EUT Operating Conditions. Test Results | 13
14
16
18
19
20
32
32
32
33
33
34
36
36
36
36
36
36
36 | | | | | 5 | | Pictures of Test Arrangements | | | | | | Αį | | dix – Information on the Testing Laboratories | | | | | # **Release Control Record** | Issue No. | Description | Date Issued | |--------------|-------------------|---------------| | RF180123D04A | Original release. | Feb. 27, 2018 | Page No. 3 / 39 Report Format Version: 6.1.1 Report No.: RF180123D04A Reference No.: 180209D09 #### **Certificate of Conformity** 1 Product: 24GHZ Blind spot warning system Brand: WNC Test Model: UMD-RI03 Series Model: UMD-RI03-L, UMD-RI03-R Sample Status: ENGINEERING SAMPLE **Applicant:** Wistron NeWeb Corporation Test Date: Feb. 02 to 12, 2018 **Standards:** 47 CFR FCC Part 15, Subpart C (Section 15.249) ANSI C63.10: 2013 The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report. Prepared by : ______, Date: ______, Peb. 27, 2018 Wendy Wu / Specialist **Date:** Feb. 27, 2018 Approved by : May Chen / Manager # 2 Summary of Test Results | 47 CFR FCC Part 15, Subpart C (SECTION 15.249) | | | | | |--|--|--------|---|--| | FCC
Clause | Test Item | Result | Remarks | | | 15.207 | AC Power Conducted Emission | PASS | Meet the requirement of limit. Minimum passing margin is -37.40dB at 20.80859MHz. | | | 15.209
15.249
15.249 (d) | Radiated Emission Test Band Edge Measurement Limit: 50dB less than the peak value of fundamental frequency or meet radiated emission limit in section 15.209 | PASS | Meet the requirement of limit. Minimum passing margin is -3.9dB at 24250.00MHz. | | # 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Measurement | Frequency | Expanded Uncertainty (k=2) (±) | |------------------------------------|----------------|--------------------------------| | Conducted Emissions at mains ports | 150kHz ~ 30MHz | 1.84 dB | | Radiated Emissions up to 1 GHz | 30MHz ~ 1GHz | 5.33 dB | | | 1GHz ~ 6GHz | 5.08 dB | | Radiated Emissions above 1 GHz | 6GHz ~ 18GHz | 4.98 dB | | | 18GHz ~ 40GHz | 5.19 dB | # 2.2 Modification Record There were no modifications required for compliance. # 3 General Information # 3.1 General Description of EUT | Product | 24GHZ Blind spot warning system | |---------------------|---------------------------------| | Brand | WNC | | Test Model | UMD-RI03 | | Series Model | UMD-RI03-L, UMD-RI03-R | | Status of EUT | ENGINEERING SAMPLE | | Power Supply Rating | DC 12V | | Modulation Type | FMCW | | Operating Frequency | 24.065 ~ 24.225GHz | | Number of Channel | 3 | | Antenna Type | Refer to Note | | Antenna Connector | Refer to Note | | Accessory Device | NA | | Data Cable Supplied | DC cable x 1 (shielded, 1.6m) | #### Note: 1. The EUT has below model names, which are identical to each other in all aspects except for the following: | Model | Frequence range | Difference | |------------|--------------------|---| | UMD-RI03 | 24.065 ~ 24.225GHz | | | UMD-RI03-L | 24.075 ~ 24.225GHz | Hardware are the same, only the software to control the frequency range | | UMD-RI03-R | 24.065 ~ 24.215GHz | and the state of desired results | From the above models, model: **UMD-RI03** was selected as representative model for the test and its data was recorded in this report. 2. The antenna provided to the EUT, please refer to the following table: | Brand | Model | Antenna Gain (dBi) | Antenna Type | Connecter Type | |-------|-------|--------------------|---------------------|----------------| | WNC | NA | 14 | PCB printed (Patch) | NA | 3. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual. # 3.2 Description of Test Modes 3 channels are provided in EUT for test: | Channel | Frequency | |---------|-----------| | 1 | 24.065GHz | | 2 | 24.145GHz | | 3 | 24.225GHz | ### 3.2.1 Test Mode Applicability and Tested Channel Detail | EUT | APPLICABLE TO | | | | DESCRIPTION | |-------------------|---------------|-------|-----|----|-------------| | CONFIGURE
MODE | RE≥1G | RE<1G | PLC | EB | DESCRIPTION | | - | √ | √ | V | V | - | Where RE≥1G: Radiated Emission above 1GHz & Bandedge Measurement RE<1G: Radiated Emission below 1GHz PLC: Power Line Conducted Emission EB: 20dB Bandwidth **NOTE:** The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Y-plane**. # Radiated Emission Test (Above 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final
test as listed below. | TESTED | MODULATION | |---------|------------| | CHANNEL | TYPE | | 1, 2, 3 | FMCW | # Radiated Emission Test (Below 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | TESTED | MODULATION | |---------|------------| | CHANNEL | TYPE | | 1, 2, 3 | FMCW | # **Power Line Conducted Emission Test:** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | TESTED | MODULATION | |---------|------------| | CHANNEL | TYPE | | 1 | FMCW | Report No.: RF180123D04A Page No. 8 / 39 Report Format Version: 6.1.1 # 20dB Bandwidth: - This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode. - Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). - Following channel(s) was (were) selected for the final test as listed below. | TESTED | MODULATION | |---------|------------| | CHANNEL | TYPE | | 1 | FMCW | # **Test Condition:** | | | | | |------------------------------|--|--------|--------------| | APPLICABLE TO | APPLICABLE TO ENVIRONMENTAL CONDITIONS | | TESTED BY | | RE≥1G 22deg. C, 63%RH | | DC 12V | Robert Cheng | | RE<1G | RE<1G 23deg. C, 63%RH | | Weiwei Lo | | PLC | PLC 25deg. C, 75%RH | | Andy Ho | | EB | 25deg. C, 60%RH | DC 12V | Jyunchun Lin | Report No.: RF180123D04A Page No. 9 / 39 Report Format Version: 6.1.1 #### 3.3 **Description of Support Units** The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | ID | Product | Brand | Model No. | Serial No. | FCC ID | Remarks | |----|---------|---------|-----------|------------|--------|-----------------| | Α | Adapter | Topward | 6603D | 795558 | NA | Provided by Lab | # Note: ^{1.} All power cords of the above support units are non-shielded (1.8m). | ID | Descriptions | Qty. | Length (m) | Shielding
(Yes/No) | Cores (Qty.) | Remarks | |----|--------------|------|------------|-----------------------|--------------|--------------------| | 1 | DC cable | 1 | 1.6 | No | 0 | Supplied by client | Report No.: RF180123D04A Reference No.: 180209D09 Page No. 10 / 39 Report Format Version: 6.1.1 # 3.3.1 Configuration of System under Test # For conducted emission # For radiated emission | 3.4 General Description of Applied Standards | |--| | The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards: | | FCC Part 15, Subpart C (15.249) ANSI C63.10-2013 | | All test items have been performed and recorded as per the above standards. | Report No.: RF180123D04A Reference No.: 180209D09 Page No. 12 / 39 Report Format Version: 6.1.1 ### 4 Test Types and Results # 4.1 Radiated Emission and Bandedge Measurement 4.1.1 Limits of Radiated Emission and Bandedge Measurement The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following | Fundamental
Frequency | Field Strength of Fundamental (millivolts/meter) | Field Strength of Harmonics (microvolts/meter) | | | |--------------------------|--|--|--|--| | 902 ~ 928 MHz | 50 | 500 | | | | 2400 ~ 2483.5 MHz | 50 | 500 | | | | 5725 ~ 5875 MHz | 50 | 500 | | | | 24 ~ 24.25 GHz | 250 | 2500 | | | Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits as below table, whichever is the lesser attenuation | Frequencies
(MHz) | Field Strength
(microvolts/meter) | Measurement Distance (meters) | |----------------------|--------------------------------------|-------------------------------| | 0.009 ~ 0.490 | 2400/F(kHz) | 300 | | 0.490 ~ 1.705 | 24000/F(kHz) | 30 | | 1.705 ~ 30.0 | 30 | 30 | | 30 ~ 88 | 100 | 3 | | 88 ~ 216 | 150 | 3 | | 216 ~ 960 | 200 | 3 | | Above 960 | 500 | 3 | # NOTE: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level (dBuV/m) = 20 log Emission level (uV/m). - 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation. Report No.: RF180123D04A Page No. 13 / 39 Report Format Version: 6.1.1 # 4.1.2 Test Instruments # Below 40GHz test: | DESCRIPTION & | MODEL NO. | SERIAL NO. | CALIBRATED | CALIBRATED | | |--------------------------------------|---|-------------------------------|---|---|--| | MANUFACTURER | WODEL NO. | SERIAL NO. | DATE | UNTIL | | | Test Receiver Agilent | N9038A | MY50010156 | July 12, 2017 | July 11, 2018 | | | Loop Antenna ^(*)
TESEQ | HLA 6121 | 45745 | May 19, 2017 | May 18, 2018 | | | Pre-Amplifier
Mini-Circuits | ZFL-1000VH2B | AMP-ZFL-05 | May 06, 2017 | May 05, 2018 | | | Trilog Broadband Antenna SCHWARZBECK | VULB 9168 | 9168-361 | Nov. 29, 2017 | Nov. 28, 2018 | | | RF Cable | 8D | 966-3-1
966-3-2
966-3-3 | Apr. 01, 2017 | Mar. 31, 2018 | | | Fixed attenuator Mini-Circuits | UNAT-5+ | PAD-3m-3-01 | Oct. 03, 2017 | Oct. 02, 2018 | | | Horn_Antenna
SCHWARZBECK | BBHA9120-D | 9120D-406 | Dec. 12, 2017 | Dec. 11, 2018 | | | Pre-Amplifier
EMCI | EMC12630SE 980384 | | Jan. 29, 2018 | Jan. 28, 2019 | | | RF Cable | EMC104-SM-SM-1200
EMC104-SM-SM-2000
EMC104-SM-SM-5000 | 160922
150317
150322 | Jan. 29, 2018
Jan. 29, 2018
Jan. 29, 2018 | Jan. 28, 2019
Jan. 28, 2019
Jan. 28, 2019 | | | Spectrum Analyzer
Keysight | N9030A | MY54490679 | July 25, 2017 | July 24, 2018 | | | Pre-Amplifier EMCI | EMC184045SE | 980386 | Jan. 29, 2018 | Jan. 28, 2019 | | | Horn_Antenna
SCHWARZBECK | BBHA 9170 | BBHA9170608 | Dec. 14, 2017 | Dec. 13, 2018 | | | RF Cable | EMC102-KM-KM-1200 | 160924 | Jan. 29, 2018 | Jan. 28, 2019 | | | Software | ADT_Radiated_V8.7.08 | NA | NA | NA | | | Antenna Tower & Turn Table Max-Full | MF-7802 | MF780208406 NA | | NA | | | Boresight Antenna Fixture | FBA-01 | FBA-SIP01 | NA | NA | | # Note: - 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA. - 3. The test was performed in 966 Chamber No. 3. - 4. The CANADA Site Registration No. is 20331-1 - 5. Loop antenna was used for all emissions below 30 MHz. - 6. Tested Date: Feb. 05 to 10, 2018 # Above 40GHz test: | DESCRIPTION & | MODEL NO | SEDIAL NO | CALIBRATED | CALIBRATED | |---|-----------|-------------|---------------|---------------| | MANUFACTURER | MODEL NO. | SERIAL NO. | DATE | UNTIL | | Spectrum Analyzer
Agilent | E4446A | MY48250254 | Nov. 21, 2017 | Nov. 20, 2018 | | *Harmonic Mixer (33~55GHz) OML | M22HWD | 110215-1 | Oct. 17, 2017 | Oct. 16, 2019 | | *Horn Antenna (33~55GHz) OML | M22RH | 110215-1 | Oct. 17, 2017 | Oct. 16, 2019 | | *Harmonic Mixer (50~75GHz) OML | M15RH | 110215-1 | Oct. 17, 2017 | Oct. 16, 2019 | | *Horn Antenna (50~75GHz) OML | M15HWD | 110215-1 | Oct. 17, 2017 | Oct. 16, 2019 | | *Harmonic Mixer (75~110GHz) OML | M10HWD | 110215-1 | Oct. 17, 2017 | Oct. 16, 2019 | | *Horn Antenna (75~110GHz) OML | M10RH | 110215-1 | Oct. 17, 2017 | Oct. 16, 2019 | | *Diplexer
EMCI | DPL26 | DPL26_01 | Oct. 17, 2017 | Oct. 16, 2019 | | *Diplexer
EMCI | DPL26 | DPL26_02 | Oct. 17, 2017 | Oct. 16, 2019 | | *Precision 30dB Attenuator
Keysight | 11708A | MY55260015 | Oct. 17, 2017 | Oct. 16, 2019 | | *Zero-Bias Detector (50~75GHz)
Vdi | WR15ZBD | WR15R5 1-30 | Oct. 17, 2017 | Oct. 16, 2019 | | 4CH Infiniivision Oscilloscope
Keysight | DSOX6004A | MY55190202 | Dec. 13, 2017 | Dec. 12, 2018 | | *WR15CH Conical Horn
Keysight | WR15CH | WR15CH-01 | Oct. 17, 2017 | Oct. 16, 2019 | | *WR10CH Conical Horn
Keysight | WR10CH | WR10CH-01 | Oct. 17, 2017 | Oct. 16, 2019 | | *Millimeter-Wave Signal
Generator Frequency Extension
Module (50~75 GHz)
Keysight | E8257DV15 | US54250106 | Oct. 17, 2017 | Oct. 16, 2019 | | *Millimeter-Wave Signal
Generator Frequency Extension
Module (75~110 GHz)
Keysight | E8257DV10 | US53250009 | Oct. 17, 2017 | Oct. 16, 2019 | | Antenna Tower & Turn Table CT | NA | NA | NA | NA | # Note: - 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA. - 3. The test was performed in 966 Chamber No. 3 - 4. The CANADA Site Registration No. is 20331-2 - 5. Tested Date: Feb. 02, 2018 #### 4.1.3
Test Procedures ### For Radiated emission: Below 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. Both X and Y axes of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. #### NOTE: 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz. # For Radiated emission: 30MHz ~ 40GHz - a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. - f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary. # Note: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz. - 2. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak detection (PK) at frequency from 1GHz to 40GHz. - 3. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Average detection (AV) at frequency from 1GHz to 40GHz. - 4. All modes of operation were investigated and the worst-case emissions are reported. Report No.: RF180123D04A Page No. 16 / 39 Report Format Version: 6.1.1 #### For Radiated emission: Above 40GHz External harmonic mixers are utilized. - a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meters chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The distance at which limits are typically specified is 3 meter; however, closer measurement distances may be utilized. - c. Begin handheld measurements with the test antenna (horn) at a distance of 1 meter from the EUT, in a horizontally polarized position. Slowly adjust its position, entirely covering the plane 1 meter from the FUT - d. Repeat (b) with the horn in a vertically polarized position. - e. If the emission cannot be detected at 1 meter, reduce the RBW in order to increase system sensitivity. Note the value. If the emission still cannot be detected, move the horn closer to the EUT, noting the distance at which a measurement is made. - f. Note the maximum level indicated on the Spectrum Analyzer. - g. Based on the distance at which the measurement was made and the calculated distance to the edge of the far field, determine the appropriate distance attenuation factor. Apply this factor to the calculated field strength in order to determine the equivalent field strength at the distance at which the regulatory limit is specified. Compare to the appropriate limits - h. Repeat (a) (f) for every emission that must be measured, up through the required frequency range of investigation ### NOTE: - The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak and Average detection at frequency above 40GHz. - 2. Shorter measurement distances may be used to improve the measurement system's noise floor. As ANSI C63.10 description is based on the measurement in distance of 3 meters, the data obtained at 1 meter distance was extrapolate results to the 3-m distance: Test value at 3-meter distance (dBuV) - = Test value at 1 meter distance (dBuV) -20log(3/1)(dB) - = Test value at 1 meter distance (dBuV) -9.5(dB). - * Measurements made at 1 meter distance. Test value converted to account for 3-meter measurement distance. #### FAR FIELD BOUNDARY CALCULATIONS The far-field boundary is given as: R far field = $(2 * L^2) / \lambda$ where: L = Largest Antenna Dimension, including the reflector, in meters λ = wavelength in meters | FREQUENCY
(GHz) | L (m) | Lambda (m) | R (Far Field)
(m) | |--------------------|-------|------------|----------------------| | 24.065 | 0.03 | 0.0125 | 0.144 | | 24.145 | 0.03 | 0.0124 | 0.1452 | | 24.225 | 0.03 | 0.0124 | 0.1452 | Report No.: RF180123D04A Page No. 17 / 39 Report Format Version: 6.1.1 # 4.1.4 Deviation from Test Standard No deviation. # 4.1.5 Test Setup # For Radiated emission below 30MHz # For Radiated emission 30MHz to 1GHz Report No.: RF180123D04A Reference No.: 180209D09 # For Radiated emission above 1GHz For the actual test configuration, please refer to the attached file (Test Setup Photo). # 4.1.6 EUT Operating Conditions Set the EUT under transmission condition continuously at specific channel frequency. # 4.1.7 Test Results # **Above 1GHz Data** | CHANNEL | TX Channel 1 | DETECTOR | Peak (PK) | |-----------------|--------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 18GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 6170.80 | 56.2 PK | 74.0 | -17.8 | 1.75 H | 40 | 50.8 | 5.4 | | 2 | 6170.80 | 38.8 AV | 54.0 | -15.2 | 1.75 H | 40 | 33.4 | 5.4 | | 3 | 11303.42 | 64.2 PK | 74.0 | -9.8 | 1.85 H | 66 | 50.4 | 13.8 | | 4 | 11303.42 | 46.5 AV | 54.0 | -7.5 | 1.85 H | 66 | 32.7 | 13.8 | | | | ANTENNA | POLARITY | & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 6169.70 | 55.8 PK | 74.0 | -18.2 | 1.65 V | 34 | 50.4 | 5.4 | | 2 | 6169.70 | 38.2 AV | 54.0 | -15.8 | 1.65 V | 34 | 32.8 | 5.4 | | 3 | 11302.01 | 63.9 PK | 74.0 | -10.1 | 1.20 V | 65 | 50.1 | 13.8 | | 4 | 11302 01 | 46.3 AV | 54.0 | -7 7 | 1 20 V | 65 | 32.5 | 13.8 | #### **REMARKS:** - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value Report No.: RF180123D04A Page No. 20 / 39 Report Format Version: 6.1.1 | CHANNEL | TX Channel 2 | DETECTOR | Peak (PK) | |-----------------|--------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 18GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 6730.55 | 56.5 PK | 74.0 | -17.5 | 1.45 H | 85 | 49.1 | 7.4 | | 2 | 6730.55 | 39.8 AV | 54.0 | -14.2 | 1.45 H | 85 | 32.4 | 7.4 | | 3 | 11386.50 | 64.5 PK | 74.0 | -9.5 | 1.65 H | 85 | 50.6 | 13.9 | | 4 | 11386.50 | 47.2 AV | 54.0 | -6.8 | 1.65 H | 85 | 33.3 | 13.9 | | | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M | | | | | | | | | 2 | FREQ. | EMISSION | LIMIT | MARGIN | ANTENNA | TABLE | RAW | CORRECTION | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | |-----|----------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | 1 | 6729.40 | 56.3 PK | 74.0 | -17.7 | 1.74 V | 65 | 48.9 | 7.4 | | 2 | 6729.40 | 39.4 AV | 54.0 | -14.6 | 1.74 V | 65 | 32.0 | 7.4 | | 3 | 11384.60 | 64.2 PK | 74.0 | -9.8 | 1.75 V | 99 | 50.3 | 13.9 | | 4 | 11384.60 | 46.9 AV | 54.0 | -7.1 | 1.75 V | 99 | 33.0 | 13.9 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value Page No. 21
/ 39 Report Format Version: 6.1.1 Report No.: RF180123D04A Reference No.: 180209D09 | CHANNEL | TX Channel 3 | DETECTOR | Peak (PK) | |-----------------|--------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 18GHz | FUNCTION | Average (AV) | | | | ANITENNIA | DOL ADITY | O TECT DIC | TANCE, HO | DIZONTAL | AT 2 M | | |-----|----------------|-------------------------------|-------------------|----------------|------------------------------|----------------------------|------------------------|--------------------------------| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | TANCE: HO ANTENNA HEIGHT (m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 6775.40 | 57.5 PK | 74.0 | -16.5 | 1.85 H | 60 | 50.3 | 7.2 | | 2 | 6775.40 | 40.1 AV | 54.0 | -13.9 | 1.85 H | 60 | 32.9 | 7.2 | | 3 | 11414.50 | 64.9 PK | 74.0 | -9.1 | 1.85 H | 99 | 51.0 | 13.9 | | 4 | 11414.50 | 48.1 AV | 54.0 | -5.9 | 1.85 H | 99 | 34.2 | 13.9 | | | | ANTENNA | POLARITY | / & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 6769.50 | 56.8 PK | 74.0 | -17.2 | 1.75 V | 88 | 49.4 | 7.4 | | 2 | 6769.50 | 39.8 AV | 54.0 | -14.2 | 1.75 V | 88 | 32.4 | 7.4 | | 3 | 11404.50 | 64.7 PK | 74.0 | -9.3 | 2.01 V | 88 | 50.8 | 13.9 | 11404.50 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) -6.4 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB) 2.01 V 88 33.7 13.9 3. The other emission levels were very low against the limit. 54.0 4. Margin value = Emission Level - Limit value 47.6 AV Report No.: RF180123D04A Page No. 22 / 39 Report Format Version: 6.1.1 | CHANNEL | TX Channel 1 | DETECTOR | Peak (PK) | |-----------------|---------------|----------|--------------| | FREQUENCY RANGE | 18GHz ~ 40GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 24000.00 | 68.5 PK | 74.0 | -5.5 | 1.49 H | 351 | 86.7 | -18.2 | | 2 | 24000.00 | 33.7 AV | 54.0 | -20.3 | 1.49 H | 351 | 51.9 | -18.2 | | 3 | *24065.00 | 87.9 PK | | -40.0 | 1.49 H | 351 | 106.1 | -18.2 | | 4 | *24065.00 | 53.1 AV | | -54.8 | 1.49 H | 351 | 71.3 | -18.2 | | | | ANTENNA | POLARITY | ' & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 24000.00 | 69.8 PK | 74.0 | -4.2 | 1.29 V | 359 | 88.0 | -18.2 | | 2 | 24000.00 | 35.0 AV | 54.0 | -19.0 | 1.29 V | 359 | 53.2 | -18.2 | | 3 | 24065.00 | 105.3 PK | | -22.6 | 1.29 V | 359 | 123.5 | -18.2 | | 4 | 24065.00 | 70.5 AV | | -37.4 | 1.29 V | 359 | 88.7 | -18.2 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value - 5. " * ": Fundamental frequency. Report No.: RF180123D04A Page No. 23 / 39 Report Format Version: 6.1.1 Report No.: RF180123D04A Reference No.: 180209D09 | CHANNEL | TX Channel 2 | DETECTOR | Peak (PK) | |-----------------|---------------|----------|--------------| | FREQUENCY RANGE | 18GHz ~ 40GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | |---|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | *24145.00 | 87.7 PK | | -40.2 | 1.50 H | 350 | 105.8 | -18.1 | | 2 | *24145.00 | 52.9 AV | | -55.0 | 1.50 H | 350 | 71.0 | -18.1 | | | | ANTENNA | POLARITY | ' & TEST DI | STANCE: V | ERTICAL A | Т 3 М | | | NO. FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) (dB) ANTENNA TABLE RAW VALUE FACTOR (dB/m) | | | | | | | | | | 1 | *24145.00 | 105.1 PK | | -22.8 | 1.28 V | 356 | 123.2 | -18.1 | | 2 | *24145.00 | 70.3 AV | | -37.6 | 1.28 V | 356 | 88.4 | -18.1 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value - 5. " * ": Fundamental frequency. Report No.: RF180123D04A Page No. 24 / 39 Report Format Version: 6.1.1 Report No.: RF180123D04A Reference No.: 180209D09 | CHANNEL | TX Channel 3 | DETECTOR | Peak (PK) | |-----------------|---------------|----------|--------------| | FREQUENCY RANGE | 18GHz ~ 40GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | *24225.00 | 87.5 PK | | -40.4 | 1.51 H | 346 | 105.6 | -18.1 | | 2 | *24225.00 | 52.7 AV | | -55.2 | 1.51 H | 346 | 70.8 | -18.1 | | 3 | 24250.00 | 69.2 PK | 74.0 | -4.8 | 1.51 H | 346 | 87.1 | -17.9 | | 4 | 24250.00 | 34.4 AV | 54.0 | -19.6 | 1.51 H | 346 | 52.3 | -17.9 | | | | ANTENNA | POLARITY | 4 & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | *24225.00 | 104.8 PK | | -23.1 | 1.25 V | 354 | 122.9 | -18.1 | | 2 | *24225.00 | 70.0 AV | | -37.9 | 1.25 V | 354 | 88.1 | -18.1 | 4 24250.00 24250.00 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) -3.9 -18.7 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB) 1.25 V 1.25 V 354 354 88.0 53.2 -17.9 -17.9 3. The other emission levels were very low against the limit. 74.0 54.0 - 4. Margin value = Emission Level Limit value - 5. " * ": Fundamental frequency. 70.1 PK 35.3 AV Report No.: RF180123D04A Page No. 25 / 39 Report Format Version: 6.1.1 | CHANNEL | TX Channel 1 | DETECTOR | Peak (PK) | |-----------------|----------------|----------|--------------| | FREQUENCY RANGE | 40GHz ~ 100GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | |-----|---|-------------------------------|------------------------|-------------|---------------------|----------------------------|-----------------------------------|--|--| | NO. | FREQ. (GHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | EIRP Level
(dBm) | Measured
Power
(dBm) | Receiver
Antenna
Gain (dBi) | | | | 1 | 48.13 | 76.9 PK | 87.9 | -11.0 | -18.4 | -60.2 | 24.3 | | | | 2 | 48.13 | 62.6 AV | 67.9 | -5.3 | -32.7 | -74.5 | 24.3 | | | | 3 | 72.195 | 78.7 PK | 87.9 | -9.2 | -16.6 | -62.1 | 24.1 | | | | 4 | 72.195 | 64.7 AV | 67.9 | -3.2 | -30.6 | -76.1 | 24.1 | | | | | | ANTENNA PO | DLARITY & T | EST DISTANC | CE: VERTICAL | LAT3M | | | | | NO. | FREQ. (GHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | EIRP Level
(dBm) | Measured
Power
(dBm) | Receiver
Antenna
Gain (dBi) | | | | 1 | 48.13 | 77.9 PK | 87.9 | -10.0 | -17.4 | -59.2 | 24.3 | | | | 2 | 48.13 | 64 AV | 67.9 | -3.9 | -31.3 | -73.1 | 24.3 | | | -9.0 -3.3 -16.4 -30.7 -61.9 -76.2 24.1 24.1 #### **REMARKS:** 72.195 72.195 1. The measured power level is converted to EIRP using the Friis equation: 87.9 67.9 EIRP = PT * GT = (PR / GR) * $(4 * Pi * D/ \lambda)^{2}$ 78.9 PK 64.6 AV where: 3 PR is the power of the receive measurement GR is the gain of the receive measurement antenna D is the measurement distance λ is the wavelength 2. Field strength is then converted to EIRP as follows: $EIRP = ((E*D)^2) / 30$ Working in dB units, the above equation is equivalent to: $EIRP[dBm] = E[dB\mu V/m] + 20 log(D[meters]) - 104.8$ E = EIRP - 20 * log(D) + 104.8 - 3. " ": The emission levels were too low to be detected. - 4. Shorter measurement distances may be used to improve the measurement system's noise floor. As ANSI C63.10 description is based on the measurement in distance of 3 meters, the data obtained at 1 meter distance was extrapolate results to the 3-m distance: Test value at 3-meter distance (dBuV) - = Test value at 1 meter distance (dBuV) -20log(3/1)(dB) - = Test value at 1 meter distance (dBuV) -9.5(dB). - *Measurements made at 1 meter distance. Test value converted to account for 3-meter measurement distance. Report No.: RF180123D04A Page No.
26 / 39 Report Format Version: 6.1.1 | CHANNEL | TX Channel 2 | DETECTOR | Peak (PK) | |-----------------|----------------|----------|--------------| | FREQUENCY RANGE | 40GHz ~ 100GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | | |-----|---|-------------------------------|------------------------|-------------|---------------------|----------------------------|-----------------------------------|--|--|--| | NO. | FREQ. (GHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | EIRP Level
(dBm) | Measured
Power
(dBm) | Receiver
Antenna
Gain (dBi) | | | | | 1 | 48.29 | 76.6 PK | 87.9 | -11.3 | -18.7 | -60.5 | 24.3 | | | | | 2 | 48.29 | 62.3 AV | 67.9 | -5.6 | -33.0 | -74.8 | 24.3 | | | | | 3 | 72.435 | 78.3 PK | 87.9 | -9.6 | -17.0 | -62.5 | 24.1 | | | | | 4 | 72.435 | 64.2 AV | 67.9 | -3.7 | -31.1 | -76.6 | 24.1 | | | | | | | ANTENNA P | OLARITY & T | EST DISTANC | CE: VERTICAL | LAT3M | | | | | | NO. | FREQ. (GHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | EIRP Level
(dBm) | Measured
Power
(dBm) | Receiver
Antenna
Gain (dBi) | | | | | 1 | 48.29 | 77.6 PK | 87.9 | -10.3 | -17.7 | -59.5 | 24.3 | | | | | 2 | 48.29 | 63.7 AV | 67.9 | -4.2 | -31.6 | -73.4 | 24.3 | | | | | 1 | 1 | ı | 1 | 1 | ı | 1 | 1 | | | | -9.3 -3.4 -16.7 -30.8 -62.2 -76.3 24.1 24.1 #### **REMARKS:** 72.435 1. The measured power level is converted to EIRP using the Friis equation: 87.9 67.9 EIRP = PT * GT = (PR / GR) * $$(4 * Pi * D/ \lambda)^{2}$$ 78.6 PK 64.5 AV where: 3 PR is the power of the receive measurement GR is the gain of the receive measurement antenna D is the measurement distance λ is the wavelength 2. Field strength is then converted to EIRP as follows: $EIRP = ((E*D)^2) / 30$ Working in dB units, the above equation is equivalent to: $EIRP[dBm] = E[dB\mu V/m] + 20 log(D[meters]) - 104.8$ E = EIRP - 20 * log(D) + 104.8 - 3. " ": The emission levels were too low to be detected. - 4. Shorter measurement distances may be used to improve the measurement system's noise floor. As ANSI C63.10 description is based on the measurement in distance of 3 meters, the data obtained at 1 meter distance was extrapolate results to the 3-m distance: Test value at 3-meter distance (dBuV) - = Test value at 1 meter distance (dBuV) -20log(3/1)(dB) - = Test value at 1 meter distance (dBuV) -9.5(dB). - *Measurements made at 1 meter distance. Test value converted to account for 3-meter measurement distance. Report No.: RF180123D04A Page No. 27 / 39 Report Format Version: 6.1.1 | CHANNEL | TX Channel 3 | DETECTOR | Peak (PK) | |-----------------|----------------|----------|--------------| | FREQUENCY RANGE | 40GHz ~ 100GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | | |-----|---|-------------------------------|------------------------|-------------|---------------------|----------------------------|-----------------------------------|--|--|--| | NO. | FREQ. (GHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | EIRP Level
(dBm) | Measured
Power
(dBm) | Receiver
Antenna
Gain (dBi) | | | | | 1 | 48.45 | 76.2 PK | 87.9 | -11.7 | -19.1 | -60.9 | 24.3 | | | | | 2 | 48.45 | 61.9 AV | 67.9 | -6.0 | -33.4 | -75.2 | 24.3 | | | | | 3 | 72.675 | 77.9 PK | 87.9 | -10.0 | -17.4 | -62.9 | 24.2 | | | | | 4 | 72.675 | 63.9 AV | 67.9 | -4.0 | -31.4 | -76.9 | 24.2 | | | | | | | ANTENNA P | OLARITY & T | EST DISTANC | CE: VERTICA | LAT3M | | | | | | NO. | FREQ. (GHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | EIRP Level
(dBm) | Measured
Power
(dBm) | Receiver
Antenna
Gain (dBi) | | | | | 1 | 48.45 | 77.4 PK | 87.9 | -10.5 | -17.9 | -59.7 | 24.3 | | | | | 2 | 48.45 | 63.6 AV | 67.9 | -4.3 | -31.7 | -73.5 | 24.3 | | | | | | | | | | | | | | | | -9.6 -3.7 -17.0 -31.1 -62.5 -76.6 24.2 24.2 #### **REMARKS:** 72.675 72.675 1. The measured power level is converted to EIRP using the Friis equation: 87.9 67.9 EIRP = PT * GT = $(PR / GR) * (4 * Pi * D/ \lambda)^2$ 78.3 PK 64.2 AV where: 3 PR is the power of the receive measurement GR is the gain of the receive measurement antenna D is the measurement distance λ is the wavelength 2. Field strength is then converted to EIRP as follows: $EIRP = ((E*D)^2) / 30$ Working in dB units, the above equation is equivalent to: $EIRP[dBm] = E[dB\mu V/m] + 20 log(D[meters]) - 104.8$ E = EIRP - 20 * log(D) + 104.8 - 3. " ": The emission levels were too low to be detected. - 4. Shorter measurement distances may be used to improve the measurement system's noise floor. As ANSI C63.10 description is based on the measurement in distance of 3 meters, the data obtained at 1 meter distance was extrapolate results to the 3-m distance: Test value at 3-meter distance (dBuV) - = Test value at 1 meter distance (dBuV) -20log(3/1)(dB) - = Test value at 1 meter distance (dBuV) -9.5(dB). - *Measurements made at 1 meter distance. Test value converted to account for 3-meter measurement distance. Report No.: RF180123D04A Page No. 28 / 39 Report Format Version: 6.1.1 # **Below 1GHz Data** | CHANNEL | TX Channel 1 | DETECTOR | Oversi Bask (OD) | |-----------------|--------------|----------|------------------| | FREQUENCY RANGE | 9kHz ~ 1GHz | FUNCTION | Quasi-Peak (QP) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 160.13 | 25.1 QP | 43.5 | -18.4 | 2.00 H | 290 | 33.2 | -8.1 | | 2 | 313.92 | 27.4 QP | 46.0 | -18.6 | 1.00 H | 310 | 34.2 | -6.8 | | 3 | 412.86 | 27.8 QP | 46.0 | -18.2 | 2.00 H | 318 | 32.5 | -4.7 | | 4 | 528.70 | 31.2 QP | 46.0 | -14.8 | 1.50 H | 27 | 33.4 | -2.2 | | 5 | 691.03 | 30.5 QP | 46.0 | -15.5 | 1.00 H | 90 | 29.8 | 0.7 | | 6 | 819.00 | 32.4 QP | 46.0 | -13.6 | 2.00 H | 303 | 29.8 | 2.6 | | | | ANTENNA | POLARITY | & TEST DI | STANCE: V | ERTICAL A | Т 3 М | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | |-----|----------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | 1 | 50.18 | 28.0 QP | 40.0 | -12.0 | 1.50 V | 357 | 35.9 | -7.9 | | 2 | 151.93 | 24.6 QP | 43.5 | -18.9 | 2.00 V | 32 | 32.5 | -7.9 | | 3 | 324.37 | 27.8 QP | 46.0 | -18.2 | 1.00 V | 21 | 34.1 | -6.3 | | 4 | 524.80 | 30.2 QP | 46.0 | -15.8 | 1.00 V | 71 | 32.4 | -2.2 | | 5 | 644.37 | 31.1 QP | 46.0 | -14.9 | 2.00 V | 3 | 30.9 | 0.2 | | 6 | 840.53 | 32.4 QP | 46.0 | -13.6 | 1.00 V | 209 | 29.6 | 2.8 | # **REMARKS:** - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value Report No.: RF180123D04A Page No. 29 / 39 Report Format Version: 6.1.1 Reference No.: 180209D09 | CHANNEL | TX Channel 2 | DETECTOR | Overi Book (OB) | |-----------------|--------------|----------|-----------------| | FREQUENCY RANGE | 9kHz ~ 1GHz | FUNCTION | Quasi-Peak (QP) | | | | ANTENNA | POLARITY | & TEST DIS | TANCE: HO | RIZONTAL | AT 3 M | | |-----|----------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 48.48 | 27.7 QP | 40.0 | -12.3 | 1.00 H | 247 | 35.7 | -8.0 | | 2 | 311.64 | 27.4 QP | 46.0 | -18.6 | 1.00 H | 306 | 34.3 | -6.9 | | 3 | 381.16 | 27.9 QP | 46.0 | -18.1 | 1.00 H | 313 | 33.3 | -5.4 | | 4 | 528.85 | 31.2 QP | 46.0 | -14.8 | 2.00 H | 360 | 33.4 | -2.2 | | 5 | 774.33 | 31.6 QP | 46.0 | -14.4 | 1.00 H | 360 | 29.2 | 2.4 | | 6 | 919.27 | 33.5 QP | 46.0 | -12.5 | 1.00 H | 138 | 29.6 | 3.9 | | | | ANTENNA | POLARITY | 4 & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 49.18 | 28.1 QP | 40.0 | -11.9 | 1.00 V | 0 | 36.1 | -8.0 | | 2 | 318.07 | 27.6 QP | 46.0 | -18.4 | 1.00 V | 0 | 34.1 | -6.5 | | 3 | 522.28 | 29.3 QP | 46.0 | -16.7 | 1.00 V | 156 | 31.5 | -2.2 | | 4 | 644.37 | 30.8 QP | 46.0 | -15.2 | 1.00 V | 0 | 30.6 | 0.2 | | 5 | 805.56 | 32.5 QP | 46.0 | -13.5 | 1.00 V | 352 | 30.1 | 2.4 | | 6 | 940.20 | 33.6 QP | 46.0 | -12.4 | 1.50 V | 29 | 29.5 | 4.1 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value Report No.: RF180123D04A Page No. 30 / 39 Report Format Version: 6.1.1 Report No.: RF180123D04A Reference No.: 180209D09 | CHANNEL | TX Channel 3 | DETECTOR | Ougai Baak (OD) | |-----------------|--------------|----------|-----------------| |
FREQUENCY RANGE | 9kHz ~ 1GHz | FUNCTION | Quasi-Peak (QP) | | | | ANTENNA | POLARITY & | & TEST DIS | TANCE: HO | RIZONTAL | AT 3 M | | |--------|------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 139.83 | 24.4 QP | 43.5 | -19.1 | 1.00 H | 26 | 32.8 | -8.4 | | 2 | 313.87 | 27.3 QP | 46.0 | -18.7 | 1.00 H | 311 | 34.1 | -6.8 | | 3 | 362.35 | 26.9 QP | 46.0 | -19.1 | 1.00 H | 293 | 32.8 | -5.9 | | 4 | 524.48 | 31.2 QP | 46.0 | -14.8 | 1.50 H | 32 | 33.4 | -2.2 | | 5 | 657.20 | 30.5 QP | 46.0 | -15.5 | 1.50 H | 164 | 30.3 | 0.2 | | 6 | 837.26 | 32.7 QP | 46.0 | -13.3 | 1.50 H | 55 | 29.9 | 2.8 | | | | ANTENNA | A POLARITY | / & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 40.52 | 27.0 QP | 40.0 | -13.0 | 1.00 V | 201 | 35.2 | -8.2 | | 2 | 148.92 | 24.7 QP | 43.5 | -18.8 | 2.00 V | 360 | 32.6 | -7.9 | | 3 | 368.80 | 27.0 QP | 46.0 | -19.0 | 1.00 V | 335 | 32.8 | -5.8 | | | | | | | | | | | | 4 | 444.51 | 27.5 QP | 46.0 | -18.5 | 1.50 V | 200 | 31.0 | -3.5 | | 4
5 | 444.51
518.15 | 27.5 QP
30.1 QP | 46.0
46.0 | -18.5
-15.9 | 1.50 V
1.00 V | 200
60 | 31.0
32.4 | -3.5
-2.3 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value Page No. 31 / 39 Report Format Version: 6.1.1 Report No.: RF180123D04A Reference No.: 180209D09 # 4.2 Conducted Emission Measurement # 4.2.1 Limits of Conducted Emission Measurement | Fragues av (MILIT) | Conducted Limit (dBuV) | | | | |--------------------|------------------------|---------|--|--| | Frequency (MHz) | Quasi-peak | Average | | | | 0.15 - 0.5 | 66 - 56 | 56 - 46 | | | | 0.50 - 5.0 | 56 | 46 | | | | 5.0 - 30.0 | 60 | 50 | | | Note: 1. The lower limit shall apply at the transition frequencies. # 4.2.2 Test Instruments | DESCRIPTION & MANUFACTURER | MODEL NO. | SERIAL NO. | CALIBRATED
DATE | CALIBRATED
UNTIL | |--|-------------------------|------------|--------------------|---------------------| | Test Receiver
R&S | ESCS 30 | 847124/029 | Nov. 01, 2017 | Oct. 31, 2018 | | Line-Impedance
Stabilization Network
(for EUT)
R&S | ESH3-Z5 | 848773/004 | Nov. 15, 2017 | Nov. 14, 2018 | | Line-Impedance
Stabilization Network
(for Peripheral)
R&S | ENV216 | 100072 | June 03, 2017 | June 02, 2018 | | 50 ohms Terminator | N/A | EMC-02 | Sep. 22, 2017 | Sep. 21, 2018 | | RF Cable | 5D-FB | COCCAB-001 | Sep. 29, 2017 | Sep. 28, 2018 | | 10 dB PAD
Mini-Circuits | HAT-10+ | CONATT-004 | June 18, 2017 | June 17, 2018 | | Software
BVADT | BVADT_Cond_
V7.3.7.4 | NA | NA | NA | # Note: - 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in Shielded Room No. 1. - 3 Tested Date: Feb. 09, 2018 ^{2.} The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz. #### 4.2.3 Test Procedures - a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument. - b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference. - c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded. **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz. # 4.2.4 Deviation from Test Standard No deviation. # 4.2.5 Test Setup Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo). # 4.2.6 EUT Operating Conditions Same as 4.1.6. # 4.2.7 Test Results | Phase | Line (L) | Detector Function | Quasi-Peak (QP) / | |--------|----------|-------------------|-------------------| | riiase | Line (L) | Detector Function | Average (AV) | | | Phase Of Power : Line (L) | | | | | | | | | | | |----|---------------------------|-------------------|-------|----------------------|-------|-----------------------|-------|-----------------|--------|----------------|--| | No | Frequency | Correction Factor | | Reading Value (dBuV) | | Emission Level (dBuV) | | Limit
(dBuV) | | Margin
(dB) | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | | 1 | 0.15000 | 10.13 | 14.06 | -3.52 | 24.19 | 6.61 | 66.00 | 56.00 | -41.81 | -49.39 | | | 2 | 0.22422 | 10.15 | 2.15 | -11.36 | 12.30 | -1.21 | 62.66 | 52.66 | -50.36 | -53.87 | | | 3 | 0.98203 | 10.23 | -2.76 | -11.25 | 7.47 | -1.02 | 56.00 | 46.00 | -48.53 | -47.02 | | | 4 | 5.54688 | 10.44 | -9.78 | -13.61 | 0.66 | -3.17 | 60.00 | 50.00 | -59.34 | -53.17 | | | 5 | 12.64844 | 10.80 | 8.93 | 2.60 | 19.73 | 13.40 | 60.00 | 50.00 | -40.27 | -36.60 | | | 6 | 24.18359 | 11.26 | -7.18 | -11.51 | 4.08 | -0.25 | 60.00 | 50.00 | -55.92 | -50.25 | | # Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value | Phase | Neutral (N) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-------|-------------|-------------------|-----------------------------------| | | | | Avelage (Av) | | | Phase Of Power : Neutral (N) | | | | | | | | | | |----|------------------------------|-------------------|--------|--------|-----------------|-------|----------------|-------|--------|--------| | No | Frequency | Correction Factor | | | Limit
(dBuV) | | Margin
(dB) | | | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15000 | 10.04 | 13.55 | -3.99 | 23.59 | 6.05 | 66.00 | 56.00 | -42.41 | -49.95 | | 2 | 0.22422 | 10.04 | 1.76 | -11.44 | 11.80 | -1.40 | 62.66 | 52.66 | -50.86 | -54.06 | | 3 | 1.38281 | 10.13 | -10.87 | -14.33 | -0.74 | -4.20 | 56.00 | 46.00 | -56.74 | -50.20 | | 4 | 7.98828 | 10.41 | -7.40 | -11.71 | 3.01 | -1.30 | 60.00 | 50.00 | -56.99 | -51.30 | | 5 | 12.13281 | 10.61 | 3.19 | -3.04 | 13.80 | 7.57 | 60.00 | 50.00 | -46.20 | -42.43 | | 6 | 20.80859 | 11.02 | 7.15 | 1.58 | 18.17 | 12.60 | 60.00 | 50.00 | -41.83 | -37.40 | # Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value Report No.: RF180123D04A Page No. 35 / 39 Report Format Version: 6.1.1 #### 20dB bandwidth 4.3 # 4.3.1 Limits of 20dB bandwidth Measurement The 20dB bandwidth shall be specified in operating frequency band. #### 4.3.2 Test Setup # 4.3.3 Test Instruments | DESCRIPTION & MANUFACTURER | MODEL NO. | SERIAL NO. | CALIBRATED DATE | CALIBRATED UNTIL | |----------------------------|-----------|------------|-----------------|------------------| | Spectrum Analyzer R&S | FSV40 | 100964 | July 1, 2017 | June 30, 2018 | - **NOTE:** 1. The test was performed in Oven room 2. - 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 3. Tested Date: Feb. 12, 2018 #### 4.3.4 **Test Procedures** The bandwidth of the fundamental frequency was measured by spectrum analyzer with 3MHz RBW and 10MHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB. #### **Deviation from Test Standard** 4.3.5 No deviation. #### 4.3.6 **EUT Operating Conditions** Same as Item 4.1.6. Report No.: RF180123D04A Page No. 36 / 39 Report Format Version: 6.1.1 # 4.3.7 Test Results | Channel | Frequency (MHz) | 20dB Bandwidth (MHz) | |---------|-----------------|----------------------| | 1 | 24145 | 172.44 | | 5 Pictures of Test Arrangements | |---| | Please refer to the attached file (Test Setup Photo). | # Appendix - Information on the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025. If you have any comments, please feel free to contact us at the following: Linko EMC/RF Lab Hsin Chu EMC/RF/Telecom Lab Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323 Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892 Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com The address and road map of all our labs can be found in our web site also. --- END --- Report No.: RF180123D04A Page No. 39 /
39 Report Format Version: 6.1.1